-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
41 lines (32 loc) · 1.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from flask import Flask,request,render_template
import numpy as np
import pandas as pd
from src.pipeline.predict_pipeline import CustomData, PredictPipeline
application = Flask(__name__)
app = application
# Route for a Home page
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predictdata', methods = ['GET', 'POST'])
def predict_datapoint():
if request.method == 'GET':
return render_template('home.html')
else:
data= CustomData(
cloneSize = float(request.form.get('cloneSize')),
honeybee = float(request.form.get('honeybee')),
bumbles = float(request.form.get('bumbles')),
andrena =float(request.form.get('andrena')),
osmia = float(request.form.get('osmia')),
maxUpperTRange = float(request.form.get('maxUpperTRange')),
rainingDays = float(request.form.get('rainingDays')),
fruitset = float(request.form.get('fruitset'))
)
pred_df = data.get_data_as_data_frame()
print(pred_df)
predict_pipeline = PredictPipeline()
results = predict_pipeline.predict(pred_df)
return render_template('home.html', results =results[0])
if __name__=="__main__":
app.run(host="0.0.0.0", debug=True)