forked from Amelie-Schreiber/GET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
216 lines (191 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/python
# -*- coding:utf-8 -*-
import os
import argparse
import torch
from torch.utils.data import DataLoader
from utils.logger import print_log
from utils.random_seed import setup_seed, SEED
########### Import your packages below ##########
from data.dataset import BlockGeoAffDataset, PDBBindBenchmark, MixDatasetWrapper, DynamicBatchWrapper
from data.atom3d_dataset import LEPDataset, LBADataset
from data.dataset_ec import ECDataset
import models
import trainers
from utils.nn_utils import count_parameters
from data.pdb_utils import VOCAB
def parse():
parser = argparse.ArgumentParser(description='training')
# data
parser.add_argument('--train_set', type=str, required=True, help='path to train set')
parser.add_argument('--valid_set', type=str, default=None, help='path to valid set')
parser.add_argument('--pdb_dir', type=str, default=None, help='directory to the complex pdbs (required if not preprocessed in advance)')
parser.add_argument('--task', type=str, default=None,
choices=['PPA', 'PLA', 'LEP', 'AffMix', 'PDBBind', 'NL', 'EC'],
help='PPA: protein-protein affinity, ' + \
'PLA: protein-ligand affinity (small molecules), ' + \
'LEP: ligand efficacy prediction, ' + \
'PDBBind: pdbbind benchmark, ')
parser.add_argument('--train_set2', type=str, default=None, help='path to another train set if task is PretrainMix')
parser.add_argument('--valid_set2', type=str, default=None, help='path to another valid set if task is PretrainMix')
parser.add_argument('--train_set3', type=str, default=None, help='path to the third train set (in NL task)')
parser.add_argument('--fragment', type=str, default=None, choices=['PS_300', 'PS_500'], help='fragmentation on small molecules')
# training related
parser.add_argument('--pretrain', action='store_true', help='pretraining mode')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--final_lr', type=float, default=1e-4, help='final learning rate')
parser.add_argument('--warmup', type=int, default=0, help='linear learning rate warmup')
parser.add_argument('--max_epoch', type=int, default=10, help='max training epoch')
parser.add_argument('--grad_clip', type=float, default=1.0, help='clip gradients with too big norm')
parser.add_argument('--save_dir', type=str, required=True, help='directory to save model and logs')
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--valid_batch_size', type=int, default=None, help='batch size of validation, default set to the same as training batch size')
parser.add_argument('--max_n_vertex_per_gpu', type=int, default=None, help='if specified, ignore batch_size and form batch with dynamic size constrained by the total number of vertexes')
parser.add_argument('--valid_max_n_vertex_per_gpu', type=int, default=None, help='form batch with dynamic size constrained by the total number of vertexes')
parser.add_argument('--patience', type=int, default=-1, help='patience before early stopping')
parser.add_argument('--save_topk', type=int, default=-1, help='save topk checkpoint. -1 for saving all ckpt that has a better validation metric than its previous epoch')
parser.add_argument('--shuffle', action='store_true', help='shuffle data')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--seed', type=int, default=SEED)
# device
parser.add_argument('--gpus', type=int, nargs='+', required=True, help='gpu to use, -1 for cpu')
parser.add_argument("--local_rank", type=int, default=-1,
help="Local rank. Necessary for using the torch.distributed.launch utility.")
# model
parser.add_argument('--model_type', type=str, required=True, choices=['GET', 'GETPool', 'SchNet', 'EGNN', 'DimeNet', 'TorchMD', 'Equiformer'], help='type of model to use')
parser.add_argument('--embed_dim', type=int, default=64, help='dimension of residue/atom embedding')
parser.add_argument('--hidden_size', type=int, default=128, help='dimension of hidden states')
parser.add_argument('--n_channel', type=int, default=1, help='number of channels')
parser.add_argument('--n_rbf', type=int, default=1, help='Dimension of RBF')
parser.add_argument('--cutoff', type=float, default=7.0, help='Cutoff in RBF')
parser.add_argument('--n_head', type=int, default=1, help='Number of heads in the multi-head attention')
parser.add_argument('--k_neighbors', type=int, default=9, help='Number of neighbors in KNN graph')
parser.add_argument('--radial_size', type=int, default=16, help='Radial size in GET')
parser.add_argument('--radial_dist_cutoff', type=float, default=5, help='Distance cutoff in radial graph')
parser.add_argument('--n_layers', type=int, default=3, help='Number of layers')
parser.add_argument('--atom_level', action='store_true', help='train atom-level model (set each block to a single atom in GET)')
parser.add_argument('--hierarchical', action='store_true', help='train hierarchical model (atom-block)')
parser.add_argument('--no_block_embedding', action='store_true', help='do not add block embedding')
# load pretrain
parser.add_argument('--pretrain_ckpt', type=str, default=None, help='path of the pretrained ckpt to load')
return parser.parse_args()
def create_dataset(task, path, path2=None, path3=None, fragment=None):
if task == 'PLA':
# dataset = Atom3DLBA(path)
dataset = LBADataset(path, fragment=fragment)
if path2 is not None: # add protein dataset
dataset2 = BlockGeoAffDataset(path2)
dataset = MixDatasetWrapper(dataset, dataset2)
elif task == 'LEP':
dataset = LEPDataset(path, fragment=fragment)
elif task == 'PPA':
dataset = BlockGeoAffDataset(path)
if path2 is not None: # add small molecule dataset
dataset2 = LBADataset(path2, fragment=fragment)
dataset = MixDatasetWrapper(dataset, dataset2)
elif task == 'AffMix':
dataset1 = BlockGeoAffDataset(path)
dataset2 = LBADataset(path2, fragment=fragment)
dataset = MixDatasetWrapper(dataset1, dataset2)
elif task == 'PDBBind':
dataset = PDBBindBenchmark(path)
elif task == 'NL':
datasets = [BlockGeoAffDataset(path)]
if path2 is not None:
datasets.append(BlockGeoAffDataset(path2))
if path3 is not None:
datasets.append(LBADataset(path3, fragment=fragment))
if len(datasets) == 1:
dataset = datasets[0]
else:
dataset = MixDatasetWrapper(*datasets)
elif task == 'EC':
dataset = ECDataset(path)
else:
raise NotImplementedError(f'Dataset for {task} not implemented!')
return dataset
def create_trainer(model, train_loader, valid_loader, config):
model_type = type(model)
if model_type == models.AffinityPredictor:
Trainer = trainers.AffinityTrainer
elif model_type == models.GraphPairClassifier:
Trainer = trainers.GraphPairClassificationTrainer
elif model_type == models.GraphClassifier:
Trainer = trainers.GraphClassificationTrainer
elif model_type == models.DenoisePretrainModel:
Trainer = trainers.PretrainTrainer
elif model_type == models.GraphMultiBinaryClassifier:
Trainer = trainers.ECTrainer
else:
raise NotImplementedError(f'Trainer for model type {model_type} not implemented!')
return Trainer(model, train_loader, valid_loader, config)
def main(args):
setup_seed(args.seed)
VOCAB.load_tokenizer(args.fragment)
# torch.autograd.set_detect_anomaly(True)
model = models.create_model(args)
########### load your train / valid set ###########
train_set = create_dataset(args.task, args.train_set, args.train_set2, args.train_set3, args.fragment)
if args.valid_set is not None:
valid_set = create_dataset(args.task, args.valid_set, args.valid_set2, fragment=args.fragment)
print_log(f'Train: {len(train_set)}, validation: {len(valid_set)}')
else:
valid_set = None
print_log(f'Train: {len(train_set)}, no validation')
if args.max_n_vertex_per_gpu is not None:
if args.valid_max_n_vertex_per_gpu is None:
args.valid_max_n_vertex_per_gpu = args.max_n_vertex_per_gpu
train_set = DynamicBatchWrapper(train_set, args.max_n_vertex_per_gpu)
if valid_set is not None:
valid_set = DynamicBatchWrapper(valid_set, args.valid_max_n_vertex_per_gpu)
args.batch_size, args.valid_batch_size = 1, 1
args.num_workers = 1
########## set your collate_fn ##########
collate_fn = train_set.collate_fn
########## define your model/trainer/trainconfig #########
step_per_epoch = (len(train_set) + args.batch_size - 1) // args.batch_size
config = trainers.TrainConfig(args.save_dir, args.lr, args.max_epoch,
warmup=args.warmup,
patience=args.patience,
grad_clip=args.grad_clip,
save_topk=args.save_topk)
config.add_parameter(step_per_epoch=step_per_epoch,
final_lr=args.final_lr)
if args.valid_batch_size is None:
args.valid_batch_size = args.batch_size
if len(args.gpus) > 1:
args.local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', world_size=len(args.gpus))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=args.shuffle)
if args.max_n_vertex_per_gpu is None:
args.batch_size = int(args.batch_size / len(args.gpus))
if args.local_rank == 0:
print_log(f'Batch size on a single GPU: {args.batch_size}')
else:
args.local_rank = -1
train_sampler = None
if args.local_rank <= 0:
if args.max_n_vertex_per_gpu is not None:
print_log(f'Dynamic batch enabled. Max number of vertex per GPU: {args.max_n_vertex_per_gpu}')
if args.pretrain_ckpt:
print_log(f'Loaded pretrained checkpoint from {args.pretrain_ckpt}')
print_log(f'Number of parameters: {count_parameters(model) / 1e6} M')
train_loader = DataLoader(train_set, batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=(args.shuffle and train_sampler is None),
sampler=train_sampler,
collate_fn=collate_fn)
if valid_set is not None:
valid_loader = DataLoader(valid_set, batch_size=args.valid_batch_size,
num_workers=args.num_workers,
collate_fn=collate_fn)
else:
valid_loader = None
trainer = create_trainer(model, train_loader, valid_loader, config)
trainer.set_valid_requires_grad('pretrain' in args.task.lower())
trainer.train(args.gpus, args.local_rank)
return trainer.topk_ckpt_map
if __name__ == '__main__':
args = parse()
main(args)