-
Notifications
You must be signed in to change notification settings - Fork 0
/
warehouse-prob4.pddl
executable file
·73 lines (64 loc) · 2.31 KB
/
warehouse-prob4.pddl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
(define (problem warehouse-prob4)
(:domain warehouse)
(:objects
; defining the objects which are present in this problem
heavy - heavy
light1 light6 - light
fragile1 fragile2 fragile3 fragile4 - fragile
mover1 - mover1
mover2 - mover2
loader - loader
)
(:init
; specifing the initial condition of objects
(mover-empty mover1)
(mover-empty mover2)
(loader-free loader)
(mover-at-loadingBay mover1)
(mover-at-loadingBay mover2)
(crate-at-warehouse light1)
(crate-at-warehouse fragile1)
(crate-at-warehouse fragile2)
(crate-at-warehouse fragile3)
(crate-at-warehouse fragile4)
(crate-at-warehouse light6)
; specifing the weight of each crate
(= (crate_weight light1) 30)
(= (crate_weight fragile1) 20)
(= (crate_weight fragile2) 30)
(= (crate_weight fragile3) 20)
(= (crate_weight fragile4) 30)
(= (crate_weight light6) 20)
; specifing the distance of each crate from the loadingBay
(= (crate_distance light1) 20)
(= (crate_distance fragile1) 20)
(= (crate_distance fragile2) 10)
(= (crate_distance fragile3) 20)
(= (crate_distance fragile4) 30)
(= (crate_distance light6) 10)
; specifing the fragile of the crate
(= (crate_fragile light1) 1)
(= (crate_fragile light6) 1)
(= (crate_fragile fragile1) 1.5)
(= (crate_fragile fragile2) 1.5)
(= (crate_fragile fragile3) 1.5)
(= (crate_fragile fragile4) 1.5)
; specifing the power of the mover
(= (mover_power mover1) 20)
(= (mover_power mover2) 20)
)
(:goal
; defining the goal condition
(and (crate-at-conveyorBelt light1)
(crate-at-conveyorBelt fragile1)
(crate-at-conveyorBelt fragile2)
(crate-at-conveyorBelt fragile3)
(crate-at-conveyorBelt fragile4)
(crate-at-conveyorBelt light6)
)
)
(:metric minimize
; specifing the problem as a temporal planning problem with the cost function of total-time
(total-time)
)
)