Skip to content

Commit

Permalink
feat(fode): unify lipschitz time spans
Browse files Browse the repository at this point in the history
  • Loading branch information
alexfikl committed Oct 2, 2023
1 parent ced7271 commit 74bc1b7
Show file tree
Hide file tree
Showing 3 changed files with 27 additions and 31 deletions.
1 change: 0 additions & 1 deletion docs/fode.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@ Time Interval Handling
.. autoclass:: TimeSpan
.. autoclass:: FixedTimeSpan
.. autoclass:: GradedTimeSpan
.. autoclass:: FixedLipschitzTimeSpan
.. autoclass:: LipschitzTimeSpan

Time Stepping Events
Expand Down
2 changes: 0 additions & 2 deletions pycaputo/fode/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@

from pycaputo.fode.base import (
Event,
FixedLipschitzTimeSpan,
FixedTimeSpan,
FractionalDifferentialEquationMethod,
GradedTimeSpan,
Expand Down Expand Up @@ -54,7 +53,6 @@
"StepEstimateError",
"TimeSpan",
"FixedTimeSpan",
"FixedLipschitzTimeSpan",
"GradedTimeSpan",
"LipschitzTimeSpan",
"ProductIntegrationMethod",
Expand Down
55 changes: 27 additions & 28 deletions pycaputo/fode/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ def get_next_time_step_raw(self, n: int, t: float, y: Array) -> float:


@dataclass(frozen=True)
class FixedLipschitzTimeSpan(TimeSpan):
class LipschitzTimeSpan(TimeSpan):
r"""A :class:`TimeSpan` that uses the Lipschitz constant to estimate the time step.
This method estimates the time step using (Theorem 2.5 from [Baleanu2012]_)
Expand All @@ -191,33 +191,7 @@ class FixedLipschitzTimeSpan(TimeSpan):
\Delta t = \frac{1}{(\Gamma(2 - \alpha) L)^{\frac{1}{\alpha}}},
where :math:`L` is the Lipschitz constant estimated by :attr:`lipschitz_constant`.
Note that this is essentially a fixed time step estimate.
"""

#: An estimate of the Lipschitz contants of the right-hand side :math:`f(t, y)`
#: for all times :math:`t \in [t_s, t_f]`.
lipschitz_constant: float
#: Fractional order of the derivative.
alpha: float

def get_next_time_step_raw(self, n: int, t: float, y: Array) -> float:
"""See :meth:`pycaputo.fode.TimeSpan.get_next_time_step_raw`."""
if y.shape != (1,):
raise ValueError(f"Only scalar functions are supported: {y.shape}")

from math import gamma

L = self.lipschitz_constant
return float((gamma(2 - self.alpha) * L) ** (-1.0 / self.alpha))


@dataclass(frozen=True)
class LipschitzTimeSpan(TimeSpan):
r"""A :class:`TimeSpan` that uses the Lipschitz constant to estimate the time step.
This uses the same logic as :class:`FixedLipschitzTimeSpan`, but computes the
Lipschitz constant using the estimate from
where :math:`L` is the Lipschitz constant estimated by
:func:`~pycaputo.lipschitz.estimate_lipschitz_constant` at each time :math:`t`.
.. warning::
Expand Down Expand Up @@ -260,6 +234,31 @@ def get_next_time_step_raw(self, n: int, t: float, y: Array) -> float:
)
return float((gamma(2 - self.alpha) * L) ** (-1.0 / self.alpha))

@classmethod
def as_fixed(
cls,
lipschitz_constant: float,
alpha: float,
tstart: float = 0.0,
tfinal: float | None = None,
nsteps: int | None = None,
) -> FixedTimeSpan:
"""Estimate a fixed time step based on the Lipschitz constant.
This directly creates a :class:`FixedTimeSpan` based on the expression
for Theorem 2.5 in [Baleanu2012]_. If the *lipschitz_constant* estimate
is sufficiently accurate for all time steps, this is significantly
faster than recomputing it.
:arg lipschitz_constant: an estimate for the Lipschitz constant.
:arg alpha: the order of the fractional derivative.
"""
from math import gamma

dt = float((gamma(2 - alpha) * lipschitz_constant) ** (-1.0 / alpha))

return FixedTimeSpan.from_data(dt, tstart=tstart, tfinal=tfinal, nsteps=nsteps)


# }}}

Expand Down

0 comments on commit 74bc1b7

Please sign in to comment.