-
Notifications
You must be signed in to change notification settings - Fork 546
/
backbone.py
130 lines (105 loc) · 4.7 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#----------------------------------------------
#--- Author : Ahmet Ozlu
#--- Mail : ahmetozlu93@gmail.com
#--- Date : 14th August 2019
#----------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from collections import deque
from sklearn.utils.linear_assignment_ import linear_assignment
import detection_layer
import cv2
from utils.object_tracking_module import tracking_layer
from utils.object_tracking_module import tracking_utils
max_detection = 15
min_detection =1
tracker_list =[]
track_id_list= deque(['1', '2', '3', '4', '5', '6', '7', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '72', '73', '74', '75', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100'])
det = detection_layer.ObjectDetector()
def assign_detections_to_trackers(trackers, detections, iou_thrd = 0.3):
IOU_mat= np.zeros((len(trackers),len(detections)),dtype=np.float32)
for t,trk in enumerate(trackers):
for d,det in enumerate(detections):
IOU_mat[t,d] = tracking_utils.box_iou2(trk,det)
matched_idx = linear_assignment(-IOU_mat)
unmatched_trackers, unmatched_detections = [], []
for t,trk in enumerate(trackers):
if(t not in matched_idx[:,0]):
unmatched_trackers.append(t)
for d, det in enumerate(detections):
if(d not in matched_idx[:,1]):
unmatched_detections.append(d)
matches = []
for m in matched_idx:
if(IOU_mat[m[0],m[1]]<iou_thrd):
unmatched_trackers.append(m[0])
unmatched_detections.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2),dtype=int)
else:
matches = np.concatenate(matches,axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
def processor(img):
global tracker_list
global max_detection
global min_detection
global track_id_list
img_dim = (img.shape[1], img.shape[0])
z_box = det.get_localization(img)
x_box =[]
if len(tracker_list) > 0:
for trk in tracker_list:
x_box.append(trk.box)
matched, unmatched_dets, unmatched_trks = assign_detections_to_trackers(x_box, z_box, iou_thrd = 0.3)
# matched detections
if matched.size >0:
for trk_idx, det_idx in matched:
z = z_box[det_idx]
z = np.expand_dims(z, axis=0).T
tmp_trk= tracker_list[trk_idx]
tmp_trk.kalman_filter(z)
xx = tmp_trk.x_state.T[0].tolist()
xx =[xx[0], xx[2], xx[4], xx[6]]
x_box[trk_idx] = xx
tmp_trk.box =xx
tmp_trk.hits += 1
# unmatched detections
if len(unmatched_dets)>0:
for idx in unmatched_dets:
z = z_box[idx]
z = np.expand_dims(z, axis=0).T
tmp_trk = tracking_layer.Tracker() # new tracker
x = np.array([[z[0], 0, z[1], 0, z[2], 0, z[3], 0]]).T
tmp_trk.x_state = x
tmp_trk.predict_only()
xx = tmp_trk.x_state
xx = xx.T[0].tolist()
xx =[xx[0], xx[2], xx[4], xx[6]]
tmp_trk.box = xx
tmp_trk.id = track_id_list.popleft() # ID for the tracker
tracker_list.append(tmp_trk)
x_box.append(xx)
# unmatched tracks
if len(unmatched_trks)>0:
for trk_idx in unmatched_trks:
tmp_trk = tracker_list[trk_idx]
tmp_trk.no_losses += 1
tmp_trk.predict_only()
xx = tmp_trk.x_state
xx = xx.T[0].tolist()
xx =[xx[0], xx[2], xx[4], xx[6]]
tmp_trk.box =xx
x_box[trk_idx] = xx
good_tracker_list =[]
for trk in tracker_list:
if ((trk.hits >= min_detection) and (trk.no_losses <=max_detection)):
good_tracker_list.append(trk)
x_cv2 = trk.box
img= tracking_utils.draw_box_label(trk.id,img, x_cv2)
deleted_tracks = filter(lambda x: x.no_losses >max_detection, tracker_list)
for trk in deleted_tracks:
track_id_list.append(trk.id)
tracker_list = [x for x in tracker_list if x.no_losses<=max_detection]
return img