-
Notifications
You must be signed in to change notification settings - Fork 120
/
RH_ASK.cpp
1032 lines (908 loc) · 33.3 KB
/
RH_ASK.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// RH_ASK.cpp
//
// Copyright (C) 2014 Mike McCauley
// $Id: RH_ASK.cpp,v 1.32 2020/08/04 09:02:14 mikem Exp $
#include <RH_ASK.h>
#include <RHCRC.h>
#if (!defined(__SAMD51__) && (!defined(ARDUINO_ARCH_NRF52)))
#if (RH_PLATFORM == RH_PLATFORM_STM32)
// Maple etc
HardwareTimer timer(MAPLE_TIMER);
#elif defined(ARDUINO_ARCH_RP2040)
#elif defined(BOARD_NAME)
// ST's Arduino Core STM32, https://github.com/stm32duino/Arduino_Core_STM32
HardwareTimer timer(TIM1);
#elif defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4)
// Roger Clark Arduino STM32, https://github.com/rogerclarkmelbourne/Arduino_STM32
// And stm32duino
HardwareTimer timer(1);
#endif
#if (RH_PLATFORM == RH_PLATFORM_ESP32)
// Michael Cain
DRAM_ATTR hw_timer_t * timer;
//jPerotto Non-constant static data from ESP32 https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/general-notes.html#dram-data-ram
#define RH_DRAM_ATTR DRAM_ATTR
#else
#define RH_DRAM_ATTR
#endif
// RH_ASK on Arduino uses Timer 1 to generate interrupts 8 times per bit interval
// Define RH_ASK_ARDUINO_USE_TIMER2 if you want to use Timer 2 instead of Timer 1 on Arduino
// You may need this to work around other libraries that insist on using timer 1
// Should be moved to header file
//#define RH_ASK_ARDUINO_USE_TIMER2
// RH_ASK on ATtiny8x uses Timer 0 to generate interrupts 8 times per bit interval.
// Timer 0 is used by Arduino platform for millis()/micros() which is used by delay()
// Uncomment the define RH_ASK_ATTINY_USE_TIMER1 bellow, if you want to use Timer 1 instead of Timer 0 on ATtiny
// Timer 1 is also used by some other libraries, e.g. Servo. Alway check usage of Timer 1 before enabling this.
// Should be moved to header file
//#define RH_ASK_ATTINY_USE_TIMER1
// Interrupt handler uses this to find the most recently initialised instance of this driver
static RH_ASK* thisASKDriver;
// 4 bit to 6 bit symbol converter table
// Used to convert the high and low nybbles of the transmitted data
// into 6 bit symbols for transmission. Each 6-bit symbol has 3 1s and 3 0s
// with at most 3 consecutive identical bits
RH_DRAM_ATTR static uint8_t symbols[] =
{
0xd, 0xe, 0x13, 0x15, 0x16, 0x19, 0x1a, 0x1c,
0x23, 0x25, 0x26, 0x29, 0x2a, 0x2c, 0x32, 0x34
};
// This is the value of the start symbol after 6-bit conversion and nybble swapping
#define RH_ASK_START_SYMBOL 0xb38
RH_ASK::RH_ASK(uint16_t speed, uint8_t rxPin, uint8_t txPin, uint8_t pttPin, bool pttInverted)
:
_speed(speed),
_rxPin(rxPin),
_txPin(txPin),
_pttPin(pttPin),
_rxInverted(false),
_pttInverted(pttInverted)
{
// Initialise the first 8 nibbles of the tx buffer to be the standard
// preamble. We will append messages after that. 0x38, 0x2c is the start symbol before
// 6-bit conversion to RH_ASK_START_SYMBOL
uint8_t preamble[RH_ASK_PREAMBLE_LEN] = {0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x38, 0x2c};
memcpy(_txBuf, preamble, sizeof(preamble));
}
bool RH_ASK::init()
{
if (!RHGenericDriver::init())
return false;
thisASKDriver = this;
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#ifdef RH_ASK_PTT_PIN
RH_ASK_PTT_DDR |= (1<<RH_ASK_PTT_PIN);
RH_ASK_TX_DDR |= (1<<RH_ASK_TX_PIN);
RH_ASK_RX_DDR &= ~(1<<RH_ASK_RX_PIN);
#else
RH_ASK_TX_DDR |= (1<<RH_ASK_TX_PIN);
RH_ASK_RX_DDR &= ~(1<<RH_ASK_RX_PIN);
#endif
#else
// Set up digital IO pins for arduino
pinMode(_txPin, OUTPUT);
pinMode(_rxPin, INPUT);
pinMode(_pttPin, OUTPUT);
#endif
// Ready to go
setModeIdle();
timerSetup();
return true;
}
// Put these prescaler structs in PROGMEM, not on the stack
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8) || (RH_PLATFORM == RH_PLATFORM_ATTINY)
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
// Timer 2 has different prescalers
PROGMEM static const uint16_t prescalers[] = {0, 1, 8, 32, 64, 128, 256, 3333};
#elif defined(RH_ASK_ATTINY_USE_TIMER1) && defined(TCCR1)
// ATtiny85 Timer1 prescalers
PROGMEM static const uint16_t prescalers[] = {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1024, 2048, 4096, 8192, 16384, 33333};
#else
PROGMEM static const uint16_t prescalers[] = {0, 1, 8, 64, 256, 1024, 3333};
#endif
#define NUM_PRESCALERS (sizeof(prescalers) / sizeof( uint16_t))
#endif
// Common function for setting timer ticks @ prescaler values for speed
// Returns prescaler index into {0, 1, 8, 64, 256, 1024} array
// and sets nticks to compare-match value if lower than max_ticks
// returns 0 & nticks = 0 on fault
uint8_t RH_ASK::timerCalc(uint16_t speed, uint16_t max_ticks, uint16_t *nticks)
{
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO && !defined(ARDUINO_ARCH_RP2040)) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8) || (RH_PLATFORM == RH_PLATFORM_ATTINY)
// Clock divider (prescaler) values - 0/3333: error flag
uint8_t prescaler; // index into array & return bit value
unsigned long ulticks; // calculate by ntick overflow
// Div-by-zero protection
if (speed == 0)
{
// signal fault
*nticks = 0;
return 0;
}
// test increasing prescaler (divisor), decreasing ulticks until no overflow
// 1/Fraction of second needed to xmit one bit
unsigned long inv_bit_time = ((unsigned long)speed) * 8;
for (prescaler = 1; prescaler < NUM_PRESCALERS; prescaler += 1)
{
// Integer arithmetic courtesy Jim Remington
// 1/Amount of time per CPU clock tick (in seconds)
uint16_t prescalerValue;
memcpy_P(&prescalerValue, &prescalers[prescaler], sizeof(uint16_t));
unsigned long inv_clock_time = F_CPU / ((unsigned long)prescalerValue);
// number of prescaled ticks needed to handle bit time @ speed
ulticks = inv_clock_time / inv_bit_time;
// Test if ulticks fits in nticks bitwidth (with 1-tick safety margin)
if ((ulticks > 1) && (ulticks < max_ticks))
break; // found prescaler
// Won't fit, check with next prescaler value
}
// Check for error
if ((prescaler == 6) || (ulticks < 2) || (ulticks > max_ticks))
{
// signal fault
*nticks = 0;
return 0;
}
*nticks = ulticks;
return prescaler;
#else
return 0; // not implemented or needed on other platforms
#endif
}
#if defined(RH_PLATFORM_ARDUINO) && defined(ARDUINO_ARCH_RP2040)
void set_pico_alarm(uint32_t speed)
{
uint32_t period = (1000000 / 8) / speed; // In microseconds
uint64_t target = timer_hw->timerawl + period;
timer_hw->alarm[RH_ASK_PICO_ALARM_NUM] = (uint32_t) target;
}
#endif
// The idea here is to get 8 timer interrupts per bit period
void RH_ASK::timerSetup()
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
uint16_t nticks;
uint8_t prescaler = timerCalc(_speed, (uint16_t)-1, &nticks);
if (!prescaler) return;
_COMB(TCCR,RH_ASK_TIMER_INDEX,A)= 0;
_COMB(TCCR,RH_ASK_TIMER_INDEX,B)= _BV(WGM12);
_COMB(TCCR,RH_ASK_TIMER_INDEX,B)|= prescaler;
_COMB(OCR,RH_ASK_TIMER_INDEX,A)= nticks;
_COMB(TI,MSK,RH_ASK_TIMER_INDEX)|= _BV(_COMB(OCIE,RH_ASK_TIMER_INDEX,A));
#elif (RH_PLATFORM == RH_PLATFORM_MSP430) // LaunchPad specific
// Calculate the counter overflow count based on the required bit speed
// and CPU clock rate
uint16_t ocr1a = (F_CPU / 8UL) / _speed;
// This code is for Energia/MSP430
TA0CCR0 = ocr1a; // Ticks for 62,5 us
TA0CTL = TASSEL_2 + MC_1; // SMCLK, up mode
TA0CCTL0 |= CCIE; // CCR0 interrupt enabled
#elif (RH_PLATFORM == RH_PLATFORM_STM32L0)
Serial.println("STM32L0 RH_ASK NOT YET IMPLEMENTED ");
#elif (RH_PLATFORM == RH_PLATFORM_STM32) || defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4)
// Maple etc
// or rogerclarkmelbourne/Arduino_STM32
// or stm32duino
// Pause the timer while we're configuring it
timer.pause();
#ifdef BOARD_NAME
// ST's Arduino Core STM32, https://github.com/stm32duino/Arduino_Core_STM32
// Declaration of the callback function changed in 1.9. Sigh
#if (STM32_CORE_VERSION >= 0x01090000)
void interrupt();
#else
void interrupt(HardwareTimer*); // defined below
#endif
uint16_t us=(1000000/8)/_speed;
timer.setMode(1, TIMER_OUTPUT_COMPARE);
timer.setOverflow(us, MICROSEC_FORMAT);
timer.setCaptureCompare(1, us - 1, MICROSEC_COMPARE_FORMAT);
#if (STM32_CORE_VERSION >= 0x01090000)
timer.attachInterrupt(interrupt);
#else
timer.attachInterrupt(1, interrupt);
#endif
#else
void interrupt(); // defined below
// Roger Clark Arduino STM32, https://github.com/rogerclarkmelbourne/Arduino_STM32
timer.setPeriod((1000000/8)/_speed);
// Set up an interrupt on channel 1
timer.setChannel1Mode(TIMER_OUTPUT_COMPARE);
timer.setCompare(TIMER_CH1, 1); // Interrupt 1 count after each update
void interrupt(); // defined below
timer.attachCompare1Interrupt(interrupt);
#endif
// Refresh the timer's count, prescale, and overflow
timer.refresh();
// Start the timer counting
timer.resume();
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY)
// figure out prescaler value and counter match value
// REVISIT: does not correctly handle 1MHz clock speeds, only works with 8MHz clocks
// At 1MHz clock, get 1/8 of the expected baud rate
uint16_t nticks;
uint8_t prescaler = timerCalc(_speed, (uint8_t)-1, &nticks);
if (!prescaler)
return; // fault
#if defined(RH_ASK_ATTINY_USE_TIMER1)
#if defined(TCCR1)
// ATtiny85
TCCR1 = 0;
TCCR1 = _BV(CTC1); // Turn on CTC mode / Output Compare pins disconnected
// convert prescaler index to TCCR1 prescaler bits CS10, CS11, CS12, CS13
TCCR1 |= prescaler; // set CS10, CS11, CS12, CS13 (other bits not needed)
// Number of ticks to count before firing interrupt
OCR1A = uint8_t(nticks);
// Number of ticks to count before counter reset (CTC mode)
OCR1C = uint8_t(nticks);
// Synchronous mode and PLL disabled
PLLCSR = 0;
// Set mask to fire interrupt when OCF1A bit is set in TIFR1
TIMSK |= _BV(OCIE1A);
#else //TCCR1
// ATtiny84
TCCR1A = 0; // Output Compare pins disconnected
TCCR1B = _BV(WGM12); // Turn on CTC mode
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
TCCR1B |= prescaler;
TCCR1C = 0;
// Caution: special procedures for setting 16 bit regs
// is handled by the compiler
OCR1A = nticks;
//enable interupt
TIMSK1 |= _BV(OCIE1A);
#endif //
#else //RH_ASK_ATTINY_USE_TIMER1
TCCR0A = 0;
TCCR0A = _BV(WGM01); // Turn on CTC mode / Output Compare pins disconnected
// convert prescaler index to TCCRnB prescaler bits CS00, CS01, CS02
TCCR0B = 0;
TCCR0B = prescaler; // set CS00, CS01, CS02 (other bits not needed)
// Number of ticks to count before firing interrupt
OCR0A = uint8_t(nticks);
// Set mask to fire interrupt when OCF0A bit is set in TIFR0
#ifdef TIMSK0
// ATtiny84
TIMSK0 |= _BV(OCIE0A);
#else
// ATtiny85
TIMSK |= _BV(OCIE0A);
#endif
#endif //RH_ASK_ATTINY_USE_TIMER1
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
// If your processor does not have a TCB1, you can change the timer used in RadioHead.h
volatile TCB_t* timer = &RH_ATTINY_MEGA_ASK_TIMER;
// Calculate compare value
uint32_t compare_val = F_CPU / _speed / 8 - 1;
// If compare larger than 16bits, need to prescale (will be DIV64)
if (compare_val > 0xFFFF)
{
// recalculate with new prescaler
compare_val = F_CPU / _speed / 8 / 64 - 1;
// Prescaler needed
timer->CTRLA = TCB_CLKSEL_CLKTCA_gc;
}
else
{
// No prescaler needed
timer->CTRLA = TCB_CLKSEL_CLKDIV1_gc;
}
// Timer to Periodic interrupt mode
// This write will also disable any active PWM outputs
timer->CTRLB = TCB_CNTMODE_INT_gc;
// Write compare register
timer->CCMP = compare_val;
// Enable interrupt
timer->INTCTRL = TCB_CAPTEI_bm;
// Enable Timer
timer->CTRLA |= TCB_ENABLE_bm;
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) // Arduino specific
#if defined(__arm__) && defined(CORE_TEENSY)
// on Teensy 3.0 (32 bit ARM), use an interval timer
IntervalTimer *t = new IntervalTimer();
void TIMER1_COMPA_vect(void);
t->begin(TIMER1_COMPA_vect, 125000 / _speed);
#elif defined (__arm__) && defined(ARDUINO_ARCH_SAMD)
// Arduino Zero
#define RH_ASK_ZERO_TIMER TC3
// Clock speed is 48MHz, prescaler of 64 gives a good range of available speeds vs precision
#define RH_ASK_ZERO_PRESCALER 64
#define RH_ASK_ZERO_TIMER_IRQ TC3_IRQn
// Enable clock for TC
REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(GCM_TCC2_TC3)) ;
while ( GCLK->STATUS.bit.SYNCBUSY == 1 ); // wait for sync
// The type cast must fit with the selected timer mode
TcCount16* TC = (TcCount16*)RH_ASK_ZERO_TIMER; // get timer struct
TC->CTRLA.reg &= ~TC_CTRLA_ENABLE; // Disable TC
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
TC->CTRLA.reg |= TC_CTRLA_MODE_COUNT16; // Set Timer counter Mode to 16 bits
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
TC->CTRLA.reg |= TC_CTRLA_WAVEGEN_MFRQ; // Set TC as Match Frequency
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
// Compute the count required to achieve the requested baud (with 8 interrupts per bit)
uint32_t rc = (VARIANT_MCK / _speed) / RH_ASK_ZERO_PRESCALER / 8;
TC->CTRLA.reg |= TC_CTRLA_PRESCALER_DIV64; // Set prescaler to agree with RH_ASK_ZERO_PRESCALER
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
TC->CC[0].reg = rc; // FIXME
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
// Interrupts
TC->INTENSET.reg = 0; // disable all interrupts
TC->INTENSET.bit.MC0 = 1; // enable compare match to CC0
// Enable InterruptVector
NVIC_ClearPendingIRQ(RH_ASK_ZERO_TIMER_IRQ);
NVIC_EnableIRQ(RH_ASK_ZERO_TIMER_IRQ);
// Enable TC
TC->CTRLA.reg |= TC_CTRLA_ENABLE;
while (TC->STATUS.bit.SYNCBUSY == 1); // wait for sync
#elif defined(__arm__) && defined(ARDUINO_SAM_DUE)
// Arduino Due
// Clock speed is 84MHz
// Due has 9 timers in 3 blocks of 3.
// We use timer 1 TC1_IRQn on TC0 channel 1, since timers 0, 2, 3, 4, 5 are used by the Servo library
#define RH_ASK_DUE_TIMER TC0
#define RH_ASK_DUE_TIMER_CHANNEL 1
#define RH_ASK_DUE_TIMER_IRQ TC1_IRQn
pmc_set_writeprotect(false);
pmc_enable_periph_clk(RH_ASK_DUE_TIMER_IRQ);
// Clock speed 4 can handle all reasonable _speeds we might ask for. Its divisor is 128
// and we want 8 interrupts per bit
uint32_t rc = (VARIANT_MCK / _speed) / 128 / 8;
TC_Configure(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL,
TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC_SetRC(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL, rc);
// Enable the RC Compare Interrupt
RH_ASK_DUE_TIMER->TC_CHANNEL[RH_ASK_DUE_TIMER_CHANNEL].TC_IER = TC_IER_CPCS;
NVIC_ClearPendingIRQ(RH_ASK_DUE_TIMER_IRQ);
NVIC_EnableIRQ(RH_ASK_DUE_TIMER_IRQ);
TC_Start(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL);
#elif defined(ARDUINO_ARCH_RP2040)
// Per https://emalliab.wordpress.com/2021/04/18/raspberry-pi-pico-arduino-core-and-timers/
hw_set_bits(&timer_hw->inte, 1u << RH_ASK_PICO_ALARM_NUM);
void picoInterrupt(); // Forward declaration of interrupt handler
irq_set_exclusive_handler(RH_ASK_PICO_ALARM_IRQ, picoInterrupt);
irq_set_enabled(RH_ASK_PICO_ALARM_IRQ, true);
set_pico_alarm(_speed);
#else
uint16_t nticks; // number of prescaled ticks needed
uint8_t prescaler; // Bit values for CS0[2:0]
// This is the path for most Arduinos
// figure out prescaler value and counter match value
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
prescaler = timerCalc(_speed, (uint8_t)-1, &nticks);
if (!prescaler)
return; // fault
// Use timer 2
TCCR2A = _BV(WGM21); // Turn on CTC mode)
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
TCCR2B = prescaler;
// Caution: special procedures for setting 16 bit regs
// is handled by the compiler
OCR2A = nticks;
// Enable interrupt
#ifdef TIMSK2
// atmega168
TIMSK2 |= _BV(OCIE2A);
#else
// others
TIMSK |= _BV(OCIE2A);
#endif // TIMSK2
#else
// Use timer 1
prescaler = timerCalc(_speed, (uint16_t)-1, &nticks);
if (!prescaler)
return; // fault
TCCR1A = 0; // Output Compare pins disconnected
TCCR1B = _BV(WGM12); // Turn on CTC mode
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
TCCR1B |= prescaler;
// Caution: special procedures for setting 16 bit regs
// is handled by the compiler
OCR1A = nticks;
// Enable interrupt
#ifdef TIMSK1
// atmega168
TIMSK1 |= _BV(OCIE1A);
#else
// others
TIMSK |= _BV(OCIE1A);
#endif // TIMSK1
#endif
#endif
#elif (RH_PLATFORM == RH_PLATFORM_STM32F2) // Photon
// Inspired by SparkIntervalTimer
// We use Timer 6
void TimerInterruptHandler(); // Forward declaration for interrupt handler
#define SYSCORECLOCK 60000000UL // Timer clock tree uses core clock / 2
TIM_TimeBaseInitTypeDef timerInitStructure;
NVIC_InitTypeDef nvicStructure;
TIM_TypeDef* TIMx;
uint32_t period = (1000000 / 8) / _speed; // In microseconds
uint16_t prescaler = (uint16_t)(SYSCORECLOCK / 1000000UL) - 1; //To get TIM counter clock = 1MHz
attachSystemInterrupt(SysInterrupt_TIM6_Update, TimerInterruptHandler);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
nvicStructure.NVIC_IRQChannel = TIM6_DAC_IRQn;
TIMx = TIM6;
nvicStructure.NVIC_IRQChannelPreemptionPriority = 10;
nvicStructure.NVIC_IRQChannelSubPriority = 1;
nvicStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&nvicStructure);
timerInitStructure.TIM_Prescaler = prescaler;
timerInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
timerInitStructure.TIM_Period = period;
timerInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
timerInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIMx, &timerInitStructure);
TIM_ITConfig(TIMx, TIM_IT_Update, ENABLE);
TIM_Cmd(TIMx, ENABLE);
#elif (RH_PLATFORM == RH_PLATFORM_CHIPKIT_CORE)
// UsingChipKIT Core on Arduino IDE
uint32_t chipkit_timer_interrupt_handler(uint32_t currentTime); // Forward declaration
attachCoreTimerService(chipkit_timer_interrupt_handler);
#elif (RH_PLATFORM == RH_PLATFORM_UNO32)
// Under old MPIDE, which has been discontinued:
// ON Uno32 we use timer1
OpenTimer1(T1_ON | T1_PS_1_1 | T1_SOURCE_INT, (F_CPU / 8) / _speed);
ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_1);
#elif (RH_PLATFORM == RH_PLATFORM_ESP8266)
void RH_INTERRUPT_ATTR esp8266_timer_interrupt_handler(); // Forward declaration
// The - 120 is a heuristic to correct for interrupt handling overheads
_timerIncrement = (clockCyclesPerMicrosecond() * 1000000 / 8 / _speed) - 120;
timer0_isr_init();
timer0_attachInterrupt(esp8266_timer_interrupt_handler);
timer0_write(ESP.getCycleCount() + _timerIncrement);
// timer0_write(ESP.getCycleCount() + 41660000);
#elif (RH_PLATFORM == RH_PLATFORM_ESP32)
void RH_INTERRUPT_ATTR esp32_timer_interrupt_handler(); // Forward declaration
timer = timerBegin(0, 80, true); // Alarm value will be in in us
timerAttachInterrupt(timer, &esp32_timer_interrupt_handler, true);
timerAlarmWrite(timer, 1000000 / _speed / 8, true);
timerAlarmEnable(timer);
#endif
}
void RH_INTERRUPT_ATTR RH_ASK::setModeIdle()
{
if (_mode != RHModeIdle)
{
// Disable the transmitter hardware
writePtt(LOW);
writeTx(LOW);
_mode = RHModeIdle;
}
}
void RH_INTERRUPT_ATTR RH_ASK::setModeRx()
{
if (_mode != RHModeRx)
{
// Disable the transmitter hardware
writePtt(LOW);
writeTx(LOW);
_mode = RHModeRx;
}
}
void RH_ASK::setModeTx()
{
if (_mode != RHModeTx)
{
// PRepare state varibles for a new transmission
_txIndex = 0;
_txBit = 0;
_txSample = 0;
// Enable the transmitter hardware
writePtt(HIGH);
_mode = RHModeTx;
}
}
// Call this often
bool RH_ASK::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
if (_rxBufFull)
{
validateRxBuf();
_rxBufFull= false;
}
return _rxBufValid;
}
bool RH_INTERRUPT_ATTR RH_ASK::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
// Skip the length and 4 headers that are at the beginning of the rxBuf
// and drop the trailing 2 bytes of FCS
uint8_t message_len = _rxBufLen-RH_ASK_HEADER_LEN - 3;
if (*len > message_len)
*len = message_len;
memcpy(buf, _rxBuf+RH_ASK_HEADER_LEN+1, *len);
}
_rxBufValid = false; // Got the most recent message, delete it
// printBuffer("recv:", buf, *len);
return true;
}
// Caution: this may block
bool RH_ASK::send(const uint8_t* data, uint8_t len)
{
uint8_t i;
uint16_t index = 0;
uint16_t crc = 0xffff;
uint8_t *p = _txBuf + RH_ASK_PREAMBLE_LEN; // start of the message area
uint8_t count = len + 3 + RH_ASK_HEADER_LEN; // Added byte count and FCS and headers to get total number of bytes
if (len > RH_ASK_MAX_MESSAGE_LEN)
return false;
// Wait for transmitter to become available
waitPacketSent();
if (!waitCAD())
return false; // Check channel activity
// Encode the message length
crc = RHcrc_ccitt_update(crc, count);
p[index++] = symbols[count >> 4];
p[index++] = symbols[count & 0xf];
// Encode the headers
crc = RHcrc_ccitt_update(crc, _txHeaderTo);
p[index++] = symbols[_txHeaderTo >> 4];
p[index++] = symbols[_txHeaderTo & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderFrom);
p[index++] = symbols[_txHeaderFrom >> 4];
p[index++] = symbols[_txHeaderFrom & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderId);
p[index++] = symbols[_txHeaderId >> 4];
p[index++] = symbols[_txHeaderId & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderFlags);
p[index++] = symbols[_txHeaderFlags >> 4];
p[index++] = symbols[_txHeaderFlags & 0xf];
// Encode the message into 6 bit symbols. Each byte is converted into
// 2 6-bit symbols, high nybble first, low nybble second
for (i = 0; i < len; i++)
{
crc = RHcrc_ccitt_update(crc, data[i]);
p[index++] = symbols[data[i] >> 4];
p[index++] = symbols[data[i] & 0xf];
}
// Append the fcs, 16 bits before encoding (4 6-bit symbols after encoding)
// Caution: VW expects the _ones_complement_ of the CCITT CRC-16 as the FCS
// VW sends FCS as low byte then hi byte
crc = ~crc;
p[index++] = symbols[(crc >> 4) & 0xf];
p[index++] = symbols[crc & 0xf];
p[index++] = symbols[(crc >> 12) & 0xf];
p[index++] = symbols[(crc >> 8) & 0xf];
// Total number of 6-bit symbols to send
_txBufLen = index + RH_ASK_PREAMBLE_LEN;
// Start the low level interrupt handler sending symbols
setModeTx();
return true;
}
// Read the RX data input pin, taking into account platform type and inversion.
bool RH_INTERRUPT_ATTR RH_ASK::readRx()
{
bool value;
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
value = ((RH_ASK_RX_PORT & (1<<RH_ASK_RX_PIN)) ? 1 : 0);
#else
value = digitalRead(_rxPin);
#endif
return value ^ _rxInverted;
}
// Write the TX output pin, taking into account platform type.
void RH_INTERRUPT_ATTR RH_ASK::writeTx(bool value)
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
((value) ? (RH_ASK_TX_PORT |= (1<<RH_ASK_TX_PIN)) : (RH_ASK_TX_PORT &= ~(1<<RH_ASK_TX_PIN)));
// No longer relevant: PinStatus onlty used in old versions
//#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
// digitalWrite(_txPin, (PinStatus)value);
#else
digitalWrite(_txPin, value);
#endif
}
// Write the PTT output pin, taking into account platform type and inversion.
void RH_INTERRUPT_ATTR RH_ASK::writePtt(bool value)
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#if RH_ASK_PTT_PIN
((value) ? (RH_ASK_PTT_PORT |= (1<<RH_ASK_PTT_PIN)) : (RH_ASK_PTT_PORT &= ~(1<<RH_ASK_PTT_PIN)));
#else
((value) ? (RH_ASK_TX_PORT |= (1<<RH_ASK_TX_PIN)) : (RH_ASK_TX_PORT &= ~(1<<RH_ASK_TX_PIN)));
#endif
// This no longer relevant: ater version use uint8_t
//#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
// digitalWrite(_txPin, (PinStatus)(value ^ _pttInverted));
#else
digitalWrite(_pttPin, value ^ _pttInverted);
#endif
}
uint8_t RH_ASK::maxMessageLength()
{
return RH_ASK_MAX_MESSAGE_LEN;
}
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO)
// Assume Arduino Uno (328p or similar)
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
#define RH_ASK_TIMER_VECTOR TIMER2_COMPA_vect
#else
#define RH_ASK_TIMER_VECTOR TIMER1_COMPA_vect
#endif
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY)
#if defined(RH_ASK_ATTINY_USE_TIMER1)
#define RH_ASK_TIMER_VECTOR TIM1_COMPA_vect
#else
#define RH_ASK_TIMER_VECTOR TIM0_COMPA_vect
#endif //RH_ASK_ATTINY_USE_TIMER1
#elif (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#define __COMB(a,b,c) (a##b##c)
#define _COMB(a,b,c) __COMB(a,b,c)
#define RH_ASK_TIMER_VECTOR _COMB(TIMER,RH_ASK_TIMER_INDEX,_COMPA_vect)
#endif
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
void TIMER1_COMPA_vect(void)
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && defined(ARDUINO_ARCH_SAMD)
// Arduino Zero
void TC3_Handler()
{
// The type cast must fit with the selected timer mode
TcCount16* TC = (TcCount16*)RH_ASK_ZERO_TIMER; // get timer struct
TC->INTFLAG.bit.MC0 = 1;
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(ARDUINO_SAM_DUE)
// Arduino Due
void TC1_Handler()
{
TC_GetStatus(RH_ASK_DUE_TIMER, 1);
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(ARDUINO_ARCH_RP2040)
void picoInterrupt()
{
hw_clear_bits(&timer_hw->intr, 1u << RH_ASK_PICO_ALARM_NUM);
set_pico_alarm(thisASKDriver->speed());
thisASKDriver->handleTimerInterrupt();
}
#elif defined(BOARD_NAME)
// ST's Arduino Core STM32, https://github.com/stm32duino/Arduino_Core_STM32
// Declaration of the callback function changed in 1.9
#if (STM32_CORE_VERSION >= 0x01090000)
// This really should be callback_function_t interrupt() but some platform compilers
// warn/error, thinking there should be a return value
void interrupt()
#else
void interrupt(HardwareTimer*)
#endif
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) && (defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_RP2040))
// Roger Clark Arduino STM32, https://github.com/rogerclarkmelbourne/Arduino_STM32
void interrupt()
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8) || (RH_PLATFORM == RH_PLATFORM_ATTINY)
// This is the interrupt service routine called when timer1 overflows
// Its job is to output the next bit from the transmitter (every 8 calls)
// and to call the PLL code if the receiver is enabled
//ISR(SIG_OUTPUT_COMPARE1A)
ISR(RH_ASK_TIMER_VECTOR)
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_MSP430) || (RH_PLATFORM == RH_PLATFORM_STM32)
// LaunchPad, Maple
void interrupt()
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_STM32F2) // Photon
void TimerInterruptHandler()
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_MSP430)
interrupt(TIMER0_A0_VECTOR) Timer_A_int(void)
{
thisASKDriver->handleTimerInterrupt();
};
#elif (RH_PLATFORM == RH_PLATFORM_CHIPKIT_CORE)
// Using ChipKIT Core on Arduino IDE
uint32_t chipkit_timer_interrupt_handler(uint32_t currentTime)
{
thisASKDriver->handleTimerInterrupt();
return (currentTime + ((CORE_TICK_RATE * 1000)/8)/thisASKDriver->speed());
}
#elif (RH_PLATFORM == RH_PLATFORM_UNO32)
// Under old MPIDE, which has been discontinued:
extern "C"
{
void __ISR(_TIMER_1_VECTOR, ipl1) timerInterrupt(void)
{
thisASKDriver->handleTimerInterrupt();
mT1ClearIntFlag(); // Clear timer 1 interrupt flag
}
}
#elif (RH_PLATFORM == RH_PLATFORM_ESP8266)
void RH_INTERRUPT_ATTR esp8266_timer_interrupt_handler()
{
// timer0_write(ESP.getCycleCount() + 41660000);
// timer0_write(ESP.getCycleCount() + (clockCyclesPerMicrosecond() * 100) - 120 );
timer0_write(ESP.getCycleCount() + thisASKDriver->_timerIncrement);
// static int toggle = 0;
// toggle = (toggle == 1) ? 0 : 1;
// digitalWrite(4, toggle);
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ESP32)
void IRAM_ATTR esp32_timer_interrupt_handler()
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
ISR(RH_ATTINY_MEGA_ASK_TIMER_VECTOR)
{
thisASKDriver->handleTimerInterrupt();
RH_ATTINY_MEGA_ASK_TIMER.INTFLAGS = TCB_CAPT_bm;
}
#endif
// Convert a 6 bit encoded symbol into its 4 bit decoded equivalent
uint8_t RH_INTERRUPT_ATTR RH_ASK::symbol_6to4(uint8_t symbol)
{
uint8_t i;
uint8_t count;
// Linear search :-( Could have a 64 byte reverse lookup table?
// There is a little speedup here courtesy Ralph Doncaster:
// The shortcut works because bit 5 of the symbol is 1 for the last 8
// symbols, and it is 0 for the first 8.
// So we only have to search half the table
for (i = (symbol>>2) & 8, count=8; count-- ; i++)
if (symbol == symbols[i]) return i;
return 0; // Not found
}
// Check whether the latest received message is complete and uncorrupted
// We should always check the FCS at user level, not interrupt level
// since it is slow
void RH_ASK::validateRxBuf()
{
uint16_t crc = 0xffff;
// The CRC covers the byte count, headers and user data
for (uint8_t i = 0; i < _rxBufLen; i++)
crc = RHcrc_ccitt_update(crc, _rxBuf[i]);
if (crc != 0xf0b8) // CRC when buffer and expected CRC are CRC'd
{
// Reject and drop the message
_rxBad++;
_rxBufValid = false;
return;
}
// Extract the 4 headers that follow the message length
_rxHeaderTo = _rxBuf[1];
_rxHeaderFrom = _rxBuf[2];
_rxHeaderId = _rxBuf[3];
_rxHeaderFlags = _rxBuf[4];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
void RH_INTERRUPT_ATTR RH_ASK::receiveTimer()
{
bool rxSample = readRx();
// Integrate each sample
if (rxSample)
_rxIntegrator++;
if (rxSample != _rxLastSample)
{
// Transition, advance if ramp > 80, retard if < 80
_rxPllRamp += ((_rxPllRamp < RH_ASK_RAMP_TRANSITION)
? RH_ASK_RAMP_INC_RETARD
: RH_ASK_RAMP_INC_ADVANCE);
_rxLastSample = rxSample;
}
else
{
// No transition
// Advance ramp by standard 20 (== 160/8 samples)
_rxPllRamp += RH_ASK_RAMP_INC;
}
if (_rxPllRamp >= RH_ASK_RX_RAMP_LEN)
{
// Add this to the 12th bit of _rxBits, LSB first
// The last 12 bits are kept
_rxBits >>= 1;
// Check the integrator to see how many samples in this cycle were high.
// If < 5 out of 8, then its declared a 0 bit, else a 1;
if (_rxIntegrator >= 5)
_rxBits |= 0x800;
_rxPllRamp -= RH_ASK_RX_RAMP_LEN;
_rxIntegrator = 0; // Clear the integral for the next cycle
if (_rxActive)
{
// We have the start symbol and now we are collecting message bits,
// 6 per symbol, each which has to be decoded to 4 bits
if (++_rxBitCount >= 12)
{
// Have 12 bits of encoded message == 1 byte encoded
// Decode as 2 lots of 6 bits into 2 lots of 4 bits
// The 6 lsbits are the high nybble
uint8_t this_byte =
(symbol_6to4(_rxBits & 0x3f)) << 4
| symbol_6to4(_rxBits >> 6);
// The first decoded byte is the byte count of the following message
// the count includes the byte count and the 2 trailing FCS bytes
// REVISIT: may also include the ACK flag at 0x40
if (_rxBufLen == 0)
{
// The first byte is the byte count
// Check it for sensibility. It cant be less than 7, since it
// includes the byte count itself, the 4 byte header and the 2 byte FCS
_rxCount = this_byte;
if (_rxCount < 7 || _rxCount > RH_ASK_MAX_PAYLOAD_LEN)
{
// Stupid message length, drop the whole thing
_rxActive = false;
_rxBad++;
return;
}
}
_rxBuf[_rxBufLen++] = this_byte;
if (_rxBufLen >= _rxCount)
{
// Got all the bytes now
_rxActive = false;
_rxBufFull = true;
setModeIdle();
}
_rxBitCount = 0;
}
}
// Not in a message, see if we have a start symbol
else if (_rxBits == RH_ASK_START_SYMBOL)
{
// Have start symbol, start collecting message
_rxActive = true;
_rxBitCount = 0;
_rxBufLen = 0;
}
}
}
void RH_INTERRUPT_ATTR RH_ASK::transmitTimer()
{
if (_txSample++ == 0)
{
// Send next bit