-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling.py
803 lines (695 loc) · 36.3 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
#########################################
# CS769 Course Project Update
# Taken from https://github.com/AsaCooperStickland/Bert-n-Pals
#########################################
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import math
import six
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.autograd import Variable
from torch.nn.parameter import Parameter
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertConfig(object):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
pals=False,
mult=False,
top=False,
lhuc=False,
houlsby=False,
bert_lay_top=False,
num_tasks=1,
extra_dim=None,
hidden_size_aug=204):
"""Constructs BertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.hidden_size_aug = hidden_size_aug
self.pals = pals
self.extra_dim = extra_dim
self.houlsby = houlsby
self.mult = mult
self.top = top
self.bert_lay_top = bert_lay_top
self.lhuc = lhuc
self.num_tasks=num_tasks
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class BERTLayerNorm(nn.Module):
def __init__(self, config, multi_params=None, variance_epsilon=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BERTLayerNorm, self).__init__()
if multi_params is not None:
self.gamma = nn.Parameter(torch.ones(config.hidden_size_aug))
self.beta = nn.Parameter(torch.zeros(config.hidden_size_aug))
else:
self.gamma = nn.Parameter(torch.ones(config.hidden_size))
self.beta = nn.Parameter(torch.zeros(config.hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class BERTEmbeddings(nn.Module):
def __init__(self, config):
super(BERTEmbeddings, self).__init__()
"""Construct the embedding module from word, position and token_type embeddings.
"""
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BERTSelfAttention(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
if multi_params is not None:
self.num_attention_heads = multi_params
self.attention_head_size = int(config.hidden_size_aug / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size_aug
else:
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BERTMultSelfOutput(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTMultSelfOutput, self).__init__()
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTSelfOutput(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTSelfOutput, self).__init__()
if houlsby:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
if multi_params is not None:
self.dense = nn.Linear(config.hidden_size_aug, config.hidden_size_aug)
else:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](hidden_states, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTAttention(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTAttention, self).__init__()
self.self = BERTSelfAttention(config, multi_params)
self.output = BERTSelfOutput(config, multi_params, houlsby)
def forward(self, input_tensor, attention_mask, i=0):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor, attention_mask, i=i)
return attention_output
class BERTPals(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTPals, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
# Attention without the final matrix multiply.
self.attn = BERTSelfAttention(config, 6)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.attn(hidden_states_aug, attention_mask)
hidden_states = self.aug_dense2(hidden_states_aug)
hidden_states = self.hidden_act_fn(hidden_states)
return hidden_states
class BERTLowRank(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTLowRank, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
if config.extra_dim:
self.aug_dense = nn.Linear(config.hidden_size, config.extra_dim)
self.aug_dense2 = nn.Linear(config.extra_dim, config.hidden_size)
else:
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.hidden_act_fn(hidden_states_aug)
hidden_states = self.aug_dense2(hidden_states_aug)
return hidden_states
class BERTIntermediate(nn.Module):
def __init__(self, config):
super(BERTIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.config = config
self.intermediate_act_fn = gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BERTLhuc(nn.Module):
def __init__(self, config):
super(BERTLhuc, self).__init__()
self.lhuc = Parameter(torch.zeros(config.hidden_size))
def forward(self, hidden_states):
hidden_states = hidden_states * 2. * nn.functional.sigmoid(self.lhuc)
return hidden_states
class BERTOutput(nn.Module):
def __init__(self, config, houlsby=False):
super(BERTOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if houlsby:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](input_tensor, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTLayer(nn.Module):
def __init__(self, config, mult=False, houlsby=False):
super(BERTLayer, self).__init__()
self.attention = BERTAttention(config, houlsby=houlsby)
self.intermediate = BERTIntermediate(config)
self.output = BERTOutput(config, houlsby=houlsby)
if config.lhuc:
lhuc = BERTLhuc(config)
self.multi_lhuc = nn.ModuleList([copy.deepcopy(lhuc) for _ in range(config.num_tasks)])
if mult:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.mult = mult
self.lhuc = config.lhuc
self.houlsby = houlsby
def forward(self, hidden_states, attention_mask, i=0):
attention_output = self.attention(hidden_states, attention_mask, i)
intermediate_output = self.intermediate(attention_output)
if self.lhuc and not self.mult:
layer_output = self.output(intermediate_output, attention_output)
layer_output = self.multi_lhuc[i](layer_output)
elif self.mult:
extra = self.multi_layers[i](hidden_states, attention_mask)
if self.lhuc:
extra = self.multi_lhuc[i](extra)
layer_output = self.output(intermediate_output, attention_output + extra)
elif self.houlsby:
layer_output = self.output(intermediate_output, attention_output, attention_mask, i)
else:
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BERTEncoder(nn.Module):
def __init__(self, config):
super(BERTEncoder, self).__init__()
self.config = config
if config.houlsby:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, houlsby=mult) for mult in self.multis])
elif config.mult:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, mult=mult) for mult in self.multis])
else:
layer = BERTLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
if config.top:
if config.bert_lay_top:
multi = BERTLayer(config)
else:
# Projection matrices and attention for adding to the top.
mult_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.mult_dense = nn.ModuleList([copy.deepcopy(mult_dense) for _ in range(config.num_tasks)])
mult_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_dense2 = nn.ModuleList([copy.deepcopy(mult_dense2) for _ in range(config.num_tasks)])
multi = nn.ModuleList([copy.deepcopy(BERTAttention(config, 12)) for _ in range(6)])
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.gelu = gelu
if config.mult and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
if config.houlsby and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
dense3 = nn.Linear(config.hidden_size, config.hidden_size_aug)
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.output.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
def forward(self, hidden_states, attention_mask, i=0):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask, i)
all_encoder_layers.append(hidden_states)
if self.config.top:
if self.config.bert_lay_top:
all_encoder_layers[-1] = self.multi_layers[i](hidden_states, attention_mask)
else:
hidden_states = self.mult_dense[i](hidden_states)
for lay in self.multi_layers[i]:
hidden_states = lay(hidden_states, attention_mask)
all_encoder_layers[-1] = self.mult_dense2[i](hidden_states)
return all_encoder_layers
class BERTPooler(nn.Module):
def __init__(self, config):
super(BERTPooler, self).__init__()
dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.pool = False
if self.pool:
self.mult_dense_layers = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
else:
self.dense = dense
self.mult = config.mult
self.top = config.top
def forward(self, hidden_states, i=0):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
if (self.mult or self.top) and self.pool:
pooled_output = self.mult_dense_layers[i](first_token_tensor)
else:
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertModel(nn.Module):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = modeling.BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config: BertConfig):
"""Constructor for BertModel.
Args:
config: `BertConfig` instance.
"""
super(BertModel, self).__init__()
self.embeddings = BERTEmbeddings(config)
self.encoder = BERTEncoder(config)
self.pooler = BERTPooler(config)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, i=0):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, from_seq_length]
# So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.float()
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, token_type_ids)
all_encoder_layers = self.encoder(embedding_output, extended_attention_mask, i)
sequence_output = all_encoder_layers[-1]
pooled_output = self.pooler(sequence_output, i)
return all_encoder_layers, pooled_output
class BertForMultiTask(nn.Module):
"""BERT model for classification or regression on GLUE tasks (STS-B is treated as a regression task).
This module is composed of the BERT model with a linear layer on top of
the pooled output.
```
"""
def __init__(self, config, tasks):
super(BertForMultiTask, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.ModuleList([nn.Linear(config.hidden_size, num_labels)
for i, num_labels in enumerate(tasks)])
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, task_id, name='cola', labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, task_id)
pooled_output = self.dropout(pooled_output)
logits = self.classifier[task_id](pooled_output)
if labels is not None and name != 'sts':
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
# STS is a regression task.
elif labels is not None and name == 'sts':
loss_fct = MSELoss()
loss = loss_fct(logits, labels.unsqueeze(1))
return loss, logits
else:
return logits
class BertForSequenceClassification(nn.Module):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels):
super(BertForSequenceClassification, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
else:
return logits
class BertForQuestionAnswering(nn.Module):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__()
self.bert = BertModel(config)
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
sequence_output = all_encoder_layers[-1]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension - if not this is a no-op
start_positions = start_positions.squeeze(-1)
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
else:
return start_logits, end_logits
class BertForMultipleChoice(nn.Module):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices=2):
super(BertForMultipleChoice, self).__init__()
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits