-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
59 lines (45 loc) · 1.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# from src.ChestCancerClassifier import logger
from ChestCancerClassifier import logger
from ChestCancerClassifier.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from ChestCancerClassifier.pipeline.stage_02_prepare_base_model import PrepareBaseModelTrainingPipeline
from ChestCancerClassifier.pipeline.stage_03_model_trainer import ModelTrainingPipeline
from ChestCancerClassifier.pipeline.stage_04_model_evaluation import EvaluationPipeline
STAGE_NAME="Data Ingestion Stage"
try:
logger.info(f">>>>>>>>>> stage{STAGE_NAME} started <<<<<<<<<<")
obj=DataIngestionTrainingPipeline()
obj.main()
logger.info(f">>>>>>>>>> stage{STAGE_NAME} completed <<<<<<<<<<\n \n=======x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Prepare base model"
try:
logger.info(f"*******************")
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
prepare_base_model = PrepareBaseModelTrainingPipeline()
prepare_base_model.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Training"
try:
logger.info(f"*******************")
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
model_trainer = ModelTrainingPipeline()
model_trainer.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Evaluation stage"
try:
logger.info(f"*******************")
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
model_evalution = EvaluationPipeline()
model_evalution.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e