-
This project is a Streamlit chatbot with Langchain deploying a LLaMA2-7b-chat model on Intel® Server and Client CPUs.
-
The chatbot has a memory that remembers every part of the speech, and allows users to optimize the model using Intel® Extension for PyTorch (IPEX) in bfloat16 with graph mode or smooth quantization (A new quantization technique specifically designed for LLMs: ArXiv link), or 4-bit quantization. The user can expect up to 4.3x speed-up compared to stock PyTorch in default mode.
-
IMPORTANT: The CPU needs to support bfloat16 ops in order to be able to use such optimization. On top of software optimizations, I also introduced some hardware optimizations like non-uniform memory access (NUMA). User needs to ask for access to LLaMA2 models by following this link. When getting approval from Meta, you can generate an authentification token from your HuggingFace account, and use it to load the model.
- Start by cloning the repository:
git clone https://github.com/aahouzi/llama2-chatbot-cpu.git
cd llama2-chatbot-cpu
- Create a Python 3.9 conda environment:
conda create -y -n llama2-chat python=3.9
- Activate the environment:
conda activate llama2-chat
- Install requirements for NUMA:
conda install -y gperftools -c conda-forge
conda install -y intel-openmp
sudo apt install numactl
- Install the app requirements:
pip install -r requirements.txt
- Default mode (no optimizations):
bash launcher.sh --script=app/app.py --port=<port> --physical_cores=<physical_cores> --auth_token=<auth_token>
- IPEX in graph mode with FP32:
bash launcher.sh --script=app/app.py --port=<port> --physical_cores=<physical_cores> --auth_token=<auth_token> --ipex --jit
- IPEX in graph mode with bfloat16:
bash launcher.sh --script=app/app.py --port=<port> --physical_cores=<physical_cores> --auth_token=<auth_token> --dtype=bfloat16 --ipex --jit
- Smooth quantization:
bash launcher.sh --script=app/app.py --port=<port> --physical_cores=<physical_cores> --auth_token=<auth_token> --sq
- 4-bit quantization:
bash launcher.sh --script=app/app.py --port=<port> --physical_cores=<physical_cores> --auth_token=<auth_token> --int4
For any information, feedback or questions, please contact me