forked from liyucheng09/Selective_Context
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selective_context.py
347 lines (284 loc) · 13.7 KB
/
selective_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
print('Loading dependencies...')
from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer
import torch
import re
from typing import List, Tuple
import spacy
import numpy as np
import os
from dataclasses import dataclass
from nltk.tokenize import sent_tokenize, word_tokenize
import time
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {DEVICE}")
@dataclass
class LexicalUnits:
unit_type: str
text: List[str]
self_info: List[float] = None
def __add__(self, other):
assert self.unit_type == other.unit_type, 'Cannot add two different unit types'
return LexicalUnits(self.unit_type, self.text + other.text, self.self_info + other.self_info)
def __radd__(self, other):
if other == 0:
return self
return NotImplementedError()
def add_to_head(self, token, self_info):
return LexicalUnits(self.unit_type, [token] + self.text, [self_info] + self.self_info)
def add_to_tail(self, token, self_info):
return LexicalUnits(self.unit_type, self.text + [token], self.self_info + [self_info])
class SelectiveContext:
def __init__(self, model_type = 'gpt2', lang = 'en'):
self.model_type = model_type
self.lang = lang
self.device = DEVICE
# this means we calculate self-information sentence by sentence
self.sent_level_self_info = True
self._prepare_phrase_tokenizer()
self.sent_tokenize_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
self.phrase_mask_token = ''
self.sent_mask_token = "<...some content omitted.>"
self.keep_leading_word = False
self.mask_token = ''
self._prepare_model()
def _prepare_phrase_tokenizer(self):
# we use space to tokenize sentence into phrases
# for English, we should use `spacy.load("en_core_web_sm").add_pipe('merge_noun_chunks')`
# for Chinese, use `nlp = spacy.load('zh_core_web_sm')`` directly
lang = self.lang
if lang == "en":
self.nlp = spacy.load("en_core_web_sm", disable=["ner"])
self.nlp.add_pipe('merge_noun_chunks')
elif lang == "zh":
self.nlp = spacy.load('zh_core_web_sm', disable=["ner"])
def _prepare_model(self):
# Load tokenizer
if self.lang == 'zh':
self.tokenizer = BertTokenizer.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
elif self.lang == 'en':
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
else:
raise NotImplementedError()
if self.model_type == 'gpt2':
if self.lang == 'zh':
self.model = GPT2LMHeadModel.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
else:
self.model = GPT2LMHeadModel.from_pretrained('gpt2')
self.model.to(self.device)
self.model.eval()
print('model loaded')
self.max_token_length = self.model.config.n_positions
self.get_self_information = self._get_self_info_via_gpt2
elif self.model_type == 'curie':
global openai
import openai
self.max_token_length = 2048
self.get_self_information = self._get_self_info_via_curie
def get_self_information(self, text: str) -> Tuple[List[str], List[float]]:
# it takes text as input, and return a list of words and a list of self-information scores
raise NotImplementedError
def _get_self_info_via_gpt2(self, text: str) -> Tuple[List[str], List[float]]:
if self.lang == 'en':
text = f"<|endoftext|>{text}"
elif self.lang == 'zh':
text = f"[CLS]{text}"
with torch.no_grad():
encoding = self.tokenizer(text, add_special_tokens=False, return_tensors='pt')
encoding = encoding.to(self.device)
outputs = self.model(**encoding)
logits = outputs.logits
probs = torch.softmax(logits, dim=-1)
self_info = -torch.log(probs)
input_ids = encoding['input_ids']
input_ids_expaned = input_ids[:, 1:].unsqueeze(-1)
tokens = [self.tokenizer.decode(token_) for token_ in input_ids.squeeze().tolist()[1:]]
return tokens, self_info[:, :-1].gather(-1, input_ids_expaned).squeeze(-1).squeeze(0).tolist()
def _get_self_info_via_llama2(self, text: str) -> Tuple[List[str], List[float]]:
if self.lang == 'en':
text = f"<s>{text}"
elif self.lang == 'zh':
text = f"[CLS]{text}"
with torch.no_grad():
encoding = self.tokenizer(text, add_special_tokens=False, return_tensors='pt')
encoding = encoding.to(self.device)
outputs = self.model(**encoding)
logits = outputs.logits
probs = torch.softmax(logits, dim=-1)
self_info = -torch.log(probs)
input_ids = encoding['input_ids']
input_ids_expaned = input_ids[:, 1:].unsqueeze(-1)
tokens = [self.tokenizer.convert_ids_to_tokens(token_).replace('▁', ' ') for token_ in input_ids.squeeze().tolist()[1:]]
return tokens, self_info[:, :-1].gather(-1, input_ids_expaned).squeeze(-1).squeeze(0).tolist()
def _get_self_info_via_curie(self, text: str) -> Tuple[List[str], List[float]]:
num_retry = 3
openai.api_key = os.environ["OPENAI_API_KEY"]
for _ in range(num_retry):
try:
r = openai.Completion.create(
model="curie",
prompt=f"<|endoftext|>{text}",
max_tokens=0,
temperature=0,
echo=True,
logprobs=0,
)
break
except Exception as e:
print(e)
time.sleep(1)
result = r['choices'][0]
tokens, logprobs = result["logprobs"]["tokens"][1:], result["logprobs"]["token_logprobs"][1:]
assert len(tokens) == len(logprobs), f"Expected {len(tokens)} logprobs, got {len(logprobs)}"
self_info = [ -logprob for logprob in logprobs]
return tokens, self_info
def _lexical_unit(self, sents):
if self.sent_level_self_info:
sent_self_info = []
all_noun_phrases = []
all_noun_phrases_info = []
all_tokens = []
all_token_self_info = []
for sent in sents:
# print(sent)
tokens, self_info = self.get_self_information(sent)
sent_self_info.append(np.mean(self_info))
all_tokens.extend(tokens)
all_token_self_info.extend(self_info)
noun_phrases, noun_phrases_info = self._calculate_lexical_unit(tokens, self_info)
# We need to add a space before the first noun phrase for every sentence except the first one
if all_noun_phrases:
noun_phrases[0] = f" {noun_phrases[0]}"
all_noun_phrases.extend(noun_phrases)
all_noun_phrases_info.extend(noun_phrases_info)
return [
LexicalUnits('sent', text=sents, self_info=sent_self_info),
LexicalUnits('phrase', text=all_noun_phrases, self_info=all_noun_phrases_info),
LexicalUnits('token', text=all_tokens, self_info=all_token_self_info)
]
def _calculate_lexical_unit(self, tokens, self_info):
def _unit_info(tokens, self_info, units):
current_unit_idx = 0
current_position = 0
unit_self_info = [[] for _ in range(len(units))]
for idx, (token, info) in enumerate(zip(tokens, self_info)):
current_position += len(token)
if current_position == len(units[current_unit_idx]):
unit_self_info[current_unit_idx].append(info)
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
elif current_position > len(units[current_unit_idx]):
counter_ = 1
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
while current_position >= len(units[current_unit_idx]):
counter_ += 1
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
if current_unit_idx >= len(units):
break
partial_info = info/counter_
for _ in range(counter_):
unit_self_info[(current_unit_idx-1) - _].append(partial_info)
else:
if token == " ":
continue
unit_self_info[current_unit_idx].append(info)
unit_self_info_ = [np.mean(info) for info in unit_self_info]
return unit_self_info_
def _noun_phrases(sent):
noun_phrases = []
doc = self.nlp(sent)
for index, chunk in enumerate(doc):
if index == 0:
noun_phrases.append(chunk.text)
else:
noun_phrases.append(doc[index-1].whitespace_ + chunk.text)
return noun_phrases
if self.sent_level_self_info:
# in this case, the self_info is for each sentence
# we only need to calculate the self_info for each phrase
sent = ''.join(tokens)
# noun_phrases = [chunk.text for chunk in self.nlp(sent).noun_chunks]
noun_phrases = _noun_phrases(sent)
# noun_phrases[-1] = noun_phrases[-1] + ' '
noun_phrases_info = _unit_info(tokens, self_info, noun_phrases)
return noun_phrases, noun_phrases_info
def beautify_context(self, context: str) -> str:
context = re.sub(r"\s+", " ", context)
return context
def self_info_mask(self, sents: List[str], self_info: List[float], mask_level):
# mask_level: mask sentences, phrases, or tokens
sents_after_mask = []
masked_sents = []
self.ppl_threshold = np.nanpercentile(self_info, self.mask_ratio * 100)
# if title is not None:
# with open(os.path.join(self.path, title+'_prob_token.tsv'), 'w', encoding='utf-8') as f:
# for token, info in zip(tokens, self_info):
# f.write(f"{token}\t{info}\n")
# with open(os.path.join(self.path, title+'_prob_sent.tsv'), 'w', encoding='utf-8') as f:
# for sent, info in zip(sents, sent_self_info):
# f.write(f"{sent}\n{info}\n\n")
for sent, info in zip(sents, self_info):
if info < self.ppl_threshold:
masked_sents.append(sent)
sents_after_mask.append(self.mask_a_sent(sent, mask_level))
else:
sents_after_mask.append(sent)
masked_context = " ".join(sents_after_mask) if mask_level == 'sent' else "".join(sents_after_mask)
return masked_context, masked_sents
def mask_a_sent(self, sent, level):
if level == 'phrase':
return self.phrase_mask_token
elif level == 'sent':
if self.keep_leading_word:
leading_few_words = " ".join(word_tokenize(sent)[:self.num_lead_words]) + " "
else:
leading_few_words = ""
return leading_few_words + self.mask_token
elif level == 'token':
return ''
def __call__(self, text: str, reduce_ratio: float = 0.35, reduce_level :str = 'phrase') -> List[str]:
context = self.beautify_context(text)
self.mask_ratio = reduce_ratio
sents = [sent.strip() for sent in re.split(self.sent_tokenize_pattern, context) if sent.strip()]
# You want the reduce happen at sentence level, phrase level, or token level?
assert reduce_level in ['sent', 'phrase', 'token'], f"reduce_level should be one of ['sent', 'phrase', 'token'], got {reduce_level}"
sent_lus, phrase_lus, token_lus = self._lexical_unit(sents)
lexical_level = {
'sent': sent_lus,
'phrase': phrase_lus,
'token': token_lus
}
# context is the reduced context, masked_sents denotes what context has been filtered out
context, masked_sents = self.self_info_mask(lexical_level[reduce_level].text, lexical_level[reduce_level].self_info, reduce_level)
return context, masked_sents
def main(
model_type = 'gpt2', # you can choose from ['gpt2', 'curie']
lang = 'en', # currenlty only support en and zh
file_to_process: str = None,
file_to_save: str = None,
):
sc = SelectiveContext(model_type=model_type, lang=lang)
if file_to_process is None:
while True:
text = input("Please input the text you want to reduce: ")
if text == 'exit':
break
context, masked_sents = sc(text)
print_context_reduced_context(context, masked_sents)
else:
with open(file_to_process, 'r') as f:
text = f.read()
context, masked_sents = sc(text)
if file_to_save is not None:
with open(file_to_save, 'w') as f:
f.write(context)
else:
print_context_reduced_context(context, masked_sents)
def print_context_reduced_context(context, masked_sents):
print('***********\nThe resultsing context is: \n')
print(context, '\n\n')
print('***********\nThe content that has been filtered out is: \n')
print(masked_sents, '\n\n')
if __name__ == "__main__":
main(model_type='gpt2', lang = 'zh')