-
Notifications
You must be signed in to change notification settings - Fork 6
/
textcnn.py
69 lines (55 loc) · 1.89 KB
/
textcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchtext.vocab import Vocab
from .build import ModelFactory
@ModelFactory.register('textcnn')
class textcnn(nn.Module):
'''
1D CNN followed by max-pooling-over-time.
https://arxiv.org/abs/1408.5882
'''
def __init__(self,
include_label: int,
num_classes: int,
embedding_dim: int = 300,
num_filters: int = 50,
filter_sizes: list[int] = [3, 4, 5],
dropout=0.1):
super().__init__()
self.include_label = include_label
self.num_classes = num_classes
# Init the conv filters
# We use num_filters for each filter size
self.convs = nn.ModuleList([
nn.Conv1d(in_channels=embedding_dim, out_channels=num_filters,
kernel_size=k)
for k in filter_sizes
])
# get the final mlp layer
hidden_dim = num_filters * len(filter_sizes)
self.seq = nn.Sequential(
nn.Linear(hidden_dim + self.include_label, hidden_dim),
nn.Dropout(dropout),
nn.ReLU(),
nn.Linear(hidden_dim, num_classes)
)
def forward(self, x, y=None):
'''
@param text: batch_size * max_text_len
@return output: batch_size * embedding_dim
'''
# Apply all filters
# [batch_size, num_filters, seq_len] * len(filter_sizes)
x = [conv(x) for conv in self.convs]
# Max pool over time
# batch_size, hidden_dim
x = torch.cat([ torch.max(feat, dim=2)[0] for feat in x ], dim=1)
# Final classifier
if self.include_label:
x = torch.cat(
[x, F.one_hot(y, num_classes=self.include_label).float()],
dim=1
)
x = self.seq(x)
return x