-
Notifications
You must be signed in to change notification settings - Fork 97
/
infer_aff.py
156 lines (116 loc) · 6.07 KB
/
infer_aff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torchvision
from tool import imutils
import argparse
import importlib
import numpy as np
import voc12.data
from torch.utils.data import DataLoader
import scipy.misc
import torch.nn.functional as F
import os.path
def get_indices_in_radius(height, width, radius):
search_dist = []
for x in range(1, radius):
search_dist.append((0, x))
for y in range(1, radius):
for x in range(-radius+1, radius):
if x*x + y*y < radius*radius:
search_dist.append((y, x))
full_indices = np.reshape(np.arange(0, height * width, dtype=np.int64),
(height, width))
radius_floor = radius-1
cropped_height = height - radius_floor
cropped_width = width - 2 * radius_floor
indices_from = np.reshape(full_indices[:-radius_floor, radius_floor:-radius_floor], [-1])
indices_from_to_list = []
for dy, dx in search_dist:
indices_to = full_indices[dy:dy + cropped_height, radius_floor + dx:radius_floor + dx + cropped_width]
indices_to = np.reshape(indices_to, [-1])
indices_from_to = np.stack((indices_from, indices_to), axis=1)
indices_from_to_list.append(indices_from_to)
concat_indices_from_to = np.concatenate(indices_from_to_list, axis=0)
return concat_indices_from_to
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--weights", required=True, type=str)
parser.add_argument("--network", default="network.resnet38_aff", type=str)
parser.add_argument("--infer_list", default="voc12/val.txt", type=str)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--cam_dir", required=True, type=str)
parser.add_argument("--voc12_root", default='VOC2012', type=str)
parser.add_argument("--alpha", default=6, type=float)
parser.add_argument("--out_rw", default='out_rw', type=str)
parser.add_argument("--beta", default=8, type=int)
parser.add_argument("--logt", default=6, type=int)
parser.add_argument("--crf", default=False, type=bool)
args = parser.parse_args()
model = getattr(importlib.import_module(args.network), 'Net')()
model.load_state_dict(torch.load(args.weights), strict=False)
model.eval()
model.cuda()
infer_dataset = voc12.data.VOC12ImageDataset(args.infer_list, voc12_root=args.voc12_root,
transform=torchvision.transforms.Compose(
[np.asarray,
model.normalize,
imutils.HWC_to_CHW]))
infer_data_loader = DataLoader(infer_dataset, shuffle=False, num_workers=args.num_workers, pin_memory=True)
for iter, (name, img) in enumerate(infer_data_loader):
name = name[0]
print(iter)
orig_shape = img.shape
padded_size = (int(np.ceil(img.shape[2]/8)*8), int(np.ceil(img.shape[3]/8)*8))
p2d = (0, padded_size[1] - img.shape[3], 0, padded_size[0] - img.shape[2])
img = F.pad(img, p2d)
dheight = int(np.ceil(img.shape[2]/8))
dwidth = int(np.ceil(img.shape[3]/8))
cam = np.load(os.path.join(args.cam_dir, name + '.npy'), allow_pickle=True).item()
cam_full_arr = np.zeros((21, orig_shape[2], orig_shape[3]), np.float32)
for k, v in cam.items():
cam_full_arr[k+1] = v
cam_full_arr[0] = (1 - np.max(cam_full_arr[1:], (0), keepdims=False))**args.alpha
#cam_full_arr[0] = 0.2
cam_full_arr = np.pad(cam_full_arr, ((0, 0), (0, p2d[3]), (0, p2d[1])), mode='constant')
with torch.no_grad():
aff_mat = torch.pow(model.forward(img.cuda(), True), args.beta)
trans_mat = aff_mat / torch.sum(aff_mat, dim=0, keepdim=True)
for _ in range(args.logt):
trans_mat = torch.matmul(trans_mat, trans_mat)
cam_full_arr = torch.from_numpy(cam_full_arr)
cam_full_arr = F.avg_pool2d(cam_full_arr, 8, 8)
# if args.crf:
# img_8 = F.interpolate(img, (dheight,dwidth), mode='bilinear')[0].numpy().transpose((1,2,0))
# img_8 = img[0].numpy().transpose((1,2,0))
# img_8 = np.ascontiguousarray(img_8)
# mean = (0.485, 0.456, 0.406)
# std = (0.229, 0.224, 0.225)
# img_8[:,:,0] = (img_8[:,:,0]*std[0] + mean[0])*255
# img_8[:,:,1] = (img_8[:,:,1]*std[1] + mean[1])*255
# img_8[:,:,2] = (img_8[:,:,2]*std[2] + mean[2])*255
# img_8[img_8 > 255] = 255
# img_8[img_8 < 0] = 0
# img_8 = img_8.astype(np.uint8)
# cam_full_arr = cam_full_arr.cpu().numpy()
# cam_full_arr = imutils.crf_inference(img_8, cam_full_arr, t=1)
# cam_full_arr = torch.from_numpy(cam_full_arr).view(1, 21, dheight, dwidth).cuda()
cam_vec = cam_full_arr.view(21, -1)
cam_rw = torch.matmul(cam_vec.cuda(), trans_mat)
cam_rw = cam_rw.view(1, 21, dheight, dwidth)
cam_rw = torch.nn.Upsample((img.shape[2], img.shape[3]), mode='bilinear')(cam_rw)
if args.crf:
img_8 = img[0].numpy().transpose((1,2,0))#F.interpolate(img, (dheight,dwidth), mode='bilinear')[0].numpy().transpose((1,2,0))
img_8 = np.ascontiguousarray(img_8)
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
img_8[:,:,0] = (img_8[:,:,0]*std[0] + mean[0])*255
img_8[:,:,1] = (img_8[:,:,1]*std[1] + mean[1])*255
img_8[:,:,2] = (img_8[:,:,2]*std[2] + mean[2])*255
img_8[img_8 > 255] = 255
img_8[img_8 < 0] = 0
img_8 = img_8.astype(np.uint8)
cam_rw = cam_rw[0].cpu().numpy()
cam_rw = imutils.crf_inference(img_8, cam_rw, t=1)
cam_rw = torch.from_numpy(cam_rw).view(1, 21, img.shape[2], img.shape[3]).cuda()
_, cam_rw_pred = torch.max(cam_rw, 1)
res = np.uint8(cam_rw_pred.cpu().data[0])[:orig_shape[2], :orig_shape[3]]
scipy.misc.imsave(os.path.join(args.out_rw, name + '.png'), res)