TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
The red color and the blue color represent the initial state and current state respectively.
Variable | MNIST | CIFAR10 |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Final Epoch | 0.99230 | 0.99231 | 0.99222 | 0.99226 |
Best Loss | 0.99350 | 0.99350 | 0.99338 | 0.99344 |
SWAG (S = 30) | 0.99310 | 0.99305 | 0.99299 | 0.99302 |
SWAG (Last Momentum) | 0.99340 | 0.99340 | 0.99330 | 0.99335 |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Final Epoch | 0.73130 | 0.73349 | 0.73130 | 0.73147 |
Best Loss | 0.73240 | 0.73205 | 0.73240 | 0.73099 |
SWAG (S = 30) | 0.74100 | 0.74622 | 0.74100 | 0.74260 |
SWAG (Last Momentum) | 0.73490 | 0.73888 | 0.73490 | 0.73561 |
- Python 3.7.6
- Tensorflow 2.3.0
- Numpy 1.18.15
- whiteboxlayer 0.1.15
[1] Wesley Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning. arXiv preprint arXiv:1902.02476.