Skip to content

Xavier-MaYiMing/Test-Functions-for-Global-Optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

Test Functions for Global Optimization

Uni-modal: unimodal_test_functions.py

Name Function Dimension Range Global minima
f1 $f(x)=\sum_{i=1}^nx_i^2$ 30 [-100, 100] 0
f2 $f(x)=\sum_{i=1}^n x_i +\prod_{i=1}^n x_i
f3 $f(x)=\sum_{i=1}^n(\sum_{j=1}^ix_j)^2$ 30 [-100, 100] 0
f4 $f(x)=\max_i{ x_i ,1\leq i\leq n}$ 30
f5 $f(x)=\sum_{i=1}^{n-1}[100(x_{i+1}-x_i)^2+(x_i-1)^2]^2$ 30 [-30, 30] 0
f6 $f(x)=([x_i+0.5])^2$ 30 [-100, 100] 0
f7 $f(x)=\sum_{i=1}^nix_i^4+random[0,1)$ 30 [-1.28, 1.28] 0

Multi-modal: multimodal_test_functions.py

Name Function Dimension Range Global peaks
two-peak trap $f(x)=\left{\begin{aligned}&\frac{160}{15}(15-x),0\leq x<15\&\frac{200}{5}(x-15),15\leq x\leq 20\end{aligned}\right.$ 1 [0, 20] 1
central two-peak trap $f(x)=\left{\begin{aligned}x=1\x=2\end{aligned}\right.$ 1 [0, 20] 1
equal maxima $f(x)=\sin^6(5\pi x)$ 1 [0, 1] 5
uneven maxima $f(x)=\sin^6(5\pi(x^{3/4}-0.05))$ 1 [0, 1] 5
inverted Shubert function $f(x)=-\prod_{i=1}^n\sum{j=1}^5j\times\cos[(j+1)x_i+j]$ $n$ [-10, 10] $n\times3^n$
inverted Vincent function $f(x)=\frac{1}{n}\sum_{i=1}^n\sin(10\log(x_i))$ $n$ [0.25, 10] $6^n$
inverted Rastrigin function $f(x)=-\sum_{i=1}^n(x_i^2-10\cos(2\pi x_i)+10)$ $n$ [-1.5, 1.5] 1