Skip to content

On the forward invariance of Neural ODEs: performance guarantees for policy learning

Notifications You must be signed in to change notification settings

Weixy21/InvarianceNODE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Forward invariance of neural ODEs

Causal manipulation of neural ODEs (via model parameters or external inputs) to achieve performance guarantees, such as safety

pipeline

There are four simple modelling demos using neural ODEs with performance specifications (spiral curve regression, convexity portrait, Mujoco, and end-to-end lidar-based autonomous driving).

Setup

$ conda create -n invODE python=3.8
$ conda activate invODE
$ pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
$ pip install pytorch-lightning==1.5.8 opencv-python==4.5.2.54 matplotlib==3.5.1 ffio==0.1.0  descartes==1.1.0  pyrender==0.1.45  pandas==1.3.5 shapely==1.7.1 scikit-video==1.1.11 scipy==1.6.3 h5py==3.1.0
$ pip install qpth cvxpy cvxopt
$ pip install torchdiffeq

If you find this helpful, please cite our work:

@inproceedings{xiao2023inv,
  title = {On the Forward Invariance of Neural ODEs},
  author = {Wei Xiao and Tsun-Hsuan Wang and Ramin Hasani and Mathias Lechner and Yutong Ban and Chuang Gan and Daniela Rus},
  booktitle = {International Conference on Machine Learning},
  year = {2023}
}

Releases

No releases published

Packages

No packages published

Languages