-
Notifications
You must be signed in to change notification settings - Fork 0
/
transcendent_fair_agent.py
141 lines (120 loc) · 4.89 KB
/
transcendent_fair_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import matplotlib.pyplot as plt
import random
class trans_agent(object):
def __init__(self,attr={},identity={}):
if 'gamma' in attr:
self.gamma = attr['gamma']
else:
self.gamma = 0.35
# if 'distance' in attr:
# self.distance = attr['distance']
# else:
# self.distance = 1
# if any(identity):
self.identity = identity
expec = {}
for i in self.identity:
distance = self.identity[i]
expec[i] = -np.power(self.gamma,distance+1)/(distance+1)
self.expectations = expec
# self.expectation = 0
if 'fair_thresh' in attr:
self.fair_thresh = attr['fair_thresh']
else:
self.fair_thresh = 0.5
self.attrs = {'gamma':self.gamma}
def getAttrs(self):
return self.attrs, self.identity
def setExpectations(self):
expec = {}
for i in self.identity:
distance = self.identity[i]
# expec[i] = -np.power(self.gamma,distance)/(np.log(self.gamma))
expec[i] = -self.gamma*distance
self.expectations = expec
def setIdentity(self, identity):
self.identity = identity
self.setExpectations()
return self.identity
def getDistance(self, index):
return self.identity[index]
def sigmoid(self, x):
if x>=0:
return ((np.exp(30*x)/(2*(np.exp(30*x))+2)) - 0.25)
if x<0:
return (1*(np.exp(20*x)/((np.exp(20*x))+1)) - 0.5)
def fair_sigmoid(self, x):
if x>=0:
return (2*(np.exp(12*x)/(1*(np.exp(12*x))+1)) - 1)
if x<0:
return (3*(np.exp(10*x)/((np.exp(10*x))+1)) - 1.5)
def utility_computation(self, my_payoff, other_payoff, other_index):
distance = self.identity[other_index]
fair_my = self.fair_sigmoid(my_payoff-self.fair_thresh)
fair_other = self.fair_sigmoid(other_payoff-self.fair_thresh)
# print(fair_my, fair_other)
# if (distance==0 and my_payoff==0.1):
# print (fair_my, fair_other)
# if (distance==0 and my_payoff==0.9):
# print (fair_my, fair_other)
return (fair_my + np.power(self.gamma, distance)*(fair_other))/(1+np.power(self.gamma, distance))
def basic_utility_computation(self, my_payoff, other_payoff, other_index):
distance = self.getDistance(other_index)
return (my_payoff + (np.power(self.gamma, distance)*(other_payoff)))/(1+np.power(self.gamma, distance))
def satisfaction_score(self, my_payoff, other_payoff, other_index):
utility = self.utility_computation(my_payoff, other_payoff, other_index)
satisfaction = utility - self.expectations[other_index]
# print(other_index, utility, self.expectations[other_index])
satis_score = self.fair_sigmoid(satisfaction)
# satis_score = utility
return satis_score
def find_key(self, input_dict, value):
return {k for k, v in input_dict.items() if v == value}
def findMinAcceptable(self, splitDict):
splits = list(splitDict.keys())
utility = list(splitDict.values())
y = -2
x = -2
for i in utility:
if i>=0:
y = i
x = list(self.find_key(splitDict,y))[0]
break
if y == -2:
y= max(utility)
x = list(self.find_key(splitDict,y))[0]
return y, x
def minAccept(self, indexProp):
split_util = {}
for split in np.arange(0,1.1,0.1):
my_split = split
other_split = 1-split
split_util[split] = self.utility_computation(my_split, other_split, indexProp)
acceptUtility, acceptSplit = self.findMinAcceptable(split_util)
return acceptSplit, acceptUtility
def decision(self, splitDict):
splits = list(splitDict.keys())
utility = list(splitDict.values())
# if splitDict == {}:
# print("what the hell are you doing")
choiceUtil = max(utility)
choice = list(self.find_key(splitDict,choiceUtil))[0]
# return [y], [x]
# util_list = list(choice_dict.values())
# choice_list = list(choice_dict.keys())
# prob = softmax(np.array(util_list))
# print("dict ", choice_dict)
# print("prob ", prob)
# cumProb =[prob[0]]
# for i in range(1,len(prob)):
# cumProb.append(prob[i] + cumProb[i-1])
# random.seed = 33
# choice = random.choices(choice_list, cum_weights=cumProb, k=1)[0]
# choiceUtil = choice_dict[choice]
# choiceUtil = util_list[prob.argmax()]
# choice = choice_list[prob.argmax()]
return choice, choiceUtil
def fair_normalized(self, my_payoff):
fair_my = self.fair_sigmoid(my_payoff-self.fair_thresh)
return fair_my