-
Notifications
You must be signed in to change notification settings - Fork 60
/
minigpt4_video_inference.py
265 lines (253 loc) · 10.8 KB
/
minigpt4_video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import webvtt
import os
import cv2
from minigpt4.common.eval_utils import prepare_texts, init_model
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
import shutil
from PIL import Image
from moviepy.editor import VideoFileClip
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import cv2
import webvtt
from bisect import bisect_left
import whisper
import time
from datetime import timedelta
# Function to format timestamps for VTT
def format_timestamp(seconds):
td = timedelta(seconds=seconds)
total_seconds = int(td.total_seconds())
milliseconds = int(td.microseconds / 1000)
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def extract_video_info(video_path,max_images_length):
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
clip.close()
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
return sampling_interval,clip.fps
def time_to_milliseconds(time_str):
# Convert time format "hh:mm:ss.sss" to milliseconds
h, m, s = map(float, time_str.split(':'))
return int((h * 3600 + m * 60 + s) * 1000)
def extract_subtitles(subtitle_path):
# Parse the VTT file into a list of (start_time_ms, end_time_ms, text)
subtitles = []
for caption in webvtt.read(subtitle_path):
start_ms = time_to_milliseconds(caption.start)
end_ms = time_to_milliseconds(caption.end)
text = caption.text.strip().replace('\n', ' ')
subtitles.append((start_ms, end_ms, text))
return subtitles
def find_subtitle(subtitles, frame_count, fps):
frame_time = (frame_count / fps)*1000
left, right = 0, len(subtitles) - 1
while left <= right:
mid = (left + right) // 2
start, end, subtitle_text = subtitles[mid]
# print("Mid start end sub ",mid,start,end,subtitle_text)
if start <= frame_time <= end:
return subtitle_text
elif frame_time < start:
right = mid - 1
else:
left = mid + 1
return None # If no subtitle is found
def match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames):
cap = cv2.VideoCapture(video_path)
images = []
frame_count = 0
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
# first_frame=cap.read()[1]
# video_out=cv2.VideoWriter("old_prepare_input.mp4",cv2.VideoWriter_fourcc(*'mp4v'), 1, (first_frame.shape[1],first_frame.shape[0]))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if len (subtitles) > 0:
# use binary search to find the subtitle for the current frame which the frame time is between the start and end time of the subtitle
frame_subtitle=find_subtitle(subtitles, frame_count, fps)
if frame_subtitle and not history_subtitles.get(frame_subtitle,False):
subtitle_text_in_interval+=frame_subtitle+" "
history_subtitles[frame_subtitle]=True
if frame_count % sampling_interval == 0:
# raw_frame=frame.copy()
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
# write the subtitle on the frame
# cv2.putText(raw_frame,subtitle_text_in_interval,(10,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
# video_out.write(raw_frame)
frame_count += 1
if len(images) >= max_frames:
break
cap.release()
cv2.destroyAllWindows()
# video_out.release()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
return images,img_placeholder
def prepare_input(video_path, subtitle_path,instruction):
if "mistral" in args.ckpt :
max_frames=90
max_sub_len = 800
else:
max_frames = 45
max_sub_len = 400
sampling_interval,fps = extract_video_info(video_path, max_frames)
subtitles = extract_subtitles(subtitle_path)
frames_features,input_placeholder = match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames)
input_placeholder+="\n"+instruction
return frames_features, input_placeholder
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def get_subtitles(video_path) :
audio_dir="workspace/inference_subtitles/mp3"
subtitle_dir="workspace/inference_subtitles"
os.makedirs(subtitle_dir, exist_ok=True)
os.makedirs(audio_dir, exist_ok=True)
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
# if the subtitles are already generated, return the path of the subtitles
if os.path.exists(subtitle_path):
return f"{subtitle_dir}/{video_id}"+'.vtt'
audio_path = f"{audio_dir}/{video_id}"+'.mp3'
try:
extract_audio(video_path, audio_path)
result = whisper_model.transcribe(audio_path,language="en")
# Create VTT file
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
vtt_file.write("WEBVTT\n\n")
for segment in result['segments']:
start = format_timestamp(segment['start'])
end = format_timestamp(segment['end'])
text = segment['text']
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
return subtitle_path
except Exception as e:
print(f"Error during subtitle generation for {video_path}: {e}")
return None
def stream_answer(generation_kwargs):
streamer = TextIteratorStreamer(model.llama_tokenizer, skip_special_tokens=True)
generation_kwargs['streamer'] = streamer
thread = Thread(target=model_generate, kwargs=generation_kwargs)
thread.start()
return streamer
def escape_markdown(text):
# List of Markdown special characters that need to be escaped
md_chars = ['<', '>']
# Escape each special character
for char in md_chars:
text = text.replace(char, '\\' + char)
return text
def model_generate(*args, **kwargs):
# for 8 bit and 16 bit compatibility
with model.maybe_autocast():
output = model.llama_model.generate(*args, **kwargs)
return output
def generate_prediction (video_path,instruction,gen_subtitles=True,stream=True):
if gen_subtitles:
subtitle_path=get_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
# print("prompt",prompt)
if stream:
generation_kwargs = model.answer_prepare_for_streaming(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
streamer=stream_answer(generation_kwargs)
print("Streamed answer:",end='')
for a in streamer:
print(a,end='')
print()
else:
setup_seeds(50)
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
print("Generated_answer :",answers[0])
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
parser.add_argument("--add_subtitles",action= 'store_true',help="whether to add subtitles")
parser.add_argument("--stream",action= 'store_true',help="whether to stream the answer")
parser.add_argument("--question", type=str, help="question to ask")
parser.add_argument("--video_path", type=str, help="Path to the video file")
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
model, vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args)
whisper_model=whisper.load_model("large").to(f"cuda:{whisper_gpu_id}")
conv = CONV_VISION.copy()
conv.system = ""
if __name__ == "__main__":
video_path=args.video_path
instruction=args.question
add_subtitles=args.add_subtitles
stream=args.stream
setup_seeds(50)
t1=time.time()
generate_prediction(video_path,instruction,gen_subtitles=add_subtitles,stream=stream)
print("Time taken for inference",time.time()-t1)