From 4ba7bcb939ffeafa63401c842a0c8e19cfaa886d Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Tue, 26 Nov 2024 10:44:00 -0800 Subject: [PATCH 01/11] conda-lock.yml deleted and conda-linux-64.lock added --- conda-linux-64.lock | 258 ++ conda-lock.yml | 10504 ------------------------------------------ 2 files changed, 258 insertions(+), 10504 deletions(-) create mode 100644 conda-linux-64.lock delete mode 100644 conda-lock.yml diff --git a/conda-linux-64.lock b/conda-linux-64.lock new file mode 100644 index 0000000..06a2f80 --- /dev/null +++ b/conda-linux-64.lock @@ -0,0 +1,258 @@ +# Generated by conda-lock. +# platform: linux-64 +# input_hash: 0d7439a4ded26b5017b4a8d683c8096dd0316e49043d637445b6ea037c924461 +@EXPLICIT +https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb +https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#40363a30db350596b5f225d0d5a33328 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 +https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 +https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 +https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a +https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 +https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 +https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2#a8832b479f93521a9e7b5b743803be51 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de +https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d +https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda#168cc19c031482f83b23c4eebbb94e26 +https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e +https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 +https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 +https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f +https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 +https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 +https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 +https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 +https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc +https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 +https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae +https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 +https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 +https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb +https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c +https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 +https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 +https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 +https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 +https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 +https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 +https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee +https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 +https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b +https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda#67bdebbc334513034826e9b63f769d4c +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce +https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2#5dfee17f24e2dfd18d7392b48c9351e2 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca +https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2#709a2295dd907bb34afb57d54320642f +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d +https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py39hf88036b_0.conda#4635fc2ad95f09017ce0ad09824f5c52 +https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2#43afe5ab04e35e17ba28649471dd7364 +https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 +https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda#d0441db20c827c11721889a241df1220 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 +https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 +https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2#9800ad1699b42612478755a2d26c722d +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 +https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c +https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda#3364591bebd600979606791e1dff7cb6 +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py39h74842e3_0.conda#9eb2a7585e756451a5e13b908cb519f2 +https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 +https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda#6598c056f64dc8800d40add25e4e2c34 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda#81534b420deb77da8833f2289b8d47ac +https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2#a4eea5bff523f26442405bc5d1f52adb +https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2#415f0ebb6198cc2801c73438a9fb5761 +https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda#1ab2293c055793d6e5bb911a7a51621c +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 +https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 +https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2#359eeb6536da0e687af562ed265ec263 +https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda#0f051f09d992e0d08941706ad519ee0e +https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 +https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 +https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2#edf8651c4379d9d1495ad6229622d150 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 +https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py39h8cd3c5a_1.conda#52b68618d0aa78366f287de1b1319a1c +https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 +https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 +https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 +https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd +https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 +https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 +https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda#68f0738df502a14213624b288c60c9ad +https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#3947a35e916fcc6b9825449affbf4214 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda#5f25798dcefd8252ce5f9dc494d5f571 +https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda#5a4c7e2a240a0092a9571d084fe8bc86 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 +https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda#7c2b6931f9b3548ed78478332095c3e9 +https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda#02abb7b66b02e8b9f5a9b05454400087 +https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda#948d84721b578d426294e17a02e24cbb +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef +https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 +https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda#51862c722035f53c5d99ae99a78ea569 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec +https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda#7b756504d362cbad9b73a50a5455cafd +https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda#547670a612fd335eaa5ffbf0fa75cb64 +https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda#11ead81b00e0f7cc901fceb7ccfb92c1 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f +https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda#779345c95648be40d22aaa89de7d4254 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.22.4-py39hc58783e_0.tar.bz2#a09094871a38a0abec011ec36e742045 +https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda#629f3203c99b32e0988910c93e77f3b6 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda#4c05134c48b6a74f33bbb9938e4a115e +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py39h4e4fb57_3.conda#443c3fe5e7b75f521ec82bd81fa2e061 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py39h8cd3c5a_1.conda#4cfe8f084af20523252246f1c4ab38e0 +https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb +https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 +https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda#6bb37c314b3cc1515dcf086ffe01c46e +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede +https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda#7e9f4612544c8edbfd6afad17f1bd045 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda#bdc188e59857d6efab332714e0d01d93 +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py39h7170ec2_0.conda#8c2175fba7e6ca01e98c651431f8c41f +https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 +https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda#72d7ad2dcd0f37eccb2ee35a1c8f6aaa +https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e +https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e +https://conda.anaconda.org/conda-forge/linux-64/pandas-1.3.5-py39hde0f152_0.tar.bz2#667350acd89504e72f978fa35c105a99 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c +https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py39he612d8f_0.conda#08ae181e881f3bef5598b300353b57ba +https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 +https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda#e7df0fdd404616638df5ece6e69ba7af +https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda#e2ab0c0094abfe6021c0b03b7a54cbec +https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda#e54a91c3a65491b13c68f7696425bac8 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 +https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda#15c6f45a45f7ac27f6d60b0b084f6761 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 +https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b +https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda#c15343c9dbdb30766a07e5b70e46c7d3 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py39h4b7350c_1.conda#ee5943d546a2b573f7975ea656e9f54e +https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py39hf3d152e_3.conda#49e960e84cd58e2fdc8bad42f0955a27 +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c +https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda#7086cfe05f71ea0d9a509b4e3509554d +https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda#21859ffd4024442a937303d4f2ab1162 +https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda#b40131ab6a36ac2c09b7c57d4d3fbf99 +https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda#a36af57a05ceaed6827adc5e4ba81267 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 +https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda#154d0c643be6a9ce6fbe655d007d8e4e +https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 diff --git a/conda-lock.yml b/conda-lock.yml deleted file mode 100644 index fbd61c1..0000000 --- a/conda-lock.yml +++ /dev/null @@ -1,10504 +0,0 @@ -# This lock file was generated by conda-lock (https://github.com/conda/conda-lock). DO NOT EDIT! -# -# A "lock file" contains a concrete list of package versions (with checksums) to be installed. Unlike -# e.g. `conda env create`, the resulting environment will not change as new package versions become -# available, unless you explicitly update the lock file. -# -# Install this environment as "YOURENV" with: -# conda-lock install -n YOURENV conda-lock.yml -# To update a single package to the latest version compatible with the version constraints in the source: -# conda-lock lock --lockfile conda-lock.yml --update PACKAGE -# To re-solve the entire environment, e.g. after changing a version constraint in the source file: -# conda-lock -f dsci522_environment.yml --lockfile conda-lock.yml -version: 1 -metadata: - content_hash: - linux-64: 0d7439a4ded26b5017b4a8d683c8096dd0316e49043d637445b6ea037c924461 - osx-arm64: 787dcc93c8bbe058825635d90ba6637995025319a56fdcc87f255d30c267b104 - osx-64: 8ad4b77e433db63f6cdf8a6f3f333488d3e77ec7eefe784ba4d7a5cf8a9a2e92 - win-64: e67d9d9e501acaed4fbac006d7c12ff9307a123d45b7f4de879f5bbc5d940ef2 - channels: - - url: conda-forge - used_env_vars: [] - platforms: - - linux-64 - - osx-arm64 - - osx-64 - - win-64 - sources: - - dsci522_environment.yml -package: -- name: _libgcc_mutex - version: '0.1' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - hash: - md5: d7c89558ba9fa0495403155b64376d81 - sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726 - category: main - optional: false -- name: _openmp_mutex - version: '4.5' - manager: conda - platform: linux-64 - dependencies: - _libgcc_mutex: '0.1' - libgomp: '>=7.5.0' - url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - hash: - md5: 73aaf86a425cc6e73fcf236a5a46396d - sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 - category: main - optional: false -- name: alsa-lib - version: 1.2.13 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda - hash: - md5: ae1370588aa6a5157c34c73e9bbb36a0 - sha256: f507b58f77eabc0cc133723cb7fc45c053d551f234df85e70fb3ede082b0cd53 - category: main - optional: false -- name: annotated-types - version: 0.7.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - typing-extensions: '>=4.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - hash: - md5: 7e9f4612544c8edbfd6afad17f1bd045 - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - category: main - optional: false -- name: annotated-types - version: 0.7.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - typing-extensions: '>=4.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - hash: - md5: 7e9f4612544c8edbfd6afad17f1bd045 - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - category: main - optional: false -- name: annotated-types - version: 0.7.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - typing-extensions: '>=4.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - hash: - md5: 7e9f4612544c8edbfd6afad17f1bd045 - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - category: main - optional: false -- name: annotated-types - version: 0.7.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - typing-extensions: '>=4.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - hash: - md5: 7e9f4612544c8edbfd6afad17f1bd045 - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - category: main - optional: false -- name: appdirs - version: 1.4.4 - manager: conda - platform: linux-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - category: main - optional: false -- name: appdirs - version: 1.4.4 - manager: conda - platform: osx-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - category: main - optional: false -- name: appdirs - version: 1.4.4 - manager: conda - platform: osx-arm64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - category: main - optional: false -- name: appdirs - version: 1.4.4 - manager: conda - platform: win-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - category: main - optional: false -- name: appnope - version: 0.1.4 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_0.conda - hash: - md5: cc4834a9ee7cc49ce8d25177c47b10d8 - sha256: 45ae2d41f4a4dcf8707633d3d7ae376fc62f0c09b1d063c3049c3f6f8c911670 - category: main - optional: false -- name: appnope - version: 0.1.4 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_0.conda - hash: - md5: cc4834a9ee7cc49ce8d25177c47b10d8 - sha256: 45ae2d41f4a4dcf8707633d3d7ae376fc62f0c09b1d063c3049c3f6f8c911670 - category: main - optional: false -- name: asttokens - version: 2.4.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.5' - six: '>=1.12.0' - url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda - hash: - md5: 5f25798dcefd8252ce5f9dc494d5f571 - sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111 - category: main - optional: false -- name: asttokens - version: 2.4.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.5' - six: '>=1.12.0' - url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda - hash: - md5: 5f25798dcefd8252ce5f9dc494d5f571 - sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111 - category: main - optional: false -- name: asttokens - version: 2.4.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.5' - six: '>=1.12.0' - url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda - hash: - md5: 5f25798dcefd8252ce5f9dc494d5f571 - sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111 - category: main - optional: false -- name: asttokens - version: 2.4.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.5' - six: '>=1.12.0' - url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda - hash: - md5: 5f25798dcefd8252ce5f9dc494d5f571 - sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111 - category: main - optional: false -- name: attr - version: 2.5.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2 - hash: - md5: d9c69a24ad678ffce24c6543a0176b00 - sha256: 82c13b1772c21fc4a17441734de471d3aabf82b61db9b11f4a1bd04a9c4ac324 - category: main - optional: false -- name: backports - version: '1.0' - manager: conda - platform: linux-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda - hash: - md5: 67bdebbc334513034826e9b63f769d4c - sha256: 31b51537ce7d2ba8b5b3d0095f1813711884304ac1701bc55938ca75f6c82e19 - category: main - optional: false -- name: backports - version: '1.0' - manager: conda - platform: osx-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda - hash: - md5: 67bdebbc334513034826e9b63f769d4c - sha256: 31b51537ce7d2ba8b5b3d0095f1813711884304ac1701bc55938ca75f6c82e19 - category: main - optional: false -- name: backports - version: '1.0' - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda - hash: - md5: 67bdebbc334513034826e9b63f769d4c - sha256: 31b51537ce7d2ba8b5b3d0095f1813711884304ac1701bc55938ca75f6c82e19 - category: main - optional: false -- name: backports - version: '1.0' - manager: conda - platform: win-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda - hash: - md5: 67bdebbc334513034826e9b63f769d4c - sha256: 31b51537ce7d2ba8b5b3d0095f1813711884304ac1701bc55938ca75f6c82e19 - category: main - optional: false -- name: backports.tarfile - version: 1.2.0 - manager: conda - platform: linux-64 - dependencies: - backports: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda - hash: - md5: 5a4c7e2a240a0092a9571d084fe8bc86 - sha256: 703cc1cb72e395272ce043ae9e2bad6184eeb2371a20a75cb502a5513592d2eb - category: main - optional: false -- name: backports.tarfile - version: 1.2.0 - manager: conda - platform: osx-64 - dependencies: - backports: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda - hash: - md5: 5a4c7e2a240a0092a9571d084fe8bc86 - sha256: 703cc1cb72e395272ce043ae9e2bad6184eeb2371a20a75cb502a5513592d2eb - category: main - optional: false -- name: backports.tarfile - version: 1.2.0 - manager: conda - platform: osx-arm64 - dependencies: - backports: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda - hash: - md5: 5a4c7e2a240a0092a9571d084fe8bc86 - sha256: 703cc1cb72e395272ce043ae9e2bad6184eeb2371a20a75cb502a5513592d2eb - category: main - optional: false -- name: backports.tarfile - version: 1.2.0 - manager: conda - platform: win-64 - dependencies: - backports: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda - hash: - md5: 5a4c7e2a240a0092a9571d084fe8bc86 - sha256: 703cc1cb72e395272ce043ae9e2bad6184eeb2371a20a75cb502a5513592d2eb - category: main - optional: false -- name: brotli - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - brotli-bin: 1.1.0 - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda - hash: - md5: 98514fe74548d768907ce7a13f680e8f - sha256: fcb0b5b28ba7492093e54f3184435144e074dfceab27ac8e6a9457e736565b0b - category: main - optional: false -- name: brotli - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - brotli-bin: 1.1.0 - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h00291cd_2.conda - hash: - md5: 2db0c38a7f2321c5bdaf32b181e832c7 - sha256: 624954bc08b3d7885a58c7d547282cfb9a201ce79b748b358f801de53e20f523 - category: main - optional: false -- name: brotli - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - brotli-bin: 1.1.0 - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-1.1.0-hd74edd7_2.conda - hash: - md5: 215e3dc8f2f837906d066e7f01aa77c0 - sha256: a086f36ff68d6e30da625e910547f6211385246fb2474b144ac8c47c32254576 - category: main - optional: false -- name: brotli - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - brotli-bin: 1.1.0 - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda - hash: - md5: 378f1c9421775dfe644731cb121c8979 - sha256: d8fd7d1b446706776117d2dcad1c0289b9f5e1521cb13405173bad38568dd252 - category: main - optional: false -- name: brotli-bin - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda - hash: - md5: c63b5e52939e795ba8d26e35d767a843 - sha256: 261364d7445513b9a4debc345650fad13c627029bfc800655a266bf1e375bc65 - category: main - optional: false -- name: brotli-bin - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.1.0-h00291cd_2.conda - hash: - md5: 049933ecbf552479a12c7917f0a4ce59 - sha256: 642a8492491109fd8270c1e2c33b18126712df0cedb94aaa2b1c6b02505a4bfa - category: main - optional: false -- name: brotli-bin - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-bin-1.1.0-hd74edd7_2.conda - hash: - md5: b8512db2145dc3ae8d86cdc21a8d421e - sha256: 28f1af63b49fddf58084fb94e5512ad46e9c453eb4be1d97449c67059e5b0680 - category: main - optional: false -- name: brotli-bin - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - libbrotlidec: 1.1.0 - libbrotlienc: 1.1.0 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-h2466b09_2.conda - hash: - md5: d22534a9be5771fc58eb7564947f669d - sha256: f3bf2893613540ac256c68f211861c4de618d96291719e32178d894114ac2bc2 - category: main - optional: false -- name: brotli-python - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda - hash: - md5: 8ea5af6ac902f1a4429190970d9099ce - sha256: 6b5ad1d89519f926138cd146bc475d42ccbd8239849fa8677031160e17f30202 - category: main - optional: false -- name: brotli-python - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py39h7c0e7c0_2.conda - hash: - md5: a764df072b4bfa295ae771b28d284cf7 - sha256: 3915fd4c8ebc4a7c83851479532dd5e52775f130d720016d05d728212e28c6ed - category: main - optional: false -- name: brotli-python - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py39hfa9831e_2.conda - hash: - md5: e6297328cb55064f9923dbe19c354b4a - sha256: 9498fa2d1f5f006980e362b545f3a85086e27714d26deba23cd002c11ff04842 - category: main - optional: false -- name: brotli-python - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py39ha51f57c_2.conda - hash: - md5: febb0f96eb7400bb065681117872b75e - sha256: e7640e3d3f742172a3a5ad40f1e2326893bd61bb51224e434f4ea509a527540a - category: main - optional: false -- name: bzip2 - version: 1.0.8 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - hash: - md5: 62ee74e96c5ebb0af99386de58cf9553 - sha256: 5ced96500d945fb286c9c838e54fa759aa04a7129c59800f0846b4335cee770d - category: main - optional: false -- name: bzip2 - version: 1.0.8 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - hash: - md5: 7ed4301d437b59045be7e051a0308211 - sha256: cad153608b81fb24fc8c509357daa9ae4e49dfc535b2cb49b91e23dbd68fc3c5 - category: main - optional: false -- name: bzip2 - version: 1.0.8 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - hash: - md5: fc6948412dbbbe9a4c9ddbbcfe0a79ab - sha256: adfa71f158cbd872a36394c56c3568e6034aa55c623634b37a4836bd036e6b91 - category: main - optional: false -- name: bzip2 - version: 1.0.8 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda - hash: - md5: 276e7ffe9ffe39688abc665ef0f45596 - sha256: 35a5dad92e88fdd7fc405e864ec239486f4f31eec229e31686e61a140a8e573b - category: main - optional: false -- name: ca-certificates - version: 2024.8.30 - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda - hash: - md5: c27d1c142233b5bc9ca570c6e2e0c244 - sha256: afee721baa6d988e27fef1832f68d6f32ac8cc99cdf6015732224c2841a09cea - category: main - optional: false -- name: ca-certificates - version: 2024.8.30 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2024.8.30-h8857fd0_0.conda - hash: - md5: b7e5424e7f06547a903d28e4651dbb21 - sha256: 593f302d0f44c2c771e1614ee6d56fffdc7d616e6f187669c8b0e34ffce3e1ae - category: main - optional: false -- name: ca-certificates - version: 2024.8.30 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/ca-certificates-2024.8.30-hf0a4a13_0.conda - hash: - md5: 40dec13fd8348dbe303e57be74bd3d35 - sha256: 2db1733f4b644575dbbdd7994a8f338e6ef937f5ebdb74acd557e9dda0211709 - category: main - optional: false -- name: ca-certificates - version: 2024.8.30 - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2024.8.30-h56e8100_0.conda - hash: - md5: 4c4fd67c18619be5aa65dc5b6c72e490 - sha256: 0fcac3a7ffcc556649e034a1802aedf795e64227eaa7194d207b01eaf26454c4 - category: main - optional: false -- name: cachecontrol - version: 0.14.1 - manager: conda - platform: linux-64 - dependencies: - msgpack-python: '>=0.5.2,<2.0.0' - python: '>=3.8' - requests: '>=2.16.0' - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: e2ab0c0094abfe6021c0b03b7a54cbec - sha256: 144327f53a9a3b1e76f378da88b0e04cb8534c31838f4a393650adb07872c333 - category: main - optional: false -- name: cachecontrol - version: 0.14.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - requests: '>=2.16.0' - msgpack-python: '>=0.5.2,<2.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: e2ab0c0094abfe6021c0b03b7a54cbec - sha256: 144327f53a9a3b1e76f378da88b0e04cb8534c31838f4a393650adb07872c333 - category: main - optional: false -- name: cachecontrol - version: 0.14.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - requests: '>=2.16.0' - msgpack-python: '>=0.5.2,<2.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: e2ab0c0094abfe6021c0b03b7a54cbec - sha256: 144327f53a9a3b1e76f378da88b0e04cb8534c31838f4a393650adb07872c333 - category: main - optional: false -- name: cachecontrol - version: 0.14.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - requests: '>=2.16.0' - msgpack-python: '>=0.5.2,<2.0.0' - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: e2ab0c0094abfe6021c0b03b7a54cbec - sha256: 144327f53a9a3b1e76f378da88b0e04cb8534c31838f4a393650adb07872c333 - category: main - optional: false -- name: cachecontrol-with-filecache - version: 0.14.1 - manager: conda - platform: linux-64 - dependencies: - cachecontrol: 0.14.1 - filelock: '>=3.8.0' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: 7086cfe05f71ea0d9a509b4e3509554d - sha256: 1d84e360e3e9aba097dc40ca5c081ab28712be07c118e2039eca094f563cf0b4 - category: main - optional: false -- name: cachecontrol-with-filecache - version: 0.14.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - filelock: '>=3.8.0' - cachecontrol: 0.14.1 - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: 7086cfe05f71ea0d9a509b4e3509554d - sha256: 1d84e360e3e9aba097dc40ca5c081ab28712be07c118e2039eca094f563cf0b4 - category: main - optional: false -- name: cachecontrol-with-filecache - version: 0.14.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - filelock: '>=3.8.0' - cachecontrol: 0.14.1 - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: 7086cfe05f71ea0d9a509b4e3509554d - sha256: 1d84e360e3e9aba097dc40ca5c081ab28712be07c118e2039eca094f563cf0b4 - category: main - optional: false -- name: cachecontrol-with-filecache - version: 0.14.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - filelock: '>=3.8.0' - cachecontrol: 0.14.1 - url: https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda - hash: - md5: 7086cfe05f71ea0d9a509b4e3509554d - sha256: 1d84e360e3e9aba097dc40ca5c081ab28712be07c118e2039eca094f563cf0b4 - category: main - optional: false -- name: cachy - version: 0.3.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2 - hash: - md5: 5dfee17f24e2dfd18d7392b48c9351e2 - sha256: 9b193a4e483c4d0004bc5b88fac7a02516b6311137ab61b8db85aa9741422e35 - category: main - optional: false -- name: cachy - version: 0.3.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2 - hash: - md5: 5dfee17f24e2dfd18d7392b48c9351e2 - sha256: 9b193a4e483c4d0004bc5b88fac7a02516b6311137ab61b8db85aa9741422e35 - category: main - optional: false -- name: cachy - version: 0.3.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2 - hash: - md5: 5dfee17f24e2dfd18d7392b48c9351e2 - sha256: 9b193a4e483c4d0004bc5b88fac7a02516b6311137ab61b8db85aa9741422e35 - category: main - optional: false -- name: cachy - version: 0.3.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2 - hash: - md5: 5dfee17f24e2dfd18d7392b48c9351e2 - sha256: 9b193a4e483c4d0004bc5b88fac7a02516b6311137ab61b8db85aa9741422e35 - category: main - optional: false -- name: cairo - version: 1.18.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - fontconfig: '>=2.14.2,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - icu: '>=75.1,<76.0a0' - libgcc-ng: '>=12' - libglib: '>=2.80.3,<3.0a0' - libpng: '>=1.6.43,<1.7.0a0' - libstdcxx-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - libzlib: '>=1.3.1,<2.0a0' - pixman: '>=0.43.2,<1.0a0' - xorg-libice: '>=1.1.1,<2.0a0' - xorg-libsm: '>=1.2.4,<2.0a0' - xorg-libx11: '>=1.8.9,<2.0a0' - xorg-libxext: '>=1.3.4,<2.0a0' - xorg-libxrender: '>=0.9.11,<0.10.0a0' - zlib: '' - url: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda - hash: - md5: fceaedf1cdbcb02df9699a0d9b005292 - sha256: aee5b9e6ef71cdfb2aee9beae3ea91910ca761c01c0ef32052e3f94a252fa173 - category: main - optional: false -- name: category_encoders - version: 2.6.4 - manager: conda - platform: linux-64 - dependencies: - importlib_resources: '' - numpy: '>=1.14.0' - pandas: '>=1.0.5' - patsy: '>=0.5.1' - python: '>=3.7' - scikit-learn: '>=0.20.0' - scipy: '>=1.0.0' - statsmodels: '>=0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda - hash: - md5: 21859ffd4024442a937303d4f2ab1162 - sha256: afaab42e20cec947d2396e89eeba2f5e6a5598b38972243dc3537e274274b2d0 - category: main - optional: false -- name: category_encoders - version: 2.6.4 - manager: conda - platform: osx-64 - dependencies: - importlib_resources: '' - python: '>=3.7' - scipy: '>=1.0.0' - numpy: '>=1.14.0' - pandas: '>=1.0.5' - scikit-learn: '>=0.20.0' - patsy: '>=0.5.1' - statsmodels: '>=0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda - hash: - md5: 21859ffd4024442a937303d4f2ab1162 - sha256: afaab42e20cec947d2396e89eeba2f5e6a5598b38972243dc3537e274274b2d0 - category: main - optional: false -- name: category_encoders - version: 2.6.4 - manager: conda - platform: osx-arm64 - dependencies: - importlib_resources: '' - python: '>=3.7' - scipy: '>=1.0.0' - numpy: '>=1.14.0' - pandas: '>=1.0.5' - scikit-learn: '>=0.20.0' - patsy: '>=0.5.1' - statsmodels: '>=0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda - hash: - md5: 21859ffd4024442a937303d4f2ab1162 - sha256: afaab42e20cec947d2396e89eeba2f5e6a5598b38972243dc3537e274274b2d0 - category: main - optional: false -- name: category_encoders - version: 2.6.4 - manager: conda - platform: win-64 - dependencies: - importlib_resources: '' - python: '>=3.7' - scipy: '>=1.0.0' - numpy: '>=1.14.0' - pandas: '>=1.0.5' - scikit-learn: '>=0.20.0' - patsy: '>=0.5.1' - statsmodels: '>=0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda - hash: - md5: 21859ffd4024442a937303d4f2ab1162 - sha256: afaab42e20cec947d2396e89eeba2f5e6a5598b38972243dc3537e274274b2d0 - category: main - optional: false -- name: certifi - version: 2024.8.30 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - hash: - md5: 12f7d00853807b0531775e9be891cb11 - sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f - category: main - optional: false -- name: certifi - version: 2024.8.30 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - hash: - md5: 12f7d00853807b0531775e9be891cb11 - sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f - category: main - optional: false -- name: certifi - version: 2024.8.30 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - hash: - md5: 12f7d00853807b0531775e9be891cb11 - sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f - category: main - optional: false -- name: certifi - version: 2024.8.30 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - hash: - md5: 12f7d00853807b0531775e9be891cb11 - sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f - category: main - optional: false -- name: cffi - version: 1.17.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libffi: '>=3.4,<4.0a0' - libgcc: '>=13' - pycparser: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda - hash: - md5: 7e61b8777f42e00b08ff059f9e8ebc44 - sha256: f24486fdb31df2a7b04555093fdcbb3a314a1f29a4906b72ac9010906eb57ff8 - category: main - optional: false -- name: charset-normalizer - version: 3.4.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - hash: - md5: a374efa97290b8799046df7c5ca17164 - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - category: main - optional: false -- name: charset-normalizer - version: 3.4.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - hash: - md5: a374efa97290b8799046df7c5ca17164 - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - category: main - optional: false -- name: charset-normalizer - version: 3.4.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - hash: - md5: a374efa97290b8799046df7c5ca17164 - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - category: main - optional: false -- name: charset-normalizer - version: 3.4.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - hash: - md5: a374efa97290b8799046df7c5ca17164 - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - category: main - optional: false -- name: click - version: 8.1.7 - manager: conda - platform: linux-64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - hash: - md5: f3ad426304898027fc619827ff428eca - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - category: main - optional: false -- name: click - version: 8.1.7 - manager: conda - platform: osx-64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - hash: - md5: f3ad426304898027fc619827ff428eca - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - category: main - optional: false -- name: click - version: 8.1.7 - manager: conda - platform: osx-arm64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - hash: - md5: f3ad426304898027fc619827ff428eca - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - category: main - optional: false -- name: click - version: 8.1.7 - manager: conda - platform: win-64 - dependencies: - colorama: '' - __win: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-win_pyh7428d3b_0.conda - hash: - md5: 3549ecbceb6cd77b91a105511b7d0786 - sha256: 90236b113b9a20041736e80b80ee965167f9aac0468315c55e2bad902d673fb0 - category: main - optional: false -- name: click-default-group - version: 1.2.4 - manager: conda - platform: linux-64 - dependencies: - click: '' - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda - hash: - md5: 7c2b6931f9b3548ed78478332095c3e9 - sha256: b36e35d735ddd29d7c592eb3de4b3979e13a9f76f1b4bc939f2cb4402758d6d0 - category: main - optional: false -- name: click-default-group - version: 1.2.4 - manager: conda - platform: osx-64 - dependencies: - click: '' - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda - hash: - md5: 7c2b6931f9b3548ed78478332095c3e9 - sha256: b36e35d735ddd29d7c592eb3de4b3979e13a9f76f1b4bc939f2cb4402758d6d0 - category: main - optional: false -- name: click-default-group - version: 1.2.4 - manager: conda - platform: osx-arm64 - dependencies: - click: '' - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda - hash: - md5: 7c2b6931f9b3548ed78478332095c3e9 - sha256: b36e35d735ddd29d7c592eb3de4b3979e13a9f76f1b4bc939f2cb4402758d6d0 - category: main - optional: false -- name: click-default-group - version: 1.2.4 - manager: conda - platform: win-64 - dependencies: - click: '' - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda - hash: - md5: 7c2b6931f9b3548ed78478332095c3e9 - sha256: b36e35d735ddd29d7c592eb3de4b3979e13a9f76f1b4bc939f2cb4402758d6d0 - category: main - optional: false -- name: clikit - version: 0.6.2 - manager: conda - platform: linux-64 - dependencies: - pastel: '>=0.2.0,<0.3.0' - pylev: '>=1.3,<2.0' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda - hash: - md5: 02abb7b66b02e8b9f5a9b05454400087 - sha256: 2d582bc15d9116ec5467b565fb87d9034c8b56f60943e8eb69407f55f1ab5a78 - category: main - optional: false -- name: clikit - version: 0.6.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - pylev: '>=1.3,<2.0' - pastel: '>=0.2.0,<0.3.0' - url: https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda - hash: - md5: 02abb7b66b02e8b9f5a9b05454400087 - sha256: 2d582bc15d9116ec5467b565fb87d9034c8b56f60943e8eb69407f55f1ab5a78 - category: main - optional: false -- name: clikit - version: 0.6.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - pylev: '>=1.3,<2.0' - pastel: '>=0.2.0,<0.3.0' - url: https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda - hash: - md5: 02abb7b66b02e8b9f5a9b05454400087 - sha256: 2d582bc15d9116ec5467b565fb87d9034c8b56f60943e8eb69407f55f1ab5a78 - category: main - optional: false -- name: clikit - version: 0.6.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - pylev: '>=1.3,<2.0' - pastel: '>=0.2.0,<0.3.0' - url: https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda - hash: - md5: 02abb7b66b02e8b9f5a9b05454400087 - sha256: 2d582bc15d9116ec5467b565fb87d9034c8b56f60943e8eb69407f55f1ab5a78 - category: main - optional: false -- name: colorama - version: 0.4.6 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 3faab06a954c2a04039983f2c4a50d99 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - category: main - optional: false -- name: comm - version: 0.2.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda - hash: - md5: 948d84721b578d426294e17a02e24cbb - sha256: e923acf02708a8a0b591f3bce4bdc11c8e63b73198b99b35fe6cd96bfb6a0dbe - category: main - optional: false -- name: comm - version: 0.2.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.6' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda - hash: - md5: 948d84721b578d426294e17a02e24cbb - sha256: e923acf02708a8a0b591f3bce4bdc11c8e63b73198b99b35fe6cd96bfb6a0dbe - category: main - optional: false -- name: comm - version: 0.2.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.6' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda - hash: - md5: 948d84721b578d426294e17a02e24cbb - sha256: e923acf02708a8a0b591f3bce4bdc11c8e63b73198b99b35fe6cd96bfb6a0dbe - category: main - optional: false -- name: comm - version: 0.2.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.6' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda - hash: - md5: 948d84721b578d426294e17a02e24cbb - sha256: e923acf02708a8a0b591f3bce4bdc11c8e63b73198b99b35fe6cd96bfb6a0dbe - category: main - optional: false -- name: conda-lock - version: 2.5.7 - manager: conda - platform: linux-64 - dependencies: - cachecontrol-with-filecache: '>=0.12.9' - cachy: '>=0.3.0' - click: '>=8.0' - click-default-group: '' - clikit: '>=0.6.2' - crashtest: '>=0.3.0' - ensureconda: '>=1.3' - gitpython: '>=3.1.30' - html5lib: '>=1.0' - jinja2: '' - keyring: '>=21.2.0' - packaging: '>=20.4' - pkginfo: '>=1.4' - pydantic: '>=1.10' - python: '>=3.8' - pyyaml: '>=5.1' - requests: '>=2.18' - ruamel.yaml: '' - setuptools: '' - tomli: '' - tomlkit: '>=0.7.0' - toolz: '>=0.12.0,<1.0.0' - typing_extensions: '' - urllib3: '>=1.26.5,<2.0' - virtualenv: '>=20.0.26' - url: https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda - hash: - md5: 154d0c643be6a9ce6fbe655d007d8e4e - sha256: bdce4c0d6491d12db676633dcf1cae031a5105073996a4a0ae8dba9ecafda2b2 - category: main - optional: false -- name: conda-lock - version: 2.5.7 - manager: conda - platform: osx-64 - dependencies: - setuptools: '' - typing_extensions: '' - jinja2: '' - tomli: '' - ruamel.yaml: '' - click-default-group: '' - python: '>=3.8' - pyyaml: '>=5.1' - click: '>=8.0' - packaging: '>=20.4' - requests: '>=2.18' - pydantic: '>=1.10' - ensureconda: '>=1.3' - gitpython: '>=3.1.30' - keyring: '>=21.2.0' - html5lib: '>=1.0' - cachy: '>=0.3.0' - clikit: '>=0.6.2' - crashtest: '>=0.3.0' - pkginfo: '>=1.4' - tomlkit: '>=0.7.0' - virtualenv: '>=20.0.26' - toolz: '>=0.12.0,<1.0.0' - cachecontrol-with-filecache: '>=0.12.9' - urllib3: '>=1.26.5,<2.0' - url: https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda - hash: - md5: 154d0c643be6a9ce6fbe655d007d8e4e - sha256: bdce4c0d6491d12db676633dcf1cae031a5105073996a4a0ae8dba9ecafda2b2 - category: main - optional: false -- name: conda-lock - version: 2.5.7 - manager: conda - platform: osx-arm64 - dependencies: - setuptools: '' - typing_extensions: '' - jinja2: '' - tomli: '' - ruamel.yaml: '' - click-default-group: '' - python: '>=3.8' - pyyaml: '>=5.1' - click: '>=8.0' - packaging: '>=20.4' - requests: '>=2.18' - pydantic: '>=1.10' - ensureconda: '>=1.3' - gitpython: '>=3.1.30' - keyring: '>=21.2.0' - html5lib: '>=1.0' - cachy: '>=0.3.0' - clikit: '>=0.6.2' - crashtest: '>=0.3.0' - pkginfo: '>=1.4' - tomlkit: '>=0.7.0' - virtualenv: '>=20.0.26' - toolz: '>=0.12.0,<1.0.0' - cachecontrol-with-filecache: '>=0.12.9' - urllib3: '>=1.26.5,<2.0' - url: https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda - hash: - md5: 154d0c643be6a9ce6fbe655d007d8e4e - sha256: bdce4c0d6491d12db676633dcf1cae031a5105073996a4a0ae8dba9ecafda2b2 - category: main - optional: false -- name: conda-lock - version: 2.5.7 - manager: conda - platform: win-64 - dependencies: - setuptools: '' - typing_extensions: '' - jinja2: '' - tomli: '' - ruamel.yaml: '' - click-default-group: '' - python: '>=3.8' - pyyaml: '>=5.1' - click: '>=8.0' - packaging: '>=20.4' - requests: '>=2.18' - pydantic: '>=1.10' - ensureconda: '>=1.3' - gitpython: '>=3.1.30' - keyring: '>=21.2.0' - html5lib: '>=1.0' - cachy: '>=0.3.0' - clikit: '>=0.6.2' - crashtest: '>=0.3.0' - pkginfo: '>=1.4' - tomlkit: '>=0.7.0' - virtualenv: '>=20.0.26' - toolz: '>=0.12.0,<1.0.0' - cachecontrol-with-filecache: '>=0.12.9' - urllib3: '>=1.26.5,<2.0' - url: https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda - hash: - md5: 154d0c643be6a9ce6fbe655d007d8e4e - sha256: bdce4c0d6491d12db676633dcf1cae031a5105073996a4a0ae8dba9ecafda2b2 - category: main - optional: false -- name: contourpy - version: 1.2.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.20' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda - hash: - md5: bdc188e59857d6efab332714e0d01d93 - sha256: 7799c6cd8425ac69b2495b2acf938d85e6776c0c9129de86d18ec55e53bcfefc - category: main - optional: false -- name: contourpy - version: 1.2.1 - manager: conda - platform: osx-64 - dependencies: - libcxx: '>=16' - numpy: '>=1.20' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.2.1-py39h0ca7971_0.conda - hash: - md5: a4c478d3b64c81d1742dc8073e4996b6 - sha256: 2ed1f40e016afaeb705297d6ce5b474c3570890bf972d3425c37bf45e196d088 - category: main - optional: false -- name: contourpy - version: 1.2.1 - manager: conda - platform: osx-arm64 - dependencies: - libcxx: '>=16' - numpy: '>=1.20' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/contourpy-1.2.1-py39h48c5dd5_0.conda - hash: - md5: 2c4998473ca34fa4df959bd90eb9247a - sha256: a0a42c5195a621ec86bb20b0f36e5406047bd655219cfab824ec20a2c6a0836d - category: main - optional: false -- name: contourpy - version: 1.2.1 - manager: conda - platform: win-64 - dependencies: - numpy: '>=1.20' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/contourpy-1.2.1-py39h1f6ef14_0.conda - hash: - md5: 03e25c6bae87f4f9595337255b44b0fb - sha256: 32820a069906394d10bd908a0cfdbb60b940fb81e71aef3303ab9ab93c4625e6 - category: main - optional: false -- name: cpython - version: 3.9.20 - manager: conda - platform: win-64 - dependencies: - python_abi: '*' - python: 3.9.20.* - url: https://conda.anaconda.org/conda-forge/noarch/cpython-3.9.20-py39hd8ed1ab_1.conda - hash: - md5: 972072c1613928f0bca7c4b1f6f43d40 - sha256: 8a7bf5edfe02aad7b50802788ac042643b196cdeaf47d4fa12b3bfef46ee6e5b - category: main - optional: false -- name: crashtest - version: 0.4.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6,<4.0' - url: https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 709a2295dd907bb34afb57d54320642f - sha256: 2f05954a3faf0700c14c1deddc085385160ee32abe111699c78d9cb277e915cc - category: main - optional: false -- name: crashtest - version: 0.4.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.6,<4.0' - url: https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 709a2295dd907bb34afb57d54320642f - sha256: 2f05954a3faf0700c14c1deddc085385160ee32abe111699c78d9cb277e915cc - category: main - optional: false -- name: crashtest - version: 0.4.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.6,<4.0' - url: https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 709a2295dd907bb34afb57d54320642f - sha256: 2f05954a3faf0700c14c1deddc085385160ee32abe111699c78d9cb277e915cc - category: main - optional: false -- name: crashtest - version: 0.4.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.6,<4.0' - url: https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 709a2295dd907bb34afb57d54320642f - sha256: 2f05954a3faf0700c14c1deddc085385160ee32abe111699c78d9cb277e915cc - category: main - optional: false -- name: cryptography - version: 43.0.3 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - cffi: '>=1.12' - libgcc: '>=13' - openssl: '>=3.3.2,<4.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py39h7170ec2_0.conda - hash: - md5: 8c2175fba7e6ca01e98c651431f8c41f - sha256: cb689cce01c8b9d4b20fdd9cc6fc38fb672a4ebda3f8ebfc6291f93ec5d02ffe - category: main - optional: false -- name: cycler - version: 0.12.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 5cd86562580f274031ede6aa6aa24441 - sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8 - category: main - optional: false -- name: cycler - version: 0.12.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 5cd86562580f274031ede6aa6aa24441 - sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8 - category: main - optional: false -- name: cycler - version: 0.12.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 5cd86562580f274031ede6aa6aa24441 - sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8 - category: main - optional: false -- name: cycler - version: 0.12.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 5cd86562580f274031ede6aa6aa24441 - sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8 - category: main - optional: false -- name: dbus - version: 1.13.6 - manager: conda - platform: linux-64 - dependencies: - expat: '>=2.4.2,<3.0a0' - libgcc-ng: '>=9.4.0' - libglib: '>=2.70.2,<3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2 - hash: - md5: ecfff944ba3960ecb334b9a2663d708d - sha256: 8f5f995699a2d9dbdd62c61385bfeeb57c82a681a7c8c5313c395aa0ccab68a5 - category: main - optional: false -- name: debugpy - version: 1.8.9 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py39hf88036b_0.conda - hash: - md5: 4635fc2ad95f09017ce0ad09824f5c52 - sha256: faee96f5916355b992bd1da2269da9a0fdbe123c0048371fd93ef9600bbc4559 - category: main - optional: false -- name: debugpy - version: 1.8.9 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=18' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.9-py39hdf37715_0.conda - hash: - md5: bd2283b60f3ec22acfd1850fb0684e13 - sha256: b3f42a634cbc3af2b534b40275cf4bb09e874dd13a01dece649cdbf9d613224a - category: main - optional: false -- name: debugpy - version: 1.8.9 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=18' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.9-py39h941272d_0.conda - hash: - md5: 786d113be847312a953b089432e83ea9 - sha256: 752ee6991626b8c6f2e1b2558bf55d03e23fd3341347b0295cb233cafcf7a4a4 - category: main - optional: false -- name: debugpy - version: 1.8.9 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.9-py39ha51f57c_0.conda - hash: - md5: 04665dfae441ae0c1da78e5e4a6b2ff4 - sha256: 391fea15163ca524d1c4b5c22936bcfcaaad357a588d9551acf7728d0e15183c - category: main - optional: false -- name: decorator - version: 5.1.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 43afe5ab04e35e17ba28649471dd7364 - sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2 - category: main - optional: false -- name: decorator - version: 5.1.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 43afe5ab04e35e17ba28649471dd7364 - sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2 - category: main - optional: false -- name: decorator - version: 5.1.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 43afe5ab04e35e17ba28649471dd7364 - sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2 - category: main - optional: false -- name: decorator - version: 5.1.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 43afe5ab04e35e17ba28649471dd7364 - sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2 - category: main - optional: false -- name: distlib - version: 0.3.9 - manager: conda - platform: linux-64 - dependencies: - python: 2.7|>=3.6 - url: https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda - hash: - md5: fe521c1608280cc2803ebd26dc252212 - sha256: 300b2e714f59403df0560174f5ef6c19db8b4a3b74a7244862cf771f07dee8fb - category: main - optional: false -- name: distlib - version: 0.3.9 - manager: conda - platform: osx-64 - dependencies: - python: 2.7|>=3.6 - url: https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda - hash: - md5: fe521c1608280cc2803ebd26dc252212 - sha256: 300b2e714f59403df0560174f5ef6c19db8b4a3b74a7244862cf771f07dee8fb - category: main - optional: false -- name: distlib - version: 0.3.9 - manager: conda - platform: osx-arm64 - dependencies: - python: 2.7|>=3.6 - url: https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda - hash: - md5: fe521c1608280cc2803ebd26dc252212 - sha256: 300b2e714f59403df0560174f5ef6c19db8b4a3b74a7244862cf771f07dee8fb - category: main - optional: false -- name: distlib - version: 0.3.9 - manager: conda - platform: win-64 - dependencies: - python: 2.7|>=3.6 - url: https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda - hash: - md5: fe521c1608280cc2803ebd26dc252212 - sha256: 300b2e714f59403df0560174f5ef6c19db8b4a3b74a7244862cf771f07dee8fb - category: main - optional: false -- name: ensureconda - version: 1.4.4 - manager: conda - platform: linux-64 - dependencies: - appdirs: '' - click: '>=5.1' - filelock: '' - packaging: '' - python: '>=3.7' - requests: '>=2' - url: https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda - hash: - md5: e54a91c3a65491b13c68f7696425bac8 - sha256: a115afdc676c95a17ab63bbda84b7b724bc8817ae54fa34f8991339252424959 - category: main - optional: false -- name: ensureconda - version: 1.4.4 - manager: conda - platform: osx-64 - dependencies: - packaging: '' - filelock: '' - appdirs: '' - python: '>=3.7' - requests: '>=2' - click: '>=5.1' - url: https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda - hash: - md5: e54a91c3a65491b13c68f7696425bac8 - sha256: a115afdc676c95a17ab63bbda84b7b724bc8817ae54fa34f8991339252424959 - category: main - optional: false -- name: ensureconda - version: 1.4.4 - manager: conda - platform: osx-arm64 - dependencies: - packaging: '' - filelock: '' - appdirs: '' - python: '>=3.7' - requests: '>=2' - click: '>=5.1' - url: https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda - hash: - md5: e54a91c3a65491b13c68f7696425bac8 - sha256: a115afdc676c95a17ab63bbda84b7b724bc8817ae54fa34f8991339252424959 - category: main - optional: false -- name: ensureconda - version: 1.4.4 - manager: conda - platform: win-64 - dependencies: - packaging: '' - filelock: '' - appdirs: '' - python: '>=3.7' - requests: '>=2' - click: '>=5.1' - url: https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda - hash: - md5: e54a91c3a65491b13c68f7696425bac8 - sha256: a115afdc676c95a17ab63bbda84b7b724bc8817ae54fa34f8991339252424959 - category: main - optional: false -- name: exceptiongroup - version: 1.2.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda - hash: - md5: d02ae936e42063ca46af6cdad2dbd1e0 - sha256: e0edd30c4b7144406bb4da975e6bb97d6bc9c0e999aa4efe66ae108cada5d5b5 - category: main - optional: false -- name: exceptiongroup - version: 1.2.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda - hash: - md5: d02ae936e42063ca46af6cdad2dbd1e0 - sha256: e0edd30c4b7144406bb4da975e6bb97d6bc9c0e999aa4efe66ae108cada5d5b5 - category: main - optional: false -- name: exceptiongroup - version: 1.2.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda - hash: - md5: d02ae936e42063ca46af6cdad2dbd1e0 - sha256: e0edd30c4b7144406bb4da975e6bb97d6bc9c0e999aa4efe66ae108cada5d5b5 - category: main - optional: false -- name: exceptiongroup - version: 1.2.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda - hash: - md5: d02ae936e42063ca46af6cdad2dbd1e0 - sha256: e0edd30c4b7144406bb4da975e6bb97d6bc9c0e999aa4efe66ae108cada5d5b5 - category: main - optional: false -- name: executing - version: 2.1.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - hash: - md5: d0441db20c827c11721889a241df1220 - sha256: a52d7516e2e11d3eb10908e10d3eb3f8ef267fea99ed9b09d52d96c4db3441b8 - category: main - optional: false -- name: executing - version: 2.1.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - hash: - md5: d0441db20c827c11721889a241df1220 - sha256: a52d7516e2e11d3eb10908e10d3eb3f8ef267fea99ed9b09d52d96c4db3441b8 - category: main - optional: false -- name: executing - version: 2.1.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - hash: - md5: d0441db20c827c11721889a241df1220 - sha256: a52d7516e2e11d3eb10908e10d3eb3f8ef267fea99ed9b09d52d96c4db3441b8 - category: main - optional: false -- name: executing - version: 2.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - hash: - md5: d0441db20c827c11721889a241df1220 - sha256: a52d7516e2e11d3eb10908e10d3eb3f8ef267fea99ed9b09d52d96c4db3441b8 - category: main - optional: false -- name: expat - version: 2.6.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libexpat: 2.6.4 - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda - hash: - md5: 1d6afef758879ef5ee78127eb4cd2c4a - sha256: 1848c7db9e264e3b8036ee133d570dd880422983cd20dd9585a505289606d276 - category: main - optional: false -- name: filelock - version: 3.16.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - hash: - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - category: main - optional: false -- name: filelock - version: 3.16.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - hash: - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - category: main - optional: false -- name: filelock - version: 3.16.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - hash: - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - category: main - optional: false -- name: filelock - version: 3.16.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - hash: - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - category: main - optional: false -- name: font-ttf-dejavu-sans-mono - version: '2.37' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - hash: - md5: 0c96522c6bdaed4b1566d11387caaf45 - sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b - category: main - optional: false -- name: font-ttf-inconsolata - version: '3.000' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 - hash: - md5: 34893075a5c9e55cdafac56607368fc6 - sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c - category: main - optional: false -- name: font-ttf-source-code-pro - version: '2.038' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 - hash: - md5: 4d59c254e01d9cde7957100457e2d5fb - sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139 - category: main - optional: false -- name: font-ttf-ubuntu - version: '0.83' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda - hash: - md5: 49023d73832ef61042f6a237cb2687e7 - sha256: 2821ec1dc454bd8b9a31d0ed22a7ce22422c0aef163c59f49dfdf915d0f0ca14 - category: main - optional: false -- name: fontconfig - version: 2.15.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - freetype: '>=2.12.1,<3.0a0' - libexpat: '>=2.6.3,<3.0a0' - libgcc: '>=13' - libuuid: '>=2.38.1,<3.0a0' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda - hash: - md5: 8f5b0b297b59e1ac160ad4beec99dbee - sha256: 7093aa19d6df5ccb6ca50329ef8510c6acb6b0d8001191909397368b65b02113 - category: main - optional: false -- name: fonts-conda-ecosystem - version: '1' - manager: conda - platform: linux-64 - dependencies: - fonts-conda-forge: '' - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 - hash: - md5: fee5683a3f04bd15cbd8318b096a27ab - sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61 - category: main - optional: false -- name: fonts-conda-forge - version: '1' - manager: conda - platform: linux-64 - dependencies: - font-ttf-dejavu-sans-mono: '' - font-ttf-inconsolata: '' - font-ttf-source-code-pro: '' - font-ttf-ubuntu: '' - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - hash: - md5: f766549260d6815b0c52253f1fb1bb29 - sha256: 53f23a3319466053818540bcdf2091f253cbdbab1e0e9ae7b9e509dcaa2a5e38 - category: main - optional: false -- name: fonttools - version: 4.55.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - brotli: '' - libgcc: '>=13' - munkres: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - unicodedata2: '>=15.1.0' - url: https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda - hash: - md5: 61762136d872c6d2de2de7742a0c60ef - sha256: bf3a2b4e4b0bdfd8c57f4a1858b89b6b9ca3a87ac28b60eee58043db1248a73c - category: main - optional: false -- name: fonttools - version: 4.55.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - brotli: '' - munkres: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - unicodedata2: '>=15.1.0' - url: https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.0-py39hd18e689_0.conda - hash: - md5: 66008e96883e821ea1364e980b2bde1a - sha256: 5d2a4322c9c20b97f7ae532036737a0e1fd8cca54896d9c16fe2519cbb39b1be - category: main - optional: false -- name: fonttools - version: 4.55.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - brotli: '' - munkres: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - unicodedata2: '>=15.1.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/fonttools-4.55.0-py39hefdd603_0.conda - hash: - md5: 1d4e2d4e0e6eacd407abad673480e8e9 - sha256: dffc5e81f0b55ba5e3edfd0598953499b7f2b9fc36d225c0b5e94d228c58bd63 - category: main - optional: false -- name: fonttools - version: 4.55.0 - manager: conda - platform: win-64 - dependencies: - brotli: '' - munkres: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - unicodedata2: '>=15.1.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.0-py39hf73967f_0.conda - hash: - md5: ec6d6a149d4e18a07f4bb959f68c4961 - sha256: 1e14570faad51fa68a207a0915241964ddb25d1262dabf287f54c092e64564ba - category: main - optional: false -- name: freetype - version: 2.12.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - hash: - md5: 9ae35c3d96db2c94ce0cef86efdfa2cb - sha256: b2e3c449ec9d907dd4656cb0dc93e140f447175b125a3824b31368b06c666bb6 - category: main - optional: false -- name: freetype - version: 2.12.1 - manager: conda - platform: osx-64 - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda - hash: - md5: 25152fce119320c980e5470e64834b50 - sha256: b292cf5a25f094eeb4b66e37d99a97894aafd04a5683980852a8cbddccdc8e4e - category: main - optional: false -- name: freetype - version: 2.12.1 - manager: conda - platform: osx-arm64 - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - hash: - md5: e6085e516a3e304ce41a8ee08b9b89ad - sha256: 791673127e037a2dc0eebe122dc4f904cb3f6e635bb888f42cbe1a76b48748d9 - category: main - optional: false -- name: freetype - version: 2.12.1 - manager: conda - platform: win-64 - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda - hash: - md5: 3761b23693f768dc75a8fd0a73ca053f - sha256: 2c53ee8879e05e149a9e525481d36adfd660a6abda26fd731376fa64ff03e728 - category: main - optional: false -- name: gettext - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - gettext-tools: 0.22.5 - libasprintf: 0.22.5 - libasprintf-devel: 0.22.5 - libgcc-ng: '>=12' - libgettextpo: 0.22.5 - libgettextpo-devel: 0.22.5 - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda - hash: - md5: c7f243bbaea97cd6ea1edd693270100e - sha256: c3d9a453f523acbf2b3e1c82a42edfc7c7111b4686a2180ab48cb9b51a274218 - category: main - optional: false -- name: gettext-tools - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda - hash: - md5: fcd2016d1d299f654f81021e27496818 - sha256: 0fd003953ce1ce9f4569458aab9ffaa397e3be2bc069250e2f05fd93b0ad2976 - category: main - optional: false -- name: gitdb - version: 4.0.11 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - smmap: '>=3.0.1,<6' - url: https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda - hash: - md5: 623b19f616f2ca0c261441067e18ae40 - sha256: 52ab2798be31b8f509eeec458712f447ced4f96ecb672c6c9a42778f47e07b1b - category: main - optional: false -- name: gitdb - version: 4.0.11 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - smmap: '>=3.0.1,<6' - url: https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda - hash: - md5: 623b19f616f2ca0c261441067e18ae40 - sha256: 52ab2798be31b8f509eeec458712f447ced4f96ecb672c6c9a42778f47e07b1b - category: main - optional: false -- name: gitdb - version: 4.0.11 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - smmap: '>=3.0.1,<6' - url: https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda - hash: - md5: 623b19f616f2ca0c261441067e18ae40 - sha256: 52ab2798be31b8f509eeec458712f447ced4f96ecb672c6c9a42778f47e07b1b - category: main - optional: false -- name: gitdb - version: 4.0.11 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - smmap: '>=3.0.1,<6' - url: https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda - hash: - md5: 623b19f616f2ca0c261441067e18ae40 - sha256: 52ab2798be31b8f509eeec458712f447ced4f96ecb672c6c9a42778f47e07b1b - category: main - optional: false -- name: gitpython - version: 3.1.43 - manager: conda - platform: linux-64 - dependencies: - gitdb: '>=4.0.1,<5' - python: '>=3.7' - typing_extensions: '>=3.7.4.3' - url: https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda - hash: - md5: 0b2154c1818111e17381b1df5b4b0176 - sha256: cbb2802641a009ce9bcc2a047e817fd8816f9c842036a42f4730398d8e4cda2a - category: main - optional: false -- name: gitpython - version: 3.1.43 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - typing_extensions: '>=3.7.4.3' - gitdb: '>=4.0.1,<5' - url: https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda - hash: - md5: 0b2154c1818111e17381b1df5b4b0176 - sha256: cbb2802641a009ce9bcc2a047e817fd8816f9c842036a42f4730398d8e4cda2a - category: main - optional: false -- name: gitpython - version: 3.1.43 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - typing_extensions: '>=3.7.4.3' - gitdb: '>=4.0.1,<5' - url: https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda - hash: - md5: 0b2154c1818111e17381b1df5b4b0176 - sha256: cbb2802641a009ce9bcc2a047e817fd8816f9c842036a42f4730398d8e4cda2a - category: main - optional: false -- name: gitpython - version: 3.1.43 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - typing_extensions: '>=3.7.4.3' - gitdb: '>=4.0.1,<5' - url: https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda - hash: - md5: 0b2154c1818111e17381b1df5b4b0176 - sha256: cbb2802641a009ce9bcc2a047e817fd8816f9c842036a42f4730398d8e4cda2a - category: main - optional: false -- name: glib - version: 2.82.2 - manager: conda - platform: linux-64 - dependencies: - glib-tools: 2.82.2 - libffi: '>=3.4,<4.0a0' - libglib: 2.82.2 - packaging: '' - python: '*' - url: https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda - hash: - md5: f19f985ab043e8843045410f3b99de8a - sha256: f89540cbca9d981fd65d2f3913e8aaa3fe30bc76aa0f70015be4a2169539025b - category: main - optional: false -- name: glib - version: 2.82.2 - manager: conda - platform: win-64 - dependencies: - glib-tools: 2.82.2 - libffi: '>=3.4,<4.0a0' - libglib: 2.82.2 - libintl: '>=0.22.5,<1.0a0' - libintl-devel: '' - packaging: '' - python: '*' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/glib-2.82.2-h7025463_0.conda - hash: - md5: c295bf0ccb6823efdf40ebc5992384c4 - sha256: 68632bb5aec001fcd09b7f9ea415fab09ad479eb640fb667141cbb747a8d48b5 - category: main - optional: false -- name: glib-tools - version: 2.82.2 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libglib: 2.82.2 - url: https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda - hash: - md5: 12859f91830f58b1803e32846651c6f6 - sha256: 4d6d7175a841be9dd25f5041c9b9419b25f4f5e8de8f289b3c7914a76f5a24d4 - category: main - optional: false -- name: glib-tools - version: 2.82.2 - manager: conda - platform: win-64 - dependencies: - libglib: 2.82.2 - libintl: '>=0.22.5,<1.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.82.2-h4394cf3_0.conda - hash: - md5: 5aa50df298dca67e20ad24c622d1a27c - sha256: 2c502b66fb68ed3dd4ce9f8121ae8f613df08a83c354c55435994dd9a8ee780a - category: main - optional: false -- name: graphite2 - version: 1.3.13 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda - hash: - md5: f87c7b7c2cb45f323ffbce941c78ab7c - sha256: 0595b009f20f8f60f13a6398e7cdcbd2acea5f986633adcf85f5a2283c992add - category: main - optional: false -- name: gst-plugins-base - version: 1.24.7 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - alsa-lib: '>=1.2.12,<1.3.0a0' - gstreamer: 1.24.7 - libexpat: '>=2.6.2,<3.0a0' - libgcc: '>=13' - libglib: '>=2.80.3,<3.0a0' - libogg: '>=1.3.5,<1.4.0a0' - libopus: '>=1.3.1,<2.0a0' - libpng: '>=1.6.43,<1.7.0a0' - libstdcxx: '>=13' - libvorbis: '>=1.3.7,<1.4.0a0' - libxcb: '>=1.16,<2.0.0a0' - libzlib: '>=1.3.1,<2.0a0' - xorg-libx11: '>=1.8.9,<2.0a0' - xorg-libxau: '>=1.0.11,<2.0a0' - xorg-libxext: '>=1.3.4,<2.0a0' - xorg-libxrender: '>=0.9.11,<0.10.0a0' - xorg-libxxf86vm: '>=1.1.5,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda - hash: - md5: d368425fbd031a2f8e801a40c3415c72 - sha256: 6606a2686c0aed281a60fb546703e62c66ea9afa1e46adcca5eb428a3ff67f9e - category: main - optional: false -- name: gst-plugins-base - version: 1.24.7 - manager: conda - platform: win-64 - dependencies: - gstreamer: 1.24.7 - libglib: '>=2.80.3,<3.0a0' - libintl: '>=0.22.5,<1.0a0' - libogg: '>=1.3.5,<1.4.0a0' - libvorbis: '>=1.3.7,<1.4.0a0' - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.24.7-hb0a98b8_0.conda - hash: - md5: 92edfae477856e97db6c2610dea95bb1 - sha256: c8951e6af014cdeff2de740d1e6e4781ac6813853739c56c6e07266e7aefcf28 - category: main - optional: false -- name: gstreamer - version: 1.24.7 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - glib: '>=2.80.3,<3.0a0' - libgcc: '>=13' - libglib: '>=2.80.3,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda - hash: - md5: c78bc4ef0afb3cd2365d9973c71fc876 - sha256: 9c059cc7dcb2732da8face18b1c0351da148ef26db0563fed08e818ea0515bb1 - category: main - optional: false -- name: gstreamer - version: 1.24.7 - manager: conda - platform: win-64 - dependencies: - glib: '>=2.80.3,<3.0a0' - libglib: '>=2.80.3,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libintl: '>=0.22.5,<1.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.24.7-h5006eae_0.conda - hash: - md5: 58e1df95fdab219039e39033302771e8 - sha256: bd3ad109ef3e2e49da8710ff49378b3fa5da916aa2351d932d1b9018b7123512 - category: main - optional: false -- name: harfbuzz - version: 9.0.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - cairo: '>=1.18.0,<2.0a0' - freetype: '>=2.12.1,<3.0a0' - graphite2: '' - icu: '>=75.1,<76.0a0' - libgcc-ng: '>=12' - libglib: '>=2.80.3,<3.0a0' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda - hash: - md5: 76b32dcf243444aea9c6b804bcfa40b8 - sha256: 973afa37840b4e55e2540018902255cfb0d953aaed6353bb83a4d120f5256767 - category: main - optional: false -- name: html5lib - version: '1.1' - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - six: '>=1.9' - webencodings: '' - url: https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda - hash: - md5: 51862c722035f53c5d99ae99a78ea569 - sha256: 447324515aad8d93196fb72b19603a48f4380cabdd370494b549e2cfdbcf3414 - category: main - optional: false -- name: html5lib - version: '1.1' - manager: conda - platform: osx-64 - dependencies: - webencodings: '' - python: '>=3.8' - six: '>=1.9' - url: https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda - hash: - md5: 51862c722035f53c5d99ae99a78ea569 - sha256: 447324515aad8d93196fb72b19603a48f4380cabdd370494b549e2cfdbcf3414 - category: main - optional: false -- name: html5lib - version: '1.1' - manager: conda - platform: osx-arm64 - dependencies: - webencodings: '' - python: '>=3.8' - six: '>=1.9' - url: https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda - hash: - md5: 51862c722035f53c5d99ae99a78ea569 - sha256: 447324515aad8d93196fb72b19603a48f4380cabdd370494b549e2cfdbcf3414 - category: main - optional: false -- name: html5lib - version: '1.1' - manager: conda - platform: win-64 - dependencies: - webencodings: '' - python: '>=3.8' - six: '>=1.9' - url: https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda - hash: - md5: 51862c722035f53c5d99ae99a78ea569 - sha256: 447324515aad8d93196fb72b19603a48f4380cabdd370494b549e2cfdbcf3414 - category: main - optional: false -- name: icu - version: '75.1' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda - hash: - md5: 8b189310083baabfb622af68fd9d3ae3 - sha256: 71e750d509f5fa3421087ba88ef9a7b9be11c53174af3aa4d06aff4c18b38e8e - category: main - optional: false -- name: icu - version: '75.1' - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/icu-75.1-he0c23c2_0.conda - hash: - md5: 8579b6bb8d18be7c0b27fb08adeeeb40 - sha256: 1d04369a1860a1e9e371b9fc82dd0092b616adcf057d6c88371856669280e920 - category: main - optional: false -- name: idna - version: '3.10' - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda - hash: - md5: 7ba2ede0e7c795ff95088daf0dc59753 - sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 - category: main - optional: false -- name: idna - version: '3.10' - manager: conda - platform: osx-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda - hash: - md5: 7ba2ede0e7c795ff95088daf0dc59753 - sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 - category: main - optional: false -- name: idna - version: '3.10' - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda - hash: - md5: 7ba2ede0e7c795ff95088daf0dc59753 - sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 - category: main - optional: false -- name: idna - version: '3.10' - manager: conda - platform: win-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda - hash: - md5: 7ba2ede0e7c795ff95088daf0dc59753 - sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 - category: main - optional: false -- name: importlib-metadata - version: 8.5.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - zipp: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda - hash: - md5: 54198435fce4d64d8a89af22573012a8 - sha256: 7194700ce1a5ad2621fd68e894dd8c1ceaff9a38723e6e0e5298fdef13017b1c - category: main - optional: false -- name: importlib-metadata - version: 8.5.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - zipp: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda - hash: - md5: 54198435fce4d64d8a89af22573012a8 - sha256: 7194700ce1a5ad2621fd68e894dd8c1ceaff9a38723e6e0e5298fdef13017b1c - category: main - optional: false -- name: importlib-metadata - version: 8.5.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - zipp: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda - hash: - md5: 54198435fce4d64d8a89af22573012a8 - sha256: 7194700ce1a5ad2621fd68e894dd8c1ceaff9a38723e6e0e5298fdef13017b1c - category: main - optional: false -- name: importlib-metadata - version: 8.5.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - zipp: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda - hash: - md5: 54198435fce4d64d8a89af22573012a8 - sha256: 7194700ce1a5ad2621fd68e894dd8c1ceaff9a38723e6e0e5298fdef13017b1c - category: main - optional: false -- name: importlib-resources - version: 6.4.5 - manager: conda - platform: linux-64 - dependencies: - importlib_resources: '>=6.4.5,<6.4.6.0a0' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: 67f4772681cf86652f3e2261794cf045 - sha256: b5a63a3e2bc2c8d3e5978a6ef4efaf2d6b02803c1bce3c2eb42e238dd91afe0b - category: main - optional: false -- name: importlib-resources - version: 6.4.5 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - importlib_resources: '>=6.4.5,<6.4.6.0a0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: 67f4772681cf86652f3e2261794cf045 - sha256: b5a63a3e2bc2c8d3e5978a6ef4efaf2d6b02803c1bce3c2eb42e238dd91afe0b - category: main - optional: false -- name: importlib-resources - version: 6.4.5 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - importlib_resources: '>=6.4.5,<6.4.6.0a0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: 67f4772681cf86652f3e2261794cf045 - sha256: b5a63a3e2bc2c8d3e5978a6ef4efaf2d6b02803c1bce3c2eb42e238dd91afe0b - category: main - optional: false -- name: importlib-resources - version: 6.4.5 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - importlib_resources: '>=6.4.5,<6.4.6.0a0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: 67f4772681cf86652f3e2261794cf045 - sha256: b5a63a3e2bc2c8d3e5978a6ef4efaf2d6b02803c1bce3c2eb42e238dd91afe0b - category: main - optional: false -- name: importlib_resources - version: 6.4.5 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: c808991d29b9838fb4d96ce8267ec9ec - sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 - category: main - optional: false -- name: importlib_resources - version: 6.4.5 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: c808991d29b9838fb4d96ce8267ec9ec - sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 - category: main - optional: false -- name: importlib_resources - version: 6.4.5 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: c808991d29b9838fb4d96ce8267ec9ec - sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 - category: main - optional: false -- name: importlib_resources - version: 6.4.5 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda - hash: - md5: c808991d29b9838fb4d96ce8267ec9ec - sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 - category: main - optional: false -- name: intel-openmp - version: 2024.2.1 - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2024.2.1-h57928b3_1083.conda - hash: - md5: 2d89243bfb53652c182a7c73182cce4f - sha256: 0fd2b0b84c854029041b0ede8f4c2369242ee92acc0092f8407b1fe9238a8209 - category: main - optional: false -- name: ipykernel - version: 6.29.5 - manager: conda - platform: linux-64 - dependencies: - __linux: '' - comm: '>=0.1.1' - debugpy: '>=1.6.5' - ipython: '>=7.23.1' - jupyter_client: '>=6.1.12' - jupyter_core: '>=4.12,!=5.0.*' - matplotlib-inline: '>=0.1' - nest-asyncio: '' - packaging: '' - psutil: '' - python: '>=3.8' - pyzmq: '>=24' - tornado: '>=6.1' - traitlets: '>=5.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda - hash: - md5: b40131ab6a36ac2c09b7c57d4d3fbf99 - sha256: 33cfd339bb4efac56edf93474b37ddc049e08b1b4930cf036c893cc1f5a1f32a - category: main - optional: false -- name: ipykernel - version: 6.29.5 - manager: conda - platform: osx-64 - dependencies: - packaging: '' - psutil: '' - nest-asyncio: '' - __osx: '' - appnope: '' - python: '>=3.8' - tornado: '>=6.1' - jupyter_client: '>=6.1.12' - jupyter_core: '>=4.12,!=5.0.*' - ipython: '>=7.23.1' - matplotlib-inline: '>=0.1' - debugpy: '>=1.6.5' - pyzmq: '>=24' - comm: '>=0.1.1' - traitlets: '>=5.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh57ce528_0.conda - hash: - md5: 9eb15d654daa0ef5a98802f586bb4ffc - sha256: 072534d4d379225b2c3a4e38bc7730b65ae171ac7f0c2d401141043336e97980 - category: main - optional: false -- name: ipykernel - version: 6.29.5 - manager: conda - platform: osx-arm64 - dependencies: - packaging: '' - psutil: '' - nest-asyncio: '' - __osx: '' - appnope: '' - python: '>=3.8' - tornado: '>=6.1' - jupyter_client: '>=6.1.12' - jupyter_core: '>=4.12,!=5.0.*' - ipython: '>=7.23.1' - matplotlib-inline: '>=0.1' - debugpy: '>=1.6.5' - pyzmq: '>=24' - comm: '>=0.1.1' - traitlets: '>=5.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh57ce528_0.conda - hash: - md5: 9eb15d654daa0ef5a98802f586bb4ffc - sha256: 072534d4d379225b2c3a4e38bc7730b65ae171ac7f0c2d401141043336e97980 - category: main - optional: false -- name: ipykernel - version: 6.29.5 - manager: conda - platform: win-64 - dependencies: - packaging: '' - psutil: '' - __win: '' - nest-asyncio: '' - python: '>=3.8' - tornado: '>=6.1' - jupyter_client: '>=6.1.12' - jupyter_core: '>=4.12,!=5.0.*' - ipython: '>=7.23.1' - matplotlib-inline: '>=0.1' - debugpy: '>=1.6.5' - pyzmq: '>=24' - comm: '>=0.1.1' - traitlets: '>=5.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh4bbf305_0.conda - hash: - md5: 18df5fc4944a679e085e0e8f31775fc8 - sha256: dc569094125127c0078aa536f78733f383dd7e09507277ef8bcd1789786e7086 - category: main - optional: false -- name: ipython - version: 8.18.1 - manager: conda - platform: linux-64 - dependencies: - __unix: '' - decorator: '' - exceptiongroup: '' - jedi: '>=0.16' - matplotlib-inline: '' - pexpect: '>4.3' - pickleshare: '' - prompt-toolkit: '>=3.0.41,<3.1.0' - pygments: '>=2.4.0' - python: '>=3.9' - stack_data: '' - traitlets: '>=5' - typing_extensions: '' - url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda - hash: - md5: 15c6f45a45f7ac27f6d60b0b084f6761 - sha256: d98d615ac8ad71de698afbc50e8269570d4b89706821c4ff3058a4ceec69bd9b - category: main - optional: false -- name: ipython - version: 8.18.1 - manager: conda - platform: osx-64 - dependencies: - typing_extensions: '' - __unix: '' - decorator: '' - exceptiongroup: '' - matplotlib-inline: '' - stack_data: '' - pickleshare: '' - python: '>=3.9' - pygments: '>=2.4.0' - jedi: '>=0.16' - traitlets: '>=5' - pexpect: '>4.3' - prompt-toolkit: '>=3.0.41,<3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda - hash: - md5: 15c6f45a45f7ac27f6d60b0b084f6761 - sha256: d98d615ac8ad71de698afbc50e8269570d4b89706821c4ff3058a4ceec69bd9b - category: main - optional: false -- name: ipython - version: 8.18.1 - manager: conda - platform: osx-arm64 - dependencies: - typing_extensions: '' - __unix: '' - decorator: '' - exceptiongroup: '' - matplotlib-inline: '' - stack_data: '' - pickleshare: '' - python: '>=3.9' - pygments: '>=2.4.0' - jedi: '>=0.16' - traitlets: '>=5' - pexpect: '>4.3' - prompt-toolkit: '>=3.0.41,<3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda - hash: - md5: 15c6f45a45f7ac27f6d60b0b084f6761 - sha256: d98d615ac8ad71de698afbc50e8269570d4b89706821c4ff3058a4ceec69bd9b - category: main - optional: false -- name: ipython - version: 8.18.1 - manager: conda - platform: win-64 - dependencies: - typing_extensions: '' - colorama: '' - __win: '' - decorator: '' - exceptiongroup: '' - matplotlib-inline: '' - stack_data: '' - pickleshare: '' - python: '>=3.9' - pygments: '>=2.4.0' - jedi: '>=0.16' - traitlets: '>=5' - prompt-toolkit: '>=3.0.41,<3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh7428d3b_3.conda - hash: - md5: 656a798e52fbe1ca72f7d97b3c36aeff - sha256: 835ddb247d5b9a883b033b7bba2c2ef3604bcd6e877adab6c9309b6f90a29051 - category: main - optional: false -- name: jaraco.classes - version: 3.4.0 - manager: conda - platform: linux-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda - hash: - md5: 7b756504d362cbad9b73a50a5455cafd - sha256: 538b1c6df537a36c63fd0ed83cb1c1c25b07d8d3b5e401991fdaff261a4b5b4d - category: main - optional: false -- name: jaraco.classes - version: 3.4.0 - manager: conda - platform: osx-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda - hash: - md5: 7b756504d362cbad9b73a50a5455cafd - sha256: 538b1c6df537a36c63fd0ed83cb1c1c25b07d8d3b5e401991fdaff261a4b5b4d - category: main - optional: false -- name: jaraco.classes - version: 3.4.0 - manager: conda - platform: osx-arm64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda - hash: - md5: 7b756504d362cbad9b73a50a5455cafd - sha256: 538b1c6df537a36c63fd0ed83cb1c1c25b07d8d3b5e401991fdaff261a4b5b4d - category: main - optional: false -- name: jaraco.classes - version: 3.4.0 - manager: conda - platform: win-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda - hash: - md5: 7b756504d362cbad9b73a50a5455cafd - sha256: 538b1c6df537a36c63fd0ed83cb1c1c25b07d8d3b5e401991fdaff261a4b5b4d - category: main - optional: false -- name: jaraco.context - version: 5.3.0 - manager: conda - platform: linux-64 - dependencies: - backports.tarfile: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda - hash: - md5: 72d7ad2dcd0f37eccb2ee35a1c8f6aaa - sha256: 9e2aeacb1aed3ab4fc5883a357e8a874e12f687af300f8708ec12de2995e17d2 - category: main - optional: false -- name: jaraco.context - version: 5.3.0 - manager: conda - platform: osx-64 - dependencies: - backports.tarfile: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda - hash: - md5: 72d7ad2dcd0f37eccb2ee35a1c8f6aaa - sha256: 9e2aeacb1aed3ab4fc5883a357e8a874e12f687af300f8708ec12de2995e17d2 - category: main - optional: false -- name: jaraco.context - version: 5.3.0 - manager: conda - platform: osx-arm64 - dependencies: - backports.tarfile: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda - hash: - md5: 72d7ad2dcd0f37eccb2ee35a1c8f6aaa - sha256: 9e2aeacb1aed3ab4fc5883a357e8a874e12f687af300f8708ec12de2995e17d2 - category: main - optional: false -- name: jaraco.context - version: 5.3.0 - manager: conda - platform: win-64 - dependencies: - backports.tarfile: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda - hash: - md5: 72d7ad2dcd0f37eccb2ee35a1c8f6aaa - sha256: 9e2aeacb1aed3ab4fc5883a357e8a874e12f687af300f8708ec12de2995e17d2 - category: main - optional: false -- name: jaraco.functools - version: 4.0.0 - manager: conda - platform: linux-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda - hash: - md5: 547670a612fd335eaa5ffbf0fa75cb64 - sha256: d2e866fd22a48eaa2f795b6a3b0bf16f066293322ce04dd65cca36267160ead6 - category: main - optional: false -- name: jaraco.functools - version: 4.0.0 - manager: conda - platform: osx-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda - hash: - md5: 547670a612fd335eaa5ffbf0fa75cb64 - sha256: d2e866fd22a48eaa2f795b6a3b0bf16f066293322ce04dd65cca36267160ead6 - category: main - optional: false -- name: jaraco.functools - version: 4.0.0 - manager: conda - platform: osx-arm64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda - hash: - md5: 547670a612fd335eaa5ffbf0fa75cb64 - sha256: d2e866fd22a48eaa2f795b6a3b0bf16f066293322ce04dd65cca36267160ead6 - category: main - optional: false -- name: jaraco.functools - version: 4.0.0 - manager: conda - platform: win-64 - dependencies: - more-itertools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda - hash: - md5: 547670a612fd335eaa5ffbf0fa75cb64 - sha256: d2e866fd22a48eaa2f795b6a3b0bf16f066293322ce04dd65cca36267160ead6 - category: main - optional: false -- name: jedi - version: 0.19.2 - manager: conda - platform: linux-64 - dependencies: - parso: '>=0.8.3,<0.9.0' - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - hash: - md5: 11ead81b00e0f7cc901fceb7ccfb92c1 - sha256: d37dad14c00d06d33bfb99c378d0abd7645224a9491c433af5028f24863341ab - category: main - optional: false -- name: jedi - version: 0.19.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - parso: '>=0.8.3,<0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - hash: - md5: 11ead81b00e0f7cc901fceb7ccfb92c1 - sha256: d37dad14c00d06d33bfb99c378d0abd7645224a9491c433af5028f24863341ab - category: main - optional: false -- name: jedi - version: 0.19.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - parso: '>=0.8.3,<0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - hash: - md5: 11ead81b00e0f7cc901fceb7ccfb92c1 - sha256: d37dad14c00d06d33bfb99c378d0abd7645224a9491c433af5028f24863341ab - category: main - optional: false -- name: jedi - version: 0.19.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - parso: '>=0.8.3,<0.9.0' - url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - hash: - md5: 11ead81b00e0f7cc901fceb7ccfb92c1 - sha256: d37dad14c00d06d33bfb99c378d0abd7645224a9491c433af5028f24863341ab - category: main - optional: false -- name: jeepney - version: 0.8.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 9800ad1699b42612478755a2d26c722d - sha256: 16639759b811866d63315fe1391f6fb45f5478b823972f4d3d9f0392b7dd80b8 - category: main - optional: false -- name: jinja2 - version: 3.1.4 - manager: conda - platform: linux-64 - dependencies: - markupsafe: '>=2.0' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - hash: - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - category: main - optional: false -- name: jinja2 - version: 3.1.4 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - markupsafe: '>=2.0' - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - hash: - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - category: main - optional: false -- name: jinja2 - version: 3.1.4 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - markupsafe: '>=2.0' - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - hash: - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - category: main - optional: false -- name: jinja2 - version: 3.1.4 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - markupsafe: '>=2.0' - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - hash: - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - category: main - optional: false -- name: joblib - version: 1.4.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - setuptools: '' - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda - hash: - md5: 25df261d4523d9f9783bcdb7208d872f - sha256: 8ad719524b1039510fcbd75eb776123189d75e2c09228189257ddbcab86f5b64 - category: main - optional: false -- name: joblib - version: 1.4.2 - manager: conda - platform: osx-64 - dependencies: - setuptools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda - hash: - md5: 25df261d4523d9f9783bcdb7208d872f - sha256: 8ad719524b1039510fcbd75eb776123189d75e2c09228189257ddbcab86f5b64 - category: main - optional: false -- name: joblib - version: 1.4.2 - manager: conda - platform: osx-arm64 - dependencies: - setuptools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda - hash: - md5: 25df261d4523d9f9783bcdb7208d872f - sha256: 8ad719524b1039510fcbd75eb776123189d75e2c09228189257ddbcab86f5b64 - category: main - optional: false -- name: joblib - version: 1.4.2 - manager: conda - platform: win-64 - dependencies: - setuptools: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda - hash: - md5: 25df261d4523d9f9783bcdb7208d872f - sha256: 8ad719524b1039510fcbd75eb776123189d75e2c09228189257ddbcab86f5b64 - category: main - optional: false -- name: jupyter_client - version: 8.6.3 - manager: conda - platform: linux-64 - dependencies: - importlib-metadata: '>=4.8.3' - jupyter_core: '>=4.12,!=5.0.*' - python: '>=3.8' - python-dateutil: '>=2.8.2' - pyzmq: '>=23.0' - tornado: '>=6.2' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - hash: - md5: a14218cfb29662b4a19ceb04e93e298e - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - category: main - optional: false -- name: jupyter_client - version: 8.6.3 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - python-dateutil: '>=2.8.2' - jupyter_core: '>=4.12,!=5.0.*' - importlib-metadata: '>=4.8.3' - traitlets: '>=5.3' - tornado: '>=6.2' - pyzmq: '>=23.0' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - hash: - md5: a14218cfb29662b4a19ceb04e93e298e - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - category: main - optional: false -- name: jupyter_client - version: 8.6.3 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - python-dateutil: '>=2.8.2' - jupyter_core: '>=4.12,!=5.0.*' - importlib-metadata: '>=4.8.3' - traitlets: '>=5.3' - tornado: '>=6.2' - pyzmq: '>=23.0' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - hash: - md5: a14218cfb29662b4a19ceb04e93e298e - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - category: main - optional: false -- name: jupyter_client - version: 8.6.3 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - python-dateutil: '>=2.8.2' - jupyter_core: '>=4.12,!=5.0.*' - importlib-metadata: '>=4.8.3' - traitlets: '>=5.3' - tornado: '>=6.2' - pyzmq: '>=23.0' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - hash: - md5: a14218cfb29662b4a19ceb04e93e298e - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - category: main - optional: false -- name: jupyter_core - version: 5.7.2 - manager: conda - platform: linux-64 - dependencies: - __unix: '' - platformdirs: '>=2.5' - python: '>=3.8' - traitlets: '>=5.3' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - hash: - md5: 0a2980dada0dd7fd0998f0342308b1b1 - sha256: 732b1e8536bc22a5a174baa79842d79db2f4956d90293dd82dc1b3f6099bcccd - category: main - optional: false -- name: jupyter_core - version: 5.7.2 - manager: conda - platform: osx-64 - dependencies: - __unix: '' - python: '>=3.8' - traitlets: '>=5.3' - platformdirs: '>=2.5' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - hash: - md5: 0a2980dada0dd7fd0998f0342308b1b1 - sha256: 732b1e8536bc22a5a174baa79842d79db2f4956d90293dd82dc1b3f6099bcccd - category: main - optional: false -- name: jupyter_core - version: 5.7.2 - manager: conda - platform: osx-arm64 - dependencies: - __unix: '' - python: '>=3.8' - traitlets: '>=5.3' - platformdirs: '>=2.5' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - hash: - md5: 0a2980dada0dd7fd0998f0342308b1b1 - sha256: 732b1e8536bc22a5a174baa79842d79db2f4956d90293dd82dc1b3f6099bcccd - category: main - optional: false -- name: jupyter_core - version: 5.7.2 - manager: conda - platform: win-64 - dependencies: - __win: '' - cpython: '' - python: '>=3.8' - traitlets: '>=5.3' - platformdirs: '>=2.5' - pywin32: '>=300' - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh5737063_1.conda - hash: - md5: 46d87d1c0ea5da0aae36f77fa406e20d - sha256: 7c903b2d62414c3e8da1f78db21f45b98de387aae195f8ca959794113ba4b3fd - category: main - optional: false -- name: keyring - version: 25.5.0 - manager: conda - platform: linux-64 - dependencies: - __linux: '' - importlib-metadata: '>=4.11.4' - importlib_resources: '' - jaraco.classes: '' - jaraco.context: '' - jaraco.functools: '' - jeepney: '>=0.4.2' - python: '>=3.8' - secretstorage: '>=3.2' - url: https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda - hash: - md5: a36af57a05ceaed6827adc5e4ba81267 - sha256: f9a0b7838db9366fba0b9917fe8d0654377ebf8959e904f963e12ff76a5cc9ba - category: main - optional: false -- name: keyring - version: 25.5.0 - manager: conda - platform: osx-64 - dependencies: - importlib_resources: '' - __osx: '' - jaraco.classes: '' - jaraco.functools: '' - jaraco.context: '' - python: '>=3.8' - importlib-metadata: '>=4.11.4' - url: https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyh534df25_0.conda - hash: - md5: a0ed4210b80d1c9b4737774c22e222a6 - sha256: d4a5b92e82dfd1b60ea882618ecf9333ab0c2d6a16a36edbbe0d3102cc157081 - category: main - optional: false -- name: keyring - version: 25.5.0 - manager: conda - platform: osx-arm64 - dependencies: - importlib_resources: '' - __osx: '' - jaraco.classes: '' - jaraco.functools: '' - jaraco.context: '' - python: '>=3.8' - importlib-metadata: '>=4.11.4' - url: https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyh534df25_0.conda - hash: - md5: a0ed4210b80d1c9b4737774c22e222a6 - sha256: d4a5b92e82dfd1b60ea882618ecf9333ab0c2d6a16a36edbbe0d3102cc157081 - category: main - optional: false -- name: keyring - version: 25.5.0 - manager: conda - platform: win-64 - dependencies: - importlib_resources: '' - __win: '' - jaraco.classes: '' - jaraco.functools: '' - jaraco.context: '' - python: '>=3.8' - importlib-metadata: '>=4.11.4' - pywin32-ctypes: '>=0.2.0' - url: https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyh7428d3b_0.conda - hash: - md5: 872fd60cb5aef19f8c83dfc6753e0385 - sha256: 9199708fb578b7150bfd7c37fbb6b876f0432e2514a623148be29b96b8705afe - category: main - optional: false -- name: keyutils - version: 1.6.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=10.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - hash: - md5: 30186d27e2c9fa62b45fb1476b7200e3 - sha256: 150c05a6e538610ca7c43beb3a40d65c90537497a4f6a5f4d15ec0451b6f5ebb - category: main - optional: false -- name: kiwisolver - version: 1.4.7 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda - hash: - md5: 1bf77976372ff6de02af7b75cf034ce5 - sha256: 862384b028e006e77a0489671c67bca552063d0c95c988798126bea340220d9d - category: main - optional: false -- name: kiwisolver - version: 1.4.7 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.7-py39h0d8d0ca_0.conda - hash: - md5: b7a88917676e918e17feaba71cfddbab - sha256: 5efa62bc526877e00b535768c7f11680837eb45cd94cc1a4a3f264c0d0796cd5 - category: main - optional: false -- name: kiwisolver - version: 1.4.7 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/kiwisolver-1.4.7-py39h157d57c_0.conda - hash: - md5: 6eceef984bf5995ff335d03d0529a436 - sha256: 4cf473ab535c879a7c52cc424393b28d55d1cef862aef4b10d70e592de639db2 - category: main - optional: false -- name: kiwisolver - version: 1.4.7 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.7-py39h2b77a98_0.conda - hash: - md5: c116c25e2e36f770f065559ad2a1da73 - sha256: 75374dfa25362a4bfb1bd1a3bfed4855cd0f689666508ef2a23b682f81b4f7b3 - category: main - optional: false -- name: krb5 - version: 1.21.3 - manager: conda - platform: linux-64 - dependencies: - keyutils: '>=1.6.1,<2.0a0' - libedit: '>=3.1.20191231,<4.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - openssl: '>=3.3.1,<4.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda - hash: - md5: 3f43953b7d3fb3aaa1d0d0723d91e368 - sha256: 99df692f7a8a5c27cd14b5fb1374ee55e756631b9c3d659ed3ee60830249b238 - category: main - optional: false -- name: krb5 - version: 1.21.3 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=16' - libedit: '>=3.1.20191231,<4.0a0' - openssl: '>=3.3.1,<4.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/krb5-1.21.3-h37d8d59_0.conda - hash: - md5: d4765c524b1d91567886bde656fb514b - sha256: 83b52685a4ce542772f0892a0f05764ac69d57187975579a0835ff255ae3ef9c - category: main - optional: false -- name: krb5 - version: 1.21.3 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=16' - libedit: '>=3.1.20191231,<4.0a0' - openssl: '>=3.3.1,<4.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - hash: - md5: c6dc8a0fdec13a0565936655c33069a1 - sha256: 4442f957c3c77d69d9da3521268cad5d54c9033f1a73f99cde0a3658937b159b - category: main - optional: false -- name: krb5 - version: 1.21.3 - manager: conda - platform: win-64 - dependencies: - openssl: '>=3.3.1,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.3-hdf4eb48_0.conda - hash: - md5: 31aec030344e962fbd7dbbbbd68e60a9 - sha256: 18e8b3430d7d232dad132f574268f56b3eb1a19431d6d5de8c53c29e6c18fa81 - category: main - optional: false -- name: lame - version: '3.100' - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2 - hash: - md5: a8832b479f93521a9e7b5b743803be51 - sha256: aad2a703b9d7b038c0f745b853c6bb5f122988fe1a7a096e0e606d9cbec4eaab - category: main - optional: false -- name: lcms2 - version: '2.16' - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda - hash: - md5: 51bb7010fc86f70eee639b4bb7a894f5 - sha256: 5c878d104b461b7ef922abe6320711c0d01772f4cd55de18b674f88547870041 - category: main - optional: false -- name: lcms2 - version: '2.16' - manager: conda - platform: osx-64 - dependencies: - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda - hash: - md5: 1442db8f03517834843666c422238c9b - sha256: 222ebc0a55544b9922f61e75015d02861e65b48f12113af41d48ba0814e14e4e - category: main - optional: false -- name: lcms2 - version: '2.16' - manager: conda - platform: osx-arm64 - dependencies: - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - hash: - md5: 66f6c134e76fe13cce8a9ea5814b5dd5 - sha256: 151e0c84feb7e0747fabcc85006b8973b22f5abbc3af76a9add0b0ef0320ebe4 - category: main - optional: false -- name: lcms2 - version: '2.16' - manager: conda - platform: win-64 - dependencies: - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda - hash: - md5: d3592435917b62a8becff3a60db674f6 - sha256: f9fd9e80e46358a57d9bb97b1e37a03da4022143b019aa3c4476d8a7795de290 - category: main - optional: false -- name: ld_impl_linux-64 - version: '2.43' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - hash: - md5: 048b02e3962f066da18efe3a21b77672 - sha256: 7c91cea91b13f4314d125d1bedb9d03a29ebbd5080ccdea70260363424646dbe - category: main - optional: false -- name: lerc - version: 4.0.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - hash: - md5: 76bbff344f0134279f225174e9064c8f - sha256: cb55f36dcd898203927133280ae1dc643368af041a48bcf7c026acb7c47b0c12 - category: main - optional: false -- name: lerc - version: 4.0.0 - manager: conda - platform: osx-64 - dependencies: - libcxx: '>=13.0.1' - url: https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2 - hash: - md5: f9d6a4c82889d5ecedec1d90eb673c55 - sha256: e41790fc0f4089726369b3c7f813117bbc14b533e0ed8b94cf75aba252e82497 - category: main - optional: false -- name: lerc - version: 4.0.0 - manager: conda - platform: osx-arm64 - dependencies: - libcxx: '>=13.0.1' - url: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - hash: - md5: de462d5aacda3b30721b512c5da4e742 - sha256: 6f068bb53dfb6147d3147d981bb851bb5477e769407ad4e6a68edf482fdcb958 - category: main - optional: false -- name: lerc - version: 4.0.0 - manager: conda - platform: win-64 - dependencies: - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30037' - url: https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2 - hash: - md5: 1900cb3cab5055833cfddb0ba233b074 - sha256: f4f39d7f6a2f9b407f8fb567a6c25755270421731d70f0ff331f5de4fa367488 - category: main - optional: false -- name: libasprintf - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda - hash: - md5: 4fab9799da9571266d05ca5503330655 - sha256: 2da5c735811cbf38c7f7844ab457ff8b25046bbf5fe5ebd5dc1c2fafdf4fbe1c - category: main - optional: false -- name: libasprintf-devel - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libasprintf: 0.22.5 - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda - hash: - md5: 1091193789bb830127ed067a9e01ac57 - sha256: ccc7967e298ddf3124c8ad9741c7180dc6f778ae4135ec87978214f7b3c64dc2 - category: main - optional: false -- name: libblas - version: 3.9.0 - manager: conda - platform: linux-64 - dependencies: - libopenblas: '>=0.3.28,<1.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda - hash: - md5: 8ea26d42ca88ec5258802715fe1ee10b - sha256: d6d12dc437d060f838820e9e61bf73baab651f91935ac594cf10beb9ef1b4450 - category: main - optional: false -- name: libblas - version: 3.9.0 - manager: conda - platform: osx-64 - dependencies: - libopenblas: '>=0.3.28,<1.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-25_osx64_openblas.conda - hash: - md5: da0a6f87958893e1d2e2bbc7e7a6541f - sha256: 1b22b5322a311a775bca637b26317645cf07e35f125cede9278c6c45db6e7105 - category: main - optional: false -- name: libblas - version: 3.9.0 - manager: conda - platform: osx-arm64 - dependencies: - libopenblas: '>=0.3.28,<1.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-25_osxarm64_openblas.conda - hash: - md5: f8cf4d920ff36ce471619010eff59cac - sha256: f1fb9a11af0b2878bd8804b4c77d3733c40076218bcbdb35f575b1c0c9fddf11 - category: main - optional: false -- name: libblas - version: 3.9.0 - manager: conda - platform: win-64 - dependencies: - mkl: 2024.2.2 - url: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda - hash: - md5: 499208e81242efb6e5abc7366c91c816 - sha256: 5468bb91c44b41ce060bbd997c797b2f91e2b7ce91a7cbf4ddf7e7b734a8dc98 - category: main - optional: false -- name: libbrotlicommon - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - hash: - md5: 41b599ed2b02abcfdd84302bff174b23 - sha256: d9db2de60ea917298e658143354a530e9ca5f9c63471c65cf47ab39fd2f429e3 - category: main - optional: false -- name: libbrotlicommon - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h00291cd_2.conda - hash: - md5: 58f2c4bdd56c46cc7451596e4ae68e0b - sha256: b377056470a9fb4a100aa3c51b3581aab6496ba84d21cd99bcc1d5ef0359b1b6 - category: main - optional: false -- name: libbrotlicommon - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlicommon-1.1.0-hd74edd7_2.conda - hash: - md5: d0bf1dff146b799b319ea0434b93f779 - sha256: 839dacb741bdbb25e58f42088a2001b649f4f12195aeb700b5ddfca3267749e5 - category: main - optional: false -- name: libbrotlicommon - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.1.0-h2466b09_2.conda - hash: - md5: f7dc9a8f21d74eab46456df301da2972 - sha256: 33e8851c6cc8e2d93059792cd65445bfe6be47e4782f826f01593898ec95764c - category: main - optional: false -- name: libbrotlidec - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libbrotlicommon: 1.1.0 - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda - hash: - md5: 9566f0bd264fbd463002e759b8a82401 - sha256: 2892d512cad096cb03f1b66361deeab58b64e15ba525d6592bb6d609e7045edf - category: main - optional: false -- name: libbrotlidec - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libbrotlicommon: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlidec-1.1.0-h00291cd_2.conda - hash: - md5: 34709a1f5df44e054c4a12ab536c5459 - sha256: 4d49ea72e2f44d2d7a8be5472e4bd0bc2c6b89c55569de2c43576363a0685c0c - category: main - optional: false -- name: libbrotlidec - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libbrotlicommon: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlidec-1.1.0-hd74edd7_2.conda - hash: - md5: 55e66e68ce55523a6811633dd1ac74e2 - sha256: 6c6862eb274f21a7c0b60e5345467a12e6dda8b9af4438c66d496a2c1a538264 - category: main - optional: false -- name: libbrotlidec - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - libbrotlicommon: 1.1.0 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlidec-1.1.0-h2466b09_2.conda - hash: - md5: 9bae75ce723fa34e98e239d21d752a7e - sha256: 234fc92f4c4f1cf22f6464b2b15bfc872fa583c74bf3ab9539ff38892c43612f - category: main - optional: false -- name: libbrotlienc - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libbrotlicommon: 1.1.0 - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda - hash: - md5: 06f70867945ea6a84d35836af780f1de - sha256: 779f58174e99de3600e939fa46eddb453ec5d3c60bb46cdaa8b4c127224dbf29 - category: main - optional: false -- name: libbrotlienc - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libbrotlicommon: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.1.0-h00291cd_2.conda - hash: - md5: 691f0dcb36f1ae67f5c489f20ae987ea - sha256: 477d236d389473413a1ccd2bec1b66b2f1d2d7d1b4a57bb56421b7b611a56cd1 - category: main - optional: false -- name: libbrotlienc - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libbrotlicommon: 1.1.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlienc-1.1.0-hd74edd7_2.conda - hash: - md5: 4f3a434504c67b2c42565c0b85c1885c - sha256: eeb1eb0d58b9d02bc1b98dc0a058f104ab168eb2f7d1c7bfa0570a12cfcdb7b7 - category: main - optional: false -- name: libbrotlienc - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - libbrotlicommon: 1.1.0 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-h2466b09_2.conda - hash: - md5: 85741a24d97954a991e55e34bc55990b - sha256: 3d0dd7ef505962f107b7ea8f894e0b3dd01bf46852b362c8a7fc136b039bc9e1 - category: main - optional: false -- name: libcap - version: '2.69' - manager: conda - platform: linux-64 - dependencies: - attr: '>=2.5.1,<2.6.0a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda - hash: - md5: 25cb5999faa414e5ccb2c1388f62d3d5 - sha256: 942f9564b4228609f017b6617425d29a74c43b8a030e12239fa4458e5cb6323c - category: main - optional: false -- name: libcblas - version: 3.9.0 - manager: conda - platform: linux-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda - hash: - md5: 5dbd1b0fc0d01ec5e0e1fbe667281a11 - sha256: ab87b0477078837c91d9cda62a9faca18fba7c57cc77aa779ae24b3ac783b5dd - category: main - optional: false -- name: libcblas - version: 3.9.0 - manager: conda - platform: osx-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-25_osx64_openblas.conda - hash: - md5: ab304b75ea67f850cf7adf9156e3f62f - sha256: b04ae297aa5396df3135514866db72845b111c92524570f923625473f11cfbe2 - category: main - optional: false -- name: libcblas - version: 3.9.0 - manager: conda - platform: osx-arm64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-25_osxarm64_openblas.conda - hash: - md5: 4df0fae81f0b5bf47d48c882b086da11 - sha256: d9fa5b6b11252132a3383bbf87bd2f1b9d6248bef1b7e113c2a8ae41b0376218 - category: main - optional: false -- name: libcblas - version: 3.9.0 - manager: conda - platform: win-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-25_win64_mkl.conda - hash: - md5: 3ed189ba03a9888a8013aaee0d67c49d - sha256: 21528cdfe67dafdb2d21925515a167f13963e002c2b6d06d68984767f731850c - category: main - optional: false -- name: libclang-cpp19.1 - version: 19.1.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libllvm19: '>=19.1.4,<19.2.0a0' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda - hash: - md5: e7e4a0ebe1f6eedf483f6f5d4f7d2bdd - sha256: 66817b7e03486b3564de0bb7e3c27ccf4ecff2e31bcb10d3aa3e9b846ff483d7 - category: main - optional: false -- name: libclang13 - version: 19.1.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libllvm19: '>=19.1.4,<19.2.0a0' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda - hash: - md5: 6c450adae455c7d648856e8b0cfcebd6 - sha256: 954e2c4cf8bd715246e79ad262261a5b33b2e67485dc5156520c2c5d9203f65b - category: main - optional: false -- name: libclang13 - version: 19.1.4 - manager: conda - platform: win-64 - dependencies: - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.4-default_ha5278ca_0.conda - hash: - md5: 6acaf8464e71abf0713a030e0eba8317 - sha256: bca9feec153788a5ddca9f9580818c08d62032fd782d1f434d2c7d6ed337cc7e - category: main - optional: false -- name: libcups - version: 2.3.3 - manager: conda - platform: linux-64 - dependencies: - krb5: '>=1.21.1,<1.22.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda - hash: - md5: d4529f4dff3057982a7617c7ac58fde3 - sha256: bc67b9b21078c99c6bd8595fe7e1ed6da1f721007726e717f0449de7032798c4 - category: main - optional: false -- name: libcxx - version: 19.1.4 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.4-hf95d169_0.conda - hash: - md5: 5f23923c08151687ff2fc3002b0a7234 - sha256: 48c6d0ab9dd0c66693f79f4a032cd9ebb64fb88329dfa747aeac5299f9b3f33b - category: main - optional: false -- name: libcxx - version: 19.1.4 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda - hash: - md5: a2d3d484d95889fccdd09498d8f6bf9a - sha256: 342896ebc1d6acbf022ca6df006a936b9a472579e91e3c502cb1f52f218b78e9 - category: main - optional: false -- name: libdeflate - version: '1.22' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda - hash: - md5: b422943d5d772b7cc858b36ad2a92db5 - sha256: 780f0530a3adfc1497ba49d626931c6afc978c540e1abfde6ccd57128ded6ad6 - category: main - optional: false -- name: libdeflate - version: '1.22' - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.22-h00291cd_0.conda - hash: - md5: a15785ccc62ae2a8febd299424081efb - sha256: 681035346974c3315685dc40898e26f65f1c00cbb0b5fd80cc2599e207a34b31 - category: main - optional: false -- name: libdeflate - version: '1.22' - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libdeflate-1.22-hd74edd7_0.conda - hash: - md5: 2d3e3f3d8ab315748420ef58d5a3ae0f - sha256: 3552894ca62bebc33d05982937cda25a4fa19e56a82af2ff20944ff4c2532fda - category: main - optional: false -- name: libdeflate - version: '1.22' - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.22-h2466b09_0.conda - hash: - md5: a3439ce12d4e3cd887270d9436f9a4c8 - sha256: 579c634b7de8869cb1d76eccd4c032dc275d5a017212128502ea4dc828a5b361 - category: main - optional: false -- name: libdrm - version: 2.4.123 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=13' - libpciaccess: '>=0.18,<0.19.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda - hash: - md5: ee605e794bdc14e2b7f84c4faa0d8c2c - sha256: 5f274243fc7480b721a4ed6623c72d07b86a508a1363a85f0f16451ab655ace8 - category: main - optional: false -- name: libedit - version: 3.1.20191231 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=7.5.0' - ncurses: '>=6.2,<7.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2 - hash: - md5: 4d331e44109e3f0e19b4cb8f9b82f3e1 - sha256: a57d37c236d8f7c886e01656f4949d9dcca131d2a0728609c6f7fa338b65f1cf - category: main - optional: false -- name: libedit - version: 3.1.20191231 - manager: conda - platform: osx-64 - dependencies: - ncurses: '>=6.2,<7.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20191231-h0678c8f_2.tar.bz2 - hash: - md5: 6016a8a1d0e63cac3de2c352cd40208b - sha256: dbd3c3f2eca1d21c52e4c03b21930bbce414c4592f8ce805801575b9e9256095 - category: main - optional: false -- name: libedit - version: 3.1.20191231 - manager: conda - platform: osx-arm64 - dependencies: - ncurses: '>=6.2,<7.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20191231-hc8eb9b7_2.tar.bz2 - hash: - md5: 30e4362988a2623e9eb34337b83e01f9 - sha256: 3912636197933ecfe4692634119e8644904b41a58f30cad9d1fc02f6ba4d9fca - category: main - optional: false -- name: libegl - version: 1.7.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libglvnd: 1.7.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda - hash: - md5: c151d5eb730e9b7480e6d48c0fc44048 - sha256: 7fd5408d359d05a969133e47af580183fbf38e2235b562193d427bb9dad79723 - category: main - optional: false -- name: libevent - version: 2.1.12 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - openssl: '>=3.1.1,<4.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda - hash: - md5: a1cfcc585f0c42bf8d5546bb1dfb668d - sha256: 2e14399d81fb348e9d231a82ca4d816bf855206923759b69ad006ba482764131 - category: main - optional: false -- name: libexpat - version: 2.6.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda - hash: - md5: db833e03127376d461e1e13e76f09b6c - sha256: 56541b98447b58e52d824bd59d6382d609e11de1f8adf20b23143e353d2b8d26 - category: main - optional: false -- name: libffi - version: 3.4.2 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=9.4.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - hash: - md5: d645c6d2ac96843a2bfaccd2d62b3ac3 - sha256: ab6e9856c21709b7b517e940ae7028ae0737546122f83c2aa5d692860c3b149e - category: main - optional: false -- name: libffi - version: 3.4.2 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2 - hash: - md5: ccb34fb14960ad8b125962d3d79b31a9 - sha256: 7a2d27a936ceee6942ea4d397f9c7d136f12549d86f7617e8b6bad51e01a941f - category: main - optional: false -- name: libffi - version: 3.4.2 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.2-h3422bc3_5.tar.bz2 - hash: - md5: 086914b672be056eb70fd4285b6783b6 - sha256: 41b3d13efb775e340e4dba549ab5c029611ea6918703096b2eaa9c015c0750ca - category: main - optional: false -- name: libffi - version: 3.4.2 - manager: conda - platform: win-64 - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - url: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2 - hash: - md5: 2c96d1b6915b408893f9472569dee135 - sha256: 1951ab740f80660e9bc07d2ed3aefb874d78c107264fd810f24a1a6211d4b1a5 - category: main - optional: false -- name: libflac - version: 1.4.3 - manager: conda - platform: linux-64 - dependencies: - gettext: '>=0.21.1,<1.0a0' - libgcc-ng: '>=12' - libogg: '>=1.3.4,<1.4.0a0' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - hash: - md5: ee48bf17cc83a00f59ca1494d5646869 - sha256: 65908b75fa7003167b8a8f0001e11e58ed5b1ef5e98b96ab2ba66d7c1b822c7d - category: main - optional: false -- name: libgcc - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - _libgcc_mutex: '0.1' - _openmp_mutex: '>=4.5' - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda - hash: - md5: 3cb76c3f10d3bc7f1105b2fc9db984df - sha256: 53eb8a79365e58849e7b1a068d31f4f9e718dc938d6f2c03e960345739a03569 - category: main - optional: false -- name: libgcc-ng - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libgcc: 14.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda - hash: - md5: e39480b9ca41323497b05492a63bc35b - sha256: 3a76969c80e9af8b6e7a55090088bc41da4cffcde9e2c71b17f44d37b7cb87f7 - category: main - optional: false -- name: libgcrypt - version: 1.11.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libgpg-error: '>=1.50,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda - hash: - md5: 14858a47d4cc995892e79f2b340682d7 - sha256: 9e97e4a753d2ee238cfc7375f0882830f0d8c1667431bc9d070a0f6718355570 - category: main - optional: false -- name: libgettextpo - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda - hash: - md5: efab66b82ec976930b96d62a976de8e7 - sha256: 7f2d1f4d69973e2c3c3d2b6420d5eb989982baba97d63ab2d7a2b25a92d886b4 - category: main - optional: false -- name: libgettextpo-devel - version: 0.22.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - libgettextpo: 0.22.5 - url: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda - hash: - md5: 9aba7960731e6b4547b3a52f812ed801 - sha256: 0a66cdd46d1cd5201061252535cd91905b3222328a9294c1a5bcd32e85531545 - category: main - optional: false -- name: libgfortran - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libgfortran5: 14.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda - hash: - md5: f1fd30127802683586f768875127a987 - sha256: fc9e7f22a17faf74da904ebfc4d88699013d2992e55505e4aa0eb01770290977 - category: main - optional: false -- name: libgfortran - version: 5.0.0 - manager: conda - platform: osx-64 - dependencies: - libgfortran5: 13.2.0 - url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda - hash: - md5: 0b6e23a012ee7a9a5f6b244f5a92c1d5 - sha256: 4874422e567b68334705c135c17e5acdca1404de8255673ce30ad3510e00be0d - category: main - optional: false -- name: libgfortran - version: 5.0.0 - manager: conda - platform: osx-arm64 - dependencies: - libgfortran5: 13.2.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-5.0.0-13_2_0_hd922786_3.conda - hash: - md5: 4a55d9e169114b2b90d3ec4604cd7bbf - sha256: 44e541b4821c96b28b27fef5630883a60ce4fee91fd9c79f25a199f8f73f337b - category: main - optional: false -- name: libgfortran-ng - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libgfortran: 14.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda - hash: - md5: 0a7f4cd238267c88e5d69f7826a407eb - sha256: 423f1e2403f0c665748e42d335e421e53fd03c08d457cfb6f360d329d9459851 - category: main - optional: false -- name: libgfortran5 - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libgcc: '>=14.2.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda - hash: - md5: 9822b874ea29af082e5d36098d25427d - sha256: d149a37ca73611e425041f33b9d8dbed6e52ec506fe8cc1fc0ee054bddeb6d5d - category: main - optional: false -- name: libgfortran5 - version: 13.2.0 - manager: conda - platform: osx-64 - dependencies: - llvm-openmp: '>=8.0.0' - url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.conda - hash: - md5: e4fb4d23ec2870ff3c40d10afe305aec - sha256: da3db4b947e30aec7596a3ef92200d17e774cccbbf7efc47802529a4ca5ca31b - category: main - optional: false -- name: libgfortran5 - version: 13.2.0 - manager: conda - platform: osx-arm64 - dependencies: - llvm-openmp: '>=8.0.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-13.2.0-hf226fd6_3.conda - hash: - md5: 66ac81d54e95c534ae488726c1f698ea - sha256: bafc679eedb468a86aa4636061c55966186399ee0a04b605920d208d97ac579a - category: main - optional: false -- name: libgl - version: 1.7.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libglvnd: 1.7.0 - libglx: 1.7.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda - hash: - md5: 928b8be80851f5d8ffb016f9c81dae7a - sha256: dc2752241fa3d9e40ce552c1942d0a4b5eeb93740c9723873f6fcf8d39ef8d2d - category: main - optional: false -- name: libglib - version: 2.82.2 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libffi: '>=3.4,<4.0a0' - libgcc: '>=13' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - pcre2: '>=10.44,<10.45.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda - hash: - md5: 13e8e54035ddd2b91875ba399f0f7c04 - sha256: 49ee9401d483a76423461c50dcd37f91d070efaec7e4dc2828d8cdd2ce694231 - category: main - optional: false -- name: libglib - version: 2.82.2 - manager: conda - platform: win-64 - dependencies: - libffi: '>=3.4,<4.0a0' - libiconv: '>=1.17,<2.0a0' - libintl: '>=0.22.5,<1.0a0' - libzlib: '>=1.3.1,<2.0a0' - pcre2: '>=10.44,<10.45.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libglib-2.82.2-h7025463_0.conda - hash: - md5: 3e379c1b908a7101ecbc503def24613f - sha256: 7dfbf492b736f8d379f8c3b32a823f0bf2167ff69963e4c940339b146a04c54a - category: main - optional: false -- name: libglvnd - version: 1.7.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda - hash: - md5: 434ca7e50e40f4918ab701e3facd59a0 - sha256: 1175f8a7a0c68b7f81962699751bb6574e6f07db4c9f72825f978e3016f46850 - category: main - optional: false -- name: libglx - version: 1.7.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libglvnd: 1.7.0 - xorg-libx11: '>=1.8.10,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda - hash: - md5: c8013e438185f33b13814c5c488acd5c - sha256: 2d35a679624a93ce5b3e9dd301fff92343db609b79f0363e6d0ceb3a6478bfa7 - category: main - optional: false -- name: libgomp - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - _libgcc_mutex: '0.1' - url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda - hash: - md5: cc3573974587f12dda90d96e3e55a702 - sha256: 1911c29975ec99b6b906904040c855772ccb265a1c79d5d75c8ceec4ed89cd63 - category: main - optional: false -- name: libgpg-error - version: '1.51' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda - hash: - md5: 168cc19c031482f83b23c4eebbb94e26 - sha256: 9e0c09c1faf2151ade3ccb64e52d3c1f2dde85c00e37c6a3e6a8bced2aba68be - category: main - optional: false -- name: libhwloc - version: 2.11.1 - manager: conda - platform: win-64 - dependencies: - libxml2: '>=2.12.7,<3.0a0' - pthreads-win32: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.1-default_h8125262_1000.conda - hash: - md5: 933bad6e4658157f1aec9b171374fde2 - sha256: 92728e292640186759d6dddae3334a1bc0b139740b736ffaeccb825fb8c07a2e - category: main - optional: false -- name: libiconv - version: '1.17' - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - hash: - md5: d66573916ffcf376178462f1b61c941e - sha256: 8ac2f6a9f186e76539439e50505d98581472fedb347a20e7d1f36429849f05c9 - category: main - optional: false -- name: libiconv - version: '1.17' - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda - hash: - md5: e1eb10b1cca179f2baa3601e4efc8712 - sha256: 5f844dd19b046d43174ad80c6ea75b5d504020e3b63cfbc4ace97b8730d35c7b - category: main - optional: false -- name: libintl - version: 0.22.5 - manager: conda - platform: win-64 - dependencies: - libiconv: '>=1.17,<2.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/libintl-0.22.5-h5728263_3.conda - hash: - md5: 2cf0cf76cc15d360dfa2f17fd6cf9772 - sha256: c7e4600f28bcada8ea81456a6530c2329312519efcf0c886030ada38976b0511 - category: main - optional: false -- name: libintl-devel - version: 0.22.5 - manager: conda - platform: win-64 - dependencies: - libiconv: '>=1.17,<2.0a0' - libintl: 0.22.5 - url: https://conda.anaconda.org/conda-forge/win-64/libintl-devel-0.22.5-h5728263_3.conda - hash: - md5: 7537784e9e35399234d4007f45cdb744 - sha256: be1f3c48bc750bca7e68955d57180dfd826d6f9fa7eb32994f6cb61b813f9a6a - category: main - optional: false -- name: libjpeg-turbo - version: 3.0.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - hash: - md5: ea25936bb4080d843790b586850f82b8 - sha256: b954e09b7e49c2f2433d6f3bb73868eda5e378278b0f8c1dd10a7ef090e14f2f - category: main - optional: false -- name: libjpeg-turbo - version: 3.0.0 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-3.0.0-h0dc2134_1.conda - hash: - md5: 72507f8e3961bc968af17435060b6dd6 - sha256: d9572fd1024adc374aae7c247d0f29fdf4b122f1e3586fe62acc18067f40d02f - category: main - optional: false -- name: libjpeg-turbo - version: 3.0.0 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - hash: - md5: 3ff1e053dc3a2b8e36b9bfa4256a58d1 - sha256: a42054eaa38e84fc1e5ab443facac4bbc9d1b6b6f23f54b7bf4f1eb687e1d993 - category: main - optional: false -- name: libjpeg-turbo - version: 3.0.0 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda - hash: - md5: 3f1b948619c45b1ca714d60c7389092c - sha256: 4e7808e3098b4b4ed7e287f63bb24f9045cc4d95bfd39f0db870fc2837d74dff - category: main - optional: false -- name: liblapack - version: 3.9.0 - manager: conda - platform: linux-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda - hash: - md5: 4dc03a53fc69371a6158d0ed37214cd3 - sha256: 9d1ff017714edb2d84868f0f931a4a0e7c289a971062b2ac66cfc8145df7e20e - category: main - optional: false -- name: liblapack - version: 3.9.0 - manager: conda - platform: osx-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-25_osx64_openblas.conda - hash: - md5: dda0e24b4605ebbd381e48606a107bed - sha256: 2a9a6143d103e7e21511cbf439521645bdd506bfabfcac9d6398dd0562c6905c - category: main - optional: false -- name: liblapack - version: 3.9.0 - manager: conda - platform: osx-arm64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda - hash: - md5: 19bbddfec972d401838330453186108d - sha256: fdd742407672a9af20e70764550cf18b3ab67f12e48bf04163b90492fbc401e7 - category: main - optional: false -- name: liblapack - version: 3.9.0 - manager: conda - platform: win-64 - dependencies: - libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-25_win64_mkl.conda - hash: - md5: f716ef84564c574e8e74ae725f5d5f93 - sha256: 98c13a28596389539abe3f608c6fbd2826df47671f77c58a331df878c6140c53 - category: main - optional: false -- name: libllvm19 - version: 19.1.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - libxml2: '>=2.13.5,<3.0a0' - libzlib: '>=1.3.1,<2.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda - hash: - md5: 5f7d7eabf470bc56903b18f169f4f784 - sha256: bde149f2711840a6a6d546ef4ce60b47081a1bd3a03b5c51a2a6bda633909820 - category: main - optional: false -- name: libnsl - version: 2.0.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - hash: - md5: 30fd6e37fe21f86f4bd26d6ee73eeec7 - sha256: 26d77a3bb4dceeedc2a41bd688564fe71bf2d149fdcf117049970bc02ff1add6 - category: main - optional: false -- name: libogg - version: 1.3.5 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda - hash: - md5: 601bfb4b3c6f0b844443bb81a56651e0 - sha256: 5eda3fe92b99b25dd4737226a9485078ab405672d9f621be75edcb68f1e9026d - category: main - optional: false -- name: libogg - version: 1.3.5 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libogg-1.3.5-h2466b09_0.conda - hash: - md5: 44a4d173e62c5ed6d715f18ae7c46b7a - sha256: fcffdf32c620569738b85c98ddd25e1c84c8add80cd732743d90d469b7b532bb - category: main - optional: false -- name: libopenblas - version: 0.3.28 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=14' - libgfortran: '' - libgfortran5: '>=14.2.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - hash: - md5: 62857b389e42b36b686331bec0922050 - sha256: 99ba271d8a80a1af2723f2e124ffd91d850074c0389c067e6d96d72a2dbfeabe - category: main - optional: false -- name: libopenblas - version: 0.3.28 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libgfortran: 5.* - libgfortran5: '>=13.2.0' - llvm-openmp: '>=18.1.8' - url: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.28-openmp_hbf64a52_1.conda - hash: - md5: cd2c572c02a73b88c4d378eb31110e85 - sha256: cef5856952688ce9303f85f5bc62c99e8c2256b4c679f63afdfb381f222e90c7 - category: main - optional: false -- name: libopenblas - version: 0.3.28 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libgfortran: 5.* - libgfortran5: '>=13.2.0' - llvm-openmp: '>=18.1.8' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - hash: - md5: 40803a48d947c8639da6704e9a44d3ce - sha256: 62bb669c37a845129096f73d446cdb6bb170e4927f2fea2b661329680dbbc373 - category: main - optional: false -- name: libopus - version: 1.3.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2 - hash: - md5: 15345e56d527b330e1cacbdf58676e8f - sha256: 0e1c2740ebd1c93226dc5387461bbcf8142c518f2092f3ea7551f77755decc8f - category: main - optional: false -- name: libpciaccess - version: '0.18' - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda - hash: - md5: 48f4330bfcd959c3cfb704d424903c82 - sha256: c0a30ac74eba66ea76a4f0a39acc7833f5ed783a632ca3bb6665b2d81aabd2fb - category: main - optional: false -- name: libpng - version: 1.6.44 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - hash: - md5: f4cc49d7aa68316213e4b12be35308d1 - sha256: e5b14f7a01c2db4362d8591f42f82f336ed48d5e4079e4d1f65d0c2a3637ea78 - category: main - optional: false -- name: libpng - version: 1.6.44 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.44-h4b8f8c9_0.conda - hash: - md5: f32ac2c8dd390dbf169f550887ed09d9 - sha256: 12b44e58f8832798d7a5c0a7480c95e905dbd6c3558dec09739062411f9e08d1 - category: main - optional: false -- name: libpng - version: 1.6.44 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - hash: - md5: fb36e93f0ea6a6f5d2b99984f34b049e - sha256: 38f8759a3eb8060deabd4db41f0f023514d853e46ddcbd0ba21768fc4e563bb1 - category: main - optional: false -- name: libpng - version: 1.6.44 - manager: conda - platform: win-64 - dependencies: - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.44-h3ca93ac_0.conda - hash: - md5: 639ac6b55a40aa5de7b8c1b4d78f9e81 - sha256: 0d3d6ff9225f6918ac225e3839c0d91e5af1da08a4ebf59cac1bfd86018db945 - category: main - optional: false -- name: libpq - version: '16.6' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - krb5: '>=1.21.3,<1.22.0a0' - libgcc: '>=13' - openssl: '>=3.4.0,<4.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda - hash: - md5: 7fa1f554b760a2d6018ecc673fb73f6c - sha256: d37061a240b4588f688163c05cc01e00c6ec12a57dd5b8795bd465f5d510c29f - category: main - optional: false -- name: libsndfile - version: 1.2.2 - manager: conda - platform: linux-64 - dependencies: - lame: '>=3.100,<3.101.0a0' - libflac: '>=1.4.3,<1.5.0a0' - libgcc-ng: '>=12' - libogg: '>=1.3.4,<1.4.0a0' - libopus: '>=1.3.1,<2.0a0' - libstdcxx-ng: '>=12' - libvorbis: '>=1.3.7,<1.4.0a0' - mpg123: '>=1.32.1,<1.33.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda - hash: - md5: ef1910918dd895516a769ed36b5b3a4e - sha256: f709cbede3d4f3aee4e2f8d60bd9e256057f410bd60b8964cb8cf82ec1457573 - category: main - optional: false -- name: libsodium - version: 1.0.20 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - hash: - md5: a587892d3c13b6621a6091be690dbca2 - sha256: 0105bd108f19ea8e6a78d2d994a6d4a8db16d19a41212070d2d1d48a63c34161 - category: main - optional: false -- name: libsodium - version: 1.0.20 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/libsodium-1.0.20-hfdf4475_0.conda - hash: - md5: 6af4b059e26492da6013e79cbcb4d069 - sha256: d3975cfe60e81072666da8c76b993af018cf2e73fe55acba2b5ba0928efaccf5 - category: main - optional: false -- name: libsodium - version: 1.0.20 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - hash: - md5: a7ce36e284c5faaf93c220dfc39e3abd - sha256: fade8223e1e1004367d7101dd17261003b60aa576df6d7802191f8972f7470b1 - category: main - optional: false -- name: libsodium - version: 1.0.20 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libsodium-1.0.20-hc70643c_0.conda - hash: - md5: 198bb594f202b205c7d18b936fa4524f - sha256: 7bcb3edccea30f711b6be9601e083ecf4f435b9407d70fc48fbcf9e5d69a0fc6 - category: main - optional: false -- name: libsqlite - version: 3.47.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - hash: - md5: b6f02b52a174e612e89548f4663ce56a - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - category: main - optional: false -- name: libsqlite - version: 3.47.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.47.0-h2f8c449_1.conda - hash: - md5: af445c495253a871c3d809e1199bb12b - sha256: a0f7381c867898a45018b1e5cf1aca68659d292d58252e8f489a4270b010fed8 - category: main - optional: false -- name: libsqlite - version: 3.47.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - hash: - md5: 07a14fbe439eef078cc479deca321161 - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - category: main - optional: false -- name: libsqlite - version: 3.47.0 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.0-h2466b09_1.conda - hash: - md5: 5b1f36012cc3d09c4eb9f24ad0e2c379 - sha256: 3342d6fe787f5830f7e8466d9c65c914bfd8d67220fb5673041b338cbba47afe - category: main - optional: false -- name: libstdcxx - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libgcc: 14.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - hash: - md5: 234a5554c53625688d51062645337328 - sha256: 4661af0eb9bdcbb5fb33e5d0023b001ad4be828fccdcc56500059d56f9869462 - category: main - optional: false -- name: libstdcxx-ng - version: 14.2.0 - manager: conda - platform: linux-64 - dependencies: - libstdcxx: 14.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - hash: - md5: 8371ac6457591af2cf6159439c1fd051 - sha256: 25bb30b827d4f6d6f0522cc0579e431695503822f144043b93c50237017fffd8 - category: main - optional: false -- name: libsystemd0 - version: '256.7' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libcap: '>=2.69,<2.70.0a0' - libgcc: '>=13' - libgcrypt: '>=1.11.0,<2.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda - hash: - md5: ad328c530a12a8798776e5f03942090f - sha256: fa9cfbacaa2f14072b07ff9c832a8750627755346a1472f116a94aecea28f08e - category: main - optional: false -- name: libtiff - version: 4.7.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - lerc: '>=4.0.0,<5.0a0' - libdeflate: '>=1.22,<1.23.0a0' - libgcc: '>=13' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libstdcxx: '>=13' - libwebp-base: '>=1.4.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - hash: - md5: 63872517c98aa305da58a757c443698e - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - category: main - optional: false -- name: libtiff - version: 4.7.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - lerc: '>=4.0.0,<5.0a0' - libcxx: '>=17' - libdeflate: '>=1.22,<1.23.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-h583c2ba_1.conda - hash: - md5: 4b78bcdcc8780cede8b3d090deba874d - sha256: 4d58c695dfed6f308d0fd3ff552e0078bb98bc0be2ea0bf55820eb6e86fa5355 - category: main - optional: false -- name: libtiff - version: 4.7.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - lerc: '>=4.0.0,<5.0a0' - libcxx: '>=17' - libdeflate: '>=1.22,<1.23.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - hash: - md5: b9abf45f7c64caf3303725f1aa0e9a4d - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - category: main - optional: false -- name: libtiff - version: 4.7.0 - manager: conda - platform: win-64 - dependencies: - lerc: '>=4.0.0,<5.0a0' - libdeflate: '>=1.22,<1.23.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hfc51747_1.conda - hash: - md5: eac317ed1cc6b9c0af0c27297e364665 - sha256: 902cb9f7f54d17dcfd54ce050b1ce2bc944b9bbd1748913342c2ea1e1140f8bb - category: main - optional: false -- name: libuuid - version: 2.38.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - hash: - md5: 40b61aab5c7ba9ff276c41cfffe6b80b - sha256: 787eb542f055a2b3de553614b25f09eefb0a0931b0c87dbcce6efdfd92f04f18 - category: main - optional: false -- name: libvorbis - version: 1.3.7 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=9.3.0' - libogg: '>=1.3.4,<1.4.0a0' - libstdcxx-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2 - hash: - md5: 309dec04b70a3cc0f1e84a4013683bc0 - sha256: 53080d72388a57b3c31ad5805c93a7328e46ff22fab7c44ad2a86d712740af33 - category: main - optional: false -- name: libvorbis - version: 1.3.7 - manager: conda - platform: win-64 - dependencies: - libogg: '>=1.3.4,<1.4.0a0' - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - url: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - hash: - md5: e1a22282de0169c93e4ffe6ce6acc212 - sha256: 6cdc018a024908270205d8512d92f92cf0adaaa5401c2b403757189b138bf56a - category: main - optional: false -- name: libwebp-base - version: 1.4.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - hash: - md5: b26e8aa824079e1be0294e7152ca4559 - sha256: 49bc5f6b1e11cb2babf2a2a731d1a680a5e08a858280876a779dbda06c78c35f - category: main - optional: false -- name: libwebp-base - version: 1.4.0 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.4.0-h10d778d_0.conda - hash: - md5: b2c0047ea73819d992484faacbbe1c24 - sha256: 7bafd8f4c637778cd0aa390bf3a894feef0e1fcf6ea6000c7ffc25c4c5a65538 - category: main - optional: false -- name: libwebp-base - version: 1.4.0 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - hash: - md5: c0af0edfebe780b19940e94871f1a765 - sha256: 0d4bad713a512d79bfeb4d61821f447afab8b0792aca823f505ce6b195e9fde5 - category: main - optional: false -- name: libwebp-base - version: 1.4.0 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - hash: - md5: abd61d0ab127ec5cd68f62c2969e6f34 - sha256: d0ca51cb1de9192be9a3238e71fbcca5a535619c499c4f4c9b2ed41c14d36770 - category: main - optional: false -- name: libxcb - version: 1.17.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - pthread-stubs: '' - xorg-libxau: '>=1.0.11,<2.0a0' - xorg-libxdmcp: '' - url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - hash: - md5: 92ed62436b625154323d40d5f2f11dd7 - sha256: 666c0c431b23c6cec6e492840b176dde533d48b7e6fb8883f5071223433776aa - category: main - optional: false -- name: libxcb - version: 1.17.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - pthread-stubs: '' - xorg-libxau: '>=1.0.11,<2.0a0' - xorg-libxdmcp: '' - url: https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.17.0-hf1f96e2_0.conda - hash: - md5: bbeca862892e2898bdb45792a61c4afc - sha256: 8896cd5deff6f57d102734f3e672bc17120613647288f9122bec69098e839af7 - category: main - optional: false -- name: libxcb - version: 1.17.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - pthread-stubs: '' - xorg-libxau: '>=1.0.11,<2.0a0' - xorg-libxdmcp: '' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - hash: - md5: af523aae2eca6dfa1c8eec693f5b9a79 - sha256: bd3816218924b1e43b275863e21a3e13a5db4a6da74cca8e60bc3c213eb62f71 - category: main - optional: false -- name: libxcb - version: '1.16' - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libs: '' - m2w64-gcc-libs-core: '' - pthread-stubs: '' - xorg-libxau: '>=1.0.11,<2.0a0' - xorg-libxdmcp: '' - url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-h013a479_1.conda - hash: - md5: f0b599acdc82d5bc7e3b105833e7c5c8 - sha256: abae56e12a4c62730b899fdfb82628a9ac171c4ce144fc9f34ae024957a82a0e - category: main - optional: false -- name: libxcrypt - version: 4.4.36 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - hash: - md5: 5aa797f8787fe7a17d1b0821485b5adc - sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c - category: main - optional: false -- name: libxkbcommon - version: 1.7.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - libxml2: '>=2.12.7,<3.0a0' - xkeyboard-config: '' - xorg-libxau: '>=1.0.11,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda - hash: - md5: e2eaefa4de2b7237af7c907b8bbc760a - sha256: 6804c2a7062d10de6f159f7106dc45ebccc8d42bfb925f7919e26e567fa6da6b - category: main - optional: false -- name: libxml2 - version: 2.13.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - icu: '>=75.1,<76.0a0' - libgcc: '>=13' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda - hash: - md5: c81a9f1118541aaa418ccb22190c817e - sha256: 8c9d6a3a421ac5bf965af495d1b0a08c6fb2245ba156550bc064a7b4f8fc7bd8 - category: main - optional: false -- name: libxml2 - version: 2.13.5 - manager: conda - platform: win-64 - dependencies: - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-h442d1da_0.conda - hash: - md5: 1fbabbec60a3c7c519a5973b06c3b2f4 - sha256: 020466b17c143190bd5a6540be2ceef4c1f8d514408bd5f0adaafcd9d0057b5c - category: main - optional: false -- name: libzlib - version: 1.3.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - hash: - md5: edb0dca6bc32e4f4789199455a1dbeb8 - sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 - category: main - optional: false -- name: libzlib - version: 1.3.1 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - hash: - md5: 003a54a4e32b02f7355b50a837e699da - sha256: 8412f96504fc5993a63edf1e211d042a1fd5b1d51dedec755d2058948fcced09 - category: main - optional: false -- name: libzlib - version: 1.3.1 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - hash: - md5: 369964e85dc26bfe78f41399b366c435 - sha256: ce34669eadaba351cd54910743e6a2261b67009624dbc7daeeafdef93616711b - category: main - optional: false -- name: libzlib - version: 1.3.1 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - hash: - md5: 41fbfac52c601159df6c01f875de31b9 - sha256: ba945c6493449bed0e6e29883c4943817f7c79cbff52b83360f7b341277c6402 - category: main - optional: false -- name: llvm-openmp - version: 19.1.4 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.4-ha54dae1_0.conda - hash: - md5: 193715d512f648fe0865f6f13b1957e3 - sha256: 69fca4a9318d7367ec3e0e7d6e6023a46ae1113dbd67da6d0f93fffa0ef54497 - category: main - optional: false -- name: llvm-openmp - version: 19.1.4 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - hash: - md5: 76ca179ec970bea6e275e2fa477c2d3c - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - category: main - optional: false -- name: lz4-c - version: 1.9.4 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - hash: - md5: 318b08df404f9c9be5712aaa5a6f0bb0 - sha256: 1b4c105a887f9b2041219d57036f72c4739ab9e9fe5a1486f094e58c76b31f5f - category: main - optional: false -- name: m2w64-gcc-libgfortran - version: 5.3.0 - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libs-core: '' - msys2-conda-epoch: '20160418' - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libgfortran-5.3.0-6.tar.bz2 - hash: - md5: 066552ac6b907ec6d72c0ddab29050dc - sha256: 9de95a7996d5366ae0808eef2acbc63f9b11b874aa42375f55379e6715845dc6 - category: main - optional: false -- name: m2w64-gcc-libs - version: 5.3.0 - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libgfortran: '' - m2w64-gcc-libs-core: '' - m2w64-gmp: '' - m2w64-libwinpthread-git: '' - msys2-conda-epoch: '20160418' - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-5.3.0-7.tar.bz2 - hash: - md5: fe759119b8b3bfa720b8762c6fdc35de - sha256: 3bd1ab02b7c89a5b153a17be03b36d833f1517ff2a6a77ead7c4a808b88196aa - category: main - optional: false -- name: m2w64-gcc-libs-core - version: 5.3.0 - manager: conda - platform: win-64 - dependencies: - m2w64-gmp: '' - m2w64-libwinpthread-git: '' - msys2-conda-epoch: '20160418' - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-core-5.3.0-7.tar.bz2 - hash: - md5: 4289d80fb4d272f1f3b56cfe87ac90bd - sha256: 58afdfe859ed2e9a9b1cc06bc408720cb2c3a6a132e59d4805b090d7574f4ee0 - category: main - optional: false -- name: m2w64-gmp - version: 6.1.0 - manager: conda - platform: win-64 - dependencies: - msys2-conda-epoch: '20160418' - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gmp-6.1.0-2.tar.bz2 - hash: - md5: 53a1c73e1e3d185516d7e3af177596d9 - sha256: 7e3cd95f554660de45f8323fca359e904e8d203efaf07a4d311e46d611481ed1 - category: main - optional: false -- name: m2w64-libwinpthread-git - version: 5.0.0.4634.697f757 - manager: conda - platform: win-64 - dependencies: - msys2-conda-epoch: '20160418' - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-libwinpthread-git-5.0.0.4634.697f757-2.tar.bz2 - hash: - md5: 774130a326dee16f1ceb05cc687ee4f0 - sha256: f63a09b2cae7defae0480f1740015d6235f1861afa6fe2e2d3e10bd0d1314ee0 - category: main - optional: false -- name: markupsafe - version: 3.0.2 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda - hash: - md5: d38773fed557834d3211e019b7cf7c2f - sha256: 18c6e50480687bf83170e0ed878ae016c2e9a6279804e57ff71dacadcb271423 - category: main - optional: false -- name: markupsafe - version: 3.0.2 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-3.0.2-py39h20cc651_0.conda - hash: - md5: ad59330edb154c242bbd5e94bff3ced1 - sha256: ecc17cc697b5d79c284e643f8e55b014ac6b1ff0f4d22ec551bd836a6db92e28 - category: main - optional: false -- name: markupsafe - version: 3.0.2 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py39h66d85bf_0.conda - hash: - md5: 3a68dbbc912ae36e829cbcff2d6a4ef4 - sha256: bd0d16aa05b8d8de3630f07df445c67405f903df23114e612642ab620fde7f4d - category: main - optional: false -- name: markupsafe - version: 3.0.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/markupsafe-3.0.2-py39hf73967f_0.conda - hash: - md5: 8c9528a3b4ac4e3cbb4d6acb85648b5f - sha256: 0198753a197487ff6b45685182c1aaae1355cb3a878ee3f650934d05550151b1 - category: main - optional: false -- name: matplotlib - version: 3.8.4 - manager: conda - platform: linux-64 - dependencies: - matplotlib-base: '>=3.8.4,<3.8.5.0a0' - pyqt: '>=5.10' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tornado: '>=5' - url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda - hash: - md5: bd956c7563b6a6b27521b83623c74e22 - sha256: 0dc6927def73e0ceeced605bb5b76b4e46fc0f92db850ed0120a69c85e01ab9b - category: main - optional: false -- name: matplotlib - version: 3.8.4 - manager: conda - platform: osx-64 - dependencies: - matplotlib-base: '>=3.8.4,<3.8.5.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tornado: '>=5' - url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.4-py39h6e9494a_2.conda - hash: - md5: 2487841f514256bc163de04578107a82 - sha256: 09ee0043d11b4d657ad2e5dd683f24a017213915396d736ba69818858abe405d - category: main - optional: false -- name: matplotlib - version: 3.8.4 - manager: conda - platform: osx-arm64 - dependencies: - matplotlib-base: '>=3.8.4,<3.8.5.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tornado: '>=5' - url: https://conda.anaconda.org/conda-forge/osx-arm64/matplotlib-3.8.4-py39hdf13c20_2.conda - hash: - md5: daa8f16df04193989bd860c9bc24a462 - sha256: 04928bac42c3d33fb1af788ea4f95a41a80cc911de136bdf9591512d12f92941 - category: main - optional: false -- name: matplotlib - version: 3.8.4 - manager: conda - platform: win-64 - dependencies: - matplotlib-base: '>=3.8.4,<3.8.5.0a0' - pyqt: '>=5.10' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tornado: '>=5' - url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.8.4-py39hcbf5309_2.conda - hash: - md5: 1ecee90b529cb69ec4e95add23323110 - sha256: 7552304bd91c96aded87468138fa9672a8f575e82b2d670e0fdb62f735a22183 - category: main - optional: false -- name: matplotlib-base - version: 3.8.4 - manager: conda - platform: linux-64 - dependencies: - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - importlib-resources: '>=3.2.0' - kiwisolver: '>=1.3.1' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.21' - packaging: '>=20.0' - pillow: '>=8' - pyparsing: '>=2.3.1' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7' - python_abi: 3.9.* - tk: '>=8.6.13,<8.7.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda - hash: - md5: c9fb6571b93b1dd490ea627af7344f36 - sha256: b17c56e982fb6ee3e22ab0d841b524e620b32118116f35a3db9e71cb91765142 - category: main - optional: false -- name: matplotlib-base - version: 3.8.4 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - importlib-resources: '>=3.2.0' - kiwisolver: '>=1.3.1' - libcxx: '>=16' - numpy: '>=1.21' - packaging: '>=20.0' - pillow: '>=8' - pyparsing: '>=2.3.1' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.4-py39hfca4cae_2.conda - hash: - md5: c54e0c86546e1aeeac70fe54ecf4ec5c - sha256: bff80364fc7533c27a10141ca52cef63b98754c420a4f269177956699f605306 - category: main - optional: false -- name: matplotlib-base - version: 3.8.4 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - importlib-resources: '>=3.2.0' - kiwisolver: '>=1.3.1' - libcxx: '>=16' - numpy: '>=1.21' - packaging: '>=20.0' - pillow: '>=8' - pyparsing: '>=2.3.1' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/matplotlib-base-3.8.4-py39h15359f4_2.conda - hash: - md5: 41a288f7aea1b66c4c7c217bff50b778 - sha256: cda403743520df3ef2727c6cf09d6ed273077ddd9ae37c33e6a28f052ce2ed04 - category: main - optional: false -- name: matplotlib-base - version: 3.8.4 - manager: conda - platform: win-64 - dependencies: - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - importlib-resources: '>=3.2.0' - kiwisolver: '>=1.3.1' - numpy: '>=1.21' - packaging: '>=20.0' - pillow: '>=8' - pyparsing: '>=2.3.1' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.8.4-py39he1095e7_2.conda - hash: - md5: 5c813b5da86f186d8026b6de6429c212 - sha256: 6c76b64ff0a37af01b82a01d75d4276e346bb0f7d71623adbd5ab3077717c9e1 - category: main - optional: false -- name: matplotlib-inline - version: 0.1.7 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6' - traitlets: '' - url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - hash: - md5: 779345c95648be40d22aaa89de7d4254 - sha256: 7ea68676ea35fbb095420bbcc1c82c4767b8be7bb56abb6989b7f89d957a3bab - category: main - optional: false -- name: matplotlib-inline - version: 0.1.7 - manager: conda - platform: osx-64 - dependencies: - traitlets: '' - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - hash: - md5: 779345c95648be40d22aaa89de7d4254 - sha256: 7ea68676ea35fbb095420bbcc1c82c4767b8be7bb56abb6989b7f89d957a3bab - category: main - optional: false -- name: matplotlib-inline - version: 0.1.7 - manager: conda - platform: osx-arm64 - dependencies: - traitlets: '' - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - hash: - md5: 779345c95648be40d22aaa89de7d4254 - sha256: 7ea68676ea35fbb095420bbcc1c82c4767b8be7bb56abb6989b7f89d957a3bab - category: main - optional: false -- name: matplotlib-inline - version: 0.1.7 - manager: conda - platform: win-64 - dependencies: - traitlets: '' - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - hash: - md5: 779345c95648be40d22aaa89de7d4254 - sha256: 7ea68676ea35fbb095420bbcc1c82c4767b8be7bb56abb6989b7f89d957a3bab - category: main - optional: false -- name: mkl - version: 2024.2.2 - manager: conda - platform: win-64 - dependencies: - intel-openmp: 2024.* - tbb: 2021.* - url: https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda - hash: - md5: f011e7cc21918dc9d1efe0209e27fa16 - sha256: 098ba4a3cb82f627bc79dc0ab1111b44859c9ef4aaa8d75ce043bce107770cb3 - category: main - optional: false -- name: more-itertools - version: 10.5.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda - hash: - md5: 3364591bebd600979606791e1dff7cb6 - sha256: 2315b7dba237e16b0e1b601725a8e03e062421e0be28d8a25dc35dd9bd93a342 - category: main - optional: false -- name: more-itertools - version: 10.5.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda - hash: - md5: 3364591bebd600979606791e1dff7cb6 - sha256: 2315b7dba237e16b0e1b601725a8e03e062421e0be28d8a25dc35dd9bd93a342 - category: main - optional: false -- name: more-itertools - version: 10.5.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda - hash: - md5: 3364591bebd600979606791e1dff7cb6 - sha256: 2315b7dba237e16b0e1b601725a8e03e062421e0be28d8a25dc35dd9bd93a342 - category: main - optional: false -- name: more-itertools - version: 10.5.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda - hash: - md5: 3364591bebd600979606791e1dff7cb6 - sha256: 2315b7dba237e16b0e1b601725a8e03e062421e0be28d8a25dc35dd9bd93a342 - category: main - optional: false -- name: mpg123 - version: 1.32.9 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda - hash: - md5: c7f302fd11eeb0987a6a5e1f3aed6a21 - sha256: 39c4700fb3fbe403a77d8cc27352fa72ba744db487559d5d44bf8411bb4ea200 - category: main - optional: false -- name: msgpack-python - version: 1.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py39h74842e3_0.conda - hash: - md5: 9eb2a7585e756451a5e13b908cb519f2 - sha256: 88b8bb1d6b9d48e3d785ea2ddec98913fd10740f96433a2bc4a0ea2815097787 - category: main - optional: false -- name: msgpack-python - version: 1.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/msgpack-python-1.1.0-py39h0d8d0ca_0.conda - hash: - md5: 474c0102b07f9333beaebb2e79147bee - sha256: 9a8b23f855f162c1fca5c2c7cdc6c6e3df2b60e060e23f5477e43b0e3c550a49 - category: main - optional: false -- name: msgpack-python - version: 1.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=17' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/msgpack-python-1.1.0-py39h157d57c_0.conda - hash: - md5: 2bde86a9ac55d92407fce55ad85fc16b - sha256: 7c8ee5a1b7e8243c38399a0d8b9e418f9d03a92cc1fc666c9daf4591d0f80294 - category: main - optional: false -- name: msgpack-python - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/msgpack-python-1.1.0-py39h2b77a98_0.conda - hash: - md5: c834861b3769c8ddfca082b36753e4b9 - sha256: a82d6e978e646b1bd4f8e6508f3e5745a242add6ea8388604a4628955fc300fd - category: main - optional: false -- name: msys2-conda-epoch - version: '20160418' - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/win-64/msys2-conda-epoch-20160418-1.tar.bz2 - hash: - md5: b0309b72560df66f71a9d5e34a5efdfa - sha256: 99358d58d778abee4dca82ad29fb58058571f19b0f86138363c260049d4ac7f1 - category: main - optional: false -- name: munkres - version: 1.1.4 - manager: conda - platform: linux-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - category: main - optional: false -- name: munkres - version: 1.1.4 - manager: conda - platform: osx-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - category: main - optional: false -- name: munkres - version: 1.1.4 - manager: conda - platform: osx-arm64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - category: main - optional: false -- name: munkres - version: 1.1.4 - manager: conda - platform: win-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - category: main - optional: false -- name: mysql-common - version: 9.0.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - openssl: '>=3.3.2,<4.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda - hash: - md5: 85c0dc0bcd110c998b01856975486ee7 - sha256: bf0c230c35ca70e2c98530eb064a99f0c4d4596793a0be3ca8a3cbd92094ef82 - category: main - optional: false -- name: mysql-libs - version: 9.0.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - libzlib: '>=1.3.1,<2.0a0' - mysql-common: 9.0.1 - openssl: '>=3.3.2,<4.0a0' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda - hash: - md5: 57a9e7ee3c0840d3c8c9012473978629 - sha256: e376189cd11304f4089971b372dac8a1cbbab6eacda8ca978ead2c220d16b8a4 - category: main - optional: false -- name: ncurses - version: '6.5' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda - hash: - md5: 70caf8bb6cf39a0b6b7efc885f51c0fe - sha256: 6a1d5d8634c1a07913f1c525db6455918cbc589d745fac46d9d6e30340c8731a - category: main - optional: false -- name: ncurses - version: '6.5' - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda - hash: - md5: e102bbf8a6ceeaf429deab8032fc8977 - sha256: b0b3180039ef19502525a2abd5833c00f9624af830fd391f851934d57bffb9af - category: main - optional: false -- name: ncurses - version: '6.5' - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h7bae524_1.conda - hash: - md5: cb2b0ea909b97b3d70cd3921d1445e1a - sha256: 27d0b9ff78ad46e1f3a6c96c479ab44beda5f96def88e2fe626e0a49429d8afc - category: main - optional: false -- name: nest-asyncio - version: 1.6.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - hash: - md5: 6598c056f64dc8800d40add25e4e2c34 - sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a - category: main - optional: false -- name: nest-asyncio - version: 1.6.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - hash: - md5: 6598c056f64dc8800d40add25e4e2c34 - sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a - category: main - optional: false -- name: nest-asyncio - version: 1.6.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - hash: - md5: 6598c056f64dc8800d40add25e4e2c34 - sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a - category: main - optional: false -- name: nest-asyncio - version: 1.6.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - hash: - md5: 6598c056f64dc8800d40add25e4e2c34 - sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a - category: main - optional: false -- name: nspr - version: '4.36' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda - hash: - md5: de9cd5bca9e4918527b9b72b6e2e1409 - sha256: a87471d9265a7c02a98c20debac8b13afd80963968ed7b1c1c2ac7b80955ce31 - category: main - optional: false -- name: nss - version: '3.107' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libsqlite: '>=3.47.0,<4.0a0' - libstdcxx: '>=13' - libzlib: '>=1.3.1,<2.0a0' - nspr: '>=4.36,<5.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda - hash: - md5: 294b7009fe9010b35c25bb683f663bc3 - sha256: 4a901b96cc8d371cc71ab5cf1e3184c234ae7e74c4d50b3789d4bdadcd0f3c40 - category: main - optional: false -- name: numpy - version: 1.22.4 - manager: conda - platform: linux-64 - dependencies: - libblas: '>=3.8.0,<4.0a0' - libcblas: '>=3.8.0,<4.0a0' - libgcc-ng: '>=12' - liblapack: '>=3.8.0,<4.0a0' - libstdcxx-ng: '>=12' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.22.4-py39hc58783e_0.tar.bz2 - hash: - md5: a09094871a38a0abec011ec36e742045 - sha256: 891389d22ed1b81f6c34805a1a9f1506f02a595910f8355b19d2bf6455a46d3d - category: main - optional: false -- name: numpy - version: 1.22.4 - manager: conda - platform: osx-64 - dependencies: - libblas: '>=3.8.0,<4.0a0' - libcblas: '>=3.8.0,<4.0a0' - libcxx: '>=13.0.1' - liblapack: '>=3.8.0,<4.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/numpy-1.22.4-py39h677350a_0.tar.bz2 - hash: - md5: 562fb66d5efa1ad4b08f283fd19f45b4 - sha256: fb777fdff9f949909bc56237f98da36db757e859422f695b00f7b48b78407d9d - category: main - optional: false -- name: numpy - version: 1.22.4 - manager: conda - platform: osx-arm64 - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libcxx: '>=13.0.1' - liblapack: '>=3.9.0,<4.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.22.4-py39h7df2422_0.tar.bz2 - hash: - md5: 859d854797724490cd0f171c35f0c38f - sha256: 764545697b30257c7d2a38bf775b701e3dceba4a6fc644f2480c05d7409dff0a - category: main - optional: false -- name: numpy - version: 1.22.4 - manager: conda - platform: win-64 - dependencies: - libblas: '>=3.8.0,<4.0a0' - libcblas: '>=3.8.0,<4.0a0' - liblapack: '>=3.8.0,<4.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - url: https://conda.anaconda.org/conda-forge/win-64/numpy-1.22.4-py39h0948cea_0.tar.bz2 - hash: - md5: a3d0bb2b75ee4f923ff520d25cecbe7f - sha256: 91e1818a00756c8943297097f4d8ff7765172ebed22a29359de2992945e4b72f - category: main - optional: false -- name: openjpeg - version: 2.5.2 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libpng: '>=1.6.43,<1.7.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.6.0,<4.8.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - hash: - md5: 7f2e286780f072ed750df46dc2631138 - sha256: 5600a0b82df042bd27d01e4e687187411561dfc11cc05143a08ce29b64bf2af2 - category: main - optional: false -- name: openjpeg - version: 2.5.2 - manager: conda - platform: osx-64 - dependencies: - libcxx: '>=16' - libpng: '>=1.6.43,<1.7.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda - hash: - md5: 05a14cc9d725dd74995927968d6547e3 - sha256: dc9c405119b9b54f8ca5984da27ba498bd848ab4f0f580da6f293009ca5adc13 - category: main - optional: false -- name: openjpeg - version: 2.5.2 - manager: conda - platform: osx-arm64 - dependencies: - libcxx: '>=16' - libpng: '>=1.6.43,<1.7.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - hash: - md5: 5029846003f0bc14414b9128a1f7c84b - sha256: 472d6eaffc1996e6af35ec8e91c967f472a536a470079bfa56383cc0dbf4d463 - category: main - optional: false -- name: openjpeg - version: 2.5.2 - manager: conda - platform: win-64 - dependencies: - libpng: '>=1.6.43,<1.7.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - libzlib: '>=1.2.13,<2.0.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.2-h3d672ee_0.conda - hash: - md5: 7e7099ad94ac3b599808950cec30ad4e - sha256: dda71cbe094234ab208f3552dec1f4ca6f2e614175d010808d6cb66ecf0bc753 - category: main - optional: false -- name: openssl - version: 3.4.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - ca-certificates: '' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - hash: - md5: 23cc74f77eb99315c0360ec3533147a9 - sha256: 814b9dff1847b132c676ee6cc1a8cb2d427320779b93e1b6d76552275c128705 - category: main - optional: false -- name: openssl - version: 3.4.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - ca-certificates: '' - url: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda - hash: - md5: ec99d2ce0b3033a75cbad01bbc7c5b71 - sha256: ba7e068ed469d6625e32ae60e6ad893e655b6695280dadf7e065ed0b6f3b885c - category: main - optional: false -- name: openssl - version: 3.4.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - ca-certificates: '' - url: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - hash: - md5: df307bbc703324722df0293c9ca2e418 - sha256: bd1d58ced46e75efa3b842c61642fd12272c69e9fe4d7261078bc082153a1d53 - category: main - optional: false -- name: openssl - version: 3.4.0 - manager: conda - platform: win-64 - dependencies: - ca-certificates: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda - hash: - md5: d0d805d9b5524a14efb51b3bff965e83 - sha256: e03045a0837e01ff5c75e9273a572553e7522290799807f918c917a9826a6484 - category: main - optional: false -- name: packaging - version: '24.2' - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda - hash: - md5: 8508b703977f4c4ada34d657d051972c - sha256: 74843f871e5cd8a1baf5ed8c406c571139c287141efe532f8ffbdafa3664d244 - category: main - optional: false -- name: packaging - version: '24.2' - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda - hash: - md5: 8508b703977f4c4ada34d657d051972c - sha256: 74843f871e5cd8a1baf5ed8c406c571139c287141efe532f8ffbdafa3664d244 - category: main - optional: false -- name: packaging - version: '24.2' - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda - hash: - md5: 8508b703977f4c4ada34d657d051972c - sha256: 74843f871e5cd8a1baf5ed8c406c571139c287141efe532f8ffbdafa3664d244 - category: main - optional: false -- name: packaging - version: '24.2' - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda - hash: - md5: 8508b703977f4c4ada34d657d051972c - sha256: 74843f871e5cd8a1baf5ed8c406c571139c287141efe532f8ffbdafa3664d244 - category: main - optional: false -- name: pandas - version: 1.3.5 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=9.4.0' - libstdcxx-ng: '>=9.4.0' - numpy: '>=1.19.5,<2.0a0' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7.3' - python_abi: 3.9.* - pytz: '>=2017.2' - setuptools: <60.0.0 - url: https://conda.anaconda.org/conda-forge/linux-64/pandas-1.3.5-py39hde0f152_0.tar.bz2 - hash: - md5: 667350acd89504e72f978fa35c105a99 - sha256: 876a9989da9ca279579f7fde33b5dc048e1aebf00bef0be51720e51614d4904e - category: main - optional: false -- name: pandas - version: 1.3.5 - manager: conda - platform: osx-64 - dependencies: - libcxx: '>=11.1.0' - numpy: '>=1.19.5,<2.0a0' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7.3' - python_abi: 3.9.* - pytz: '>=2017.2' - setuptools: <60.0.0 - url: https://conda.anaconda.org/conda-forge/osx-64/pandas-1.3.5-py39h4d6be9b_0.tar.bz2 - hash: - md5: 4ff68a87a85596cee8543127dbcadee7 - sha256: 5330965f4f5b3d0e5b400846bb092eac13cbc01d31a5369324f957c83c327d0e - category: main - optional: false -- name: pandas - version: 1.3.5 - manager: conda - platform: osx-arm64 - dependencies: - libcxx: '>=11.1.0' - numpy: '>=1.19.5,<2.0a0' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7.3' - python_abi: 3.9.* - pytz: '>=2017.2' - setuptools: <60.0.0 - url: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-1.3.5-py39h7f752ed_0.tar.bz2 - hash: - md5: 72b0d9ff5f7a3d953167f0009bfdde0f - sha256: 793992489f8178b5ee9712fc5cc07f8ee9b99cc760a2ae25d0971d15a3a49eac - category: main - optional: false -- name: pandas - version: 1.3.5 - manager: conda - platform: win-64 - dependencies: - numpy: '>=1.19.5,<2.0a0' - python: '>=3.9,<3.10.0a0' - python-dateutil: '>=2.7.3' - python_abi: 3.9.* - pytz: '>=2017.2' - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - setuptools: <60.0.0 - url: https://conda.anaconda.org/conda-forge/win-64/pandas-1.3.5-py39h2e25243_0.tar.bz2 - hash: - md5: 5eeed494679a07b25c19621066634aba - sha256: 7ebfe1ea7cf201ab1b5ed576dbd93da3b398c810358d08f0210b0ed27ff28222 - category: main - optional: false -- name: parso - version: 0.8.4 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - hash: - md5: 81534b420deb77da8833f2289b8d47ac - sha256: bfe404eebb930cc41782d34f8fc04c0388ea692eeebe2c5fc28df8ec8d4d61ae - category: main - optional: false -- name: parso - version: 0.8.4 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - hash: - md5: 81534b420deb77da8833f2289b8d47ac - sha256: bfe404eebb930cc41782d34f8fc04c0388ea692eeebe2c5fc28df8ec8d4d61ae - category: main - optional: false -- name: parso - version: 0.8.4 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - hash: - md5: 81534b420deb77da8833f2289b8d47ac - sha256: bfe404eebb930cc41782d34f8fc04c0388ea692eeebe2c5fc28df8ec8d4d61ae - category: main - optional: false -- name: parso - version: 0.8.4 - manager: conda - platform: win-64 - dependencies: - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - hash: - md5: 81534b420deb77da8833f2289b8d47ac - sha256: bfe404eebb930cc41782d34f8fc04c0388ea692eeebe2c5fc28df8ec8d4d61ae - category: main - optional: false -- name: pastel - version: 0.2.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: a4eea5bff523f26442405bc5d1f52adb - sha256: 9153f0f38c76a09da7688a61fdbf8f3d7504e2326bef53e4ec20d994311b15bd - category: main - optional: false -- name: pastel - version: 0.2.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: a4eea5bff523f26442405bc5d1f52adb - sha256: 9153f0f38c76a09da7688a61fdbf8f3d7504e2326bef53e4ec20d994311b15bd - category: main - optional: false -- name: pastel - version: 0.2.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: a4eea5bff523f26442405bc5d1f52adb - sha256: 9153f0f38c76a09da7688a61fdbf8f3d7504e2326bef53e4ec20d994311b15bd - category: main - optional: false -- name: pastel - version: 0.2.1 - manager: conda - platform: win-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2 - hash: - md5: a4eea5bff523f26442405bc5d1f52adb - sha256: 9153f0f38c76a09da7688a61fdbf8f3d7504e2326bef53e4ec20d994311b15bd - category: main - optional: false -- name: patsy - version: 1.0.1 - manager: conda - platform: linux-64 - dependencies: - numpy: '>=1.4.0' - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda - hash: - md5: a97b9c7586cedcf4a0a158ef3479975c - sha256: f1ec4bb1e70f18518f70df64728b162d0d5ef3c0ed68296d913c27f5bab7a84b - category: main - optional: false -- name: patsy - version: 1.0.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - numpy: '>=1.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda - hash: - md5: a97b9c7586cedcf4a0a158ef3479975c - sha256: f1ec4bb1e70f18518f70df64728b162d0d5ef3c0ed68296d913c27f5bab7a84b - category: main - optional: false -- name: patsy - version: 1.0.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - numpy: '>=1.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda - hash: - md5: a97b9c7586cedcf4a0a158ef3479975c - sha256: f1ec4bb1e70f18518f70df64728b162d0d5ef3c0ed68296d913c27f5bab7a84b - category: main - optional: false -- name: patsy - version: 1.0.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - numpy: '>=1.4.0' - url: https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda - hash: - md5: a97b9c7586cedcf4a0a158ef3479975c - sha256: f1ec4bb1e70f18518f70df64728b162d0d5ef3c0ed68296d913c27f5bab7a84b - category: main - optional: false -- name: pcre2 - version: '10.44' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - bzip2: '>=1.0.8,<2.0a0' - libgcc-ng: '>=12' - libzlib: '>=1.3.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda - hash: - md5: df359c09c41cd186fffb93a2d87aa6f5 - sha256: 1087716b399dab91cc9511d6499036ccdc53eb29a288bebcb19cf465c51d7c0d - category: main - optional: false -- name: pcre2 - version: '10.44' - manager: conda - platform: win-64 - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda - hash: - md5: a3a3baddcfb8c80db84bec3cb7746fb8 - sha256: f4a12cbf8a7c5bfa2592b9dc92b492c438781898e5b02f397979b0be6e1b5851 - category: main - optional: false -- name: pexpect - version: 4.9.0 - manager: conda - platform: linux-64 - dependencies: - ptyprocess: '>=0.5' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - hash: - md5: 629f3203c99b32e0988910c93e77f3b6 - sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e - category: main - optional: false -- name: pexpect - version: 4.9.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - ptyprocess: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - hash: - md5: 629f3203c99b32e0988910c93e77f3b6 - sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e - category: main - optional: false -- name: pexpect - version: 4.9.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - ptyprocess: '>=0.5' - url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - hash: - md5: 629f3203c99b32e0988910c93e77f3b6 - sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e - category: main - optional: false -- name: pickleshare - version: 0.7.5 - manager: conda - platform: linux-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - hash: - md5: 415f0ebb6198cc2801c73438a9fb5761 - sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738 - category: main - optional: false -- name: pickleshare - version: 0.7.5 - manager: conda - platform: osx-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - hash: - md5: 415f0ebb6198cc2801c73438a9fb5761 - sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738 - category: main - optional: false -- name: pickleshare - version: 0.7.5 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - hash: - md5: 415f0ebb6198cc2801c73438a9fb5761 - sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738 - category: main - optional: false -- name: pickleshare - version: 0.7.5 - manager: conda - platform: win-64 - dependencies: - python: '>=3' - url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - hash: - md5: 415f0ebb6198cc2801c73438a9fb5761 - sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738 - category: main - optional: false -- name: pillow - version: 11.0.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.16,<3.0a0' - libgcc: '>=13' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.7.0,<4.8.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libxcb: '>=1.17.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - openjpeg: '>=2.5.2,<3.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tk: '>=8.6.13,<8.7.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda - hash: - md5: a2bafdf8ae51c9eb6e5be684cfcedd60 - sha256: 9b78536575dc65f5e1be97ee2ecb26530be5a5fd0a6e812fe56a05de1f445036 - category: main - optional: false -- name: pillow - version: 11.0.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.16,<3.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.7.0,<4.8.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libxcb: '>=1.17.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - openjpeg: '>=2.5.2,<3.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tk: '>=8.6.13,<8.7.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py39h6cf2171_0.conda - hash: - md5: faeb9ce86dd3e450e3a451a33edf15c9 - sha256: 746015a90e67475f6ead9fc5ed83cc5fe0e0804760a4e65cd4b0cdab7910b43f - category: main - optional: false -- name: pillow - version: 11.0.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.16,<3.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.7.0,<4.8.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libxcb: '>=1.17.0,<2.0a0' - libzlib: '>=1.3.1,<2.0a0' - openjpeg: '>=2.5.2,<3.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tk: '>=8.6.13,<8.7.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py39h4ac03e3_0.conda - hash: - md5: 879240a84c5b0648192acce6bda484c0 - sha256: 727ceb4f3a57eed4b46c364da313199bdd2cb58e19b213a1e8d91237078636b0 - category: main - optional: false -- name: pillow - version: 10.4.0 - manager: conda - platform: win-64 - dependencies: - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.16,<3.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.8.0a0' - libwebp-base: '>=1.4.0,<2.0a0' - libxcb: '>=1.16,<2.0.0a0' - libzlib: '>=1.3.1,<2.0a0' - openjpeg: '>=2.5.2,<3.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tk: '>=8.6.13,<8.7.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.4.0-py39hfa8c767_1.conda - hash: - md5: e2ecab76054dece3dc94c80ab1cdca0d - sha256: d3de7fac5bfc999e1d6d5423dac5c89c9090c84480c2329aaada21423fa3a85d - category: main - optional: false -- name: pixman - version: 0.43.2 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda - hash: - md5: 71004cbf7924e19c02746ccde9fd7123 - sha256: 366d28e2a0a191d6c535e234741e0cd1d94d713f76073d8af4a5ccb2a266121e - category: main - optional: false -- name: pkginfo - version: 1.11.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda - hash: - md5: 1ab2293c055793d6e5bb911a7a51621c - sha256: c3bb5d85a536c3e19111a0500d1e6712c2aae1fe707d3cd960c37f1f5024f34e - category: main - optional: false -- name: pkginfo - version: 1.11.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda - hash: - md5: 1ab2293c055793d6e5bb911a7a51621c - sha256: c3bb5d85a536c3e19111a0500d1e6712c2aae1fe707d3cd960c37f1f5024f34e - category: main - optional: false -- name: pkginfo - version: 1.11.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda - hash: - md5: 1ab2293c055793d6e5bb911a7a51621c - sha256: c3bb5d85a536c3e19111a0500d1e6712c2aae1fe707d3cd960c37f1f5024f34e - category: main - optional: false -- name: pkginfo - version: 1.11.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda - hash: - md5: 1ab2293c055793d6e5bb911a7a51621c - sha256: c3bb5d85a536c3e19111a0500d1e6712c2aae1fe707d3cd960c37f1f5024f34e - category: main - optional: false -- name: platformdirs - version: 4.3.6 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - hash: - md5: fd8f2b18b65bbf62e8f653100690c8d2 - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - category: main - optional: false -- name: platformdirs - version: 4.3.6 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - hash: - md5: fd8f2b18b65bbf62e8f653100690c8d2 - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - category: main - optional: false -- name: platformdirs - version: 4.3.6 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - hash: - md5: fd8f2b18b65bbf62e8f653100690c8d2 - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - category: main - optional: false -- name: platformdirs - version: 4.3.6 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - hash: - md5: fd8f2b18b65bbf62e8f653100690c8d2 - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - category: main - optional: false -- name: ply - version: '3.11' - manager: conda - platform: linux-64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda - hash: - md5: 18c6deb6f9602e32446398203c8f0e91 - sha256: d8faaf4dcc13caed560fa32956523b35928a70499a2d08c51320947d637e3a41 - category: main - optional: false -- name: ply - version: '3.11' - manager: conda - platform: win-64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda - hash: - md5: 18c6deb6f9602e32446398203c8f0e91 - sha256: d8faaf4dcc13caed560fa32956523b35928a70499a2d08c51320947d637e3a41 - category: main - optional: false -- name: prompt-toolkit - version: 3.0.48 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - wcwidth: '' - url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - hash: - md5: 4c05134c48b6a74f33bbb9938e4a115e - sha256: 44e4e6108d425a666856a52d1523e5d70890256a8920bb0dcd3d55cc750f3207 - category: main - optional: false -- name: prompt-toolkit - version: 3.0.48 - manager: conda - platform: osx-64 - dependencies: - wcwidth: '' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - hash: - md5: 4c05134c48b6a74f33bbb9938e4a115e - sha256: 44e4e6108d425a666856a52d1523e5d70890256a8920bb0dcd3d55cc750f3207 - category: main - optional: false -- name: prompt-toolkit - version: 3.0.48 - manager: conda - platform: osx-arm64 - dependencies: - wcwidth: '' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - hash: - md5: 4c05134c48b6a74f33bbb9938e4a115e - sha256: 44e4e6108d425a666856a52d1523e5d70890256a8920bb0dcd3d55cc750f3207 - category: main - optional: false -- name: prompt-toolkit - version: 3.0.48 - manager: conda - platform: win-64 - dependencies: - wcwidth: '' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - hash: - md5: 4c05134c48b6a74f33bbb9938e4a115e - sha256: 44e4e6108d425a666856a52d1523e5d70890256a8920bb0dcd3d55cc750f3207 - category: main - optional: false -- name: psutil - version: 6.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda - hash: - md5: ef257b7ce1e1cb152639ced6bc653475 - sha256: 057765763fc2b7cc8d429e055240209ae83ae6631c80060bad590bbbc8f01f22 - category: main - optional: false -- name: psutil - version: 6.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/psutil-6.1.0-py39h296a897_0.conda - hash: - md5: 9c4a209f029dfe376ea8abb2ea4f7125 - sha256: 01d50f9868d73f7d40af039dc75076d286b24de58e9e1fcef1db484455976c17 - category: main - optional: false -- name: psutil - version: 6.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-6.1.0-py39h57695bc_0.conda - hash: - md5: 7521b2d7f1337893b7b9a513a264caa1 - sha256: 7caa6892871b78fd609fa24136005a2b34e711076c35abaa70a873aa1ce27fde - category: main - optional: false -- name: psutil - version: 6.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/psutil-6.1.0-py39ha55e580_0.conda - hash: - md5: 9e44ffa0f1a6bc810c6e948919a473e8 - sha256: 9b0b6c692e4fd9d6ece2b78340987913ae741b5a5486308d00b87f1a507bed9b - category: main - optional: false -- name: pthread-stubs - version: '0.4' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - hash: - md5: b3c17d95b5a10c6e64a21fa17573e70e - sha256: 9c88f8c64590e9567c6c80823f0328e58d3b1efb0e1c539c0315ceca764e0973 - category: main - optional: false -- name: pthread-stubs - version: '0.4' - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda - hash: - md5: 8bcf980d2c6b17094961198284b8e862 - sha256: 05944ca3445f31614f8c674c560bca02ff05cb51637a96f665cb2bbe496099e5 - category: main - optional: false -- name: pthread-stubs - version: '0.4' - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - hash: - md5: 415816daf82e0b23a736a069a75e9da7 - sha256: 8ed65e17fbb0ca944bfb8093b60086e3f9dd678c3448b5de212017394c247ee3 - category: main - optional: false -- name: pthread-stubs - version: '0.4' - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libs: '' - url: https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2 - hash: - md5: a1f820480193ea83582b13249a7e7bd9 - sha256: bb5a6ddf1a609a63addd6d7b488b0f58d05092ea84e9203283409bff539e202a - category: main - optional: false -- name: pthreads-win32 - version: 2.9.1 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pthreads-win32-2.9.1-h2466b09_4.conda - hash: - md5: cf98a67a1ec8040b42455002a24f0b0b - sha256: b989bdcf0a22ba05a238adac1ad3452c11871681f565e509f629e225a26b7d45 - category: main - optional: false -- name: ptyprocess - version: 0.7.0 - manager: conda - platform: linux-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - hash: - md5: 359eeb6536da0e687af562ed265ec263 - sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a - category: main - optional: false -- name: ptyprocess - version: 0.7.0 - manager: conda - platform: osx-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - hash: - md5: 359eeb6536da0e687af562ed265ec263 - sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a - category: main - optional: false -- name: ptyprocess - version: 0.7.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - hash: - md5: 359eeb6536da0e687af562ed265ec263 - sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a - category: main - optional: false -- name: pulseaudio-client - version: '17.0' - manager: conda - platform: linux-64 - dependencies: - dbus: '>=1.13.6,<2.0a0' - libgcc-ng: '>=12' - libglib: '>=2.78.3,<3.0a0' - libsndfile: '>=1.2.2,<1.3.0a0' - libsystemd0: '>=255' - url: https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda - hash: - md5: 07f45f1be1c25345faddb8db0de8039b - sha256: b27c0c8671bd95c205a61aeeac807c095b60bc76eb5021863f919036d7a964fc - category: main - optional: false -- name: pure_eval - version: 0.2.3 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda - hash: - md5: 0f051f09d992e0d08941706ad519ee0e - sha256: dcfcb3cee1ae0a89729601582cc3edea20ba13c9493967a03a693c67567af0c8 - category: main - optional: false -- name: pure_eval - version: 0.2.3 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda - hash: - md5: 0f051f09d992e0d08941706ad519ee0e - sha256: dcfcb3cee1ae0a89729601582cc3edea20ba13c9493967a03a693c67567af0c8 - category: main - optional: false -- name: pure_eval - version: 0.2.3 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda - hash: - md5: 0f051f09d992e0d08941706ad519ee0e - sha256: dcfcb3cee1ae0a89729601582cc3edea20ba13c9493967a03a693c67567af0c8 - category: main - optional: false -- name: pure_eval - version: 0.2.3 - manager: conda - platform: win-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda - hash: - md5: 0f051f09d992e0d08941706ad519ee0e - sha256: dcfcb3cee1ae0a89729601582cc3edea20ba13c9493967a03a693c67567af0c8 - category: main - optional: false -- name: pycparser - version: '2.22' - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda - hash: - md5: 844d9eb3b43095b031874477f7d70088 - sha256: 406001ebf017688b1a1554b49127ca3a4ac4626ec0fd51dc75ffa4415b720b64 - category: main - optional: false -- name: pydantic - version: 2.10.1 - manager: conda - platform: linux-64 - dependencies: - annotated-types: '>=0.6.0' - pydantic-core: 2.27.1 - python: '>=3.9' - typing-extensions: '>=4.6.1' - typing_extensions: '>=4.12.2' - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda - hash: - md5: c15343c9dbdb30766a07e5b70e46c7d3 - sha256: b1872231d26ee3ded32bd1fe3ee1b3c7d9834ad72bf28aed70e5cd1235341584 - category: main - optional: false -- name: pydantic - version: 2.10.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - typing-extensions: '>=4.6.1' - typing_extensions: '>=4.12.2' - annotated-types: '>=0.6.0' - pydantic-core: 2.27.1 - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda - hash: - md5: c15343c9dbdb30766a07e5b70e46c7d3 - sha256: b1872231d26ee3ded32bd1fe3ee1b3c7d9834ad72bf28aed70e5cd1235341584 - category: main - optional: false -- name: pydantic - version: 2.10.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - typing-extensions: '>=4.6.1' - typing_extensions: '>=4.12.2' - annotated-types: '>=0.6.0' - pydantic-core: 2.27.1 - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda - hash: - md5: c15343c9dbdb30766a07e5b70e46c7d3 - sha256: b1872231d26ee3ded32bd1fe3ee1b3c7d9834ad72bf28aed70e5cd1235341584 - category: main - optional: false -- name: pydantic - version: 2.10.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - typing-extensions: '>=4.6.1' - typing_extensions: '>=4.12.2' - annotated-types: '>=0.6.0' - pydantic-core: 2.27.1 - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda - hash: - md5: c15343c9dbdb30766a07e5b70e46c7d3 - sha256: b1872231d26ee3ded32bd1fe3ee1b3c7d9834ad72bf28aed70e5cd1235341584 - category: main - optional: false -- name: pydantic-core - version: 2.27.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - typing-extensions: '>=4.6.0,!=4.7.0' - url: https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py39he612d8f_0.conda - hash: - md5: 08ae181e881f3bef5598b300353b57ba - sha256: 701f663eda9d5cc92bf67b851e72aa9fb4f1287bd375661a3eef3351c7dc9056 - category: main - optional: false -- name: pydantic-core - version: 2.27.1 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - typing-extensions: '>=4.6.0,!=4.7.0' - url: https://conda.anaconda.org/conda-forge/osx-64/pydantic-core-2.27.1-py39hd8827cb_0.conda - hash: - md5: 9b3c48ab11b951406535a6187de3d258 - sha256: 39a0f075687b82cba838eead0ef3ae6f9f3960d8d9457af734868d59ecae22fc - category: main - optional: false -- name: pydantic-core - version: 2.27.1 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - typing-extensions: '>=4.6.0,!=4.7.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/pydantic-core-2.27.1-py39hc40b5db_0.conda - hash: - md5: 8ab310ed760f566831f7d92ce888cf22 - sha256: 2237a91479eb1b7ae9f332b6c1ebb3a90e06ac2ac3a45f014ce33a27d1f95912 - category: main - optional: false -- name: pydantic-core - version: 2.27.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - typing-extensions: '>=4.6.0,!=4.7.0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pydantic-core-2.27.1-py39h92a245a_0.conda - hash: - md5: f93eff0718213d90b93aedb8b384ea2a - sha256: 0ca0afc3b98dc8e5e90f052778ab7f98e7e72c0eb5ee0e5a16145d926527b658 - category: main - optional: false -- name: pygments - version: 2.18.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - hash: - md5: b7f5c092b8f9800150d998a71b76d5a1 - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - category: main - optional: false -- name: pygments - version: 2.18.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - hash: - md5: b7f5c092b8f9800150d998a71b76d5a1 - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - category: main - optional: false -- name: pygments - version: 2.18.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - hash: - md5: b7f5c092b8f9800150d998a71b76d5a1 - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - category: main - optional: false -- name: pygments - version: 2.18.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - hash: - md5: b7f5c092b8f9800150d998a71b76d5a1 - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - category: main - optional: false -- name: pylev - version: 1.4.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.3' - url: https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: edf8651c4379d9d1495ad6229622d150 - sha256: 50bd91767686bfe769e50a5a1b883e238d944a6163fea43e7c0beaac54ca674f - category: main - optional: false -- name: pylev - version: 1.4.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.3' - url: https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: edf8651c4379d9d1495ad6229622d150 - sha256: 50bd91767686bfe769e50a5a1b883e238d944a6163fea43e7c0beaac54ca674f - category: main - optional: false -- name: pylev - version: 1.4.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.3' - url: https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: edf8651c4379d9d1495ad6229622d150 - sha256: 50bd91767686bfe769e50a5a1b883e238d944a6163fea43e7c0beaac54ca674f - category: main - optional: false -- name: pylev - version: 1.4.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.3' - url: https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: edf8651c4379d9d1495ad6229622d150 - sha256: 50bd91767686bfe769e50a5a1b883e238d944a6163fea43e7c0beaac54ca674f - category: main - optional: false -- name: pyparsing - version: 3.2.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda - hash: - md5: 035c17fbf099f50ff60bf2eb303b0a83 - sha256: b846e3965cd106438cf0b9dc0de8d519670ac065f822a7d66862e9423e0229cb - category: main - optional: false -- name: pyparsing - version: 3.2.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda - hash: - md5: 035c17fbf099f50ff60bf2eb303b0a83 - sha256: b846e3965cd106438cf0b9dc0de8d519670ac065f822a7d66862e9423e0229cb - category: main - optional: false -- name: pyparsing - version: 3.2.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda - hash: - md5: 035c17fbf099f50ff60bf2eb303b0a83 - sha256: b846e3965cd106438cf0b9dc0de8d519670ac065f822a7d66862e9423e0229cb - category: main - optional: false -- name: pyparsing - version: 3.2.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda - hash: - md5: 035c17fbf099f50ff60bf2eb303b0a83 - sha256: b846e3965cd106438cf0b9dc0de8d519670ac065f822a7d66862e9423e0229cb - category: main - optional: false -- name: pyqt - version: 5.15.9 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - pyqt5-sip: 12.12.2 - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - qt-main: '>=5.15.8,<5.16.0a0' - sip: '>=6.7.11,<6.8.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda - hash: - md5: e1f148e57d071b09187719df86f513c1 - sha256: a0d0662c73b343931dbd66d9c25ec74f40115512568a87bf4d01af8d1a8ddf1c - category: main - optional: false -- name: pyqt - version: 5.15.9 - manager: conda - platform: win-64 - dependencies: - pyqt5-sip: 12.12.2 - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - qt-main: '>=5.15.8,<5.16.0a0' - sip: '>=6.7.11,<6.8.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pyqt-5.15.9-py39hb77abff_5.conda - hash: - md5: 5ed899124a51958336371ff01482b8fd - sha256: 9aee5ab6f2c5a71f2eb399e5fec175f79498648ff8e4be6f815cf0ca803201c4 - category: main - optional: false -- name: pyqt5-sip - version: 12.12.2 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - packaging: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - sip: '' - toml: '' - url: https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda - hash: - md5: 93aff412f3e49fdb43361c0215cbd72d - sha256: 86efec5e57111794e039bb14dfce23d9df6ed8df139ab1404086140eba6d4d7c - category: main - optional: false -- name: pyqt5-sip - version: 12.12.2 - manager: conda - platform: win-64 - dependencies: - packaging: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - sip: '' - toml: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.12.2-py39h99910a6_5.conda - hash: - md5: dffbcea794c524c471772a5f697c2aea - sha256: c352489404b993ee0de4a068fd766229dd759a8d7fbc825bf8820073c2ff12d7 - category: main - optional: false -- name: pysocks - version: 1.7.1 - manager: conda - platform: linux-64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - hash: - md5: 2a7de29fb590ca14b5243c4c812c8025 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - category: main - optional: false -- name: pysocks - version: 1.7.1 - manager: conda - platform: osx-64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - hash: - md5: 2a7de29fb590ca14b5243c4c812c8025 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - category: main - optional: false -- name: pysocks - version: 1.7.1 - manager: conda - platform: osx-arm64 - dependencies: - __unix: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - hash: - md5: 2a7de29fb590ca14b5243c4c812c8025 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - category: main - optional: false -- name: pysocks - version: 1.7.1 - manager: conda - platform: win-64 - dependencies: - __win: '' - win_inet_pton: '' - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2 - hash: - md5: 56cd9fe388baac0e90c7149cfac95b60 - sha256: b3a612bc887f3dd0fb7c4199ad8e342bd148cf69a9b74fd9468a18cf2bef07b7 - category: main - optional: false -- name: python - version: 3.9.20 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - bzip2: '>=1.0.8,<2.0a0' - ld_impl_linux-64: '>=2.36.1' - libffi: '>=3.4,<4.0a0' - libgcc: '>=13' - libnsl: '>=2.0.1,<2.1.0a0' - libsqlite: '>=3.46.1,<4.0a0' - libuuid: '>=2.38.1,<3.0a0' - libxcrypt: '>=4.4.36' - libzlib: '>=1.3.1,<2.0a0' - ncurses: '>=6.5,<7.0a0' - openssl: '>=3.3.2,<4.0a0' - readline: '>=8.2,<9.0a0' - tk: '>=8.6.13,<8.7.0a0' - tzdata: '' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda - hash: - md5: 951cff166a5f170e27908811917165f8 - sha256: 6a30aa8df1745eded1e5c24d167cb10e6f379e75d2f2fa2a212e6dab76030698 - category: main - optional: false -- name: python - version: 3.9.20 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - bzip2: '>=1.0.8,<2.0a0' - libffi: '>=3.4,<4.0a0' - libsqlite: '>=3.46.1,<4.0a0' - libzlib: '>=1.3.1,<2.0a0' - ncurses: '>=6.5,<7.0a0' - openssl: '>=3.3.2,<4.0a0' - readline: '>=8.2,<9.0a0' - tk: '>=8.6.13,<8.7.0a0' - tzdata: '' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/python-3.9.20-hf24efe3_1_cpython.conda - hash: - md5: 0482528eb9c88cd5f2113b1c2921c9b9 - sha256: d2ee8b24fa298708967c5ea9edb0fc310691200fcafe35a5caca4b3341f7b0bc - category: main - optional: false -- name: python - version: 3.9.20 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - bzip2: '>=1.0.8,<2.0a0' - libffi: '>=3.4,<4.0a0' - libsqlite: '>=3.46.1,<4.0a0' - libzlib: '>=1.3.1,<2.0a0' - ncurses: '>=6.5,<7.0a0' - openssl: '>=3.3.2,<4.0a0' - readline: '>=8.2,<9.0a0' - tk: '>=8.6.13,<8.7.0a0' - tzdata: '' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.9.20-h9e33284_1_cpython.conda - hash: - md5: 708bd3a3616e42becb50d77313def984 - sha256: d6c272faa05fb7524aaf59718fa27629b1875e5dfb2fa74100547e8564cce4bc - category: main - optional: false -- name: python - version: 3.9.20 - manager: conda - platform: win-64 - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libffi: '>=3.4,<4.0a0' - libsqlite: '>=3.46.1,<4.0a0' - libzlib: '>=1.3.1,<2.0a0' - openssl: '>=3.3.2,<4.0a0' - tk: '>=8.6.13,<8.7.0a0' - tzdata: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/python-3.9.20-hfaddaf0_1_cpython.conda - hash: - md5: 445389d1d311435a90def248c814ddd6 - sha256: c4ef6a17c8065d8c653fc69cfa17b2a1b0d9a2ca1360ba67a514b450c8797fd9 - category: main - optional: false -- name: python-dateutil - version: 2.9.0.post0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.9' - six: '>=1.5' - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda - hash: - md5: b6dfd90a2141e573e4b6a81630b56df5 - sha256: 3888012c5916efaef45d503e3e544bbcc571b84426c1bb9577799ada9efefb54 - category: main - optional: false -- name: python-dateutil - version: 2.9.0.post0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - six: '>=1.5' - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda - hash: - md5: b6dfd90a2141e573e4b6a81630b56df5 - sha256: 3888012c5916efaef45d503e3e544bbcc571b84426c1bb9577799ada9efefb54 - category: main - optional: false -- name: python-dateutil - version: 2.9.0.post0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - six: '>=1.5' - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda - hash: - md5: b6dfd90a2141e573e4b6a81630b56df5 - sha256: 3888012c5916efaef45d503e3e544bbcc571b84426c1bb9577799ada9efefb54 - category: main - optional: false -- name: python-dateutil - version: 2.9.0.post0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - six: '>=1.5' - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda - hash: - md5: b6dfd90a2141e573e4b6a81630b56df5 - sha256: 3888012c5916efaef45d503e3e544bbcc571b84426c1bb9577799ada9efefb54 - category: main - optional: false -- name: python_abi - version: '3.9' - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda - hash: - md5: 40363a30db350596b5f225d0d5a33328 - sha256: 019e2f8bca1d1f1365fbb9965cd95bb395c92c89ddd03165db82f5ae89a20812 - category: main - optional: false -- name: python_abi - version: '3.9' - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.9-5_cp39.conda - hash: - md5: 09ac18c0db8f06c3913fa014ec016849 - sha256: 18224feb9a5ffb1ad5ae8eac21496f399befce29aeaaf929fff44dc827e9ac16 - category: main - optional: false -- name: python_abi - version: '3.9' - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.9-5_cp39.conda - hash: - md5: 1ca4a5e8290873da8963182d9673299d - sha256: a942c019a98f4c89bc3a73a6a583f65d1c8fc560ccfdbdd9cba9f5ef719026fb - category: main - optional: false -- name: python_abi - version: '3.9' - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/win-64/python_abi-3.9-5_cp39.conda - hash: - md5: 86ba1bbcf9b259d1592201f3c345c810 - sha256: ee9471759ba567d5a4922d4fae95f58a0070db7616cba72e3bfb22cd5c50e37a - category: main - optional: false -- name: pytz - version: '2024.2' - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda - hash: - md5: 260009d03c9d5c0f111904d851f053dc - sha256: 81c16d9183bb4a6780366ce874e567ee5fc903722f85b2f8d1d9479ef1dafcc9 - category: main - optional: false -- name: pytz - version: '2024.2' - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda - hash: - md5: 260009d03c9d5c0f111904d851f053dc - sha256: 81c16d9183bb4a6780366ce874e567ee5fc903722f85b2f8d1d9479ef1dafcc9 - category: main - optional: false -- name: pytz - version: '2024.2' - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda - hash: - md5: 260009d03c9d5c0f111904d851f053dc - sha256: 81c16d9183bb4a6780366ce874e567ee5fc903722f85b2f8d1d9479ef1dafcc9 - category: main - optional: false -- name: pytz - version: '2024.2' - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda - hash: - md5: 260009d03c9d5c0f111904d851f053dc - sha256: 81c16d9183bb4a6780366ce874e567ee5fc903722f85b2f8d1d9479ef1dafcc9 - category: main - optional: false -- name: pywin32 - version: '307' - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/pywin32-307-py39ha51f57c_3.conda - hash: - md5: 2fb5a9ee057acb7709b321fe6a11f5c6 - sha256: 7626ab2e166c01863fcc8d4d0780b3df96c9bfd4c4141f189000b6b0214cee60 - category: main - optional: false -- name: pywin32-ctypes - version: 0.2.3 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/win-64/pywin32-ctypes-0.2.3-py39hcbf5309_1.conda - hash: - md5: 36f77d1a31683313276ab147e86b9193 - sha256: 4ffc8d442d760e2063a31db58e165a58cf34281beedebbf324bbad079c419326 - category: main - optional: false -- name: pyyaml - version: 6.0.2 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda - hash: - md5: 76e82e62b7bda86a7fceb1f32585abad - sha256: e07299422b0197eba5ceeef4fa76d4ee742a7f0cafcba97b91498b9764e7d990 - category: main - optional: false -- name: pyyaml - version: 6.0.2 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py39h06d86d0_1.conda - hash: - md5: 46dd423c757e1b7589e2e2d4a9945059 - sha256: 37eb8d753d52d300e0bdbeb2baa394e770a4a1009eb4fb03e9c2ba179629faab - category: main - optional: false -- name: pyyaml - version: 6.0.2 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py39h06df861_1.conda - hash: - md5: afea777abeb887c23dc4ec2d8a9acca8 - sha256: 64753d5c68ea3d0ce23118c6640e9750b5276689d1db53a97cc54ef8569791c0 - category: main - optional: false -- name: pyyaml - version: 6.0.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py39ha55e580_1.conda - hash: - md5: 099b4a8943b67a0a35695fa4275c0292 - sha256: 36ec720da777235b0775119af4d9ebbb821bb71a6c6b32b6bd4c4f6be9d895ff - category: main - optional: false -- name: pyzmq - version: 26.2.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libsodium: '>=1.0.20,<1.0.21.0a0' - libstdcxx: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - zeromq: '>=4.3.5,<4.4.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py39h4e4fb57_3.conda - hash: - md5: 443c3fe5e7b75f521ec82bd81fa2e061 - sha256: 397b437083f58a533406fb25e3d6590ea98a593739e8b9ca8358017d060c176f - category: main - optional: false -- name: pyzmq - version: 26.2.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libcxx: '>=17' - libsodium: '>=1.0.20,<1.0.21.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - zeromq: '>=4.3.5,<4.4.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-26.2.0-py39h7644d4c_3.conda - hash: - md5: 32b9dbcb1156223a671396bd70868823 - sha256: bab1e6951c731fe57df614602689ca8f4177e690030e38efd4d26502d64ab425 - category: main - optional: false -- name: pyzmq - version: 26.2.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libcxx: '>=17' - libsodium: '>=1.0.20,<1.0.21.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - zeromq: '>=4.3.5,<4.4.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-26.2.0-py39h6e893d0_3.conda - hash: - md5: 621448a43a3a0947ece0f183ec279335 - sha256: 73459f95de88bee799c3af7268bef53416952ec0955ecac9577124dc83e68284 - category: main - optional: false -- name: pyzmq - version: 26.2.0 - manager: conda - platform: win-64 - dependencies: - libsodium: '>=1.0.20,<1.0.21.0a0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - zeromq: '>=4.3.5,<4.3.6.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/pyzmq-26.2.0-py39h03e5c00_3.conda - hash: - md5: d320b3e5c54a861ef8388f5af78762ea - sha256: 86592bb0ee22245acef1f917ccfc08ab520e99d0fe1160b338017da70c12a3ac - category: main - optional: false -- name: qt-main - version: 5.15.15 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - alsa-lib: '>=1.2.12,<1.3.0a0' - dbus: '>=1.13.6,<2.0a0' - fontconfig: '>=2.14.2,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - gst-plugins-base: '>=1.24.7,<1.25.0a0' - gstreamer: '>=1.24.7,<1.25.0a0' - harfbuzz: '>=9.0.0,<10.0a0' - icu: '>=75.1,<76.0a0' - krb5: '>=1.21.3,<1.22.0a0' - libclang-cpp19.1: '>=19.1.2,<19.2.0a0' - libclang13: '>=19.1.2' - libcups: '>=2.3.3,<2.4.0a0' - libdrm: '>=2.4.123,<2.5.0a0' - libegl: '>=1.7.0,<2.0a0' - libevent: '>=2.1.12,<2.1.13.0a0' - libexpat: '>=2.6.3,<3.0a0' - libgcc: '>=13' - libgl: '>=1.7.0,<2.0a0' - libglib: '>=2.82.2,<3.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libllvm19: '>=19.1.2,<19.2.0a0' - libpng: '>=1.6.44,<1.7.0a0' - libpq: '>=16.4,<17.0a0' - libsqlite: '>=3.47.0,<4.0a0' - libstdcxx: '>=13' - libxcb: '>=1.17.0,<2.0a0' - libxkbcommon: '>=1.7.0,<2.0a0' - libxml2: '>=2.12.7,<3.0a0' - libzlib: '>=1.3.1,<2.0a0' - mysql-libs: '>=9.0.1,<9.1.0a0' - nspr: '>=4.36,<5.0a0' - nss: '>=3.106,<4.0a0' - openssl: '>=3.3.2,<4.0a0' - pulseaudio-client: '>=17.0,<17.1.0a0' - xcb-util: '>=0.4.1,<0.5.0a0' - xcb-util-image: '>=0.4.0,<0.5.0a0' - xcb-util-keysyms: '>=0.4.1,<0.5.0a0' - xcb-util-renderutil: '>=0.3.10,<0.4.0a0' - xcb-util-wm: '>=0.4.2,<0.5.0a0' - xorg-libice: '>=1.1.1,<2.0a0' - xorg-libsm: '>=1.2.4,<2.0a0' - xorg-libx11: '>=1.8.10,<2.0a0' - xorg-libxdamage: '>=1.1.6,<2.0a0' - xorg-libxext: '>=1.3.6,<2.0a0' - xorg-libxxf86vm: '>=1.1.5,<2.0a0' - xorg-xf86vidmodeproto: '' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda - hash: - md5: 26e8b00e73c114c9b787d36edcbf4424 - sha256: 333be9817b492b7303d3a01073d3cff71719e72ba11507141ddfdd89732dc7a8 - category: main - optional: false -- name: qt-main - version: 5.15.15 - manager: conda - platform: win-64 - dependencies: - gst-plugins-base: '>=1.24.7,<1.25.0a0' - gstreamer: '>=1.24.7,<1.25.0a0' - icu: '>=75.1,<76.0a0' - krb5: '>=1.21.3,<1.22.0a0' - libclang13: '>=19.1.2' - libglib: '>=2.82.2,<3.0a0' - libjpeg-turbo: '>=3.0.0,<4.0a0' - libpng: '>=1.6.44,<1.7.0a0' - libsqlite: '>=3.47.0,<4.0a0' - libzlib: '>=1.3.1,<2.0a0' - openssl: '>=3.3.2,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - zstd: '>=1.5.6,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/win-64/qt-main-5.15.15-h264fbc2_0.conda - hash: - md5: e6e473c620bc0c3772dbed14f9eb4ab2 - sha256: 77c78ce62e5c53ed529f035535283b96ee617ffd64ae1ea6a2dfdea186e39608 - category: main - optional: false -- name: readline - version: '8.2' - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - ncurses: '>=6.3,<7.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - hash: - md5: 47d31b792659ce70f470b5c82fdfb7a4 - sha256: 5435cf39d039387fbdc977b0a762357ea909a7694d9528ab40f005e9208744d7 - category: main - optional: false -- name: readline - version: '8.2' - manager: conda - platform: osx-64 - dependencies: - ncurses: '>=6.3,<7.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda - hash: - md5: f17f77f2acf4d344734bda76829ce14e - sha256: 41e7d30a097d9b060037f0c6a2b1d4c4ae7e942c06c943d23f9d481548478568 - category: main - optional: false -- name: readline - version: '8.2' - manager: conda - platform: osx-arm64 - dependencies: - ncurses: '>=6.3,<7.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - hash: - md5: 8cbb776a2f641b943d413b3e19df71f4 - sha256: a1dfa679ac3f6007362386576a704ad2d0d7a02e98f5d0b115f207a2da63e884 - category: main - optional: false -- name: requests - version: 2.32.3 - manager: conda - platform: linux-64 - dependencies: - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - idna: '>=2.5,<4' - python: '>=3.8' - urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda - hash: - md5: 5ede4753180c7a550a443c430dc8ab52 - sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc - category: main - optional: false -- name: requests - version: 2.32.3 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - idna: '>=2.5,<4' - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda - hash: - md5: 5ede4753180c7a550a443c430dc8ab52 - sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc - category: main - optional: false -- name: requests - version: 2.32.3 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - idna: '>=2.5,<4' - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda - hash: - md5: 5ede4753180c7a550a443c430dc8ab52 - sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc - category: main - optional: false -- name: requests - version: 2.32.3 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - idna: '>=2.5,<4' - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda - hash: - md5: 5ede4753180c7a550a443c430dc8ab52 - sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc - category: main - optional: false -- name: ruamel.yaml - version: 0.18.6 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ruamel.yaml.clib: '>=0.1.2' - url: https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py39h8cd3c5a_1.conda - hash: - md5: 4cfe8f084af20523252246f1c4ab38e0 - sha256: e0b08be4256cb595f27bfbba5484359b4cf5b47b80f98bf767efd832ba0a8ca0 - category: main - optional: false -- name: ruamel.yaml - version: 0.18.6 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ruamel.yaml.clib: '>=0.1.2' - url: https://conda.anaconda.org/conda-forge/osx-64/ruamel.yaml-0.18.6-py39h296a897_1.conda - hash: - md5: dab19ac35d81d0e0d5a43b89001d195b - sha256: a3b0423374cefa0c59058028e2ec2d9c2909a3dbdf4258c9a2458a9638361c25 - category: main - optional: false -- name: ruamel.yaml - version: 0.18.6 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ruamel.yaml.clib: '>=0.1.2' - url: https://conda.anaconda.org/conda-forge/osx-arm64/ruamel.yaml-0.18.6-py39h57695bc_1.conda - hash: - md5: 8223fb39b7f97cd82cb6376b2c6f4364 - sha256: 856a4f13d308e7d248fa176b266581692d8357a5ca478aba027215209af22a79 - category: main - optional: false -- name: ruamel.yaml - version: 0.18.6 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ruamel.yaml.clib: '>=0.1.2' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/ruamel.yaml-0.18.6-py39ha55e580_1.conda - hash: - md5: 61f297231e4f7f6f00e6abd9233146a8 - sha256: a2ba48ac727704df502aba6ad002e73a944ac9b2c6beffa8f50b8b9eeb674d0d - category: main - optional: false -- name: ruamel.yaml.clib - version: 0.2.8 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py39h8cd3c5a_1.conda - hash: - md5: 52b68618d0aa78366f287de1b1319a1c - sha256: 269ea8b5514b788299398765f0fbdaff941875d76796966e866528ecbf217f90 - category: main - optional: false -- name: ruamel.yaml.clib - version: 0.2.8 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/ruamel.yaml.clib-0.2.8-py39h296a897_1.conda - hash: - md5: e7ddfa73d200f47af6ad45f556e0a200 - sha256: 355eff81090be83d01ac4ed4e21d4859e181b7268acba6fe516dd09d30b3098a - category: main - optional: false -- name: ruamel.yaml.clib - version: 0.2.8 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/ruamel.yaml.clib-0.2.8-py39h57695bc_1.conda - hash: - md5: 34f6d0337554e552639c2f1f99cd41ad - sha256: 3fd2ac1417604aa0a279f2c624bf6f4180d26a217087d0ede1ca005e8b627cea - category: main - optional: false -- name: ruamel.yaml.clib - version: 0.2.8 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/ruamel.yaml.clib-0.2.8-py39ha55e580_1.conda - hash: - md5: 3858e7750875be9dd6542a2fcf2968e3 - sha256: 96eb4411913b5462c33b8a4239f458af123d841c49845ce22585ce7814537d28 - category: main - optional: false -- name: scikit-learn - version: 1.5.2 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - _openmp_mutex: '>=4.5' - joblib: '>=1.2.0' - libgcc: '>=13' - libstdcxx: '>=13' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '' - threadpoolctl: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py39h4b7350c_1.conda - hash: - md5: ee5943d546a2b573f7975ea656e9f54e - sha256: ff2b7cb7745899cad3d8093cb2d757c6ce472f8ff170b43cd43cfd60a7da94c6 - category: main - optional: false -- name: scikit-learn - version: 1.5.2 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - joblib: '>=1.2.0' - libcxx: '>=17' - llvm-openmp: '>=17.0.6' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '' - threadpoolctl: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/osx-64/scikit-learn-1.5.2-py39h771d6a6_1.conda - hash: - md5: c3ef8a93660675101a3e12cd2e20d534 - sha256: f7ab0c31b026ce50780e76896f77ffcdbe73abfecd8acf2503746cafd588dee0 - category: main - optional: false -- name: scikit-learn - version: 1.5.2 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - joblib: '>=1.2.0' - libcxx: '>=17' - llvm-openmp: '>=17.0.6' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '' - threadpoolctl: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/scikit-learn-1.5.2-py39h4704dc7_1.conda - hash: - md5: 741da1d299a6a63d4a62200ccecaad56 - sha256: dee83177a3527497b5e60031502321c39700134a7a3d04f10918cd0e2386dbee - category: main - optional: false -- name: scikit-learn - version: 1.5.2 - manager: conda - platform: win-64 - dependencies: - joblib: '>=1.2.0' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '' - threadpoolctl: '>=3.1.0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/scikit-learn-1.5.2-py39hdd013cc_1.conda - hash: - md5: ce25c8a70746ea2926e52464b46c1115 - sha256: 10c7e2dc206783347c6749b71d57e8c7ada5bf2f8c10320007a5d90211fb63a1 - category: main - optional: false -- name: scipy - version: 1.13.1 - manager: conda - platform: linux-64 - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=12.3.0' - liblapack: '>=3.9.0,<4.0a0' - libstdcxx-ng: '>=12' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda - hash: - md5: 492a2cd65862d16a4aaf535ae9ccb761 - sha256: 55becd997688a9a499aa553e9e61eb28038ca068929c23f0a973ab9a01ac9eac - category: main - optional: false -- name: scipy - version: 1.13.1 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libcxx: '>=16' - libgfortran: 5.* - libgfortran5: '>=13.2.0' - liblapack: '>=3.9.0,<4.0a0' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.13.1-py39h038d4f4_0.conda - hash: - md5: 97931299de8eea2fc8b66e2b49447eda - sha256: f5dc2ae1c0149c41275c25f8977b9b4bc26db27300a50db803ad0ee0ce3565ce - category: main - optional: false -- name: scipy - version: 1.13.1 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libcxx: '>=16' - libgfortran: 5.* - libgfortran5: '>=13.2.0' - liblapack: '>=3.9.0,<4.0a0' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/scipy-1.13.1-py39h3d5391c_0.conda - hash: - md5: 29a07d75356ca619b3cfc8304a9ce6e5 - sha256: 757850d99c81df9b5a36b201ee1ef850298669facb4e475f1d77cd3e8b10092d - category: main - optional: false -- name: scipy - version: 1.13.1 - manager: conda - platform: win-64 - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - liblapack: '>=3.9.0,<4.0a0' - numpy: '>=1.19,<3' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda - hash: - md5: 9f8e571406af04d2f5fdcbecec704505 - sha256: dc694e034d1223266de3224c3fe60d36865eebd2f7e43cb1cf06dfdf983f7f3e - category: main - optional: false -- name: seaborn - version: 0.13.2 - manager: conda - platform: linux-64 - dependencies: - seaborn-base: 0.13.2 - statsmodels: '>=0.12' - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda - hash: - md5: a79d8797f62715255308d92d3a91ef2e - sha256: 79943fbbf1fafbf969257989a7d88638c0c3e7b89a81a75c9347c28768dd6141 - category: main - optional: false -- name: seaborn - version: 0.13.2 - manager: conda - platform: osx-64 - dependencies: - statsmodels: '>=0.12' - seaborn-base: 0.13.2 - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda - hash: - md5: a79d8797f62715255308d92d3a91ef2e - sha256: 79943fbbf1fafbf969257989a7d88638c0c3e7b89a81a75c9347c28768dd6141 - category: main - optional: false -- name: seaborn - version: 0.13.2 - manager: conda - platform: osx-arm64 - dependencies: - statsmodels: '>=0.12' - seaborn-base: 0.13.2 - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda - hash: - md5: a79d8797f62715255308d92d3a91ef2e - sha256: 79943fbbf1fafbf969257989a7d88638c0c3e7b89a81a75c9347c28768dd6141 - category: main - optional: false -- name: seaborn - version: 0.13.2 - manager: conda - platform: win-64 - dependencies: - statsmodels: '>=0.12' - seaborn-base: 0.13.2 - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda - hash: - md5: a79d8797f62715255308d92d3a91ef2e - sha256: 79943fbbf1fafbf969257989a7d88638c0c3e7b89a81a75c9347c28768dd6141 - category: main - optional: false -- name: seaborn-base - version: 0.13.2 - manager: conda - platform: linux-64 - dependencies: - matplotlib-base: '>=3.4,!=3.6.1' - numpy: '>=1.20,!=1.24.0' - pandas: '>=1.2' - python: '>=3.8' - scipy: '>=1.7' - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda - hash: - md5: b713b116feaf98acdba93ad4d7f90ca1 - sha256: 5de8b9e88a0f2daf58b07e3f144da26f894e9a20071304fa37329664eb2a29a7 - category: main - optional: false -- name: seaborn-base - version: 0.13.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - pandas: '>=1.2' - scipy: '>=1.7' - numpy: '>=1.20,!=1.24.0' - matplotlib-base: '>=3.4,!=3.6.1' - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda - hash: - md5: b713b116feaf98acdba93ad4d7f90ca1 - sha256: 5de8b9e88a0f2daf58b07e3f144da26f894e9a20071304fa37329664eb2a29a7 - category: main - optional: false -- name: seaborn-base - version: 0.13.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - pandas: '>=1.2' - scipy: '>=1.7' - numpy: '>=1.20,!=1.24.0' - matplotlib-base: '>=3.4,!=3.6.1' - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda - hash: - md5: b713b116feaf98acdba93ad4d7f90ca1 - sha256: 5de8b9e88a0f2daf58b07e3f144da26f894e9a20071304fa37329664eb2a29a7 - category: main - optional: false -- name: seaborn-base - version: 0.13.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - pandas: '>=1.2' - scipy: '>=1.7' - numpy: '>=1.20,!=1.24.0' - matplotlib-base: '>=3.4,!=3.6.1' - url: https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda - hash: - md5: b713b116feaf98acdba93ad4d7f90ca1 - sha256: 5de8b9e88a0f2daf58b07e3f144da26f894e9a20071304fa37329664eb2a29a7 - category: main - optional: false -- name: secretstorage - version: 3.3.3 - manager: conda - platform: linux-64 - dependencies: - cryptography: '' - dbus: '' - jeepney: '>=0.6' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py39hf3d152e_3.conda - hash: - md5: 49e960e84cd58e2fdc8bad42f0955a27 - sha256: 02c456dcf6947b25246bb6327012a3c375c7e916e11ca23665427cf98ec5a184 - category: main - optional: false -- name: setuptools - version: 59.8.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2 - hash: - md5: 4252d0c211566a9f65149ba7f6e87aa4 - sha256: ec8146799fabb0edfd0b2622fdd05413c9a2fcd13dfa846958214f9909ab3435 - category: main - optional: false -- name: setuptools - version: 59.8.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/setuptools-59.8.0-py39h6e9494a_1.tar.bz2 - hash: - md5: 83792c168c81d5bbdbf6e3950155e859 - sha256: 0d4c145cf263aefccea8c6bdaecf138c02ac5c946cad5b20f1b10cec35b511d0 - category: main - optional: false -- name: setuptools - version: 59.8.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/setuptools-59.8.0-py39h2804cbe_1.tar.bz2 - hash: - md5: 27c3effc9a6ae935378b603157461239 - sha256: 7c02e55039e0514184cb4debd2fadedf5223bf0ac9a5eae2ff49bf6e1e314285 - category: main - optional: false -- name: setuptools - version: 59.8.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/win-64/setuptools-59.8.0-py39hcbf5309_1.tar.bz2 - hash: - md5: 47c36361b12024db7cbd86e28435bc3c - sha256: b2b313ae0aefc404cf3288562b2bf0eb90548865de3a3d4253adfc056bbf61e9 - category: main - optional: false -- name: sip - version: 6.7.12 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - packaging: '' - ply: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tomli: '' - url: https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda - hash: - md5: e667a3ab0df62c54e60e1843d2e6defb - sha256: fd50c71dc05daf9d28663d448d17f150b3eb79ae629198c73e2186b5b1e990dc - category: main - optional: false -- name: sip - version: 6.7.12 - manager: conda - platform: win-64 - dependencies: - packaging: '' - ply: '' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - tomli: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/sip-6.7.12-py39h99910a6_0.conda - hash: - md5: 0cc5774390ada632ed7975203057c91c - sha256: 541840bcd849c6c745f537987d0009695ef14c8fd9ad4721333a30bf3c49e018 - category: main - optional: false -- name: six - version: 1.16.0 - manager: conda - platform: linux-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - category: main - optional: false -- name: six - version: 1.16.0 - manager: conda - platform: osx-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - category: main - optional: false -- name: six - version: 1.16.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - category: main - optional: false -- name: six - version: 1.16.0 - manager: conda - platform: win-64 - dependencies: - python: '' - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - category: main - optional: false -- name: smmap - version: 5.0.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 62f26a3d1387acee31322208f0cfa3e0 - sha256: 23011cb3e064525bdb8787c75126a2e78d2344a72cd6773922006d1da1f2af16 - category: main - optional: false -- name: smmap - version: 5.0.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 62f26a3d1387acee31322208f0cfa3e0 - sha256: 23011cb3e064525bdb8787c75126a2e78d2344a72cd6773922006d1da1f2af16 - category: main - optional: false -- name: smmap - version: 5.0.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 62f26a3d1387acee31322208f0cfa3e0 - sha256: 23011cb3e064525bdb8787c75126a2e78d2344a72cd6773922006d1da1f2af16 - category: main - optional: false -- name: smmap - version: 5.0.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2 - hash: - md5: 62f26a3d1387acee31322208f0cfa3e0 - sha256: 23011cb3e064525bdb8787c75126a2e78d2344a72cd6773922006d1da1f2af16 - category: main - optional: false -- name: stack_data - version: 0.6.2 - manager: conda - platform: linux-64 - dependencies: - asttokens: '' - executing: '' - pure_eval: '' - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - hash: - md5: e7df0fdd404616638df5ece6e69ba7af - sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec - category: main - optional: false -- name: stack_data - version: 0.6.2 - manager: conda - platform: osx-64 - dependencies: - asttokens: '' - executing: '' - pure_eval: '' - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - hash: - md5: e7df0fdd404616638df5ece6e69ba7af - sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec - category: main - optional: false -- name: stack_data - version: 0.6.2 - manager: conda - platform: osx-arm64 - dependencies: - asttokens: '' - executing: '' - pure_eval: '' - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - hash: - md5: e7df0fdd404616638df5ece6e69ba7af - sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec - category: main - optional: false -- name: stack_data - version: 0.6.2 - manager: conda - platform: win-64 - dependencies: - asttokens: '' - executing: '' - pure_eval: '' - python: '>=3.5' - url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - hash: - md5: e7df0fdd404616638df5ece6e69ba7af - sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec - category: main - optional: false -- name: statsmodels - version: 0.14.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - numpy: '>=1.22.4,<2.0a0' - packaging: '>=21.3' - pandas: '>=1.0,!=2.1.0' - patsy: '>=0.5.4' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '>=1.4,!=1.9.2' - url: https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda - hash: - md5: dc565186b972bd87e49b9c35390ddd8c - sha256: 94cf29cc1e163820d81d5a9d69544d42095b9a6c0c8c58b1a6a48e7d983959f0 - category: main - optional: false -- name: statsmodels - version: 0.14.1 - manager: conda - platform: osx-64 - dependencies: - numpy: '>=1.22.4,<2.0a0' - packaging: '>=21.3' - pandas: '>=1.0,!=2.1.0' - patsy: '>=0.5.4' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '>=1.4,!=1.9.2' - url: https://conda.anaconda.org/conda-forge/osx-64/statsmodels-0.14.1-py39h5b4affa_0.conda - hash: - md5: 4cc025969fa47342955213653d1352c8 - sha256: 2fa9affbe9d7bb489e0698250515ad083da94340440b5f82948e05377b0f77c1 - category: main - optional: false -- name: statsmodels - version: 0.14.1 - manager: conda - platform: osx-arm64 - dependencies: - numpy: '>=1.22.4,<2.0a0' - packaging: '>=21.3' - pandas: '>=1.0,!=2.1.0' - patsy: '>=0.5.4' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '>=1.4,!=1.9.2' - url: https://conda.anaconda.org/conda-forge/osx-arm64/statsmodels-0.14.1-py39h373d45f_0.conda - hash: - md5: b6f3a40c7a26a2813a98f4e3d5786b22 - sha256: 48b66893df0eeda32975caed8381b1e88c785a5b94bf71dae3305b89b149ca1c - category: main - optional: false -- name: statsmodels - version: 0.14.1 - manager: conda - platform: win-64 - dependencies: - numpy: '>=1.22.4,<2.0a0' - packaging: '>=21.3' - pandas: '>=1.0,!=2.1.0' - patsy: '>=0.5.4' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - scipy: '>=1.4,!=1.9.2' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/statsmodels-0.14.1-py39hd88c2e4_0.conda - hash: - md5: b51565db0ed851e9031da82171d0e02f - sha256: 3cb35c93c5dd56989d09175c0dafdac7db65569d665604664e8f541d51fce736 - category: main - optional: false -- name: tbb - version: 2021.13.0 - manager: conda - platform: win-64 - dependencies: - libhwloc: '>=2.11.1,<2.11.2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-hc790b64_0.conda - hash: - md5: 28496a1e6af43c63927da4f80260348d - sha256: 990dbe4fb42f14700c22bd434d8312607bf8d0bd9f922b054e51fda14c41994c - category: main - optional: false -- name: threadpoolctl - version: 3.5.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda - hash: - md5: df68d78237980a159bd7149f33c0e8fd - sha256: 45e402941f6bed094022c5726a2ca494e6224b85180d2367fb6ddd9aea68079d - category: main - optional: false -- name: threadpoolctl - version: 3.5.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda - hash: - md5: df68d78237980a159bd7149f33c0e8fd - sha256: 45e402941f6bed094022c5726a2ca494e6224b85180d2367fb6ddd9aea68079d - category: main - optional: false -- name: threadpoolctl - version: 3.5.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda - hash: - md5: df68d78237980a159bd7149f33c0e8fd - sha256: 45e402941f6bed094022c5726a2ca494e6224b85180d2367fb6ddd9aea68079d - category: main - optional: false -- name: threadpoolctl - version: 3.5.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda - hash: - md5: df68d78237980a159bd7149f33c0e8fd - sha256: 45e402941f6bed094022c5726a2ca494e6224b85180d2367fb6ddd9aea68079d - category: main - optional: false -- name: tk - version: 8.6.13 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - hash: - md5: d453b98d9c83e71da0741bb0ff4d76bc - sha256: e0569c9caa68bf476bead1bed3d79650bb080b532c64a4af7d8ca286c08dea4e - category: main - optional: false -- name: tk - version: 8.6.13 - manager: conda - platform: osx-64 - dependencies: - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-h1abcd95_1.conda - hash: - md5: bf830ba5afc507c6232d4ef0fb1a882d - sha256: 30412b2e9de4ff82d8c2a7e5d06a15f4f4fef1809a72138b6ccb53a33b26faf5 - category: main - optional: false -- name: tk - version: 8.6.13 - manager: conda - platform: osx-arm64 - dependencies: - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - hash: - md5: b50a57ba89c32b62428b71a875291c9b - sha256: 72457ad031b4c048e5891f3f6cb27a53cb479db68a52d965f796910e71a403a8 - category: main - optional: false -- name: tk - version: 8.6.13 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda - hash: - md5: fc048363eb8f03cd1737600a5d08aafe - sha256: 2c4e914f521ccb2718946645108c9bd3fc3216ba69aea20c2c3cedbd8db32bb1 - category: main - optional: false -- name: toml - version: 0.10.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2 - hash: - md5: f832c45a477c78bebd107098db465095 - sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1 - category: main - optional: false -- name: toml - version: 0.10.2 - manager: conda - platform: win-64 - dependencies: - python: '>=2.7' - url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2 - hash: - md5: f832c45a477c78bebd107098db465095 - sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1 - category: main - optional: false -- name: tomli - version: 2.1.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda - hash: - md5: 3fa1089b4722df3a900135925f4519d9 - sha256: 354b8a64d4f3311179d85aefc529ca201a36afc1af090d0010c46be7b79f9a47 - category: main - optional: false -- name: tomli - version: 2.1.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda - hash: - md5: 3fa1089b4722df3a900135925f4519d9 - sha256: 354b8a64d4f3311179d85aefc529ca201a36afc1af090d0010c46be7b79f9a47 - category: main - optional: false -- name: tomli - version: 2.1.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda - hash: - md5: 3fa1089b4722df3a900135925f4519d9 - sha256: 354b8a64d4f3311179d85aefc529ca201a36afc1af090d0010c46be7b79f9a47 - category: main - optional: false -- name: tomli - version: 2.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda - hash: - md5: 3fa1089b4722df3a900135925f4519d9 - sha256: 354b8a64d4f3311179d85aefc529ca201a36afc1af090d0010c46be7b79f9a47 - category: main - optional: false -- name: tomlkit - version: 0.13.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda - hash: - md5: 0062a5f3347733f67b0f33ca48cc21dd - sha256: 2ccfe8dafdc1f1af944bca6bdf28fa97b5fa6125d84b8895a4e918a020853c12 - category: main - optional: false -- name: tomlkit - version: 0.13.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda - hash: - md5: 0062a5f3347733f67b0f33ca48cc21dd - sha256: 2ccfe8dafdc1f1af944bca6bdf28fa97b5fa6125d84b8895a4e918a020853c12 - category: main - optional: false -- name: tomlkit - version: 0.13.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda - hash: - md5: 0062a5f3347733f67b0f33ca48cc21dd - sha256: 2ccfe8dafdc1f1af944bca6bdf28fa97b5fa6125d84b8895a4e918a020853c12 - category: main - optional: false -- name: tomlkit - version: 0.13.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda - hash: - md5: 0062a5f3347733f67b0f33ca48cc21dd - sha256: 2ccfe8dafdc1f1af944bca6bdf28fa97b5fa6125d84b8895a4e918a020853c12 - category: main - optional: false -- name: toolz - version: 0.12.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 2fcb582444635e2c402e8569bb94e039 - sha256: 22b0a9790317526e08609d5dfdd828210ae89e6d444a9e954855fc29012e90c6 - category: main - optional: false -- name: toolz - version: 0.12.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 2fcb582444635e2c402e8569bb94e039 - sha256: 22b0a9790317526e08609d5dfdd828210ae89e6d444a9e954855fc29012e90c6 - category: main - optional: false -- name: toolz - version: 0.12.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 2fcb582444635e2c402e8569bb94e039 - sha256: 22b0a9790317526e08609d5dfdd828210ae89e6d444a9e954855fc29012e90c6 - category: main - optional: false -- name: toolz - version: 0.12.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda - hash: - md5: 2fcb582444635e2c402e8569bb94e039 - sha256: 22b0a9790317526e08609d5dfdd828210ae89e6d444a9e954855fc29012e90c6 - category: main - optional: false -- name: tornado - version: 6.4.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda - hash: - md5: 48d269953fcddbbcde078429d4b27afe - sha256: 42a44ab25b062758a8f166ac4d458a40958101c1b8b33467e4dda0f1bde04752 - category: main - optional: false -- name: tornado - version: 6.4.1 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.1-py39h06d86d0_1.conda - hash: - md5: 6070e05765b51763902b93b699471cfe - sha256: d0b34832ba610e3af0887ccac3e403c1c038db90f97966197b41388999d68ba0 - category: main - optional: false -- name: tornado - version: 6.4.1 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.1-py39h06df861_1.conda - hash: - md5: 8e8fef76e7303a0a8e4430a89c440008 - sha256: bb1fc1a65c29386d064193819a468d43dbfb4fb8009088366a2ad29c9f6a6fdc - category: main - optional: false -- name: tornado - version: 6.4.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.1-py39ha55e580_1.conda - hash: - md5: 4a93d22ed5b2cede80fbee7f7f775a9d - sha256: d8643af38382fe6f8d88746b57f84cee715a331e54fce7bcf00405f7056672e2 - category: main - optional: false -- name: traitlets - version: 5.14.3 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - hash: - md5: 3df84416a021220d8b5700c613af2dc5 - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - category: main - optional: false -- name: traitlets - version: 5.14.3 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - hash: - md5: 3df84416a021220d8b5700c613af2dc5 - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - category: main - optional: false -- name: traitlets - version: 5.14.3 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - hash: - md5: 3df84416a021220d8b5700c613af2dc5 - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - category: main - optional: false -- name: traitlets - version: 5.14.3 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - hash: - md5: 3df84416a021220d8b5700c613af2dc5 - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - category: main - optional: false -- name: typing-extensions - version: 4.12.2 - manager: conda - platform: linux-64 - dependencies: - typing_extensions: 4.12.2 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda - hash: - md5: 52d648bd608f5737b123f510bb5514b5 - sha256: d3b9a8ed6da7c9f9553c5fd8a4fca9c3e0ab712fa5f497859f82337d67533b73 - category: main - optional: false -- name: typing-extensions - version: 4.12.2 - manager: conda - platform: osx-64 - dependencies: - typing_extensions: 4.12.2 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda - hash: - md5: 52d648bd608f5737b123f510bb5514b5 - sha256: d3b9a8ed6da7c9f9553c5fd8a4fca9c3e0ab712fa5f497859f82337d67533b73 - category: main - optional: false -- name: typing-extensions - version: 4.12.2 - manager: conda - platform: osx-arm64 - dependencies: - typing_extensions: 4.12.2 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda - hash: - md5: 52d648bd608f5737b123f510bb5514b5 - sha256: d3b9a8ed6da7c9f9553c5fd8a4fca9c3e0ab712fa5f497859f82337d67533b73 - category: main - optional: false -- name: typing-extensions - version: 4.12.2 - manager: conda - platform: win-64 - dependencies: - typing_extensions: 4.12.2 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda - hash: - md5: 52d648bd608f5737b123f510bb5514b5 - sha256: d3b9a8ed6da7c9f9553c5fd8a4fca9c3e0ab712fa5f497859f82337d67533b73 - category: main - optional: false -- name: typing_extensions - version: 4.12.2 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda - hash: - md5: ebe6952715e1d5eb567eeebf25250fa7 - sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb - category: main - optional: false -- name: typing_extensions - version: 4.12.2 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda - hash: - md5: ebe6952715e1d5eb567eeebf25250fa7 - sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb - category: main - optional: false -- name: typing_extensions - version: 4.12.2 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda - hash: - md5: ebe6952715e1d5eb567eeebf25250fa7 - sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb - category: main - optional: false -- name: typing_extensions - version: 4.12.2 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda - hash: - md5: ebe6952715e1d5eb567eeebf25250fa7 - sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb - category: main - optional: false -- name: tzdata - version: 2024b - manager: conda - platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - hash: - md5: 8ac3367aafb1cc0a068483c580af8015 - sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf - category: main - optional: false -- name: tzdata - version: 2024b - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - hash: - md5: 8ac3367aafb1cc0a068483c580af8015 - sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf - category: main - optional: false -- name: tzdata - version: 2024b - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - hash: - md5: 8ac3367aafb1cc0a068483c580af8015 - sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf - category: main - optional: false -- name: tzdata - version: 2024b - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - hash: - md5: 8ac3367aafb1cc0a068483c580af8015 - sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf - category: main - optional: false -- name: ucrt - version: 10.0.22621.0 - manager: conda - platform: win-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda - hash: - md5: 6797b005cd0f439c4c5c9ac565783700 - sha256: db8dead3dd30fb1a032737554ce91e2819b43496a0db09927edf01c32b577450 - category: main - optional: false -- name: unicodedata2 - version: 15.1.0 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda - hash: - md5: 6346898044e4387631c614290789a434 - sha256: 8859d41d01025ea2d1f5448d459e99818757fee472ee718f83d5fb78328e775f - category: main - optional: false -- name: unicodedata2 - version: 15.1.0 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-64/unicodedata2-15.1.0-py39h296a897_1.conda - hash: - md5: a607bc3d3fdb98722e85270895cb588a - sha256: 03a4445428da40a43d65bbf5f0902221a1d282b6da8cb26ed645acafa27e479b - category: main - optional: false -- name: unicodedata2 - version: 15.1.0 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - url: https://conda.anaconda.org/conda-forge/osx-arm64/unicodedata2-15.1.0-py39h57695bc_1.conda - hash: - md5: ea1c54a65af341878cc7ab4b6275ff7b - sha256: 2aa67870191089c75a2839741e9a76b39751958fa7ec7e19a4f6b8a655b433d5 - category: main - optional: false -- name: unicodedata2 - version: 15.1.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.9,<3.10.0a0' - python_abi: 3.9.* - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda - hash: - md5: 7b7e5732092b9a635440ec939e45651d - sha256: c5499da77a6d15b4ccaf77d423ef4046e07ae7e545d7bebf5cade3bd8c4c1a57 - category: main - optional: false -- name: urllib3 - version: 1.26.19 - manager: conda - platform: linux-64 - dependencies: - brotli-python: '>=1.0.9' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda - hash: - md5: 6bb37c314b3cc1515dcf086ffe01c46e - sha256: 543ebab5241418a4e0d4d9e356ef13e4361504810a067a01481660bb35eb5643 - category: main - optional: false -- name: urllib3 - version: 1.26.19 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.7' - brotli-python: '>=1.0.9' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda - hash: - md5: 6bb37c314b3cc1515dcf086ffe01c46e - sha256: 543ebab5241418a4e0d4d9e356ef13e4361504810a067a01481660bb35eb5643 - category: main - optional: false -- name: urllib3 - version: 1.26.19 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.7' - brotli-python: '>=1.0.9' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda - hash: - md5: 6bb37c314b3cc1515dcf086ffe01c46e - sha256: 543ebab5241418a4e0d4d9e356ef13e4361504810a067a01481660bb35eb5643 - category: main - optional: false -- name: urllib3 - version: 1.26.19 - manager: conda - platform: win-64 - dependencies: - python: '>=3.7' - brotli-python: '>=1.0.9' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda - hash: - md5: 6bb37c314b3cc1515dcf086ffe01c46e - sha256: 543ebab5241418a4e0d4d9e356ef13e4361504810a067a01481660bb35eb5643 - category: main - optional: false -- name: vc - version: '14.3' - manager: conda - platform: win-64 - dependencies: - vc14_runtime: '>=14.38.33135' - url: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-ha32ba9b_23.conda - hash: - md5: 7c10ec3158d1eb4ddff7007c9101adb0 - sha256: 986ddaf8feec2904eac9535a7ddb7acda1a1dfb9482088fdb8129f1595181663 - category: main - optional: false -- name: vc14_runtime - version: 14.42.34433 - manager: conda - platform: win-64 - dependencies: - ucrt: '>=10.0.20348.0' - url: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.42.34433-he29a5d6_23.conda - hash: - md5: 32b37d0cfa80da34548501cdc913a832 - sha256: c483b090c4251a260aba6ff3e83a307bcfb5fb24ad7ced872ab5d02971bd3a49 - category: main - optional: false -- name: virtualenv - version: 20.27.1 - manager: conda - platform: linux-64 - dependencies: - distlib: <1,>=0.3.7 - filelock: <4,>=3.12.2 - platformdirs: <5,>=3.9.1 - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda - hash: - md5: dae21509d62aa7bf676279ced3edcb3f - sha256: 189b935224732267df10dc116bce0835bd76fcdb20c30f560591c92028d513b0 - category: main - optional: false -- name: virtualenv - version: 20.27.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - distlib: <1,>=0.3.7 - filelock: <4,>=3.12.2 - platformdirs: <5,>=3.9.1 - url: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda - hash: - md5: dae21509d62aa7bf676279ced3edcb3f - sha256: 189b935224732267df10dc116bce0835bd76fcdb20c30f560591c92028d513b0 - category: main - optional: false -- name: virtualenv - version: 20.27.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - distlib: <1,>=0.3.7 - filelock: <4,>=3.12.2 - platformdirs: <5,>=3.9.1 - url: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda - hash: - md5: dae21509d62aa7bf676279ced3edcb3f - sha256: 189b935224732267df10dc116bce0835bd76fcdb20c30f560591c92028d513b0 - category: main - optional: false -- name: virtualenv - version: 20.27.1 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - distlib: <1,>=0.3.7 - filelock: <4,>=3.12.2 - platformdirs: <5,>=3.9.1 - url: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda - hash: - md5: dae21509d62aa7bf676279ced3edcb3f - sha256: 189b935224732267df10dc116bce0835bd76fcdb20c30f560591c92028d513b0 - category: main - optional: false -- name: vs2015_runtime - version: 14.42.34433 - manager: conda - platform: win-64 - dependencies: - vc14_runtime: '>=14.42.34433' - url: https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.42.34433-hdffcdeb_23.conda - hash: - md5: 5c176975ca2b8366abad3c97b3cd1e83 - sha256: 568ce8151eaae256f1cef752fc78651ad7a86ff05153cc7a4740b52ae6536118 - category: main - optional: false -- name: wcwidth - version: 0.2.13 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - hash: - md5: 68f0738df502a14213624b288c60c9ad - sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3 - category: main - optional: false -- name: wcwidth - version: 0.2.13 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - hash: - md5: 68f0738df502a14213624b288c60c9ad - sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3 - category: main - optional: false -- name: wcwidth - version: 0.2.13 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - hash: - md5: 68f0738df502a14213624b288c60c9ad - sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3 - category: main - optional: false -- name: wcwidth - version: 0.2.13 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - hash: - md5: 68f0738df502a14213624b288c60c9ad - sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3 - category: main - optional: false -- name: webencodings - version: 0.5.1 - manager: conda - platform: linux-64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda - hash: - md5: daf5160ff9cde3a468556965329085b9 - sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944 - category: main - optional: false -- name: webencodings - version: 0.5.1 - manager: conda - platform: osx-64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda - hash: - md5: daf5160ff9cde3a468556965329085b9 - sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944 - category: main - optional: false -- name: webencodings - version: 0.5.1 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda - hash: - md5: daf5160ff9cde3a468556965329085b9 - sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944 - category: main - optional: false -- name: webencodings - version: 0.5.1 - manager: conda - platform: win-64 - dependencies: - python: '>=2.6' - url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda - hash: - md5: daf5160ff9cde3a468556965329085b9 - sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944 - category: main - optional: false -- name: win_inet_pton - version: 1.1.0 - manager: conda - platform: win-64 - dependencies: - __win: '' - python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyh7428d3b_7.conda - hash: - md5: c998c13b2f998af57c3b88c7a47979e0 - sha256: c5297692ab34aade5e21107abaf623d6f93847662e25f655320038d2bfa1a812 - category: main - optional: false -- name: xcb-util - version: 0.4.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda - hash: - md5: 8637c3e5821654d0edf97e2b0404b443 - sha256: 416aa55d946ce4ab173ab338796564893a2f820e80e04e098ff00c25fb981263 - category: main - optional: false -- name: xcb-util-image - version: 0.4.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - xcb-util: '>=0.4.1,<0.5.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda - hash: - md5: a0901183f08b6c7107aab109733a3c91 - sha256: 94b12ff8b30260d9de4fd7a28cca12e028e572cbc504fd42aa2646ec4a5bded7 - category: main - optional: false -- name: xcb-util-keysyms - version: 0.4.1 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda - hash: - md5: ad748ccca349aec3e91743e08b5e2b50 - sha256: 546e3ee01e95a4c884b6401284bb22da449a2f4daf508d038fdfa0712fe4cc69 - category: main - optional: false -- name: xcb-util-renderutil - version: 0.3.10 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda - hash: - md5: 0e0cbe0564d03a99afd5fd7b362feecd - sha256: 2d401dadc43855971ce008344a4b5bd804aca9487d8ebd83328592217daca3df - category: main - optional: false -- name: xcb-util-wm - version: 0.4.2 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.16,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda - hash: - md5: 608e0ef8256b81d04456e8d211eee3e8 - sha256: 31d44f297ad87a1e6510895740325a635dd204556aa7e079194a0034cdd7e66a - category: main - optional: false -- name: xkeyboard-config - version: '2.43' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda - hash: - md5: f725c7425d6d7c15e31f3b99a88ea02f - sha256: 0d89b5873515a1f05d311f37ea4e087bbccc0418afa38f2f6189e97280db3179 - category: main - optional: false -- name: xorg-libice - version: 1.1.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda - hash: - md5: 19608a9656912805b2b9a2f6bd257b04 - sha256: ec276da68d1c4a3d34a63195b35ca5b248d4aff0812464dcd843d74649b5cec4 - category: main - optional: false -- name: xorg-libsm - version: 1.2.4 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libuuid: '>=2.38.1,<3.0a0' - xorg-libice: '>=1.1.1,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda - hash: - md5: 05a8ea5f446de33006171a7afe6ae857 - sha256: 70e903370977d44c9120a5641ab563887bd48446e9ef6fc2a3f5f60531c2cd6c - category: main - optional: false -- name: xorg-libx11 - version: 1.8.10 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libxcb: '>=1.17.0,<2.0a0' - xorg-xorgproto: '' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda - hash: - md5: 0b666058a179b744a622d0a4a0c56353 - sha256: c4650634607864630fb03696474a0535f6fce5fda7d81a6462346e071b53dfa7 - category: main - optional: false -- name: xorg-libxau - version: 1.0.11 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - hash: - md5: 77cbc488235ebbaab2b6e912d3934bae - sha256: 532a046fee0b3a402db867b6ec55c84ba4cdedb91d817147c8feeae9766be3d6 - category: main - optional: false -- name: xorg-libxau - version: 1.0.11 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h00291cd_1.conda - hash: - md5: c6cc91149a08402bbb313c5dc0142567 - sha256: 96177823ec38336b0f4b7e7c2413da61f8d008d800cc4a5b8ad21f9128fb7de0 - category: main - optional: false -- name: xorg-libxau - version: 1.0.11 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - hash: - md5: 7e0125f8fb619620a0011dc9297e2493 - sha256: 7113618021cf6c80831a429b2ebb9d639f3c43cf7fe2257d235dc6ae0ab43289 - category: main - optional: false -- name: xorg-libxau - version: 1.0.11 - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libs: '' - m2w64-gcc-libs-core: '' - url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-hcd874cb_0.conda - hash: - md5: c46ba8712093cb0114404ae8a7582e1a - sha256: 8c5b976e3b36001bdefdb41fb70415f9c07eff631f1f0155f3225a7649320e77 - category: main - optional: false -- name: xorg-libxdamage - version: 1.1.6 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - xorg-libxext: '>=1.3.6,<2.0a0' - xorg-libxfixes: '>=6.0.1,<7.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda - hash: - md5: b5fcc7172d22516e1f965490e65e33a4 - sha256: 43b9772fd6582bf401846642c4635c47a9b0e36ca08116b3ec3df36ab96e0ec0 - category: main - optional: false -- name: xorg-libxdmcp - version: 1.1.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - hash: - md5: 8035c64cb77ed555e3f150b7b3972480 - sha256: 6b250f3e59db07c2514057944a3ea2044d6a8cdde8a47b6497c254520fade1ee - category: main - optional: false -- name: xorg-libxdmcp - version: 1.1.5 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.5-h00291cd_0.conda - hash: - md5: 9f438e1b6f4e73fd9e6d78bfe7c36743 - sha256: bb4d1ef9cafef535494adf9296130b6193b3a44375883185b5167de03eb1ac7f - category: main - optional: false -- name: xorg-libxdmcp - version: 1.1.5 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - hash: - md5: 77c447f48cab5d3a15ac224edb86a968 - sha256: 9939a166d780700d81023546759102b33fdc2c5f11ef09f5f66c77210fd334c8 - category: main - optional: false -- name: xorg-libxdmcp - version: 1.1.3 - manager: conda - platform: win-64 - dependencies: - m2w64-gcc-libs: '' - url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.3-hcd874cb_0.tar.bz2 - hash: - md5: 46878ebb6b9cbd8afcf8088d7ef00ece - sha256: f51205d33c07d744ec177243e5d9b874002910c731954f2c8da82459be462b93 - category: main - optional: false -- name: xorg-libxext - version: 1.3.6 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda - hash: - md5: febbab7d15033c913d53c7a2c102309d - sha256: da5dc921c017c05f38a38bd75245017463104457b63a1ce633ed41f214159c14 - category: main - optional: false -- name: xorg-libxfixes - version: 6.0.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda - hash: - md5: 4bdb303603e9821baf5fe5fdff1dc8f8 - sha256: 2fef37e660985794617716eb915865ce157004a4d567ed35ec16514960ae9271 - category: main - optional: false -- name: xorg-libxrender - version: 0.9.11 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - xorg-xorgproto: '' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda - hash: - md5: a7a49a8b85122b49214798321e2e96b4 - sha256: f1217e902c0b1d8bc5d3ce65e483ebf38b049c823c9117b7198cfb16bd2b9143 - category: main - optional: false -- name: xorg-libxxf86vm - version: 1.1.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - xorg-libx11: '>=1.8.10,<2.0a0' - xorg-libxext: '>=1.3.6,<2.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda - hash: - md5: 7da9007c0582712c4bad4131f89c8372 - sha256: 0b8f062a5b4a2c3833267285b7d41b3542f54d2c935c86ca98504c3e5296354c - category: main - optional: false -- name: xorg-xf86vidmodeproto - version: 2.3.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda - hash: - md5: 1c08f67e3406550eef135e17263f8154 - sha256: d3189527c5b8e1fea2a2e391012d3e8f794e03bdabe9f4457a0ac4cb8fc7214c - category: main - optional: false -- name: xorg-xorgproto - version: '2024.1' - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda - hash: - md5: 7c21106b851ec72c037b162c216d8f05 - sha256: 1316680be6edddee0156b86ec1102fc8286f51c1a5440366ed1db596a2dc3731 - category: main - optional: false -- name: xz - version: 5.2.6 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - hash: - md5: 2161070d867d1b1204ea749c8eec4ef0 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - category: main - optional: false -- name: xz - version: 5.2.6 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2 - hash: - md5: a72f9d4ea13d55d745ff1ed594747f10 - sha256: eb09823f34cc2dd663c0ec4ab13f246f45dcd52e5b8c47b9864361de5204a1c8 - category: main - optional: false -- name: xz - version: 5.2.6 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - hash: - md5: 39c6b54e94014701dd157f4f576ed211 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - category: main - optional: false -- name: xz - version: 5.2.6 - manager: conda - platform: win-64 - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - url: https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2 - hash: - md5: 515d77642eaa3639413c6b1bc3f94219 - sha256: 54d9778f75a02723784dc63aff4126ff6e6749ba21d11a6d03c1f4775f269fe0 - category: main - optional: false -- name: yaml - version: 0.2.5 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=9.4.0' - url: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - hash: - md5: 4cb3ad778ec2d5a7acbdf254eb1c42ae - sha256: a4e34c710eeb26945bdbdaba82d3d74f60a78f54a874ec10d373811a5d217535 - category: main - optional: false -- name: yaml - version: 0.2.5 - manager: conda - platform: osx-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h0d85af4_2.tar.bz2 - hash: - md5: d7e08fcf8259d742156188e8762b4d20 - sha256: 5301417e2c8dea45b401ffee8df3957d2447d4ce80c83c5ff151fc6bfe1c4148 - category: main - optional: false -- name: yaml - version: 0.2.5 - manager: conda - platform: osx-arm64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - hash: - md5: 4bb3f014845110883a3c5ee811fd84b4 - sha256: 93181a04ba8cfecfdfb162fc958436d868cc37db504c58078eab4c1a3e57fbb7 - category: main - optional: false -- name: yaml - version: 0.2.5 - manager: conda - platform: win-64 - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - url: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h8ffe710_2.tar.bz2 - hash: - md5: adbfb9f45d1004a26763652246a33764 - sha256: 4e2246383003acbad9682c7c63178e2e715ad0eb84f03a8df1fbfba455dfedc5 - category: main - optional: false -- name: zeromq - version: 4.3.5 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - krb5: '>=1.21.3,<1.22.0a0' - libgcc: '>=13' - libsodium: '>=1.0.20,<1.0.21.0a0' - libstdcxx: '>=13' - url: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - hash: - md5: 3947a35e916fcc6b9825449affbf4214 - sha256: a4dc72c96848f764bb5a5176aa93dd1e9b9e52804137b99daeebba277b31ea10 - category: main - optional: false -- name: zeromq - version: 4.3.5 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.13' - krb5: '>=1.21.3,<1.22.0a0' - libcxx: '>=18' - libsodium: '>=1.0.20,<1.0.21.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/zeromq-4.3.5-h7130eaa_7.conda - hash: - md5: 6a0a76cd2b3d575e1b7aaeb283b9c3ed - sha256: b932dce8c9de9a8ffbf0db0365d29677636e599f7763ca51e554c43a0c5f8389 - category: main - optional: false -- name: zeromq - version: 4.3.5 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - krb5: '>=1.21.3,<1.22.0a0' - libcxx: '>=18' - libsodium: '>=1.0.20,<1.0.21.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - hash: - md5: f7e6b65943cb73bce0143737fded08f1 - sha256: 9e585569fe2e7d3bea71972cd4b9f06b1a7ab8fa7c5139f92a31cbceecf25a8a - category: main - optional: false -- name: zeromq - version: 4.3.5 - manager: conda - platform: win-64 - dependencies: - krb5: '>=1.21.3,<1.22.0a0' - libsodium: '>=1.0.20,<1.0.21.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/zeromq-4.3.5-ha9f60a1_7.conda - hash: - md5: e03f2c245a5ee6055752465519363b1c - sha256: 15cc8e2162d0a33ffeb3f7b7c7883fd830c54a4b1be6a4b8c7ee1f4fef0088fb - category: main - optional: false -- name: zipp - version: 3.21.0 - manager: conda - platform: linux-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda - hash: - md5: fee389bf8a4843bd7a2248ce11b7f188 - sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec - category: main - optional: false -- name: zipp - version: 3.21.0 - manager: conda - platform: osx-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda - hash: - md5: fee389bf8a4843bd7a2248ce11b7f188 - sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec - category: main - optional: false -- name: zipp - version: 3.21.0 - manager: conda - platform: osx-arm64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda - hash: - md5: fee389bf8a4843bd7a2248ce11b7f188 - sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec - category: main - optional: false -- name: zipp - version: 3.21.0 - manager: conda - platform: win-64 - dependencies: - python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda - hash: - md5: fee389bf8a4843bd7a2248ce11b7f188 - sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec - category: main - optional: false -- name: zlib - version: 1.3.1 - manager: conda - platform: linux-64 - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc: '>=13' - libzlib: 1.3.1 - url: https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda - hash: - md5: c9f075ab2f33b3bbee9e62d4ad0a6cd8 - sha256: 5d7c0e5f0005f74112a34a7425179f4eb6e73c92f5d109e6af4ddeca407c92ab - category: main - optional: false -- name: zstd - version: 1.5.6 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda - hash: - md5: 4d056880988120e29d75bfff282e0f45 - sha256: c558b9cc01d9c1444031bd1ce4b9cff86f9085765f17627a6cd85fc623c8a02b - category: main - optional: false -- name: zstd - version: 1.5.6 - manager: conda - platform: osx-64 - dependencies: - __osx: '>=10.9' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.6-h915ae27_0.conda - hash: - md5: 4cb2cd56f039b129bb0e491c1164167e - sha256: efa04a98cb149643fa54c4dad5a0179e36a5fbc88427ea0eec88ceed87fd0f96 - category: main - optional: false -- name: zstd - version: 1.5.6 - manager: conda - platform: osx-arm64 - dependencies: - __osx: '>=11.0' - libzlib: '>=1.2.13,<2.0.0a0' - url: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.6-hb46c0d2_0.conda - hash: - md5: d96942c06c3e84bfcc5efb038724a7fd - sha256: 2d4fd1ff7ee79cd954ca8e81abf11d9d49954dd1fef80f27289e2402ae9c2e09 - category: main - optional: false -- name: zstd - version: 1.5.6 - manager: conda - platform: win-64 - dependencies: - libzlib: '>=1.2.13,<2.0.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vc14_runtime: '>=14.29.30139' - url: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.6-h0ea2cb4_0.conda - hash: - md5: 9a17230f95733c04dc40a2b1e5491d74 - sha256: 768e30dc513568491818fb068ee867c57c514b553915536da09e5d10b4ebf3c3 - category: main - optional: false From 0fc253e154663f58f8f27331a495aaef4daff457 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Tue, 26 Nov 2024 11:32:08 -0800 Subject: [PATCH 02/11] adding mamaba to dsci522_environment.yml --- Dockerfile | 6 ++++++ dsci522_environment.yml | 3 ++- 2 files changed, 8 insertions(+), 1 deletion(-) create mode 100644 Dockerfile diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000..dc413c4 --- /dev/null +++ b/Dockerfile @@ -0,0 +1,6 @@ +# Base image setup +FROM quay.io/jupyter/minimal-notebook:afe30f0c9ad8 + +# Copy lock file +COPY conda-linux-64.lock /tmp/conda-linux-64.lock + diff --git a/dsci522_environment.yml b/dsci522_environment.yml index e0e88ab..be690a9 100644 --- a/dsci522_environment.yml +++ b/dsci522_environment.yml @@ -10,4 +10,5 @@ dependencies: - category_encoders - scikit-learn - seaborn - - conda-lock \ No newline at end of file + - conda-lock + - mamba \ No newline at end of file From e5e512ea34d9b5d53107d64e9c81b4490fa3aa80 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Tue, 26 Nov 2024 11:34:35 -0800 Subject: [PATCH 03/11] after adding mamba to our env ---> conda-linux-64.lock deleted --- conda-linux-64.lock | 258 -------------------------------------------- 1 file changed, 258 deletions(-) delete mode 100644 conda-linux-64.lock diff --git a/conda-linux-64.lock b/conda-linux-64.lock deleted file mode 100644 index 06a2f80..0000000 --- a/conda-linux-64.lock +++ /dev/null @@ -1,258 +0,0 @@ -# Generated by conda-lock. -# platform: linux-64 -# input_hash: 0d7439a4ded26b5017b4a8d683c8096dd0316e49043d637445b6ea037c924461 -@EXPLICIT -https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 -https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 -https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 -https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb -https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#40363a30db350596b5f225d0d5a33328 -https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 -https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 -https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d -https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 -https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 -https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 -https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a -https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 -https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2#a8832b479f93521a9e7b5b743803be51 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de -https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d -https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 -https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda#168cc19c031482f83b23c4eebbb94e26 -https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e -https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 -https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 -https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f -https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 -https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 -https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 -https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 -https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe -https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 -https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 -https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 -https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c -https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 -https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 -https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c -https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 -https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 -https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 -https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 -https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 -https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd -https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 -https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee -https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 -https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 -https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 -https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b -https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda#67bdebbc334513034826e9b63f769d4c -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce -https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2#5dfee17f24e2dfd18d7392b48c9351e2 -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca -https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2#709a2295dd907bb34afb57d54320642f -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 -https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py39hf88036b_0.conda#4635fc2ad95f09017ce0ad09824f5c52 -https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2#43afe5ab04e35e17ba28649471dd7364 -https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda#d0441db20c827c11721889a241df1220 -https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 -https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 -https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 -https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2#9800ad1699b42612478755a2d26c722d -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 -https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 -https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c -https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f -https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda#3364591bebd600979606791e1dff7cb6 -https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py39h74842e3_0.conda#9eb2a7585e756451a5e13b908cb519f2 -https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda#6598c056f64dc8800d40add25e4e2c34 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda#81534b420deb77da8833f2289b8d47ac -https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2#a4eea5bff523f26442405bc5d1f52adb -https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2#415f0ebb6198cc2801c73438a9fb5761 -https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda#1ab2293c055793d6e5bb911a7a51621c -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 -https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 -https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2#359eeb6536da0e687af562ed265ec263 -https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda#0f051f09d992e0d08941706ad519ee0e -https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2#edf8651c4379d9d1495ad6229622d150 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py39h8cd3c5a_1.conda#52b68618d0aa78366f287de1b1319a1c -https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 -https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 -https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd -https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 -https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda#68f0738df502a14213624b288c60c9ad -https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#3947a35e916fcc6b9825449affbf4214 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 -https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda#5f25798dcefd8252ce5f9dc494d5f571 -https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda#5a4c7e2a240a0092a9571d084fe8bc86 -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 -https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda#7c2b6931f9b3548ed78478332095c3e9 -https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda#02abb7b66b02e8b9f5a9b05454400087 -https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda#948d84721b578d426294e17a02e24cbb -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef -https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 -https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda#51862c722035f53c5d99ae99a78ea569 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec -https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda#7b756504d362cbad9b73a50a5455cafd -https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda#547670a612fd335eaa5ffbf0fa75cb64 -https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda#11ead81b00e0f7cc901fceb7ccfb92c1 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 -https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f -https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda#779345c95648be40d22aaa89de7d4254 -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.22.4-py39hc58783e_0.tar.bz2#a09094871a38a0abec011ec36e742045 -https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda#629f3203c99b32e0988910c93e77f3b6 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 -https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda#4c05134c48b6a74f33bbb9938e4a115e -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py39h4e4fb57_3.conda#443c3fe5e7b75f521ec82bd81fa2e061 -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py39h8cd3c5a_1.conda#4cfe8f084af20523252246f1c4ab38e0 -https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb -https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 -https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda#6bb37c314b3cc1515dcf086ffe01c46e -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede -https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda#7e9f4612544c8edbfd6afad17f1bd045 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda#bdc188e59857d6efab332714e0d01d93 -https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py39h7170ec2_0.conda#8c2175fba7e6ca01e98c651431f8c41f -https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda#72d7ad2dcd0f37eccb2ee35a1c8f6aaa -https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e -https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e -https://conda.anaconda.org/conda-forge/linux-64/pandas-1.3.5-py39hde0f152_0.tar.bz2#667350acd89504e72f978fa35c105a99 -https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c -https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py39he612d8f_0.conda#08ae181e881f3bef5598b300353b57ba -https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 -https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda#e7df0fdd404616638df5ece6e69ba7af -https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda#e2ab0c0094abfe6021c0b03b7a54cbec -https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda#e54a91c3a65491b13c68f7696425bac8 -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 -https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda#15c6f45a45f7ac27f6d60b0b084f6761 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 -https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b -https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda#c15343c9dbdb30766a07e5b70e46c7d3 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py39h4b7350c_1.conda#ee5943d546a2b573f7975ea656e9f54e -https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py39hf3d152e_3.conda#49e960e84cd58e2fdc8bad42f0955a27 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c -https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda#7086cfe05f71ea0d9a509b4e3509554d -https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda#21859ffd4024442a937303d4f2ab1162 -https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda#b40131ab6a36ac2c09b7c57d4d3fbf99 -https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda#a36af57a05ceaed6827adc5e4ba81267 -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda#154d0c643be6a9ce6fbe655d007d8e4e -https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 From d1f27044307d3d8c6302f6d4abd15b2ca46e95d5 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Tue, 26 Nov 2024 11:37:05 -0800 Subject: [PATCH 04/11] after adding mamaba to our env ---> added conda-linux-64.lock --- conda-linux-64.lock | 276 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 276 insertions(+) create mode 100644 conda-linux-64.lock diff --git a/conda-linux-64.lock b/conda-linux-64.lock new file mode 100644 index 0000000..f3ef511 --- /dev/null +++ b/conda-linux-64.lock @@ -0,0 +1,276 @@ +# Generated by conda-lock. +# platform: linux-64 +# input_hash: 18f0b7970c6d7e6e02914f2acbbfd450885e321312256251c81cd0cc8c5283ac +@EXPLICIT +https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb +https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#40363a30db350596b5f225d0d5a33328 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 +https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f +https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e +https://conda.anaconda.org/conda-forge/linux-64/reproc-14.2.5.post0-hb9d3cd8_0.conda#69fbc0a9e42eb5fe6733d2d60d818822 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 +https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 +https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a +https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 +https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 +https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2#a8832b479f93521a9e7b5b743803be51 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de +https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 +https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d +https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda#168cc19c031482f83b23c4eebbb94e26 +https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e +https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 +https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 +https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f +https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 +https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 +https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 +https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 +https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc +https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 +https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 +https://conda.anaconda.org/conda-forge/linux-64/reproc-cpp-14.2.5.post0-h5888daf_0.conda#828302fca535f9cfeb598d5f7c204323 +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 +https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae +https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 +https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 +https://conda.anaconda.org/conda-forge/linux-64/cpp-expected-1.1.0-hf52228f_0.conda#a7f1500bf47196443b67355d67afec6d +https://conda.anaconda.org/conda-forge/linux-64/fmt-11.0.2-h434a139_0.conda#995f7e13598497691c1dc476d889bc04 +https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb +https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c +https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 +https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 +https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 +https://conda.anaconda.org/conda-forge/linux-64/libsolv-0.7.30-h3509ff9_0.conda#02539b77d25aa4f65b20246549e256c3 +https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 +https://conda.anaconda.org/conda-forge/linux-64/nlohmann_json-3.11.3-he02047a_1.conda#e46f7ac4917215b49df2ea09a694a3fa +https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 +https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 +https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 +https://conda.anaconda.org/conda-forge/linux-64/simdjson-3.10.1-h84d6215_0.conda#7f9bd0e5c889fae32b03dd448eb71de6 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/yaml-cpp-0.8.0-h59595ed_0.conda#965eaacd7c18eb8361fd12bb9e7a57d7 +https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 +https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee +https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 +https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b +https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda#67bdebbc334513034826e9b63f769d4c +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce +https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2#5dfee17f24e2dfd18d7392b48c9351e2 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca +https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2#709a2295dd907bb34afb57d54320642f +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d +https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py39hf88036b_0.conda#4635fc2ad95f09017ce0ad09824f5c52 +https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2#43afe5ab04e35e17ba28649471dd7364 +https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 +https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda#d0441db20c827c11721889a241df1220 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 +https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 +https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2#9800ad1699b42612478755a2d26c722d +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 +https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 +https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.7-hadbb8c3_0.conda#4a099677417658748239616b6ca96bb6 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c +https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda#3364591bebd600979606791e1dff7cb6 +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py39h74842e3_0.conda#9eb2a7585e756451a5e13b908cb519f2 +https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 +https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda#6598c056f64dc8800d40add25e4e2c34 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda#81534b420deb77da8833f2289b8d47ac +https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2#a4eea5bff523f26442405bc5d1f52adb +https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2#415f0ebb6198cc2801c73438a9fb5761 +https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda#1ab2293c055793d6e5bb911a7a51621c +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 +https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 +https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2#359eeb6536da0e687af562ed265ec263 +https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda#0f051f09d992e0d08941706ad519ee0e +https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 +https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 +https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2#edf8651c4379d9d1495ad6229622d150 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 +https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py39h8cd3c5a_1.conda#52b68618d0aa78366f287de1b1319a1c +https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 +https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 +https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 +https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd +https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 +https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 +https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda#68f0738df502a14213624b288c60c9ad +https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#3947a35e916fcc6b9825449affbf4214 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda#5f25798dcefd8252ce5f9dc494d5f571 +https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda#5a4c7e2a240a0092a9571d084fe8bc86 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 +https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda#7c2b6931f9b3548ed78478332095c3e9 +https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda#02abb7b66b02e8b9f5a9b05454400087 +https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda#948d84721b578d426294e17a02e24cbb +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef +https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 +https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda#51862c722035f53c5d99ae99a78ea569 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec +https://conda.anaconda.org/conda-forge/noarch/jaraco.classes-3.4.0-pyhd8ed1ab_1.conda#7b756504d362cbad9b73a50a5455cafd +https://conda.anaconda.org/conda-forge/noarch/jaraco.functools-4.0.0-pyhd8ed1ab_0.conda#547670a612fd335eaa5ffbf0fa75cb64 +https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda#11ead81b00e0f7cc901fceb7ccfb92c1 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 +https://conda.anaconda.org/conda-forge/linux-64/libmamba-2.0.4-hf72d635_0.conda#ee936d20425961886b3ddc68e7021bb9 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f +https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda#779345c95648be40d22aaa89de7d4254 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.22.4-py39hc58783e_0.tar.bz2#a09094871a38a0abec011ec36e742045 +https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda#629f3203c99b32e0988910c93e77f3b6 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda#4c05134c48b6a74f33bbb9938e4a115e +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py39h4e4fb57_3.conda#443c3fe5e7b75f521ec82bd81fa2e061 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py39h8cd3c5a_1.conda#4cfe8f084af20523252246f1c4ab38e0 +https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb +https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 +https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda#6bb37c314b3cc1515dcf086ffe01c46e +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede +https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda#7e9f4612544c8edbfd6afad17f1bd045 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda#bdc188e59857d6efab332714e0d01d93 +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py39h7170ec2_0.conda#8c2175fba7e6ca01e98c651431f8c41f +https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 +https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda#72d7ad2dcd0f37eccb2ee35a1c8f6aaa +https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e +https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e +https://conda.anaconda.org/conda-forge/linux-64/mamba-2.0.4-hfdd0a45_0.conda#ab79fe6e239eb7a332d3ed92972c1e98 +https://conda.anaconda.org/conda-forge/linux-64/pandas-1.3.5-py39hde0f152_0.tar.bz2#667350acd89504e72f978fa35c105a99 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c +https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py39he612d8f_0.conda#08ae181e881f3bef5598b300353b57ba +https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 +https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda#e7df0fdd404616638df5ece6e69ba7af +https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda#e2ab0c0094abfe6021c0b03b7a54cbec +https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda#e54a91c3a65491b13c68f7696425bac8 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 +https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda#15c6f45a45f7ac27f6d60b0b084f6761 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 +https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b +https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda#c15343c9dbdb30766a07e5b70e46c7d3 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py39h4b7350c_1.conda#ee5943d546a2b573f7975ea656e9f54e +https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py39hf3d152e_3.conda#49e960e84cd58e2fdc8bad42f0955a27 +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c +https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda#7086cfe05f71ea0d9a509b4e3509554d +https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda#21859ffd4024442a937303d4f2ab1162 +https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda#b40131ab6a36ac2c09b7c57d4d3fbf99 +https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda#a36af57a05ceaed6827adc5e4ba81267 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 +https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda#154d0c643be6a9ce6fbe655d007d8e4e +https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 From 4c3f8888b23c01702d8cd1485361a0cb5d3fb667 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Tue, 26 Nov 2024 11:38:50 -0800 Subject: [PATCH 05/11] Dockerfile updated --- Dockerfile | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/Dockerfile b/Dockerfile index dc413c4..4b1f0e3 100644 --- a/Dockerfile +++ b/Dockerfile @@ -4,3 +4,7 @@ FROM quay.io/jupyter/minimal-notebook:afe30f0c9ad8 # Copy lock file COPY conda-linux-64.lock /tmp/conda-linux-64.lock +RUN mamba update --quiet --file /tmp/conda-linux-64.lock \ + && mamba clean --all -y -f \ + && fix-permissions "${CONDA_DIR}" \ + && fix-permissions "/home/${NB_USER}" \ No newline at end of file From e6e9d2ceabff0d0470a86cdef2e11e5a1cb18938 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:10:05 -0800 Subject: [PATCH 06/11] version of python, sckitlearn and seaborn pinned and mamba removed --- dsci522_environment.yml | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/dsci522_environment.yml b/dsci522_environment.yml index be690a9..4b62066 100644 --- a/dsci522_environment.yml +++ b/dsci522_environment.yml @@ -6,9 +6,7 @@ dependencies: - matplotlib - numpy=1.22 - pandas=1.3 - - python=3.9 - - category_encoders - - scikit-learn - - seaborn - - conda-lock - - mamba \ No newline at end of file + - python=3.11 + - scikit-learn=1.3.2 + - seaborn=0.13.2 + - conda-lock=2.5.7 \ No newline at end of file From 5cb807b31a21ed151fd78b54d1beadc36ebe5cb3 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:19:50 -0800 Subject: [PATCH 07/11] all of thepackages' versions pinned --- dsci522_environment.yml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/dsci522_environment.yml b/dsci522_environment.yml index 4b62066..08cb3eb 100644 --- a/dsci522_environment.yml +++ b/dsci522_environment.yml @@ -2,9 +2,9 @@ name: dsci522-airline-pred channels: - conda-forge dependencies: - - ipykernel - - matplotlib - - numpy=1.22 + - ipykernel=6.16 + - matplotlib=3.7 + - numpy=1.24 - pandas=1.3 - python=3.11 - scikit-learn=1.3.2 From bd7bd50c1c43d8a80cd13b667f5a6c372eb759ad Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:22:55 -0800 Subject: [PATCH 08/11] version of panadas changed --- dsci522_environment.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/dsci522_environment.yml b/dsci522_environment.yml index 08cb3eb..0ffb9a0 100644 --- a/dsci522_environment.yml +++ b/dsci522_environment.yml @@ -5,7 +5,7 @@ dependencies: - ipykernel=6.16 - matplotlib=3.7 - numpy=1.24 - - pandas=1.3 + - pandas=1.5 - python=3.11 - scikit-learn=1.3.2 - seaborn=0.13.2 From c1da49aa76a99d6128e4bca53ee35996d074ab74 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:24:34 -0800 Subject: [PATCH 09/11] conda-linux-64.lock updated --- conda-linux-64.lock | 96 +++++++++++++++++---------------------------- 1 file changed, 37 insertions(+), 59 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index f3ef511..81125fd 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 18f0b7970c6d7e6e02914f2acbbfd450885e321312256251c81cd0cc8c5283ac +# input_hash: 6d9bc796fb5910e2e1e16e7ac562f5a3622f695b4cfb447956641c6d4eae2c3f @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 @@ -8,7 +8,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#40363a30db350596b5f225d0d5a33328 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-5_cp311.conda#139a8d40c8a2f430df31048949e450de https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 @@ -19,7 +19,6 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2# https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -29,7 +28,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/reproc-14.2.5.post0-hb9d3cd8_0.conda#69fbc0a9e42eb5fe6733d2d60d818822 https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 @@ -43,7 +41,6 @@ https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2#a8832b479f93521a9e7b5b743803be51 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de -https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 @@ -58,25 +55,20 @@ https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.con https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 -https://conda.anaconda.org/conda-forge/linux-64/reproc-cpp-14.2.5.post0-h5888daf_0.conda#828302fca535f9cfeb598d5f7c204323 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 -https://conda.anaconda.org/conda-forge/linux-64/cpp-expected-1.1.0-hf52228f_0.conda#a7f1500bf47196443b67355d67afec6d -https://conda.anaconda.org/conda-forge/linux-64/fmt-11.0.2-h434a139_0.conda#995f7e13598497691c1dc476d889bc04 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 @@ -87,25 +79,19 @@ https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb -https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 -https://conda.anaconda.org/conda-forge/linux-64/libsolv-0.7.30-h3509ff9_0.conda#02539b77d25aa4f65b20246549e256c3 https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 -https://conda.anaconda.org/conda-forge/linux-64/nlohmann_json-3.11.3-he02047a_1.conda#e46f7ac4917215b49df2ea09a694a3fa https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/simdjson-3.10.1-h84d6215_0.conda#7f9bd0e5c889fae32b03dd448eb71de6 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 -https://conda.anaconda.org/conda-forge/linux-64/yaml-cpp-0.8.0-h59595ed_0.conda#965eaacd7c18eb8361fd12bb9e7a57d7 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee @@ -119,8 +105,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 -https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a +https://conda.anaconda.org/conda-forge/linux-64/python-3.11.10-hc5c86c4_3_cpython.conda#9e1ad55c87368e662177661a998feed5 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -128,7 +113,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda#67bdebbc334513034826e9b63f769d4c -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hfdbb021_2.conda#d21daab070d76490cb39a8f1d1729d79 https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2#5dfee17f24e2dfd18d7392b48c9351e2 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -137,7 +122,7 @@ https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.cond https://conda.anaconda.org/conda-forge/noarch/crashtest-0.4.1-pyhd8ed1ab_0.tar.bz2#709a2295dd907bb34afb57d54320642f https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py39hf88036b_0.conda#4635fc2ad95f09017ce0ad09824f5c52 +https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py311hfdbb021_0.conda#e1d95dce136e7d0f6a9d7cd9b6dca985 https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2#43afe5ab04e35e17ba28649471dd7364 https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 @@ -147,21 +132,19 @@ https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda# https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2#9800ad1699b42612478755a2d26c722d -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py311hd18a35c_0.conda#be34c90cce87090d24da64a7c239ca96 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.7-hadbb8c3_0.conda#4a099677417658748239616b6ca96bb6 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_0.conda#15e4dadd59e93baad7275249f10b9472 https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda#3364591bebd600979606791e1dff7cb6 -https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py39h74842e3_0.conda#9eb2a7585e756451a5e13b908cb519f2 +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py311hd18a35c_0.conda#682f76920687f7d9283039eb542fdacf https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda#6598c056f64dc8800d40add25e4e2c34 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 @@ -172,7 +155,7 @@ https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2# https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda#1ab2293c055793d6e5bb911a7a51621c https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py311h9ecbd09_0.conda#0ffc1f53106a38f059b151c465891ed3 https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2#359eeb6536da0e687af562ed265ec263 https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda#0f051f09d992e0d08941706ad519ee0e https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 @@ -181,9 +164,9 @@ https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2#e https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py39h8cd3c5a_1.conda#52b68618d0aa78366f287de1b1319a1c -https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h9ecbd09_1.conda#abeb54d40f439b86f75ea57045ab8496 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h9ecbd09_1.conda#e56869fca385961323e43783b89bef66 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -191,10 +174,10 @@ https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py311h9ecbd09_0.conda#df3aee9c3e44489257a840b8354e77b9 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 +https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py311h9ecbd09_1.conda#00895577e2b4c24dca76675ab1862551 https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda#68f0738df502a14213624b288c60c9ad https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 @@ -203,11 +186,10 @@ https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#39 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda#5f25798dcefd8252ce5f9dc494d5f571 https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda#5a4c7e2a240a0092a9571d084fe8bc86 -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py311hf29c0ef_0.conda#55553ecd5328336368db611f350b7039 https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda#7c2b6931f9b3548ed78478332095c3e9 https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda#02abb7b66b02e8b9f5a9b05454400087 -https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda#948d84721b578d426294e17a02e24cbb -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py311h2dc5d0c_0.conda#8b056dbb53df32a9dbf1718a04dc4138 https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 @@ -223,54 +205,50 @@ https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.co https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libmamba-2.0.4-hf72d635_0.conda#ee936d20425961886b3ddc68e7021bb9 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda#779345c95648be40d22aaa89de7d4254 -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.22.4-py39hc58783e_0.tar.bz2#a09094871a38a0abec011ec36e742045 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.24.4-py311h64a7726_0.conda#5a03d7c75dd4a9ae9a58850860eca468 https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda#629f3203c99b32e0988910c93e77f3b6 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py311h49e9ac3_0.conda#2bd3d0f839ec0d1eaca817c9d1feb7c2 https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda#4c05134c48b6a74f33bbb9938e4a115e https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py39h4e4fb57_3.conda#443c3fe5e7b75f521ec82bd81fa2e061 -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py39h8cd3c5a_1.conda#4cfe8f084af20523252246f1c4ab38e0 -https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py311h7deb3e3_3.conda#e0897de1d8979a3bb20ef031ae1f7d28 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h9ecbd09_1.conda#d9098dd007b0394863c3462753d048bb +https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py311hb755f60_0.conda#02336abab4cb5dd794010ef53c54bd09 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda#6bb37c314b3cc1515dcf086ffe01c46e https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda#7e9f4612544c8edbfd6afad17f1bd045 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda#bdc188e59857d6efab332714e0d01d93 -https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py39h7170ec2_0.conda#8c2175fba7e6ca01e98c651431f8c41f +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py311hd18a35c_0.conda#351cb68d2081e249069748b6e60b3cd2 +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py311hafd3f86_0.conda#c4e15a26f0a69509c36046feceed7ae1 https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda#72d7ad2dcd0f37eccb2ee35a1c8f6aaa https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e -https://conda.anaconda.org/conda-forge/linux-64/mamba-2.0.4-hfdd0a45_0.conda#ab79fe6e239eb7a332d3ed92972c1e98 -https://conda.anaconda.org/conda-forge/linux-64/pandas-1.3.5-py39hde0f152_0.tar.bz2#667350acd89504e72f978fa35c105a99 +https://conda.anaconda.org/conda-forge/linux-64/pandas-1.5.3-py311h2872171_1.conda#6bb03bf6d4fab68174eae8b06c3b6934 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c -https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py39he612d8f_0.conda#08ae181e881f3bef5598b300353b57ba -https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d +https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py311h9e33e62_0.conda#e5192dfb2dae866470c3eec81dbe5727 +https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py311hb755f60_5.conda#e4d262cc3600e70b505a6761d29f6207 https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py311he9a78e4_1.conda#49ba89bf4d8a995efb99517d1c7aeb1e https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda#e7df0fdd404616638df5ece6e69ba7af https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda#e2ab0c0094abfe6021c0b03b7a54cbec https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda#e54a91c3a65491b13c68f7696425bac8 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 -https://conda.anaconda.org/conda-forge/noarch/ipython-8.18.1-pyh707e725_3.conda#15c6f45a45f7ac27f6d60b0b084f6761 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 +https://conda.anaconda.org/conda-forge/noarch/ipython-8.29.0-pyh707e725_0.conda#56db21d7d51410fcfbfeca3d1a6b4269 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.7.3-py311h54ef318_0.conda#98fc063c60f74777ec6149b99494a442 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b -https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.1-pyh10f6f8f_0.conda#c15343c9dbdb30766a07e5b70e46c7d3 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py39h4b7350c_1.conda#ee5943d546a2b573f7975ea656e9f54e -https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py39hf3d152e_3.conda#49e960e84cd58e2fdc8bad42f0955a27 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c +https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda#e661b732b4d7514ace55a01873f03201 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.3.2-py311hc009520_2.conda#9821f8e497a791858226f535e5e0be62 +https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py311h38be061_3.conda#b7d5a90193f112c78e25befb013dd606 +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py311h9f3472d_0.conda#81e81b5b7a744fcb279e98aa6d2e6683 https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda#7086cfe05f71ea0d9a509b4e3509554d -https://conda.anaconda.org/conda-forge/noarch/category_encoders-2.6.4-pyhd8ed1ab_0.conda#21859ffd4024442a937303d4f2ab1162 -https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda#b40131ab6a36ac2c09b7c57d4d3fbf99 +https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.16.2-pyh210e3f2_0.tar.bz2#6b0f40821b784cac8a33d0c5eb7602c0 https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda#a36af57a05ceaed6827adc5e4ba81267 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda#154d0c643be6a9ce6fbe655d007d8e4e -https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 +https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.7.3-py311h38be061_0.conda#b6b9fd7ffb837affea2587ecd00dd0ff From 302bab3faa741d3327305acd667250e703c6aca3 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:33:51 -0800 Subject: [PATCH 10/11] jupyter lab also added to our lab dependencies --- dsci522_environment.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/dsci522_environment.yml b/dsci522_environment.yml index 0ffb9a0..ce1a2eb 100644 --- a/dsci522_environment.yml +++ b/dsci522_environment.yml @@ -9,4 +9,5 @@ dependencies: - python=3.11 - scikit-learn=1.3.2 - seaborn=0.13.2 - - conda-lock=2.5.7 \ No newline at end of file + - conda-lock=2.5.7 + - jupyterlab=4.0.5 \ No newline at end of file From a4f8237f1e7f6491d6a5de18fec74b660cfb7959 Mon Sep 17 00:00:00 2001 From: AzinPiran Date: Wed, 27 Nov 2024 03:44:36 -0800 Subject: [PATCH 11/11] conda-linux-64.lock and our dta analysis again tested with the new environment --- conda-linux-64.lock | 55 +- ...ine_passenger_satisfaction_predictor.ipynb | 673 +++++------------- 2 files changed, 239 insertions(+), 489 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 81125fd..fc16d29 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 6d9bc796fb5910e2e1e16e7ac562f5a3622f695b4cfb447956641c6d4eae2c3f +# input_hash: 6209fdcdbe01099cde350f43ce131ce773069ae6faa50b451f1af5fd25f0afcb @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 @@ -112,8 +112,10 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b +https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda#6732fa52eb8e66e5afeb32db8701a791 https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_4.conda#67bdebbc334513034826e9b63f769d4c https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hfdbb021_2.conda#d21daab070d76490cb39a8f1d1729d79 +https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2#576d629e47797577ab0f1b351297ef4a https://conda.anaconda.org/conda-forge/noarch/cachy-0.3.0-pyhd8ed1ab_1.tar.bz2#5dfee17f24e2dfd18d7392b48c9351e2 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -124,7 +126,9 @@ https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5 https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py311hfdbb021_0.conda#e1d95dce136e7d0f6a9d7cd9b6dca985 https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2#43afe5ab04e35e17ba28649471dd7364 +https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2#961b3a227b437d82ad7054484cfa71b2 https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 +https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2#3cf04868fee0a029769bd41f4b2fbf2d https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda#d0441db20c827c11721889a241df1220 https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 @@ -132,6 +136,8 @@ https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda# https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/jeepney-0.8.0-pyhd8ed1ab_0.tar.bz2#9800ad1699b42612478755a2d26c722d +https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_0.conda#165cbd1d80be88dafadeabfaae6fa588 +https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py311h38be061_1.conda#5ca76f61b00a15a9be0612d4d883badc https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py311hd18a35c_0.conda#be34c90cce87090d24da64a7c239ca96 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 @@ -143,18 +149,22 @@ https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.cond https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_0.conda#15e4dadd59e93baad7275249f10b9472 +https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda#5cbee699846772cc939bef23a0d524ed https://conda.anaconda.org/conda-forge/noarch/more-itertools-10.5.0-pyhd8ed1ab_0.conda#3364591bebd600979606791e1dff7cb6 https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py311hd18a35c_0.conda#682f76920687f7d9283039eb542fdacf https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda#6598c056f64dc8800d40add25e4e2c34 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2#457c2c8c08e54905d6954e79cb5b5db9 https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda#81534b420deb77da8833f2289b8d47ac https://conda.anaconda.org/conda-forge/noarch/pastel-0.2.1-pyhd8ed1ab_0.tar.bz2#a4eea5bff523f26442405bc5d1f52adb https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2#415f0ebb6198cc2801c73438a9fb5761 https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.2-pyhd8ed1ab_0.conda#1ab2293c055793d6e5bb911a7a51621c +https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda#405678b942f2481cecdb3e010f4925d9 https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 +https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda#07e9550ddff45150bfc7da146268e165 https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py311h9ecbd09_0.conda#0ffc1f53106a38f059b151c465891ed3 https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2#359eeb6536da0e687af562ed265ec263 https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda#0f051f09d992e0d08941706ad519ee0e @@ -163,12 +173,19 @@ https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/pylev-1.4.0-pyhd8ed1ab_0.tar.bz2#edf8651c4379d9d1495ad6229622d150 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 +https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8ed1ab_0.conda#b98d2018c01ce9980c03ee2850690fab +https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda#a61bf9ec79426938ff785eb69dbb1960 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h9ecbd09_1.conda#abeb54d40f439b86f75ea57045ab8496 +https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2#912a71cc01012ee38e6b90ddd561e36f +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.21.0-py311h9e33e62_0.conda#befdb32741d8686b860232ca80178d63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h9ecbd09_1.conda#e56869fca385961323e43783b89bef66 +https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_0.conda#778594b20097b5a948c59e50ae42482a https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 +https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda#490730480d76cf9c8f8f2849719c6e2b +https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 @@ -176,16 +193,27 @@ https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda# https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py311h9ecbd09_0.conda#df3aee9c3e44489257a840b8354e77b9 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 +https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhff2d567_0.conda#3d326f8a2aa2d14d51d8c513426b5def https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2#eb67e3cace64c66233e2d35949e20f92 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py311h9ecbd09_1.conda#00895577e2b4c24dca76675ab1862551 +https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda#0944dc65cb4a9b5b68522c3bb585d41c https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda#68f0738df502a14213624b288c60c9ad +https://conda.anaconda.org/conda-forge/noarch/webcolors-24.8.0-pyhd8ed1ab_0.conda#eb48b812eb4fbb9ff238a6651fdbbcae https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 +https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_0.conda#f372c576b8774922da83cda2b12f9d29 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#3947a35e916fcc6b9825449affbf4214 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda#688697ec5e9588bdded167d19577625b https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda#5f25798dcefd8252ce5f9dc494d5f571 +https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda#3d081de3a6ea9f894bbb585e8e3a4dcb +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/backports.tarfile-1.2.0-pyhd8ed1ab_0.conda#5a4c7e2a240a0092a9571d084fe8bc86 +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 +https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda#461bcfab8e65c166e297222ae919a2d4 +https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2#9b347a7ec10940d3f7941ff6c460b551 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py311hf29c0ef_0.conda#55553ecd5328336368db611f350b7039 https://conda.anaconda.org/conda-forge/noarch/click-default-group-1.2.4-pyhd8ed1ab_0.conda#7c2b6931f9b3548ed78478332095c3e9 https://conda.anaconda.org/conda-forge/noarch/clikit-0.6.2-pyhd8ed1ab_2.conda#02abb7b66b02e8b9f5a9b05454400087 @@ -202,29 +230,41 @@ https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda#11e https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 +https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_0.conda#3f0915b1fb2252ab73686a533c5f9d3f https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda#779345c95648be40d22aaa89de7d4254 https://conda.anaconda.org/conda-forge/linux-64/numpy-1.24.4-py311h64a7726_0.conda#5a03d7c75dd4a9ae9a58850860eca468 +https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda#24fba5a9d161ad8103d4e84c0e1a3ed4 https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda#629f3203c99b32e0988910c93e77f3b6 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py311h49e9ac3_0.conda#2bd3d0f839ec0d1eaca817c9d1feb7c2 https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda#4c05134c48b6a74f33bbb9938e4a115e https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py311h7deb3e3_3.conda#e0897de1d8979a3bb20ef031ae1f7d28 +https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 +https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2#fed45fc5ea0813240707998abe49f520 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h9ecbd09_1.conda#d9098dd007b0394863c3462753d048bb https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py311hb755f60_0.conda#02336abab4cb5dd794010ef53c54bd09 +https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda#efba281bbdae5f6b0a1d53c6d4a97c93 +https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda#f1acf5fdefa8300de697982bcb1761c9 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.19-pyhd8ed1ab_0.conda#6bb37c314b3cc1515dcf086ffe01c46e https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda#7e9f4612544c8edbfd6afad17f1bd045 +https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py311h9ecbd09_5.conda#18143eab7fcd6662c604b85850f0db1e +https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda#b77d8c2313158e6e461ca0efb1c2c508 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py311hd18a35c_0.conda#351cb68d2081e249069748b6e60b3cd2 https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py311hafd3f86_0.conda#c4e15a26f0a69509c36046feceed7ae1 +https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2#642d35437078749ef23a5dca2c9bb1f3 https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_0.conda#2a92e152208121afadf85a5e1f3a5f4d https://conda.anaconda.org/conda-forge/noarch/jaraco.context-5.3.0-pyhd8ed1ab_1.conda#72d7ad2dcd0f37eccb2ee35a1c8f6aaa +https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda#720745920222587ef942acfbc578b584 https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e +https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_0.conda#219b3833aa8ed91d47d1be6ca03f30be https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e https://conda.anaconda.org/conda-forge/linux-64/pandas-1.5.3-py311h2872171_1.conda#6bb03bf6d4fab68174eae8b06c3b6934 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c @@ -233,10 +273,13 @@ https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py311hb755f60_ https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py311he9a78e4_1.conda#49ba89bf4d8a995efb99517d1c7aeb1e https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda#e7df0fdd404616638df5ece6e69ba7af +https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda#3afef1f55a1366b4d3b6a0d92e2235e4 https://conda.anaconda.org/conda-forge/noarch/cachecontrol-0.14.1-pyhd8ed1ab_0.conda#e2ab0c0094abfe6021c0b03b7a54cbec https://conda.anaconda.org/conda-forge/noarch/ensureconda-1.4.4-pyhd8ed1ab_0.conda#e54a91c3a65491b13c68f7696425bac8 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 https://conda.anaconda.org/conda-forge/noarch/ipython-8.29.0-pyh707e725_0.conda#56db21d7d51410fcfbfeca3d1a6b4269 +https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2#4cb68948e0b8429534380243d063a27a +https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.7.3-py311h54ef318_0.conda#98fc063c60f74777ec6149b99494a442 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda#e661b732b4d7514ace55a01873f03201 @@ -245,10 +288,20 @@ https://conda.anaconda.org/conda-forge/linux-64/secretstorage-3.3.3-py311h38be06 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py311h9f3472d_0.conda#81e81b5b7a744fcb279e98aa6d2e6683 https://conda.anaconda.org/conda-forge/noarch/cachecontrol-with-filecache-0.14.1-pyhd8ed1ab_0.conda#7086cfe05f71ea0d9a509b4e3509554d https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.16.2-pyh210e3f2_0.tar.bz2#6b0f40821b784cac8a33d0c5eb7602c0 +https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_0.conda#16b37612b3a2fd77f409329e213b530c https://conda.anaconda.org/conda-forge/noarch/keyring-25.5.0-pyha804496_0.conda#a36af57a05ceaed6827adc5e4ba81267 +https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 https://conda.anaconda.org/conda-forge/noarch/conda-lock-2.5.7-pyhd8ed1ab_0.conda#154d0c643be6a9ce6fbe655d007d8e4e +https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_0.conda#ed45423c41b3da15ea1df39b1f80c2ca +https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.7.3-py311h38be061_0.conda#b6b9fd7ffb837affea2587ecd00dd0ff +https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 +https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_0.conda#ca23c71f70a7c7935b3d03f0f1a5801d +https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda#885867f6adab3d7ecdf8ab6ca0785f51 +https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda#af8239bf1ba7e8c69b689f780f653488 +https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda#3d85618e2c97ab896b5b5e298d32b5b3 +https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.0.5-pyhd8ed1ab_0.conda#fce8108e7dfb3622873a85e495a72dda diff --git a/notebooks/airline_passenger_satisfaction_predictor.ipynb b/notebooks/airline_passenger_satisfaction_predictor.ipynb index e123736..7541bf3 100644 --- a/notebooks/airline_passenger_satisfaction_predictor.ipynb +++ b/notebooks/airline_passenger_satisfaction_predictor.ipynb @@ -396,7 +396,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9fc/8NfIMizCyCIgikouqOGWK2oJKqCCWmZqJOGSWm6RmmlWYrlipn40l9TEREXNfUPQzCJwo6hcsvrmmiCmgIg2jPD+/eFvbg4zDDPINsPr+XjMQ+fOmXvf585w7p0zd+6VCSEEiIiIiIiIiIiIiIhIpxqVPQAiIiIiIiIiIiIioqqMjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oONdKKn8L///Q8ymQy+vr6VPRQiogoXExMDmUym8zZ16lQprmHDhhg+fLh0/8qVK5DJZIiJiSnVcmUyGSZMmFBiXHJyMqKiopCdnW3QfKOiojRysLOzQ7169RAcHIzly5cjNzdX6znDhw9Hw4YNjRr/zZs3ERUVhbS0NKOeR0Ski7oWnz17tlTPv3LlCkJCQuDs7AyZTIbIyEiddVq9nCtXrhi9jG+//RYymQxff/11ibFbtmzB0qVLjV6GMYrbDm3btg3PPvssbG1tIZPJkJaWJm0bTI2/vz/8/f0rexhEBiu6X2ljYwMPDw8EBARg/vz5yMzMrOwhGuzQoUOIioqq7GFIfvnlF8hkMvz0008a0//55x/I5fKn2obo8rT7+oZQb1e+/fZbvXEXLlxAVFSUzm1XafbjqWxVxLZK33ugNCzLZC5E1dSXX34JADh//jxOnTqFTp06VfKIiIgq3oYNG9CsWTONaZ6ensXG16lTBykpKWjUqFG5jis5ORmzZ8/G8OHDUatWLYOfFx8fD4VCgfz8fNy8eRPHjh3DtGnTsGjRIuzfvx+tW7eWYj/88EO8/fbbRo3r5s2bmD17Nho2bIg2bdoY9VwiorL2zjvv4NSpU/jyyy/h4eGBOnXqQAihFRcSEoKUlBTUqVOnXMezZcsWnDt3DpGRkeW2DF3bodu3byM8PBy9e/fGypUrIZfL0bRpU7zxxhvo3bt3uY2lvKxcubKyh0BUKur9SpVKhczMTCQlJWHhwoX49NNPsW3bNvTq1auyh1iiQ4cO4fPPP68yzfSdO3fC29sbbdu21Zi+adMm5OfnAwDWr1+P9u3bl8nyKmpf3xAXLlzA7Nmz4e/vr9U0L81+PJWtithW6XsPlAYb6USldPbsWfz8888ICQnBwYMHsX79ejbSiaha8vX1NWrHWy6Xo3PnzuU4oqfTrl07uLq6SveHDh2KCRMmoHv37ujfvz9+//13yOVyAKgSHxCIiJ7GuXPn0LFjR7z44ovSNF1HbdWuXRu1a9euuIGVI13bod9//x0qlQrDhg1D9+7dpenqXydVtgcPHsDOzs7g+BYtWpTjaIjKT9H9ypdffhnvvPMOunXrhoEDB+KPP/6Au7t7JY6weMb+nVbU/L/++mu8/PLLWtO//PJLuLm5oUGDBti6dSs+++wz2NralnocBQUFePToUZXf11fjfnzlM8VtFU/tQlRK69evBwAsWLAAXbp0QVxcHB48eKARc+PGDQwaNAgODg6oVasWXnvtNZw5c0bnz5zOnj2L/v37w9nZGTY2Nmjbti22b99eUekQEVWY4n7uuXfvXrRq1QpyuRzPPPMMli1bpvcn9Zs2bULz5s1hZ2eH1q1b48CBA9JjUVFRePfddwEA3t7e0s+ES/r5Z3Fat26NmTNn4tq1a9i2bZs0XddPQnfs2IFOnTpBoVDAzs4OzzzzDEaOHAng8c9QO3ToAAAYMWKENC71EUtnz57F0KFD0bBhQ9ja2qJhw4Z49dVXcfXqVY1lqH/+fPz4cbz11ltwdXWFi4sLBg4ciJs3b2qNf8uWLfDz80PNmjVRs2ZNtGnTRtqOqR09ehQ9e/aEo6Mj7Ozs0LVrVxw7dqxU64uIKtfw4cNRs2ZN/Pnnn+jbty9q1qwJLy8vTJkyBUqlEsB/P4v/888/cfjwYakeFffTZ12ndhFCYN68eWjQoAFsbGzQvn17JCYmFvtTbZVKhZkzZ8LT0xOOjo7o1asXLl26JD3u7++PgwcP4urVqxqneCjOu+++C4VCgYKCAmnaxIkTIZPJsGjRImnanTt3UKNGDSxfvhyA9nZo+PDh6NatGwBgyJAhkMlk0vgNPbXLX3/9haFDh8LT0xNyuRzu7u7o2bOn1mm8tm3bBj8/P9jb26NmzZoIDg7WOt2C+vX79ddfERQUBAcHB/Ts2RORkZGwt7fHvXv3tJY/ZMgQuLu7Q6VSSeuy6GugVCrx8ccfo3nz5rCxsYGLiwsCAgKQnJwsxQghsHLlSrRp0wa2trZwcnLCoEGD8Ndff5W4DojKS/369bF48WLk5uZizZo1Go8Z8jlaXb8SExMxYsQIODs7w97eHv369dN6bycmJmLAgAGoV68ebGxs0LhxY4wdOxb//POPRpy6Nvz4448YNGgQnJyc0KhRIwwfPhyff/45AGjUsStXrug95cmT+4P65g8Y93f622+/4cKFC1qN9FOnTuHcuXMIDw/H6NGjkZOTg507d2o939/fH76+vvjuu+/QpUsX2NnZYeTIkVIu0dHRmDNnDry9vSGXy3H8+HGtPPfs2QOZTKZzv3LVqlWQyWT45ZdfpNfTkH1hQ8TExOCVV14BAAQEBEivxZO1v+h+vPoUkhs2bICPjw9sbW3Rvn17nDx5EkIILFq0CN7e3qhZsyZ69OiBP//8U2u5T7NPnZ2djSlTpuCZZ56BXC6Hm5sb+vbti99++02KuXv3LsaNG4e6devC2toazzzzDGbOnClt34vmou8zkzGvDWDc35shn1N0bavy8/MxZ84cNGvWDHK5HLVr18aIESNw+/ZtjbiGDRsiNDQU8fHxeO6552Bra4tmzZpJZ45Qj0Xfe6A02EgnKoWHDx9i69at6NChA3x9fTFy5Ejk5uZix44dUkxeXh4CAgJw/PhxLFy4ENu3b4e7uzuGDBmiNb/jx4+ja9euyM7OxurVq7F37160adMGQ4YMKdfzihERlQX10SdP3owVHx+PgQMHwsXFBdu2bUN0dDS2bt2KjRs36ow/ePAgVqxYgY8//hg7d+6Es7MzXnrpJekDxBtvvIGJEycCAHbt2oWUlBSkpKTgueeeK3We/fv3BwB89913xcakpKRgyJAheOaZZxAXF4eDBw/io48+ktbJc889hw0bNgAAPvjgA2lcb7zxBoDHzR0fHx8sXboUR44cwcKFC5Geno4OHTpofYBT52llZYUtW7YgOjoa3377LYYNG6YR89FHH+G1116Dp6cnYmJisHv3bkRERGh8IImNjUVQUBAcHR2xceNGbN++Hc7OzggODmYznchEqVQq9O/fHz179sTevXsxcuRILFmyBAsXLgTwuB6lpKTAw8MDXbt2leqRMadumTlzJmbOnInevXtj7969ePPNN/HGG2/g999/1xn//vvv4+rVq1i3bh2++OIL/PHHH+jXr5/UCF+5ciW6du0KDw8PaTwpKSnFLr9Xr164d+8eTp8+LU07evQobG1tkZiYKE07duwYhBDFnhLiww8/lBpf8+bNQ0pKitE/N+/bty9SU1MRHR2NxMRErFq1Cm3bttW4Tse8efPw6quvokWLFti+fTs2bdqE3NxcPP/887hw4YLG/PLz89G/f3/06NEDe/fuxezZszFy5Eg8ePBAq2mRnZ2NvXv3YtiwYbCystI5vkePHqFPnz745JNPEBoait27dyMmJgZdunTBtWvXpLixY8ciMjISvXr1wp49e7By5UqcP38eXbp0wa1bt4xaJ0RlqW/fvrCwsNDYDzP2c/SoUaNQo0YN6VoMp0+fhr+/v8bf6f/93//Bz88Pq1atQkJCAj766COcOnUK3bp1k76oetLAgQPRuHFj7NixA6tXr8aHH36IQYMGAYBGHSvtabGKzh8w7u90586dqFu3rtav59UHVIwcORJDhw6FnZ2d1kEWaunp6Rg2bBjCwsJw6NAhjBs3Tnrsf//7H7755ht8+umnOHz4sNbpHgEgNDQUbm5u0j7wk2JiYvDcc8+hVatWAIzfF9YnJCQE8+bNAwB8/vnn0msREhKi93kHDhzAunXrsGDBAmzduhW5ubkICQnBlClT8MMPP2DFihX44osvpC8onjwd2tPsU+fm5qJbt25Ys2YNRowYgf3792P16tVo2rQp0tPTAQD//vsvAgIC8NVXX2Hy5Mk4ePAghg0bhujoaAwcOFBrniV9ZjLmtTH2782QzylFFRYWYsCAAViwYAHCwsJw8OBBLFiwQPqS/uHDhxrxP//8M6ZMmYJ33nlHOihr1KhRUp0o7XtAL0FERvvqq68EALF69WohhBC5ubmiZs2a4vnnn5diPv/8cwFAHD58WOO5Y8eOFQDEhg0bpGnNmjUTbdu2FSqVSiM2NDRU1KlTRxQUFJRfMkREpbRhwwYBQOftyXrWoEEDERERId2/fPmyVh3s0KGD8PLyEkqlUpqWm5srXFxcRNHdFQDC3d1d3Lt3T5qWkZEhatSoIebPny9NW7RokQAgLl++bFA+s2bNEgDE7du3dT7+8OFDAUD06dNHmhYRESEaNGgg3f/0008FAJGdnV3scs6cOaOVf3EePXok7t+/L+zt7cWyZcuk6ep1P27cOI346OhoAUCkp6cLIYT466+/hIWFhXjttdeKXUZeXp5wdnYW/fr105heUFAgWrduLTp27FjiOImo8qjrwZkzZ6RpERERAoDYvn27Rmzfvn2Fj4+PxrQGDRqIkJAQjWm66rR6OeqaevfuXSGXy8WQIUM0npuSkiIAiO7du0vTjh8/LgCIvn37asRu375dABApKSnStJCQEI26qk9eXp6wtrYWH3/8sRBCiBs3bggA4r333hO2trbi33//FUIIMXr0aOHp6ak3P/UYd+zYobEM9bZBn3/++UcAEEuXLi025tq1a8LS0lJMnDhRY3pubq7w8PAQgwcPlqapX78vv/xSaz7PPfec6NKli8a0lStXCgDi119/laZ1795d4zVQf35Zu3ZtsWNUv3aLFy/WmH79+nVha2srpk2bVuxziZ6WrlpWlLu7u2jevLl039DP0ep5v/TSSxpxP/zwgwAg5syZo3N5hYWFQqVSiatXrwoAYu/evdJj6trw0UcfaT1v/PjxOuuGrtqjBkDMmjWrxPkb+3fapk0brbqTl5cnHB0dRefOnaVpERERQiaTiT///FMjtnv37gKAOHbsmM5cGjVqJPLz80vMc/LkycLW1lZjH/nChQsCgFi+fLnW+lArbl9YXbOPHz9e7HOFEGLHjh3FxhXdjxfi8evg4eEh7t+/L03bs2ePACDatGkjCgsLpelLly4VAMQvv/wihHj6feqPP/5YABCJiYnFxqxevVrn9n3hwoUCgEhISNDIxZDPTIa+Nsb+vZX0OUUI7W3V1q1bBQCxc+dOjeeqPz+tXLlSmtagQQNhY2Mjrl69Kk17+PChcHZ2FmPHjpWm6XsPlAaPSCcqhfXr18PW1hZDhw4FANSsWROvvPIKvv/+e/zxxx8AgBMnTsDBwUHr4kSvvvqqxv0///wTv/32G1577TUA0Diis2/fvkhPT9f4ySsRUVXz1Vdf4cyZMxo3S0vDL8OSl5eHs2fP4sUXX4S1tbU0vWbNmujXr5/O5wQEBMDBwUG67+7uDjc3t1L97NNQQsfF94pSn7Zl8ODB2L59O/7++2+jlnH//n289957aNy4MSwtLWFpaYmaNWsiLy8PFy9e1IpXHyWvpj5iRL0eEhMTUVBQgPHjxxe7zOTkZNy9excREREa26DCwkL07t0bZ86cQV5enlF5EFHlk8lkWjW0VatWZVYnT548CaVSicGDB2tM79y5c7EX8yqpZhnLzs4Ofn5+OHr0KIDHNa9WrVp49913kZ+fj6SkJACPj1IvzwsUOjs7o1GjRli0aBE+++wz/PTTTygsLNSIOXLkCB49eoTXX39do9ba2Nige/fuOk89puucxiNGjEBycrLG54MNGzZIv5QtzuHDh2FjYyOdakyXAwcOQCaTYdiwYRpj9PDwQOvWrUt9ejSisvLkvlhpPkerY9W6dOmCBg0a4Pjx49K0zMxMvPnmm/Dy8oKlpSWsrKzQoEEDANC5L6br77QsFZ2/MX+nf/31F9LS0rTmsX37dty7d0+jHowcORJCCJ1HJjs5OaFHjx46x9e/f/9ifwnzpJEjR+Lhw4cap0jcsGED5HI5wsLCpGnG7guXh4CAANjb20v3mzdvDgDo06ePxqm+1NPV27Cn3ac+fPgwmjZtqnd79c0338De3l761YPa8OHDAUDrqHdDPjMZ8tqU5u+tNNv8AwcOoFatWujXr5/GMtq0aQMPDw+t7VCbNm1Qv3596b6NjQ2aNm1arp8J2UgnMtKff/6J7777DiEhIRBCIDs7G9nZ2VIhU5+P6c6dOzovglJ0mvqnV1OnToWVlZXGTf2TKWN/wkREVJGaN2+O9u3ba9yMkZWVBSGEQTVTzcXFRWuaXC7X+rlfWVLvkHl6ehYb88ILL2DPnj1Ss6RevXrw9fXF1q1bDVpGWFgYVqxYgTfeeANHjhzB6dOncebMGdSuXVtnbkXXg/oiqOpY9bkE9V0oT70dGjRokNZ2aOHChRBC4O7duwaNn4iqDjs7O9jY2GhMk8vl+Pfff8tk/nfu3AGgu04bWruL1qzS6NWrF06ePIm8vDwcPXoUPXr0gIuLC9q1a4ejR4/i8uXLuHz5crk20tXnlw0ODkZ0dDSee+451K5dG5MmTUJubi6A/2pthw4dtGrttm3btPb37ezs4OjoqLWs1157DXK5XPoZ/YULF3DmzBmMGDFC7xhv374NT09P1KhRfAvg1q1b0va46BhPnjzJzyRUqfLy8nDnzh1pP6w0n6M9PDy05uvh4SHVs8LCQgQFBWHXrl2YNm0ajh07htOnT+PkyZMAdNeq0p6yxVBF52/M3+nXX38NNzc36RoQauvXr4eNjQ169+4t9TNatWqFhg0bIiYmRuO6E7rGYOhjT3r22WfRoUMHqVFfUFCA2NhYDBgwAM7OzlKcsfvC5eHJ8QCQDvQpbrp6u/q0+9S3b98u8eLWd+7cgYeHh9a1O9zc3GBpaSm9l9UM+cxkyGtTmr+30mzzb926hezsbFhbW2stJyMjo8Rl6MqvrBl+uBgRAXjcKBdC4Ouvv8bXX3+t9fjGjRsxZ84cuLi4aJyvUS0jI0PjvqurKwBgxowZOs9pBQA+Pj5lMHIioqrJyckJMplM57lXi9bMyrRv3z4A0HkBvScNGDAAAwYMgFKpxMmTJzF//nyEhYWhYcOG8PPzK/Z5OTk5OHDgAGbNmoXp06dL05VKZakb2bVr1wbw+OLXXl5eOmPU26Hly5ejc+fOOmOKa4oRUfWl/vBaXO0u7qj0stazZ098+OGH+O6773Ds2DHMmjVLmp6QkABvb2/pfnlq0KCBdH7h33//Hdu3b0dUVBTy8/OxevVqqdZ+/fXX0tGt+hR3gVMnJycMGDAAX331FebMmYMNGzbAxsZG61evRdWuXRtJSUkoLCwstpnu6uoKmUyG77//Xmp4PEnXNKKKcvDgQRQUFEj7YaX5HK1rvzIjIwONGzcGAJw7dw4///wzYmJiEBERIcXouqCkmiEXI1ZTf7lZ9KKQRZuf+uZvzN/pzp078eKLL8LCwkKa9vvvv0u/1nnySN4nHTlyBH379i12DPrGp8+IESMwbtw4XLx4EX/99RfS09M1vgQsj33hivS0+9S1a9fGjRs39C7DxcUFp06dghBCY91nZmbi0aNH0hiMVdJrU1F9K/WFSePj43U+/uTR9ZWFjXQiIxQUFGDjxo1o1KgR1q1bp/X4gQMHsHjxYhw+fBjdu3fH9u3bcfjwYfTp00eKiYuL03iOj48PmjRpgp9//lm6CAIRUXVib2+P9u3bY8+ePfj000+lozvu37+vcVV5Y5XFkY5q6hrdsGFDrdMY6Ft+9+7dUatWLRw5cgQ//fQT/Pz8ih2XTCaDEELrQ9G6deu0jgwyVFBQECwsLLBq1apim/hdu3ZFrVq1cOHCBUyYMKFUyyGi6qdTp06Qy+XYtm2bxofqkydP4urVq6VupBt7JFnHjh3h6OiIpUuXIiMjA4GBgQAeH6m+cOFCbN++HS1atND7a6Ky1rRpU3zwwQfYuXMnfvzxRwBAcHAwLC0t8X//939PfSqIESNGYPv27Th06BBiY2Px0ksvoVatWnqf06dPH2zduhUxMTHFnt4lNDQUCxYswN9//23wto6oIly7dg1Tp06FQqHA2LFjAZTuc/TmzZs1/v6Sk5Nx9epV6aLv6sZk0X2xNWvWGDXeJ/f1bG1tpenu7u6wsbHBL7/8ohG/d+9eg+dt6N/p9evXcebMGXzyySca09Vf+K1du1b6AkHt4cOHGDBgAL788kuNRnpZefXVVzF58mTExMTgr7/+Qt26dREUFCQ9Xh77wmX5eaAkT7tP3adPH3z00Uf45ptvij2VTs+ePbF9+3bs2bMHL730kjT9q6++kh4vjZJem4rqW4WGhiIuLg4FBQVaF8gtrbJ+D7CRTmSEw4cP4+bNm1i4cKHOIxJ9fX2xYsUKrF+/HrGxsViyZAmGDRuGOXPmoHHjxjh8+DCOHDkCABpHgqxZswZ9+vRBcHAwhg8fjrp16+Lu3bu4ePEifvzxR+zYsaOiUiQiqhQff/wxQkJCEBwcjLfffhsFBQVYtGgRatasWeojUFq2bAkAWLZsGSIiImBlZQUfH58Sj2RITU2FQqGASqXCzZs3cezYMWzatAlubm7Yv3+/xnnci/roo49w48YN9OzZE/Xq1UN2djaWLVsGKysrdO/eHQDQqFEj2NraYvPmzWjevDlq1qwJT09PeHp64oUXXsCiRYvg6uqKhg0b4sSJE1i/fn2JDZLiNGzYEO+//z4++eQTPHz4EK+++ioUCgUuXLiAf/75B7Nnz0bNmjWxfPlyRERE4O7duxg0aBDc3Nxw+/Zt/Pzzz7h9+zZWrVpVquUTkflydnbG5MmTMX/+fDg5OeGll17CjRs3MHv2bNSpU0fvKUT0admyJXbt2oVVq1ahXbt2qFGjht5ThllYWKB79+7Yv38/vL290ahRIwCPGxpyuRzHjh3DpEmTSjUWQ/3yyy+YMGECXnnlFTRp0gTW1tb45ptv8Msvv0hHVTZs2BAff/wxZs6cib/++gu9e/eGk5MTbt26hdOnT8Pe3h6zZ882aHlBQUGoV68exo0bh4yMjBJP6wI8bpJs2LABb775Ji5duoSAgAAUFhbi1KlTaN68OYYOHYquXbtizJgxGDFiBM6ePYsXXngB9vb2SE9PR1JSElq2bIm33nrrqdYVUUnOnTsnnRc5MzMT33//PTZs2AALCwvs3r1b+rUdYPzn6LNnz+KNN97AK6+8guvXr2PmzJmoW7eudGqKZs2aoVGjRpg+fTqEEHB2dsb+/fuRmJhoVA7qfdCFCxeiT58+sLCwQKtWrWBtbY1hw4bhyy+/RKNGjdC6dWucPn0aW7ZsMXjehv6d7ty5E7Vq1UJAQID03EePHuGrr75C8+bNpS8PiurXrx/27duH27dva6zrslCrVi289NJLiImJQXZ2NqZOnaqxrXB0dCzzfWH1tSO++OILODg4wMbGBt7e3jpPCfK0nnafOjIyEtu2bcOAAQMwffp0dOzYEQ8fPsSJEycQGhqKgIAAvP766/j8888RERGBK1euoGXLlkhKSsK8efPQt2/fUp/GrKTXBqiYvtXQoUOxefNm9O3bF2+//TY6duwIKysr3LhxA8ePH8eAAQM0vkAwRFm/B9hIJzLC+vXrYW1tXezOqqurK1566SV8/fXXuH//Pr755htERkZi2rRpkMlkCAoKwsqVK9G3b1+NDUFAQABOnz6NuXPnIjIyEllZWXBxcUGLFi14NAgRVQu9e/fGzp078dFHH2HIkCHw8PDAuHHjcPPmTWzatKlU8/T398eMGTOwceNGrF27FoWFhTh+/HiJp2ZRXyRaLpfD2dkZLVu2xMKFCzFixIgSm/CdOnXC2bNn8d577+H27duoVasW2rdvj2+++QbPPvssgMfnvf3yyy8xe/ZsBAUFQaVSYdasWYiKisKWLVvw9ttvY9q0aXj06BG6du2KxMREhISElGodAI+/pGjSpAmWL1+O1157DZaWlmjSpIlGY2nYsGGoX78+oqOjMXbsWOTm5sLNzQ1t2rSRLl5ERFTU3LlzYW9vj9WrV2PDhg1o1qwZVq1ahZkzZ5a66fH222/j/PnzeP/995GTkwMhRIkXe+7Vqxf279+v0UCQy+Xo1q0bEhMTy/X86MDjcyw3atQIK1euxPXr1yGTyfDMM89g8eLFmDhxohQ3Y8YMtGjRAsuWLcPWrVuhVCrh4eGBDh064M033zR4eTVq1MDrr7+OefPmwcvLy6AjEC0tLXHo0CHMnz8fW7duxdKlS+Hg4IDWrVtL2z3gcaOkc+fOWLNmDVauXInCwkJ4enqia9eu6Nixo3ErhqgU1J+1ra2tUatWLTRv3hzvvfce3njjDa3GrrGfo9evX49NmzZh6NChUCqVCAgIwLJly6TzQFtZWWH//v14++23MXbsWFhaWqJXr144evRosadB0SUsLAw//PADVq5ciY8//hhCCFy+fBkNGzbE4sWLAQDR0dG4f/8+evTogQMHDhj1Kx5D/k537typdSHQgwcPIiMjQ+O0KUWNGTMGu3btwqZNmzB58mSDx2SoESNGSNcO0rWPWdb7wt7e3li6dCmWLVsGf39/FBQUYMOGDeW2f/s0+9QODg5ISkpCVFQUvvjiC8yePRtOTk7o0KEDxowZA+Dx6YGOHz+OmTNnYtGiRbh9+zbq1q2LqVOnSqc2K62SXpuK6FtZWFhg3759WLZsGTZt2oT58+fD0tIS9erVQ/fu3aUvqYxR1u8BmShpr4SIytS8efPwwQcf4Nq1ayVeSIKIqDpTqVRo06YN6tati4SEhMoeDhERGeDy5cto1qwZZs2ahffff7+yh0NEhJiYGIwYMQJnzpzR+wsXc5GRkYG6detiz5496NevX2UPh8is8Ih0onK0YsUKAI9/IqZSqfDNN9/gf//7H4YNG8YmOhFREaNGjUJgYCDq1KmDjIwMrF69GhcvXsSyZcsqe2hERKTDzz//jK1bt6JLly5wdHTEpUuXEB0dDUdHR4waNaqyh0dEVC15eHiU+pziRKQfG+lE5cjOzg5LlizBlStXoFQqUb9+fbz33nv44IMPKntoRERVTm5uLqZOnYrbt2/DysoKzz33HA4dOlTuP8knIqLSsbe3x9mzZ7F+/XpkZ2dDoVDA398fc+fOhbu7e2UPj4iIiKhM8dQuRERERERERERERER6lO5S6kRERERERERERERE1QQb6UREREREREREREREerCRTkRERERERERERESkBy82WoLCwkLcvHkTDg4OkMlklT0cIqrmhBDIzc2Fp6cnatTgd6GGYi0noqqG9dx4rOVEVNWwlpcO6zkRVSXG1HI20ktw8+ZNeHl5VfYwiIg0XL9+HfXq1avsYZgM1nIiqqpYzw3HWk5EVRVruXFYz4moKjKklrORXgIHBwcAj1emo6NjJY+m/KhUKiQkJCAoKAhWVlaVPZxKx/WhietDW2Wtk3v37sHLy0uqTWQYY2u5ub7nmZfpMMecAOb1JNZz45V2v9wc33fMyXSYY17M6T+s5aVTmnrO953pMMe8mJPpKO/9cjbSS6D+mZGjo6PZN9Lt7Ozg6OhoVn9ApcX1oYnrQ1tlrxP+BNI4xtbyyn59ywvzMh3mmBPAvHRhPTdcaffLzfF9x5xMhznmxZy0sZYbpzT1nO8702GOeTEn01He++U8iRcREWmZP38+OnToAAcHB7i5ueHFF1/EpUuXNGKEEIiKioKnpydsbW3h7++P8+fPa8QolUpMnDgRrq6usLe3R//+/XHjxg2NmKysLISHh0OhUEChUCA8PBzZ2dkaMdeuXUO/fv1gb28PV1dXTJo0Cfn5+eWSOxERERERERFRUWykExGRlhMnTmD8+PE4efIkEhMT8ejRIwQFBSEvL0+KiY6OxmeffYYVK1bgzJkz8PDwQGBgIHJzc6WYyMhI7N69G3FxcUhKSsL9+/cRGhqKgoICKSYsLAxpaWmIj49HfHw80tLSEB4eLj1eUFCAkJAQ5OXlISkpCXFxcdi5cyemTJlSMSuDiIiIiIiIiKo9ntqFiIi0xMfHa9zfsGED3NzckJqaihdeeAFCCCxduhQzZ87EwIEDAQAbN26Eu7s7tmzZgrFjxyInJwfr16/Hpk2b0KtXLwBAbGwsvLy8cPToUQQHB+PixYuIj4/HyZMn0alTJwDA2rVr4efnh0uXLsHHxwcJCQm4cOECrl+/Dk9PTwDA4sWLMXz4cMydO9esT7tFRERERERERFUDG+lERFSinJwcAICzszMA4PLly8jIyEBQUJAUI5fL0b17dyQnJ2Ps2LFITU2FSqXSiPH09ISvry+Sk5MRHByMlJQUKBQKqYkOAJ07d4ZCoUBycjJ8fHyQkpICX19fqYkOAMHBwVAqlUhNTUVAQIDWeJVKJZRKpXT/3r17AB6fL02lUpWYrzrGkFhTwrxMhznmBDAvXc8hIiIiIiLTwEY6VXsNpx/Umia3EIjuCPhGHYGyQPtiA1cWhFTE0IiqBCEEJk+ejG7dusHX1xcAkJGRAQBwd3fXiHV3d8fVq1elGGtrazg5OWnFqJ+fkZEBNzc3rWW6ublpxBRdjpOTE6ytraWYoubPn4/Zs2drTU9ISICdnV2JOaslJiYaHGtKmJfpMMecAOYFAA8ePCjHkRCZruL2v/UxhX1zY/MyhZyIiMj0met2t7yUeSP9u+++w6JFi5Camor09HTs3r0bL774ovS4EAKzZ8/GF198gaysLHTq1Amff/45nn32WSlGqVRi6tSp2Lp1Kx4+fIiePXti5cqVqFevnhSTlZWFSZMmYd++fQCA/v37Y/ny5ahVq5YUc+3aNYwfPx7ffPMNbG1tERYWhk8//RTW1tZlnTYRkdmaMGECfvnlFyQlJWk9VvSq1kKIEq90XTRGV3xpYp40Y8YMTJ48Wbp/7949eHl5ISgoyKBTwahUKiQmJiIwMLBUVzD3jTpi9HPORQUb/RxjPW1eVZU55mWOOQHM60nqX8oQEREREZFpKPNGel5eHlq3bo0RI0bg5Zdf1npcfXG6mJgYNG3aFHPmzEFgYCAuXboEBwcHAI8vTrd//37ExcXBxcUFU6ZMQWhoKFJTU2FhYQHg8cXpbty4IZ3Hd8yYMQgPD8f+/fsB/Hdxutq1ayMpKQl37txBREQEhBBYvnx5WadNRGSWJk6ciH379uG7777T+DLTw8MDwOOjxevUqSNNz8zMlI4e9/DwQH5+PrKysjSOSs/MzESXLl2kmFu3bmkt9/bt2xrzOXXqlMbjWVlZUKlUWkeqq8nlcsjlcq3pVlZWRjXvjI1XM/YbffWyKkpp86rqzDEvc8wJYF7qWCIiIiIiMh01ynqGffr0wZw5c6SLzz2p6MXpfH19sXHjRjx48ABbtmwBAOnidIsXL0avXr3Qtm1bxMbG4tdff8XRo0cBQLo43bp16+Dn5wc/Pz+sXbsWBw4cwKVLlwBAujhdbGws2rZti169emHx4sVYu3YtjwAiIiqBEAITJkzArl278M0338Db21vjcW9vb3h4eGicxiA/Px8nTpyQmuTt2rWDlZWVRkx6ejrOnTsnxfj5+SEnJwenT5+WYk6dOoWcnByNmHPnziE9PV2KSUhIgFwuR7t27co+eSIiIiIiIiKiIsq8ka5PSRenA1DixekAlHhxOnWMvovTERFR8caPH4/Y2Fhs2bIFDg4OyMjIQEZGBh4+fAjg8alWIiMjMW/ePOzevRvnzp3D8OHDYWdnh7CwMACAQqHAqFGjMGXKFBw7dgw//fQThg0bhpYtW6JXr14AgObNm6N3794YPXo0Tp48iZMnT2L06NEIDQ2Fj48PACAoKAgtWrRAeHg4fvrpJxw7dgxTp07F6NGjDTpNCxERERERERHR06rQi41W9YvTAY/Pz65UKqX76qPXVSoVVCqVQXmaInVu5pxjceQWQntaDaHxb1HVbT1V5/dHcSprnVTU8latWgUA8Pf315i+YcMGDB8+HAAwbdo0PHz4EOPGjZOueZGQkCCdpgsAlixZAktLSwwePFi65kVMTIx0mi4A2Lx5MyZNmiR9gdq/f3+sWLFCetzCwgIHDx7EuHHj0LVrV41rXhARERERERERVYQKbaSrVdWL0wHA/PnzMXv2bK3pCQkJsLOz0ztGc/DkKRiqi+iOxT/2SftCndMPHTpUTqOp2qrj+6MkFb1OHjx4UCHLEUL3l0hPkslkiIqKQlRUVLExNjY2WL58ud5rUzg7OyM2NlbvsurXr48DBw6UOCYiIiIiIiIiovJQoY30qn5xOgCYMWMGJk+eLN2/d+8evLy8EBQUZNanEFCpVEhMTERgYGC1u/iVb9QRrWnyGgKftC/Eh2drQFmo/cXLuajgihhalVGd3x/Fqax1wms8EBERERERERFVvAptpD95cbq2bdsC+O/idAsXLgSgeXG6wYMHA/jv4nTR0dEANC9O17Hj48OJdV2cbu7cuUhPT5ea9oZcnE4ul0Mul2tNt7KyqhYNxOqS55OUBcX/QkFZKNP5eHVbR2rV8f1RkopeJ1z/REREREREREQVr8wb6ffv38eff/4p3b98+TLS0tLg7OyM+vXrSxena9KkCZo0aYJ58+YVe3E6FxcXODs7Y+rUqcVenG7NmjUAgDFjxhR7cbpFixbh7t27vDhdGWg4/aDRz7myIKQcRkJERERERERERERUMcq8kX727FkEBARI99WnSYmIiEBMTAwvTkdEREREREREREREJqXMG+n+/v56L1LHi9MRERERERERERERkSmpUdkDICIiIiIiIiIiIiKqythIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKjzC82SkRERERERERERERUWg2nHzT6OXILgeiO5TCY/4+NdKIKVJoicGVBSDmMhIiIiIiIiIiIiAzFU7sQEREREREREREREenBRjoRERERERERERERkR48tQuZldKcOoWIiIiIiIiIiIhIHx6RTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERFXU/Pnz0aFDBzg4OMDNzQ0vvvgiLl26pBEjhEBUVBQ8PT1ha2sLf39/nD9/XiNGqVRi4sSJcHV1hb29Pfr3748bN25oxGRlZSE8PBwKhQIKhQLh4eHIzs7WiLl27Rr69esHe3t7uLq6YtKkScjPzy+X3ImIqhI20omIiIiIzBAbL0RE5uHEiRMYP348Tp48icTERDx69AhBQUHIy8uTYqKjo/HZZ59hxYoVOHPmDDw8PBAYGIjc3FwpJjIyErt370ZcXBySkpJw//59hIaGoqCgQIoJCwtDWloa4uPjER8fj7S0NISHh0uPFxQUICQkBHl5eUhKSkJcXBx27tyJKVOmVMzKICKqRGykExERERGZITZeiIjMQ3x8PIYPH45nn30WrVu3xoYNG3Dt2jWkpqYCePyl6NKlSzFz5kwMHDgQvr6+2LhxIx48eIAtW7YAAHJycrB+/XosXrwYvXr1Qtu2bREbG4tff/0VR48eBQBcvHgR8fHxWLduHfz8/ODn54e1a9fiwIED0hexCQkJuHDhAmJjY9G2bVv06tULixcvxtq1a3Hv3r3KWUFERBXEsrIHQEREREREZS8+Pl7j/oYNG+Dm5obU1FS88MILWo0XANi4cSPc3d2xZcsWjB07Vmq8bNq0Cb169QIAxMbGwsvLC0ePHkVwcLDUeDl58iQ6deoEAFi7di38/Pxw6dIl+Pj4SI2X69evw9PTEwCwePFiDB8+HHPnzoWjo2MFrhkiItOWk5MDAHB2dgYAXL58GRkZGQgKCpJi5HI5unfvjuTkZIwdOxapqalQqVQaMZ6envD19UVycjKCg4ORkpIChUIh1XIA6Ny5MxQKBZKTk+Hj44OUlBT4+vpKtRwAgoODoVQqkZqaioCAAK3xKpVKKJVK6b664a5SqaBSqQzKWR1naLwpMMecAPPMy5xzktcQpX5ueZNbGD82dT7GjNGYWDbSiYiIiIiqAVNrvBARkTYhBCZPnoxu3brB19cXAJCRkQEAcHd314h1d3fH1atXpRhra2s4OTlpxaifn5GRATc3N61lurm5acQUXY6TkxOsra2lmKLmz5+P2bNna01PSEiAnZ1diTk/KTEx0ah4U2COOQHmmZc55vRJ+0Kjn3Po0KFyGIm26I6lf64xr9WDBw8MjmUjnaiKazj9oNHPubIgpBxGQkRERKbKFBsvZXEEozr+yX/NgTnnVJWPjCuN0uZlCjlV5TEaq7Q5VcY6mDBhAn755RckJSVpPSaTyTTuCyG0phVVNEZXfGlinjRjxgxMnjxZun/v3j14eXkhKCjI4F8kqVQqJCYmIjAwEFZWVgY9p6ozx5wA88zLnHP68GwNKAv114mizkUFl9OoNPlGHTH6OfIaAp+0LzTqtTLmtFRspBMREVUBpfnSDOAXZ0RkGFNsvJTlEYyAeR5FZo45VeUj456GsXmZQk7m+P4zNidjjmIsCxMnTsS+ffvw3XffoV69etJ0Dw8PAI+/tKxTp440PTMzU/oS08PDA/n5+cjKytL4cjQzMxNdunSRYm7duqW13Nu3b2vM59SpUxqPZ2VlQaVSaX1hqiaXyyGXy7WmW1lZGd2ULM1zqjpzzAkwz7zMMSdloQzKAuMa6RW1Dowd15OMea2MyYeNdCIiIiIiM2aqjZeyOIIRMO+jyMwxp6p8ZFxplDYv5lSxSvs3VVEX1xRCYOLEidi9eze+/fZbeHt7azzu7e0NDw8PJCYmom3btgCA/Px8nDhxAgsXLgQAtGvXDlZWVkhMTMTgwYMBAOnp6Th37hyio6MBAH5+fsjJycHp06fRsePjcyqcOnUKOTk5Us338/PD3LlzkZ6eLm07EhISIJfL0a5du/JfGURElYiNdCIiIiIiM2TqjZeyPILxaZ5XlZljTlX5yLinYWxezKlyGPs3VVE5jR8/Hlu2bMHevXvh4OAgnRJLoVDA1tYWMpkMkZGRmDdvHpo0aYImTZpg3rx5sLOzQ1hYmBQ7atQoTJkyBS4uLnB2dsbUqVPRsmVL6WLSzZs3R+/evTF69GisWbMGADBmzBiEhobCx8cHABAUFIQWLVogPDwcixYtwt27dzF16lSMHj2aF44mIrPHRjqVO57jm4iIiKjisfFCRGQeVq1aBQDw9/fXmL5hwwYMHz4cADBt2jQ8fPgQ48aNQ1ZWFjp16oSEhAQ4ODhI8UuWLIGlpSUGDx6Mhw8fomfPnoiJiYGFhYUUs3nzZkyaNEm6yHT//v2xYsUK6XELCwscPHgQ48aNQ9euXWFra4uwsDB8+umn5ZQ9EVHVwUY6EREREZEZYuOFiMg8CFHyxWplMhmioqIQFRVVbIyNjQ2WL1+O5cuXFxvj7OyM2NhYvcuqX78+Dhw4UOKYiIjMDRvpRERERERmiI0XIiIiIqKyU6OyB0BEREREREREREREVJWxkU5EREREREREREREpAdP7UJkhkpzgVeAF3klIiIiIiIiIiLShY10IiIiIiIiIiIiIj18o45AWSAzOJ4HK5ofntqFiIiIiIiIiIiIiEgPHpFORESkR2lPlURERFTeeGQcERERUcVhI52oFNhYIyIiIiIiIiIiqj7YSCciIiIiIiIiIqIyw19NkTniOdKJiIiIiIiIiIiIiPRgI52IiIiIiIiIiIiISA+e2oWqJJ6DnIiIiIiIiIiIiKoKHpFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkh2VlD4AqR8PpBzXuyy0EojsCvlFHoCyQVdKoiIiIiIiIiIiqj9L0Ya4sCCmn0RCRPmykExERmbCiX4zqo/7SlIiIiIiIiIiMw0Y6EUmKa8jp+8UCvwknIiIiIiIiIiJzx3OkExERERERERERERHpwUY6EREREREREREREZEebKQTEREREREREREREenBRjoRERERERERERERkR5spBMRERERERERERER6cFGOhERERERERERERGRHmykExGRTt999x369esHT09PyGQy7NmzR+NxIQSioqLg6ekJW1tb+Pv74/z58xoxSqUSEydOhKurK+zt7dG/f3/cuHFDIyYrKwvh4eFQKBRQKBQIDw9Hdna2Rsy1a9fQr18/2Nvbw9XVFZMmTUJ+fn55pE1EREREREREpIWNdCIi0ikvLw+tW7fGihUrdD4eHR2Nzz77DCtWrMCZM2fg4eGBwMBA5ObmSjGRkZHYvXs34uLikJSUhPv37yM0NBQFBQVSTFhYGNLS0hAfH4/4+HikpaUhPDxcerygoAAhISHIy8tDUlIS4uLisHPnTkyZMqX8kiciIiIiIiIieoJlZQ+AiIiqpj59+qBPnz46HxNCYOnSpZg5cyYGDhwIANi4cSPc3d2xZcsWjB07Fjk5OVi/fj02bdqEXr16AQBiY2Ph5eWFo0ePIjg4GBcvXkR8fDxOnjyJTp06AQDWrl0LPz8/XLp0CT4+PkhISMCFCxdw/fp1eHp6AgAWL16M4cOHY+7cuXB0dKyAtUFERERERERE1VmlHJEeFRUFmUymcfPw8JAer8jTBRARkfEuX76MjIwMBAUFSdPkcjm6d++O5ORkAEBqaipUKpVGjKenJ3x9faWYlJQUKBQKqYkOAJ07d4ZCodCI8fX1lZroABAcHAylUonU1NRyzZOIiIiIiIiICKjEI9KfffZZHD16VLpvYWEh/V99uoCYmBg0bdoUc+bMQWBgIC5dugQHBwcAj08XsH//fsTFxcHFxQVTpkxBaGgoUlNTpXmFhYXhxo0biI+PBwCMGTMG4eHh2L9/fwVmSkRkfjIyMgAA7u7uGtPd3d1x9epVKcba2hpOTk5aMernZ2RkwM3NTWv+bm5uGjFFl+Pk5ARra2sppiilUgmlUindv3fvHgBApVJBpVKVmJ86RqVSQW4hSow3FfIaj3MxZB2YkidfL3NhjjkBzEvXc4iIiIiIyDRUWiPd0tJS4yh0tYo8XQARET0dmUymcV8IoTWtqKIxuuJLE/Ok+fPnY/bs2VrTExISYGdnp3d8T0pMTER0R4PDTUZiYmJlD6FcmGNe5pgTwLwA4MGDB+U4EiIiIiIiKmuV1kj/448/4OnpCblcjk6dOmHevHl45plnSjxdwNixY0s8XUBwcHCJpwsorpH+tEcxmoqiR1iqj1JU/1vdcX1o0rc+zOnvwhiVdVRlVVnf6i9CMzIyUKdOHWl6ZmamdPS4h4cH8vPzkZWVpXFUemZmJrp06SLF3Lp1S2v+t2/f1pjPqVOnNB7PysqCSqXSOlJdbcaMGZg8ebJ0/969e/Dy8kJQUJBB51RXqVRITExEYGAg2s79psR4UyGvIfBJ+0IEBgbCysqqsodTZp58vcwlL3PMCWBeT1LvYxIRERERkWmolEZ6p06d8NVXX6Fp06a4desW5syZgy5duuD8+fMVeroAXcrqKMaqrrgjLD9pX1ixA6niuD406Vofhw4dqoSRVB0VfVRlVTmC0dvbGx4eHkhMTETbtm0BAPn5+Thx4gQWLlwIAGjXrh2srKyQmJiIwYMHAwDS09Nx7tw5REdHAwD8/PyQk5OD06dPo2PHx4Xp1KlTyMnJkZrtfn5+mDt3LtLT06WmfUJCAuRyOdq1a6dzfHK5HHK5XGu6lZWVUc07KysrKAv0H2FvioxdD6bCHPMyx5wA5qWOJSIiIiIi01EpjfQ+ffpI/2/ZsiX8/PzQqFEjbNy4EZ07dwZQcacLKOppj2I0Fb5RRzTuq49S/PBsDSgLza9pZCyuD0361se5qOBKGlXlqqyjKivyCMb79+/jzz//lO5fvnwZaWlpcHZ2Rv369REZGYl58+ahSZMmaNKkCebNmwc7OzuEhYUBABQKBUaNGoUpU6bAxcUFzs7OmDp1Klq2bCmdlqt58+bo3bs3Ro8ejTVr1gB4fD2L0NBQ6ZdDQUFBaNGiBcLDw7Fo0SLcvXsXU6dOxejRo82qLhMRERERERFR1VVpp3Z5kr29PVq2bIk//vgDL774IoCKOV2ALmV1FGNVV9wRlspCmVkefVlaXB+adK0Pc/q7KI2Krg0VuayzZ88iICBAuq/+kjEiIgIxMTGYNm0aHj58iHHjxiErKwudOnVCQkKCdFFoAFiyZAksLS0xePBgPHz4ED179kRMTIzGBaY3b96MSZMmSafr6t+/P1asWCE9bmFhgYMHD2LcuHHo2rUrbG1tERYWhk8//bS8VwEREREREREREYAq0khXKpW4ePEinn/++Qo9XQARERXP398fQhR/nQCZTIaoqChERUUVG2NjY4Ply5dj+fLlxcY4OzsjNjZW71jq16+PAwcOlDhmIiIiIiIiIqLyUCmN9KlTp6Jfv36oX78+MjMzMWfOHNy7dw8RERGQyWQVdroAIiIiIiIiIiIiIqKSVEoj/caNG3j11Vfxzz//oHbt2ujcuTNOnjyJBg0aAECFnS6AiIiIiIiIiMxLw+kHjYqXWwhEdyynwRARkdmolEZ6XFyc3scr8nQBRERERERERERERET61KjsARARERERERERkW7fffcd+vXrB09PT8hkMuzZs0fjcSEEoqKi4OnpCVtbW/j7++P8+fMaMUqlEhMnToSrqyvs7e3Rv39/3LhxQyMmKysL4eHhUCgUUCgUCA8PR3Z2tkbMtWvX0K9fP9jb28PV1RWTJk1Cfn5+eaRNRFTlsJFORERERGSm2HwhIjJ9eXl5aN26dbGnqo2OjsZnn32GFStW4MyZM/Dw8EBgYCByc3OlmMjISOzevRtxcXFISkrC/fv3ERoaioKCAikmLCwMaWlpiI+PR3x8PNLS0hAeHi49XlBQgJCQEOTl5SEpKQlxcXHYuXMnpkyZUn7JExFVIWykExERERGZKTZfiIhMX58+fTBnzhwMHDhQ6zEhBJYuXYqZM2di4MCB8PX1xcaNG/HgwQNs2bIFAJCTk4P169dj8eLF6NWrF9q2bYvY2Fj8+uuvOHr0KADg4sWLiI+Px7p16+Dn5wc/Pz+sXbsWBw4cwKVLlwAACQkJuHDhAmJjY9G2bVv06tULixcvxtq1a3Hv3r2KWyFERJWEjXQiIiIiIjPF5gsRkXm7fPkyMjIyEBQUJE2Ty+Xo3r07kpOTAQCpqalQqVQaMZ6envD19ZViUlJSoFAo0KlTJymmc+fOUCgUGjG+vr7w9PSUYoKDg6FUKpGamlqueRIRVQWVcrFRIiIiIiKqXCU1X8aOHVti8yU4OLjE5ouPj0+JzZeAgACt8SmVSiiVSum+uuGuUqmgUqkMzlMda8xzqjp1LvIaolTPq4pKm9OTz62K+FppP68iyC2MG5s6F2PHWBVep4yMDACAu7u7xnR3d3dcvXpVirG2toaTk5NWjPr5GRkZcHNz05q/m5ubRkzR5Tg5OcHa2lqK0aUs6jlrue7nVkWmUCOMxZx0P7e8GVvLgdLVc2Ni2UgnIiIiIqqGqnrzZf78+Zg9e7bW9ISEBNjZ2RmSoobExESjn1PVfdK+0Kj4Q4cOldNIyo6xOQHmmRdzejrRHUv3PGPrxIMHD0q3oHIgk8k07gshtKYVVTRGV3xpYooqy3rOWv4Ya0TlYE6PVVRepa3lgHG1wphazkY6EREREVE1VlWbLzNmzMDkyZOl+/fu3YOXlxeCgoLg6Oiod3xPUqlUSExMRGBgIKysrAx+XlWmzunDszWgLNT/Wj3pXFRwOY7q6ZQ2J8A882JOT8c36ohR8fIaAp+0LzS6TlSFU1N5eHgAePyFZZ06daTpmZmZ0heYHh4eyM/PR1ZWlsYXo5mZmejSpYsUc+vWLa353759W2M+p06d0ng8KysLKpVK68vSJ5VFPWct18QaUbGYk6aKysvYWg6Urp4bU8vZSCciIiIiqoaqevNFLpdDLpdrTbeysipVE6W0z6vKlIUyKAsM//BrCvkbmxNgnnkxp6dj7HtIzdg6URVeJ29vb3h4eCAxMRFt27YFAOTn5+PEiRNYuHAhAKBdu3awsrJCYmIiBg8eDABIT0/HuXPnEB0dDQDw8/NDTk4OTp8+jY4dHx8GeurUKeTk5Ej13s/PD3PnzkV6erq03UhISIBcLke7du2KHWNZ1nPW8sdMYR1U5RpRWszpsYrKq7S1HDCuVhiTDxvpRERE1Yxv1BGjd0quLAgpp9EQUWUxheYLEREB9+/fx59//indv3z5MtLS0uDs7Iz69esjMjIS8+bNQ5MmTdCkSRPMmzcPdnZ2CAsLAwAoFAqMGjUKU6ZMgYuLC5ydnTF16lS0bNkSvXr1AgA0b94cvXv3xujRo7FmzRoAwJgxYxAaGgofHx8AQFBQEFq0aIHw8HAsWrQId+/exdSpUzF69GijfilERGSq2EgnIiIiIjJTbL4QEZm+s2fPalyUWX2alIiICMTExGDatGl4+PAhxo0bh6ysLHTq1AkJCQlwcHCQnrNkyRJYWlpi8ODBePjwIXr27ImYmBhYWFhIMZs3b8akSZOkC0z3798fK1askB63sLDAwYMHMW7cOHTt2hW2trYICwvDp59+Wt6rgIioSmAj3Qw0nH6wsodARERERFUQmy9ERKbP398fQohiH5fJZIiKikJUVFSxMTY2Nli+fDmWL19ebIyzszNiY2P1jqV+/fo4cOBAiWMmIjJHbKQTEREREZkpNl+IiIiIiMpGjcoeABERERERERERERFRVcZGOhERERERERERERGRHmykExERERERERERERHpwUY6EREREREREREREZEebKQTEREREREREREREenBRjoRERERERERERERkR6WlT0AIjJtDacfNPo5VxaElMNIiKgqYo0gIiIiIiIic8Aj0omIiIiIiIiIiIiI9GAjnYiIiIiIiIiIiIhIDzbSiYiIiIiIiIiIiIj0YCOdiIiIiIiIiIiIiEgPXmy0iinNRdmITE1p3+e8ACEREREREREREVUGNtLLCRviREREREREREREROaBp3YhIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oPnSCciIqIS8dofREREREREVJ2xkU5ERETVVmm+ILiyIKQcRkJEREREJfGNOgJlgczgeO63EVFZ4qldiIiIiIiIiIiIiIj04BHpREREVKUYe5S43EIgumM5DYaIiIiIiIgIPCKdiIiIiIiIiIiIiEgvNtKJiIiIiIiIiIiIiPTgqV2IiIjILBh78anS4gVKiYiIiIiIqh8ekU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHpYVvYAiIiIiIiIyptv1BEoC2QGx19ZEFKOoyEiIiIiU8NGOhEREVE5azj9oFHxcguB6I7lNJgyZK55ERERERERFcVGOhEREVEVZewRtERERERERFQ+2EgnIpNh7JGPAH+WTURERERERERET48XGyUiIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0qNaNNJXrlwJb29v2NjYoF27dvj+++8re0hERFQKrOdERKaPtZyIyPSxlhNRdWRZ2QMob9u2bUNkZCRWrlyJrl27Ys2aNejTpw8uXLiA+vXrV/bwiKicNZx+0OjnXFkQUg4joafFek5EZPpYy4mITB9rORFVV2bfSP/ss88watQovPHGGwCApUuX4siRI1i1ahXmz59fyaMjoqrIkOa73EIguiPgG3UEygIZADbgyxvrORGR6WMtJyIyfazlRFRdmXUjPT8/H6mpqZg+fbrG9KCgICQnJ+t8jlKphFKplO7n5OQAAO7evQuVSmXwsi0f5ZVixJXHslDgwYNCWKpqoKBQVtnDqXRcH5q4PrTpWid37twp9+Xm5uYCAIQQ5b6sqsTYev60tVylUuHBgwe4c+eOydVzfcz1b9kc8zLHnID/8rpz5w6srKwqezhl5smaYWhe1bGeV3QtV1O/Psb+PVXEdr20mJMmc8yLOT0dY/ffSrt9Yi3/T3n3WUzhfWcs1j1NzKlimcL7rzSfxUtTz42q5cKM/f333wKA+OGHHzSmz507VzRt2lTnc2bNmiUA8MYbb7xV6dv169crooxWGcbWc9Zy3njjzVRu1ames5bzxhtv5npjLWefhTfeeDP9myG13KyPSFeTyTS/WRFCaE1TmzFjBiZPnizdLywsxN27d+Hi4lLsc8zBvXv34OXlhevXr8PR0bGyh1PpuD40cX1oq6x1IoRAbm4uPD09K2yZVYmh9fxpa7m5vueZl+kwx5wA5vWk6lzPK6qWq5nj+445mQ5zzIs5/Ye1/D/l3Wfh+850mGNezMl0lPd+uVk30l1dXWFhYYGMjAyN6ZmZmXB3d9f5HLlcDrlcrjGtVq1a5TXEKsfR0dGs/oCeFteHJq4PbZWxThQKRYUuryowtp6XVS031/c88zId5pgTwLzUqls9r6xarmaO7zvmZDrMMS/m9Bhr+WMV1Wfh+850mGNezMl0lNd+eY3SDsgUWFtbo127dkhMTNSYnpiYiC5dulTSqIiIyFis50REpo+1nIjI9LGWE1F1ZtZHpAPA5MmTER4ejvbt28PPzw9ffPEFrl27hjfffLOyh0ZEREZgPSciMn2s5UREpo+1nIiqK7NvpA8ZMgR37tzBxx9/jPT0dPj6+uLQoUNo0KBBZQ+tSpHL5Zg1a5bWz62qK64PTVwf2rhOKl5F1nNzfX2Zl+kwx5wA5kWVs29ujq8PczId5pgXcyLW8rJhjjkB5pkXczId5Z2XTAghymXORERERERERERERERmwKzPkU5ERERERERERERE9LTYSCciIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg430amT+/Pno0KEDHBwc4ObmhhdffBGXLl3SiBFCICoqCp6enrC1tYW/vz/Onz9fSSOuWPPnz4dMJkNkZKQ0rTquj7///hvDhg2Di4sL7Ozs0KZNG6SmpkqPV6d18ujRI3zwwQfw9vaGra0tnnnmGXz88ccoLCyUYqrT+qguVq5cCW9vb9jY2KBdu3b4/vvvK3tIGr777jv069cPnp6ekMlk2LNnj8bjhrwnlUolJk6cCFdXV9jb26N///64ceOGRkxWVhbCw8OhUCigUCgQHh6O7OzscsmprLZPVS2vVatWoVWrVnB0dISjoyP8/Pxw+PBhk86pqNJuO6taXlFRUZDJZBo3Dw8Pk86JHqvqNd1YJW0DTJEh2wBTU1L9Nwe66r8pKqn+U9VgbrUcML96bo61HGA9NxUVWcvZSK9GTpw4gfHjx+PkyZNITEzEo0ePEBQUhLy8PCkmOjoan332GVasWIEzZ87Aw8MDgYGByM3NrcSRl78zZ87giy++QKtWrTSmV7f1kZWVha5du8LKygqHDx/GhQsXsHjxYtSqVUuKqU7rZOHChVi9ejVWrFiBixcvIjo6GosWLcLy5culmOq0PqqDbdu2ITIyEjNnzsRPP/2E559/Hn369MG1a9cqe2iSvLw8tG7dGitWrND5uCHvycjISOzevRtxcXFISkrC/fv3ERoaioKCAikmLCwMaWlpiI+PR3x8PNLS0hAeHl4uOZXV9qmq5VWvXj0sWLAAZ8+exdmzZ9GjRw8MGDBAasCaYk5PepptZ1XM69lnn0V6erp0+/XXX00+p+rOFGq6sUraBpgiQ7YBpqak+m/qiqv/pkpf/afKZ461HDC/em6OtRxgPTclFVbLBVVbmZmZAoA4ceKEEEKIwsJC4eHhIRYsWCDF/Pvvv0KhUIjVq1dX1jDLXW5urmjSpIlITEwU3bt3F2+//bYQonquj/fee09069at2Mer2zoJCQkRI0eO1Jg2cOBAMWzYMCFE9Vsf1UHHjh3Fm2++qTGtWbNmYvr06ZU0Iv0AiN27d0v3DXlPZmdnCysrKxEXFyfF/P3336JGjRoiPj5eCCHEhQsXBABx8uRJKSYlJUUAEL/99ls5Z1W67ZMp5CWEEE5OTmLdunUmn9PTbDurYl6zZs0SrVu31vmYqeZEplfTjVV0G2Auim4DzIW6/pu64uq/qdJX/6lqMPdaLoR51nNzreVCsJ5XRRVZy3lEejWWk5MDAHB2dgYAXL58GRkZGQgKCpJi5HI5unfvjuTk5EoZY0UYP348QkJC0KtXL43p1XF97Nu3D+3bt8crr7wCNzc3tG3bFmvXrpUer27rpFu3bjh27Bh+//13AMDPP/+MpKQk9O3bF0D1Wx/mLj8/H6mpqRqvJwAEBQWZzOtpyHsyNTUVKpVKI8bT0xO+vr5STEpKChQKBTp16iTFdO7cGQqFokLWRWm2T1U9r4KCAsTFxSEvLw9+fn4mn9PTbDural5//PEHPD094e3tjaFDh+Kvv/4y+ZyqM3Oo6dVV0W2AqSta/01dcfXflBVX/6nysZabLnOr5QDreVVXUbXcslzmSlWeEAKTJ09Gt27d4OvrCwDIyMgAALi7u2vEuru74+rVqxU+xooQFxeHH3/8EWfOnNF6rDquj7/++gurVq3C5MmT8f777+P06dOYNGkS5HI5Xn/99Wq3Tt577z3k5OSgWbNmsLCwQEFBAebOnYtXX30VQPV8j5izf/75BwUFBTpfT/VrXdUZ8p7MyMiAtbU1nJyctGLUz8/IyICbm5vW/N3c3Mp9XZR2+1RV8/r111/h5+eHf//9FzVr1sTu3bvRokUL6cOfKeb0tNvOqphXp06d8NVXX6Fp06a4desW5syZgy5duuD8+fMmm1N1Zw41vTrStQ0wVcXVf1Omr/6bKn3138XFpbKHV+2xlpsmc6rlAOu5KajIWs5GejU1YcIE/PLLL0hKStJ6TCaTadwXQmhNMwfXr1/H22+/jYSEBNjY2BQbV13WBwAUFhaiffv2mDdvHgCgbdu2OH/+PFatWoXXX39diqsu62Tbtm2IjY3Fli1b8OyzzyItLQ2RkZHw9PRERESEFFdd1kd1YQ6vZ2lyKBqjK74i1kVZb58qOy8fHx+kpaUhOzsbO3fuREREBE6cOFHseKp6TuW57azMvPr06SP9v2XLlvDz80OjRo2wceNGdO7cWed4qnpO9Jg51PTqRN82wNQUV/9NtfliaP03Nfrq/+TJkytxZPQk1nLTYk61HGA9NwUVWct5apdqaOLEidi3bx+OHz+OevXqSdPVV7Qt+s1uZmam1jfA5iA1NRWZmZlo164dLC0tYWlpiRMnTuB///sfLC0tpZyry/oAgDp16mhtDJo3by5dyKW6vUfeffddTJ8+HUOHDkXLli0RHh6Od955B/PnzwdQ/daHuXN1dYWFhYVJv56GvCc9PDyQn5+PrKwsvTG3bt3Smv/t27fLdV08zfapquZlbW2Nxo0bo3379pg/fz5at26NZcuWmWxOZbHtrIp5FWVvb4+WLVvijz/+MNnXqrozh5pe3RS3DTBVxdV/U1VS/X/ywsqm7Mn6T5WPtdz0mFstB1jPTVF51nI20qsRIQQmTJiAXbt24ZtvvoG3t7fG497e3vDw8EBiYqI0LT8/HydOnECXLl0qerjlrmfPnvj111+RlpYm3dq3b4/XXnsNaWlpeOaZZ6rV+gCArl274tKlSxrTfv/9dzRo0ABA9XuPPHjwADVqaJZJCwsLFBYWAqh+68PcWVtbo127dhqvJwAkJiaazOtpyHuyXbt2sLKy0ohJT0/HuXPnpBg/Pz/k5OTg9OnTUsypU6eQk5NTLuuiLLZPVTEvXYQQUCqVJptTWWw7q2JeRSmVSly8eBF16tQx2dequjOHml5dlLQNMBfq+m+qSqr/FhYWlT3EMvFk/afKx1puOqpLLQdYz01Budbycr+cKVUZb731llAoFOLbb78V6enp0u3BgwdSzIIFC4RCoRC7du0Sv/76q3j11VdFnTp1xL179ypx5BWn6JWKq9v6OH36tLC0tBRz584Vf/zxh9i8ebOws7MTsbGxUkx1WicRERGibt264sCBA+Ly5cti165dwtXVVUybNk2KqU7rozqIi4sTVlZWYv369eLChQsiMjJS2NvbiytXrlT20CS5ubnip59+Ej/99JMAID777DPx008/iatXrwohDHtPvvnmm6JevXri6NGj4scffxQ9evQQrVu3Fo8ePZJievfuLVq1aiVSUlJESkqKaNmypQgNDS2XnMpq+1TV8poxY4b47rvvxOXLl8Uvv/wi3n//fVGjRg2RkJBgsjnpUpptZ1XLa8qUKeLbb78Vf/31lzh58qQIDQ0VDg4O0t++KeZEplHTjVXSNsAUGbINMDUl1X9zUbT+m6KS6j9VPnOs5UKYXz03x1ouBOu5qajIWs5GejUCQOdtw4YNUkxhYaGYNWuW8PDwEHK5XLzwwgvi119/rbxBV7CixaM6ro/9+/cLX19fIZfLRbNmzcQXX3yh8Xh1Wif37t0Tb7/9tqhfv76wsbERzzzzjJg5c6ZQKpVSTHVaH9XF559/Lho0aCCsra3Fc889J06cOFHZQ9Jw/PhxnbU8IiJCCGHYe/Lhw4diwoQJwtnZWdja2orQ0FBx7do1jZg7d+6I1157TTg4OAgHBwfx2muviaysrHLJqay2T1Utr5EjR0rvpdq1a4uePXtq7HSbYk66lGbbWdXyGjJkiKhTp46wsrISnp6eYuDAgeL8+fMmnRM9VtVrurFK2gaYIkO2AaampPpvLky98SJEyfWfqgZzq+VCmF89N8daLgTruamoyFouE0KIsj/OnYiIiIiIiIiIiIjIPPAc6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkV4NxcTEQCaTFXv79ttvK3uIT+XYsWNo37497O3tIZPJsGfPHr3x169fx4QJE9CoUSPY2NjAyckJ/v7+2Lx5M4QQpR7H8OHD0bBhQ41pDRs2xPDhw0s9z9L69ttvIZPJ8PXXX1f4stXvt7Nnz+qNi4qKgkwmq6BREVFF+eWXXzBq1Cg0atQItra2sLW1RZMmTTB27NgS60JxLly4gKioKFy5cqVMx3rlyhXIZDLExMSU6XxLY968eTq3X+p6burbaiKqWvR9Ppg6dWqljKWsa/zTeJp9eGO3Lbo+QxhKvT/9zz//lOr5RGSaTp48iVdeeQV16tSBtbU1PDw8MGjQIKSkpDzVfIvWvsrcVza1+lZ03XEf3nxYVvYAqPJs2LABzZo105reokWLShhN2RBCYPDgwWjatCn27dsHe3t7+Pj4FBv/ww8/IDQ0FDVr1sS7776LVq1aIScnB9u3b8ewYcOwf/9+bNmyBTVqlM13Trt374ajo2OZzMvcvPHGG+jdu3dlD4OIytCaNWswYcIE+Pj44O2338azzz4LmUyGixcvYuvWrejQoQP+/PNPNGrUyKj5XrhwAbNnz4a/v3+pmw1V3bx58zBo0CC8+OKLGtOfe+45pKSkmPS2moiqLl2fDzw9PStpNNXThx9+iLfffruyh0FEJmL58uWIjIxEx44dER0djQYNGuDatWv4/PPP0a1bNyxbtgwTJkwok2XVqVMHKSkpRu+7E/fhzQkb6dWYr68v2rdvX9nDKFM3b97E3bt38dJLL6Fnz556Y7OzszFw4EAoFAqcOnUK7u7u0mMDBgxAq1atMH36dLRp0wbTp08vk/G1bdu2TOZjjurVq4d69epV9jCIqIz88MMPGDduHEJCQvD111/D2tpaeqxHjx4YP348duzYAVtb20ocpelxdHRE586dK3sYRGSmzPHzgal48OAB7Ozs2KAiIoP98MMPiIyMRN++fbF7925YWv7X4hs6dCheeuklvP3222jbti26du361MuTy+XcD/3/1DXbUNyHNx88tQvp9fnnn+OFF16Am5sb7O3t0bJlS0RHR0OlUmnE/fTTTwgNDYWbmxvkcjk8PT0REhKCGzduSDFCCKxcuRJt2rSBra0tnJycMGjQIPz1118GjSUpKQk9e/aEg4MD7Ozs0KVLFxw8eFB6PCoqSmrEvvfee5DJZHqPVFy3bh0yMzOxYMECjSa62rRp09CsWTMsWrRIylf9c5ytW7di5syZ8PT0hKOjI3r16oVLly6VmENxP+8xdH5Hjx5Fz5494ejoCDs7O3Tt2hXHjh0rcblq//77LyZPngwPDw/Y2tqie/fu+Omnn7Ti9u3bBz8/P9jZ2cHBwQGBgYE6fxZW0mtSnPT0dLRr1w5NmjTBH3/8AUD3qV0aNmyI0NBQxMfH47nnnoOtrS2aNWuGL7/8UudY/Pz8YGNjg7p16+LDDz/EunXrqtxPg4mqi3nz5sHCwgJr1qzRaKI/6ZVXXtE40vHs2bMYOnQoGjZsCFtbWzRs2BCvvvoqrl69KsXExMTglVdeAQAEBARIpx548iemT1srizK01v39998YM2YMvLy8YG1tDU9PTwwaNAi3bt0C8LgGT5kyBW3atIFCoYCzszP8/Pywd+9ejfnIZDLk5eVh48aNUn7+/v4Aiv9ZqCF1W11nz58/j1dffRUKhQLu7u4YOXIkcnJySr1+iKj6KOt9xJMnT6Jr166wsbGBp6cnZsyYofU5oziGbDOA/04Vc/z4cbz11ltwdXWFi4sLBg4ciJs3b2rEqlQqTJs2DR4eHrCzs0O3bt1w+vRpg9fPzZs3MXjwYDg4OEChUGDIkCHIyMjQihs+fDhq1qyJX3/9FUFBQXBwcJAOAtJ1aheZTIYJEyZg06ZNaN68Oezs7NC6dWscOHCgxDH99ttveOaZZ9CpUydkZmYanAsRVX3z58+HTCbDqlWrNJroAGBpaYmVK1dCJpNhwYIF0vSn2R/UdWoXY+b3tD0h4PGpeQcOHAhHR0coFAoMGzYMt2/f1ogpLCxEdHQ0mjVrBrlcDjc3N7z++usa/SkASExMxIABA1CvXj3Y2NigcePGGDt2rNbpY9Q5/vjjjxg0aBCcnJykLz0N3W7o2odXbwv+/PNP9O3bFzVr1oSXlxemTJkCpVKp8fwbN25g0KBBcHBwQK1atfDaa6/hzJkzVea0lNUJG+nVWEFBAR49eqRxKygo0Ij5v//7P4SFhWHTpk04cOAARo0ahUWLFmHs2LFSTF5eHgIDA3Hr1i18/vnnSExMxNKlS1G/fn3k5uZKcWPHjkVkZCR69eqFPXv2YOXKlTh//jy6dOkiNRmKc+LECfTo0QM5OTlYv349tm7dCgcHB/Tr1w/btm0D8PjUILt27QIATJw4ESkpKdi9e3ex80xMTISFhQX69eun83GZTIb+/fvj7t27SE1N1Xjs/fffx9WrV7Fu3Tp88cUX+OOPP9CvXz+t9WcoQ+YXGxuLoKAgODo6YuPGjdi+fTucnZ0RHBxscIPo/fffx19//YV169Zh3bp1uHnzJvz9/TU2XFu2bMGAAQPg6OiIrVu3Yv369cjKyoK/vz+SkpKkOENeE13OnTuHTp06QS6XIyUlBU2aNNE75p9//hlTpkzBO++8g71796JVq1YYNWoUvvvuOynml19+QWBgIB48eICNGzdi9erV+PHHHzF37lyD1gsRla2CggIcP34c7du3R506dQx+3pUrV+Dj44OlS5fiyJEjWLhwIdLT09GhQwdphzYkJATz5s0D8PjL3pSUFKSkpCAkJARA2dTKJxla6/7++2906NABu3fvxuTJk3H48GEsXboUCoUCWVlZAAClUom7d+9i6tSp2LNnD7Zu3Ypu3bph4MCB+Oqrr6R5paSkwNbWFn379pXyW7lyZbFjNLRuq7388sto2rQpdu7cienTp2PLli145513jF43RGR+dH0+UCvrfcQLFy6gZ8+eyM7ORkxMDFavXo2ffvoJc+bMMWishmwznvTGG2/AysoKW7ZsQXR0NL799lsMGzZMI2b06NH49NNP8frrr2Pv3r14+eWXMXDgQKmO6/Pw4UP06tULCQkJmD9/Pnbs2AEPDw8MGTJEZ3x+fj769++PHj16YO/evZg9e7be+R88eBArVqzAxx9/jJ07d8LZ2RkvvfSS3gbUiRMn0KVLF7Rq1QrHjx+Hm5tbiXkQkWl4cn+7uF92e3l5oV27dvjmm2+0ehVlvT9oyPyepiek9tJLL6Fx48b4+uuvERUVhT179iA4OFjjS9i33noL7733HgIDA7Fv3z588skniI+PR5cuXTS2D//3f/8HPz8/rFq1CgkJCfjoo49w6tQpdOvWTeeXugMHDkTjxo2xY8cOrF69GsDTbTeAx434/v37o2fPnti7dy9GjhyJJUuWYOHChVJMXl4eAgICcPz4cSxcuBDbt2+Hu7t7sdsXKmeCqp0NGzYIADpvFhYWxT6voKBAqFQq8dVXXwkLCwtx9+5dIYQQZ8+eFQDEnj17in1uSkqKACAWL16sMf369evC1tZWTJs2Te+YO3fuLNzc3ERubq407dGjR8LX11fUq1dPFBYWCiGEuHz5sgAgFi1aVOJ6aNasmfDw8NAbs2rVKgFAbNu2TQghxPHjxwUA0bdvX4247du3CwAiJSVFmhYRESEaNGigEdegQQMREREh3Td0fnl5ecLZ2Vn069dPI66goEC0bt1adOzYUW8e6uU899xz0roSQogrV64IKysr8cYbb0jz8/T0FC1bthQFBQVSXG5urnBzcxNdunSRphn6mqjfb2fOnBGJiYnC0dFRDBo0SDx8+FBjjLNmzRJFS1KDBg2EjY2NuHr1qjTt4cOHwtnZWYwdO1aa9sorrwh7e3tx+/ZtjXXTokULAUBcvnxZ7/ohorKVkZEhAIihQ4dqPfbo0SOhUqmk25M1SVfs/fv3hb29vVi2bJk0fceOHQKAOH78uEb809ZK9TZkw4YN0jRDa93IkSOFlZWVuHDhgt5lFM1PpVKJUaNGibZt22o8Zm9vr7G9UFPXc3XuxtRtdZ2Njo7WmOe4ceOEjY2N3teCiMybvs8HKpWqXPYRhwwZImxtbUVGRoZGXLNmzUq1/1bcNkOd27hx4zTio6OjBQCRnp4uhBDi4sWLAoB45513NOI2b94sAOisyU9Sf27Yu3evxvTRo0drbVsiIiIEAPHll19qzUfXZwgAwt3dXdy7d0+alpGRIWrUqCHmz58vTVPX+du3b4tNmzYJa2trMWnSJI3XjIjMg7797ScNGTJEABC3bt0SQhi3P1i0f6FrX9nQ+T1tT0i9nOJqdGxsrBDiv1petOafOnVKABDvv/++zvkXFhYKlUolrl69qlXL1cv+6KOPNJ5jzHaj6D68EP9tC7Zv367x/L59+wofHx/p/ueffy4AiMOHD2vEjR07Vuv1oPLHI9Krsa+++gpnzpzRuJ06dUoj5qeffkL//v3h4uICCwsLWFlZ4fXXX0dBQQF+//13AEDjxo3h5OSE9957D6tXr8aFCxe0lnXgwAHIZDIMGzZM4wgXDw8PtG7dWu+Vi/Py8nDq1CkMGjQINWvWlKZbWFggPDwcN27cMOi0KqUhhAAArVOO9O/fX+N+q1atAEDrp6SGKml+ycnJuHv3LiIiIjTWX2FhIXr37o0zZ84gLy+vxOWEhYVp5NKgQQN06dIFx48fBwBcunQJN2/eRHh4uMYFVmvWrImXX34ZJ0+exIMHD0r1mmzcuBF9+/bFG2+8ge3bt8PGxsagddOmTRvUr19fum9jY4OmTZtqrGv1kU+urq7StBo1amDw4MEGLYOIKk67du1gZWUl3RYvXiw9dv/+fbz33nto3LgxLC0tYWlpiZo1ayIvLw8XL14scd5lVSvVjKl1hw8fRkBAAJo3b653njt27EDXrl1Rs2ZNWFpawsrKCuvXrzcoP10MrdtP0rXN+ffff/mTfyLS+fnA0tKyXPYRjx8/jp49e2qcYtHCwsLgI+yM3WaUtL+t3h9+7bXXNOIGDx6sdcoEXY4fPw4HBwet5YSFhRX7nJdffrnE+aoFBATAwcFBuu/u7g43Nzednz/mzp2L4cOHY8GCBVi2bJnGa0ZE1YsxPY2n2R8saX5P0xN6UnE1Wl3D1f8+eUpdAOjYsSOaN2+u8QvVzMxMvPnmm/Dy8pL2yxs0aAAAOrcjRWv20243gMevS9GzJLRq1Uqr3+Hg4IDevXtrxL366qsGLYPKFi82Wo01b95c78WErl27hueffx4+Pj5YtmwZGjZsCBsbG5w+fRrjx4/Hw4cPAQAKhQInTpzA3Llz8f777yMrKwt16tTB6NGj8cEHH8DKygq3bt2CEELnucgB4Jlnnil2HFlZWRBC6Dw9gPrcunfu3DEmdQBA/fr18ccffyAvLw/29vY6Y9Tn1vby8tKY7uLionFfLpcDgLROjFXS/NQ/cxo0aFCx87h7926xeah5eHjonPbzzz8D+G89FreuCwsLpdfD2NckLi4Otra2eOONN7Q24voUXTfA4/Xz5Lq+c+eOzvdWce83Iipfrq6usLW11fnhfsuWLXjw4AHS09N1NhuOHTuGDz/8EB06dICjoyNkMhn69u1rUH0tq1qpZsz25/bt2yVeMHnXrl0YPHgwXnnlFbz77rvw8PCApaUlVq1apfPaD4YwtG4/eTGkst6GEZH5KO7zQXnsI965c6fYfVNDGLvNKKn2qcdVdPmWlpY690eLKm5/tLh87Ozs4OjoWOJ81QzZJ1aLjY1F3bp1MXToUIPnT0SmxdXVFXZ2drh8+bLeuCtXrsDOzg7Ozs4a0yujp1HantCTiqvRT25bgOK3V+rPJ4WFhQgKCsLNmzfx4YcfomXLlrC3t0dhYSE6d+6scz0UnefTbjeAx9uCogcZyuVy/PvvvxrLYb+j6mAjnYq1Z88e5OXlYdeuXdK3cgCQlpamFduyZUvExcVBCIFffvkFMTEx+Pjjj2Fra4vp06fD1dUVMpkM33//vVRQn6RrmpqTkxNq1KiB9PR0rcfUFwh68khkQwUGBiIhIQH79+/XuZMphMC+ffvg7OyMdu3aGT3/sqTOb/ny5cVe6dmQIqrrYkcZGRlSkVf/W9y6rlGjBpycnCCEMPo12bx5Mz788EN0794dCQkJaNOmTYnjNZSLi4vOc6rpypeIyp+FhQV69OiBhIQEpKena+x0tmjRAgC0LgKck5ODAwcOYNasWZg+fbo0XX1ecUOUVa1UM2b7U7t2ba0LGBUVGxsLb29vbNu2TeMLxaIXEzKGoXWbiOhplMc+oouLS7H7piUpi21GUeocMzIyULduXWn6o0ePDDpox8XFRecF5orLx5gDS4wVHx+PIUOG4Pnnn8exY8c0PssRkXmwsLBAQEAA4uPjcePGDZ0HdNy4cQOpqano06cPLCwsKmGU/3mantCTiqvRunoaRdfJzZs3pW3QuXPn8PPPPyMmJgYRERFSzJ9//lnssovW7afdbhjK2O0LlS/+xouKpS4STxY0IQTWrl2r9zmtW7fGkiVLUKtWLfz4448AgNDQUAgh8Pfff6N9+/Zat5YtWxY7T3t7e3Tq1Am7du3S+FawsLAQsbGxqFevHpo2bWp0fm+88Qbc3NwwY8YMnT9fio6Oxm+//YZp06bBysrK6PmXpa5du6JWrVq4cOGCzvXXvn17WFtblzifrVu3Sj/tAh7/lDU5ORn+/v4AAB8fH9StWxdbtmzRiMvLy8POnTvh5+cHOzu7Ur0mzs7OOHr0KJo3b46AgACcPHnyKdfKf7p3745vvvlG48IhhYWF2LFjR5ktg4iMM2PGDBQUFODNN9/UebGeomQyGYQQWjvR69at07o4UnFHzJRVrVQzptb16dMHx48f13uqMZlMBmtra42d8IyMDOzdu1crtrijDIsytG4TET2N8thHDAgIwLFjxzQOhigoKNB70Xo1Y7YZhlLvD2/evFlj+vbt2zUuulqcgIAA5ObmYt++fRrTt2zZUqrxPI0GDRpIzarnn38ef/zxR4WPgYjK34wZMyCEwLhx47RqX0FBAd566y0IITBjxoxKGuF/nqYn9KTiarS6hvfo0QPA4wNYnnTmzBlcvHgRPXv2BKC73wUAa9asMTinp91uGKp79+7Izc3F4cOHNabHxcWV2TLIcDwivRo7d+6czj/uRo0aoXbt2ggMDIS1tTVeffVVTJs2Df/++y9WrVqldfXhAwcOYOXKlXjxxRfxzDPPQAiBXbt2ITs7G4GBgQAeNzfGjBmDESNG4OzZs3jhhRdgb2+P9PR0JCUloWXLlnjrrbeKHev8+fMRGBiIgIAATJ06FdbW1li5ciXOnTuHrVu3luqIjlq1amHXrl0IDQ1Fu3bt8O6776J169a4d+8etm3bhs2bN2PIkCF49913jZ53WatZsyaWL1+OiIgI3L17F4MGDYKbmxtu376Nn3/+Gbdv38aqVatKnE9mZiZeeukljB49Gjk5OZg1axZsbGykDWuNGjUQHR2N1157DaGhoRg7diyUSiUWLVqE7OxsLFiwQJpXaV4TBwcHxMfHY+DAgdIVtAMCAp56/cycORP79+9Hz549MXPmTNja2mL16tXSuZB5Xkiiite1a1d8/vnnmDhxIp577jmMGTMGzz77rHSk4s6dOwFA+lm7o6MjXnjhBSxatAiurq5o2LAhTpw4gfXr16NWrVoa8/b19QUAfPHFF3BwcICNjQ28vb3h4uJSJrXySYbWuo8//hiHDx/GCy+8gPfffx8tW7ZEdnY24uPjMXnyZDRr1gyhoaHYtWsXxo0bh0GDBuH69ev45JNPUKdOHa0mR8uWLfHtt99i//79qFOnDhwcHODj46M1PmPqNhFRaZXHPuIHH3yAffv2oUePHvjoo49gZ2eHzz//3KBrWRizzTBU8+bNMWzYMCxduhRWVlbo1asXzp07h08//dSgU7C8/vrrWLJkCV5//XXMnTsXTZo0waFDh3DkyJFSjedp1alTBydOnEBwcDBeeOEFJCYmSttPIjIPXbt2xdKlSxEZGYlu3bphwoQJqF+/Pq5du4bPP/8cp06dwtKlS9GlS5fKHupT94TUdu3aBUtLSwQGBuL8+fP48MMP0bp1a+n6aD4+PhgzZgyWL1+OGjVqoE+fPrhy5Qo+/PBDeHl54Z133gEANGvWDI0aNcL06dMhhICzszP279+PxMREg3N62u2GoSIiIrBkyRIMGzYMc+bMQePGjXH48GFp+8J+RwWroIuaUhWivnJ9cbe1a9dKsfv37xetW7cWNjY2om7duuLdd98Vhw8f1rja8G+//SZeffVV0ahRI2FraysUCoXo2LGjiImJ0Vr2l19+KTp16iTs7e2Fra2taNSokXj99dfF2bNnSxz3999/L3r06CE9t3PnzmL//v0aMeqrSC9atMjg9XHt2jUxfvx48cwzzwhra2uhUCjECy+8IGJjYzWuWC3Ef1da3rFjh87lPnm15IiICNGgQQONuKJXvTZmfkIIceLECRESEiKcnZ2FlZWVqFu3rggJCdF6flHq5WzatElMmjRJ1K5dW8jlcvH888/rXPd79uwRnTp1EjY2NsLe3l707NlT/PDDD1pxhrwm6vfbmTNnpGlKpVK8/PLLwsbGRhw8eFAI8d+VsIuur5CQEK3ldu/eXXTv3l1rLJ06dRJyuVx4eHiId999VyxcuFAAENnZ2XrXDxGVn7S0NDFixAjh7e0t5HK5sLGxEY0bNxavv/66OHbsmEbsjRs3xMsvvyycnJyEg4OD6N27tzh37pxW7RRCiKVLlwpvb29hYWGhVS9LWyuLq72G1DohhLh+/boYOXKk8PDwEFZWVsLT01MMHjxY3Lp1S4pZsGCBaNiwoZDL5aJ58+Zi7dq1OutfWlqa6Nq1q7CzsxMApJqnrufqbbCaIXVbvZzbt29rTFfX6cuXL+tdP0RkvnTtr+lSlvuIQgjxww8/iM6dO2vsv33xxRcG1SRDtxnF5aarniqVSjFlyhTh5uYmbGxsROfOnUVKSorO7ZC+MdWsWVM4ODiIl19+WSQnJ+v8nGBvb69zHro+QwAQ48eP14otOi5ddT47O1t07dpVODs7l/j6EpFpSklJEYMGDRLu7u7C0tJSuLm5iYEDB4rk5GStWGP2B4vWGF37ysbuX5a2J6ReTmpqqujXr59UZ1999VWNfW0hhCgoKBALFy4UTZs2FVZWVsLV1VUMGzZMXL9+XSPuwoULIjAwUDg4OAgnJyfxyiuviGvXrgkAYtasWSXmKITh2w1d25zitgW6Phtcu3ZNDBw4UGP7cujQIQFA7N27V++6o7IlE+KJ3+YREZmRoKAgXLlyBb///ntlD4WIiIiIiIiIqEzMmzcPH3zwAa5du6bzHPlUPnhqFyIyC5MnT0bbtm3h5eWFu3fvYvPmzUhMTMT69esre2hERERERERERKWyYsUKAI9PSaNSqfDNN9/gf//7H4YNG8YmegVjI52IzEJBQQE++ugjZGRkQCaToUWLFti0aROGDRtW2UMjIiIiIiIiIioVOzs7LFmyBFeuXIFSqUT9+vXx3nvv4YMPPqjsoVU7PLULEREREREREREREZEevLQrERFpWbVqFVq1agVHR0c4OjrCz88Phw8flh4XQiAqKgqenp6wtbWFv78/zp8/rzEPpVKJiRMnwtXVFfb29ujfvz9u3LihEZOVlYXw8HAoFAooFAqEh4cjOztbI+batWvo168f7O3t4erqikmTJiE/P7/cciciIiIiIiIiKoqNdCIi0lKvXj0sWLAAZ8+exdmzZ9GjRw8MGDBAapZHR0fjs88+w4oVK3DmzBl4eHggMDAQubm50jwiIyOxe/duxMXFISkpCffv30doaCgKCgqkmLCwMKSlpSE+Ph7x8fFIS0tDeHi49HhBQQFCQkKQl5eHpKQkxMXFYefOnZgyZUrFrQwiIiIiIiIiqvZ4ahciIjKIs7MzFi1ahJEjR8LT0xORkZF47733ADw++tzd3R0LFy7E2LFjkZOTg9q1a2PTpk0YMmQIAODmzZvw8vLCoUOHEBwcjIsXL6JFixY4efIkOnXqBAA4efIk/Pz88Ntvv8HHxweHDx9GaGgorl+/Dk9PTwBAXFwchg8fjszMTDg6OlbOyiAiIiIiIiKiaoUXGy1BYWEhbt68CQcHB8hkssoeDhFVc0II5ObmwtPTEzVqVMyPigoKCrBjxw7k5eXBz88Ply9fRkZGBoKCgqQYuVyO7t27Izk5GWPHjkVqaipUKpVGjKenJ3x9fZGcnIzg4GCkpKRAoVBITXQA6Ny5MxQKBZKTk+Hj44OUlBT4+vpKTXQACA4OhlKpRGpqKgICAnSOWalUQqlUSvcLCwtx9+5duLi4sJYTUZVQGfXc1HG/nIiqGtby0mE9J6KqxJhazkZ6CdRHUBIRVSXXr19HvXr1ynUZv/76K/z8/PDvv/+iZs2a2L17N1q0aIHk5GQAgLu7u0a8u7s7rl69CgDIyMiAtbU1nJyctGIyMjKkGDc3N63lurm5acQUXY6TkxOsra2lGF3mz5+P2bNnG5kxEVHFq4h6bi64X05EVRVruXFYz4moKjKklrORXgIHBwcAj1emoacQUKlUSEhIQFBQEKysrMpzeBXKHPNiTqbDHPMqTU737t2Dl5eXVJvKk4+PD9LS0pCdnY2dO3ciIiICJ06ckB4vevSIEKLEI0qKxuiKL01MUTNmzMDkyZOl+zk5Oahfvz4uX75s1LpTqVQ4fvw4AgICzOp9x5xMgznmxZz+k5ubC29v7wqp5+aiNPvlAPchTIU55gSYZ17M6T8VuW9uTthnecwccwLMMy/mZDrKu8/CRnoJ1I0aR0dHowq8nZ0dHB0dze7NaG55MSfTYY55PU1OFfETSGtrazRu3BgA0L59e5w5cwbLli2TzouekZGBOnXqSPGZmZnS0eMeHh7Iz89HVlaWxlHpmZmZ6NKlixRz69YtreXevn1bYz6nTp3SeDwrKwsqlUrrSPUnyeVyyOVyrenOzs5GN1/s7Ozg4uJidu875lT1mWNezOk/6lj+pN1wpdkvB7gPYSrMMSfAPPNiTtpYy43DPstj5pgTYJ55MSfTUd59Fp7Ei4iIDCKEgFKphLe3Nzw8PJCYmCg9lp+fjxMnTkhN8nbt2sHKykojJj09HefOnZNi/Pz8kJOTg9OnT0sxp06dQk5OjkbMuXPnkJ6eLsUkJCRALpejXbt25ZovEREREREREZEaj0gnIiIt77//Pvr06QMvLy/k5uYiLi4O3377LeLj4yGTyRAZGYl58+ahSZMmaNKkCebNmwc7OzuEhYUBABQKBUaNGoUpU6bAxcUFzs7OmDp1Klq2bIlevXoBAJo3b47evXtj9OjRWLNmDQBgzJgxCA0NhY+PDwAgKCgILVq0QHh4OBYtWoS7d+9i6tSpGD16tFFHIxIRERERERERPQ020omISMutW7cQHh6O9PR0KBQKtGrVCvHx8QgMDAQATJs2DQ8fPsS4ceOQlZWFTp06ISEhQeOcYkuWLIGlpSUGDx6Mhw8fomfPnoiJiYGFhYUUs3nzZkyaNAlBQUEAgP79+2PFihXS4xYWFjh48CDGjRuHrl27wtbWFmFhYfj0008raE0QEREREREREfHULkREpMP69etx5coVKJVKZGZm4ujRo1ITHXh87rCoqCikp6fj33//xYkTJ+Dr66sxDxsbGyxfvhx37tzBgwcPsH//fnh5eWnEODs7IzY2Fvfu3cO9e/cQGxuLWrVqacTUr18fBw4cwIMHD3Dnzh0sX75c5/nPiYiIiIjM0apVq9CqVSvpnOJ+fn44fPiw9LgQAlFRUfD09IStrS38/f1x/vx5jXkolUpMnDgRrq6usLe3R//+/XHjxg2NmKysLISHh0OhUEChUCA8PBzZ2dkaMdeuXUO/fv1gb28PV1dXTJo0Cfn5+eWWOxFRVcIj0onMlG/UESgLjLvozZUFIeU0GiIiKi1j6zlrORERVQRunypOvXr1sGDBAjRu3BgAsHHjRgwYMAA//fQTnn32WURHR+Ozzz5DTEwMmjZtijlz5iAwMBCXLl2SfjEaGRmJ/fv3Iy4uDi4uLpgyZQpCQ0ORmpoq/WI0LCwMN27cQHx8PIDHp10MDw/H/v37AQAFBQUICQlB7dq1kZSUhDt37iAiIgJCCCxfvrwS1gwRPS32jozDRjoRERERERERURXVr18/jftz587FqlWrcPLkSbRo0QJLly7FzJkzMXDgQACPG+3u7u7YsmULxo4di5ycHKxfvx6bNm2SrlcUGxsLLy8vHD16FMHBwbh48SLi4+Nx8uRJdOrUCQCwdu1a+Pn54dKlS/Dx8UFCQgIuXLiA69evw9PTEwCwePFiDB8+HHPnzuU1jIjI7LGRTgQeTUFERERERERVX0FBAXbs2IG8vDz4+fnh8uXLyMjIkK45BAByuRzdu3dHcnIyxo4di9TUVKhUKo0YT09P+Pr6Ijk5GcHBwUhJSYFCoZCa6ADQuXNnKBQKJCcnw8fHBykpKfD19ZWa6AAQHBwMpVKJ1NRUBAQE6ByzUqmEUqmU7t+7dw8AoFKpoFKpDMpbHWdovCkwx5wA88zLnHOS1xClfm5VVJrXyphYNtKJiIiIiIiIiKqwX3/9FX5+fvj3339Rs2ZN7N69Gy1atEBycjIAwN3dXSPe3d0dV69eBQBkZGTA2toaTk5OWjEZGRlSjJubm9Zy3dzcNGKKLsfJyQnW1tZSjC7z58/H7NmztaYnJCTAzs6upNQ1JCYmGhVvCswxJ8A88zLHnD5pX2j0cw4dOlQOIylbxrxWDx48MDiWjXQiIiIiIiIioirMx8cHaWlpyM7Oxs6dOxEREYETJ05Ij8tkmr+wFkJoTSuqaIyu+NLEFDVjxgxMnjxZun/v3j14eXkhKCjI4NPBqFQqJCYmIjAwEFZWVgY9p6ozx5wA88zLnHP68GwNKAuNO0f6uajgchrV0yvNa6X+lYwh2EgnIiIiIiIiIqrCrK2tpYuNtm/fHmfOnMGyZcvw3nvvAXh8tHidOnWk+MzMTOnocQ8PD+Tn5yMrK0vjqPTMzEx06dJFirl165bWcm/fvq0xn1OnTmk8npWVBZVKpXWk+pPkcjnkcrnWdCsrK6ObkqV5TlVnjjkB5pmXOeakLJQZfbFRU1gHxrxWxuRTo7QDIiIiIiIiIiKiiieEgFKphLe3Nzw8PDROY5Cfn48TJ05ITfJ27drByspKIyY9PR3nzp2TYvz8/JCTk4PTp09LMadOnUJOTo5GzLlz55Ceni7FJCQkQC6Xo127duWaLxFRVcAj0omIiIiIiIiIqqj3338fffr0gZeXF3JzcxEXF4dvv/0W8fHxkMlkiIyMxLx589CkSRM0adIE8+bNg52dHcLCwgAACoUCo0aNwpQpU+Di4gJnZ2dMnToVLVu2RK9evQAAzZs3R+/evTF69GisWbMGADBmzBiEhobCx8cHABAUFIQWLVogPDwcixYtwt27dzF16lSMHj3a4FO0EBGZMjbSiYiIiIiIiIiqqFu3biE8PBzp6elQKBRo1aoV4uPjERgYCACYNm0aHj58iHHjxiErKwudOnVCQkICHBwcpHksWbIElpaWGDx4MB4+fIiePXsiJiYGFhYWUszmzZsxadIkBAUFAQD69++PFStWSI9bWFjg4MGDGDduHLp27QpbW1uEhYXh008/raA1QURUudhIJyIiIiIiIiKqotavX6/3cZlMhqioKERFRRUbY2Njg+XLl2P58uXFxjg7OyM2NlbvsurXr48DBw7ojSEiMlc8RzoRERERERERERERkR48Ip2IiIiIiIioHPlGHYGyQGZw/JUFIeU4GvPXcPpBo+LlFgLRHctpMEREZDZ4RDoRERERERERERERkR48Ip2IiIiIiIiqBGOP3AZ49DYRERFVDB6RTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpEeZN9Lnz5+PDh06wMHBAW5ubnjxxRdx6dIljRghBKKiouDp6QlbW1v4+/vj/PnzGjFKpRITJ06Eq6sr7O3t0b9/f9y4cUMjJisrC+Hh4VAoFFAoFAgPD0d2drZGzLVr19CvXz/Y29vD1dUVkyZNQn5+flmnTUREREQG8o06gobTDxp8o9LhfjkRERERUdkp80b6iRMnMH78eJw8eRKJiYl49OgRgoKCkJeXJ8VER0fjs88+w4oVK3DmzBl4eHggMDAQubm5UkxkZCR2796NuLg4JCUl4f79+wgNDUVBQYEUExYWhrS0NMTHxyM+Ph5paWkIDw+XHi8oKEBISAjy8vKQlJSEuLg47Ny5E1OmTCnrtImIiIiIqhTulxMRERERlR3Lsp5hfHy8xv0NGzbAzc0NqampeOGFFyCEwNKlSzFz5kwMHDgQALBx40a4u7tjy5YtGDt2LHJycrB+/Xps2rQJvXr1AgDExsbCy8sLR48eRXBwMC5evIj4+HicPHkSnTp1AgCsXbsWfn5+uHTpEnx8fJCQkIALFy7g+vXr8PT0BAAsXrwYw4cPx9y5c+Ho6FjW6RMRERERVQncLyciIiIiKjtl3kgvKicnBwDg7OwMALh8+TIyMjIQFBQkxcjlcnTv3h3JyckYO3YsUlNToVKpNGI8PT3h6+uL5ORkBAcHIyUlBQqFQtpZB4DOnTtDoVAgOTkZPj4+SElJga+vr7SzDgDBwcFQKpVITU1FQEBAeadPRERERFQlmNp+uVKphFKplO7fu3cPAKBSqaBSqQzOWx1rzHOqOnPOSV5DlPq5VVFp82JOT0duYdzY1LkYO8aq/DoREVHZK9dGuhACkydPRrdu3eDr6wsAyMjIAAC4u7trxLq7u+Pq1atSjLW1NZycnLRi1M/PyMiAm5ub1jLd3Nw0Yooux8nJCdbW1lJMUWWxw26OO7aAeeZlCjuBxjL3DyFVeYzGKk1O5pQ/ERFVHFPcL58/fz5mz56tNT0hIQF2dnYl5lxUYmKi0c+p6swxp0/aFxr9nEOHDpXDSMqWsXkxp6cT3bF0zzP2b+rBgwelWxAREZmkcm2kT5gwAb/88guSkpK0HpPJZBr3hRBa04oqGqMrvjQxTyrLHXZz3LEFzDOvqrwTWFrm+iHEHN9/xuTEnXUiIioNU9wvnzFjBiZPnizdv3fvHry8vBAUFGTUqWBUKhUSExMRGBgIKysrg59XlZlzTh+erQFlof73X1HnooLLaVRPr7R5Maen4xt1xKh4eQ2BT9oXGv03pT7wjoiIqodya6RPnDgR+/btw3fffYd69epJ0z08PAA8PiqlTp060vTMzEzpKBUPDw/k5+cjKytL4+iXzMxMdOnSRYq5deuW1nJv376tMZ9Tp05pPJ6VlQWVSqV1RIxaWeywm+OOLWCeeZnCTqCxzP1DiDm+/4zJiTvrRERkLFPdL5fL5ZDL5VrTraysSrUvUNrnVWXmmJOyUAZlgXH7sKawDozNizk9HWPfQ2rG/k2ZwutERERlp8wb6UIITJw4Ebt378a3334Lb29vjce9vb3h4eGBxMREtG3bFgCQn5+PEydOYOHChQCAdu3awcrKComJiRg8eDAAID09HefOnUN0dDQAwM/PDzk5OTh9+jQ6dnz8u61Tp04hJydH2qn38/PD3LlzkZ6eLn04SEhIgFwuR7t27XSOvyx32M1xxxYwz7yq8k5gaZnrh5C2c78xKq8rC0LKcTRlw5i/KVN4jYiIqGow9f1yIiIiIqKqpMwb6ePHj8eWLVuwd+9eODg4SOc8VCgUsLW1hUwmQ2RkJObNm4cmTZqgSZMmmDdvHuzs7BAWFibFjho1ClOmTIGLiwucnZ0xdepUtGzZEr169QIANG/eHL1798bo0aOxZs0aAMCYMWMQGhoKHx8fAEBQUBBatGiB8PBwLFq0CHfv3sXUqVMxevRoo34OSkRERERkarhfTkRERERUdsq8kb5q1SoAgL+/v8b0DRs2YPjw4QCAadOm4eHDhxg3bhyysrLQqVMnJCQkwMHBQYpfsmQJLC0tMXjwYDx8+BA9e/ZETEwMLCwspJjNmzdj0qRJCAoKAgD0798fK1askB63sLDAwYMHMW7cOHTt2hW2trYICwvDp59+WtZpExEREf0/9u49Lso67//4e0QYDgoJCkjiodZQQ1vTNLRSUyHzkLmttWykZWppGqvelXmX2HpIU7PVtDRTNzPbtiwPRWCW5oqmFJWH/G33eiwQb0U0DyPi9/eHN1MjODIIzMHX8/G4HjXXfK+5Pp8Z/MyXD9cB8CjMywEAAIDKUyWXdrkci8WitLQ0paWlXXJMYGCgZs+erdmzZ19yTHh4uJYuXep0Xw0bNtTq1asvGxMAAADgS5iXAwAAAJWnhrsDAAAAAAAAAADAk9FIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAQClTpkzRLbfcotq1aysyMlJ9+/bV7t27HcYYY5SWlqaYmBgFBQWpc+fO2rFjh8MYm82mESNGqG7dugoJCVGfPn108OBBhzEFBQVKSUlRWFiYwsLClJKSomPHjjmM2b9/v3r37q2QkBDVrVtXI0eO1NmzZ6skdwAAAAAAgIvRSAcAlLJ+/XoNHz5cmzdvVmZmps6dO6fExESdPHnSPmbatGmaOXOm5syZo61btyo6Olrdu3fXiRMn7GNSU1O1YsUKLV++XBs3btQvv/yiXr16qbi42D4mOTlZOTk5Sk9PV3p6unJycpSSkmJ/vri4WD179tTJkye1ceNGLV++XO+//75Gjx5dPW8GAAAAAAC46tV0dwDwPvFpn8pWbCn3+L0v9qzCaABUhfT0dIfHixYtUmRkpLKzs3XHHXfIGKNZs2Zp3Lhx6tevnyRpyZIlioqK0rJlyzR06FAVFhZq4cKFeuutt9StWzdJ0tKlSxUbG6u1a9cqKSlJu3btUnp6ujZv3qz27dtLkhYsWKCEhATt3r1bcXFxysjI0M6dO3XgwAHFxMRIkmbMmKGBAwdq0qRJCg0NrcZ3BgAAAAAAXI1opAMALquwsFCSFB4eLknas2eP8vLylJiYaB9jtVrVqVMnbdq0SUOHDlV2draKioocxsTExCg+Pl6bNm1SUlKSsrKyFBYWZm+iS9Ktt96qsLAwbdq0SXFxccrKylJ8fLy9iS5JSUlJstlsys7OVpcuXUrFa7PZZLPZ7I+PHz8uSSoqKlJRUVG58y4Z68o2no6cvEdJPtYapkLbeSJfzsnVGD05JwAAAJTGgaWgkQ4AcMoYo1GjRum2225TfHy8JCkvL0+SFBUV5TA2KipK+/bts48JCAhQnTp1So0p2T4vL0+RkZGl9hkZGekw5uL91KlTRwEBAfYxF5syZYomTJhQan1GRoaCg4Mvm/PFMjMzXd7G05GT9/hr2/Mujf/444+rKJLK44s5ufrzd+rUqSqKBAAAAEBVoJEOAHDqiSee0HfffaeNGzeWes5icfxrvDGm1LqLXTymrPEVGfNbY8eO1ahRo+yPjx8/rtjYWCUmJrp0KZiioiJlZmaqe/fu8vf3L/d2noycvEdJXs9tqyHb+fIf+bI9LakKo7oyvpyTqz9/JWfKAAAAAPAONNIBAJc0YsQIrVy5Uhs2bFCDBg3s66OjoyVdOFq8fv369vX5+fn2o8ejo6N19uxZFRQUOByVnp+frw4dOtjHHDp0qNR+Dx8+7PA6W7ZscXi+oKBARUVFpY5UL2G1WmW1Wkut9/f3r1CjtaLbeTJy8h628xaXTiH1hvfAF3Ny9efPG3ICAHiGKVOm6IMPPtAPP/ygoKAgdejQQVOnTlVcXJx9jDFGEyZM0Pz581VQUKD27dvr1Vdf1Y033mgfY7PZNGbMGL3zzjs6ffq0unbtqrlz5zrM8wsKCjRy5EitXLlSktSnTx/Nnj1b11xzjX3M/v37NXz4cK1bt05BQUFKTk7W9OnTFRAQUPVvBgC4EY10AEApxhiNGDFCK1as0BdffKEmTZo4PN+kSRNFR0crMzNTrVu3liSdPXtW69ev19SpUyVJbdq0kb+/vzIzM9W/f39JUm5urrZv365p06ZJkhISElRYWKivvvpK7dq1kyRt2bJFhYWF9mZ7QkKCJk2apNzcXHvTPiMjQ1arVW3atKn6NwNew9VrFkpctxAAAHi+9evXa/jw4brlllt07tw5jRs3TomJidq5c6dCQkIkSdOmTdPMmTO1ePFi3XDDDZo4caK6d++u3bt3q3bt2pKk1NRUrVq1SsuXL1dERIRGjx6tXr16KTs7W35+fpKk5ORkHTx4UOnp6ZKkIUOGKCUlRatWrZIkFRcXq2fPnqpXr542btyoI0eOaMCAATLGaPbs2W54dwCg+tBIBwCUMnz4cC1btkwfffSRateubb8WeVhYmIKCgmSxWJSamqrJkyeradOmatq0qSZPnqzg4GAlJyfbxw4aNEijR49WRESEwsPDNWbMGLVs2VLdunWTJDVv3lx33XWXBg8erNdff13Shcl6r1697EfYJCYmqkWLFkpJSdFLL72ko0ePasyYMRo8eLBLl2kBAAAAvFFJU7vEokWLFBkZqezsbN1xxx0yxmjWrFkaN26c+vXrJ0lasmSJoqKitGzZMg0dOlSFhYVauHCh3nrrLftcfOnSpYqNjdXatWuVlJSkXbt2KT09XZs3b1b79u0lSQsWLFBCQoJ2796tuLg4ZWRkaOfOnTpw4IBiYmIkSTNmzNDAgQM1adIk5ucAKk3jZ9a4vI3Vz2hauyoI5v/UqLqXBgB4q3nz5qmwsFCdO3dW/fr17cu7775rH/PUU08pNTVVw4YNU9u2bfXTTz8pIyPDfsSLJL388svq27ev+vfvr44dOyo4OFirVq2yH/EiSW+//bZatmypxMREJSYmqlWrVnrrrbfsz/v5+WnNmjUKDAxUx44d1b9/f/Xt21fTp0+vnjcDAAAA8CCFhYWSpPDwcEnSnj17lJeXp8TERPsYq9WqTp06adOmTZKk7OxsFRUVOYyJiYlRfHy8fUxWVpbCwsLsTXRJuvXWWxUWFuYwJj4+3t5El6SkpCTZbDZlZ2dXUcYA4Bk4Ih0AUIox5rJjLBaL0tLSlJaWdskxgYGBmj17ttPTPMPDw7V06VKn+2rYsKFWr1592ZgAAAAAX2aM0ahRo3TbbbcpPj5ekuxnj158/6CoqCjt27fPPiYgIMDh3kUlY0q2z8vLU2RkZKl9RkZGOoy5eD916tRRQECAfczFbDabbDab/XHJDbeLiopUVFRUrrxLxpV3vDfwxZwk38yrJBdrjcv/nlzWdp6oojn9dtuqZvVzPbaSfFyJ0ZWxNNIBAAAAAAC8wBNPPKHvvvtOGzduLPWcxeJ4rxhjTKl1F7t4TFnjKzLmt6ZMmaIJEyaUWp+RkaHg4GCn8V0sMzPTpfHewBdzknwzr7+2Pe/S+I8//riKIqk8ruYkVV9eV3KJFld+/k6dOlXusTTSAQAAAAAAPNyIESO0cuVKbdiwQQ0aNLCvj46OlnThaPH69evb1+fn59uPHo+OjtbZs2dVUFDgcFR6fn6+OnToYB9z6NChUvs9fPiww+ts2bLF4fmCggIVFRWVOlK9xNixYzVq1Cj74+PHjys2NlaJiYnlvqZ6UVGRMjMz1b17d/n7+5drG0/nizlJvplXSU7Pbash23nnf5z6re1pSVUY1ZWpaE5S9eUVn/apy9tYaxj9te15l37+Ss6SKQ8a6QAAAAAAAB7KGKMRI0ZoxYoV+uKLL9SkSROH55s0aaLo6GhlZmaqdevWkqSzZ89q/fr1mjp1qiSpTZs28vf3V2Zmpvr37y9Jys3N1fbt2zVt2jRJUkJCggoLC/XVV1+pXbsLh4Ju2bJFhYWF9mZ7QkKCJk2apNzcXHvTPiMjQ1arVW3atCkzfqvVKqvVWmq9v7+/y43Wimzj6XwxJ8k387Kdt8hWXP6mszfk72pOUvXl5Wpcv+XKz58r+dBIBwAAAAAA8FDDhw/XsmXL9NFHH6l27dr2a5GHhYUpKChIFotFqampmjx5spo2baqmTZtq8uTJCg4OVnJysn3soEGDNHr0aEVERCg8PFxjxoxRy5Yt1a1bN0lS8+bNddddd2nw4MF6/fXXJUlDhgxRr169FBcXJ0lKTExUixYtlJKSopdeeklHjx7VmDFjNHjw4HIfXQ4A3opGOgAAAAAAgIeaN2+eJKlz584O6xctWqSBAwdKkp566imdPn1aw4YNU0FBgdq3b6+MjAzVrl3bPv7ll19WzZo11b9/f50+fVpdu3bV4sWL5efnZx/z9ttva+TIkUpMTJQk9enTR3PmzLE/7+fnpzVr1mjYsGHq2LGjgoKClJycrOnTp1dR9gDgOWikAwBwFYpP+9SlU+X2vtizCqMBAADApRhjLjvGYrEoLS1NaWlplxwTGBio2bNna/bs2ZccEx4erqVLlzrdV8OGDbV69erLxgQAvqaGuwMAAAAAAAAAAMCT0UgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ERNdwcAAL6i8TNrXBpv9TOa1q6KggEAAAAAwE3i0z6VrdhS7vF7X+xZhdEAlYMj0gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4wc1GAQAAAMALcSM3AACA6sMR6QAAAAAAAAAAOEEjHQAAAAAAAAAAJ2ikAwAAAAAAAADgBI10AAAAAAAAAACc4GajAAAAwP9p/Mwal8Zb/YymtauiYAAAAAB4DI5IBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJyo9Eb6hg0b1Lt3b8XExMhisejDDz90eN4Yo7S0NMXExCgoKEidO3fWjh07HMbYbDaNGDFCdevWVUhIiPr06aODBw86jCkoKFBKSorCwsIUFhamlJQUHTt2zGHM/v371bt3b4WEhKhu3boaOXKkzp49W9kpAwAAAB6JuTkAAABQOSq9kX7y5EnddNNNmjNnTpnPT5s2TTNnztScOXO0detWRUdHq3v37jpx4oR9TGpqqlasWKHly5dr48aN+uWXX9SrVy8VFxfbxyQnJysnJ0fp6elKT09XTk6OUlJS7M8XFxerZ8+eOnnypDZu3Kjly5fr/fff1+jRoys7ZQAAAMAjMTcHAAAAKkfNyn7BHj16qEePHmU+Z4zRrFmzNG7cOPXr10+StGTJEkVFRWnZsmUaOnSoCgsLtXDhQr311lvq1q2bJGnp0qWKjY3V2rVrlZSUpF27dik9PV2bN29W+/btJUkLFixQQkKCdu/erbi4OGVkZGjnzp06cOCAYmJiJEkzZszQwIEDNWnSJIWGhlZ26gAAAIBHYW4OAAAAVI5Kb6Q7s2fPHuXl5SkxMdG+zmq1qlOnTtq0aZOGDh2q7OxsFRUVOYyJiYlRfHy8Nm3apKSkJGVlZSksLMw+UZekW2+9VWFhYdq0aZPi4uKUlZWl+Ph4+0RdkpKSkmSz2ZSdna0uXbpUT9IAAACAB/L0ubnNZpPNZrM/Pn78uCSpqKhIRUVF5c6zZKwr23i6klysNUyFtvNEFc3pt9t6Ij6r0ttVB6ufa7GV5OJqjJ78OQEAKl+1NtLz8vIkSVFRUQ7ro6KitG/fPvuYgIAA1alTp9SYku3z8vIUGRlZ6vUjIyMdxly8nzp16iggIMA+piyVMWH3xcm65B0TJleRU9nbeiJv+KyqY8LuyZ8RAMC7ePrcfMqUKZowYUKp9RkZGQoODi5Pig4yMzNd3sbT/bXteZfGf/zxx1UUSeVxNSfJN/MipyszrV3FtnO1Tpw6dapiOwIAeKVqbaSXsFgsDo+NMaXWXeziMWWNr8iYi1XmhN0XJ+uSZ0+YKoqcLvDFvHxtws5kHQBQ2Tx1bj527FiNGjXK/vj48eOKjY1VYmKiS5eCKSoqUmZmprp37y5/f/9yb+fJSnJ6blsN2c47/6x+a3taUhVGdWUqmpPkm3mR05WJT/vUpfHWGkZ/bXve5TpRcuAdAODqUK2N9OjoaEkXjkipX7++fX1+fr79CJXo6GidPXtWBQUFDke+5Ofnq0OHDvYxhw4dKvX6hw8fdnidLVu2ODxfUFCgoqKiUkfD/FZlTNh9cbIueceEyVXk5MgX8/K1CTuTdQBAZfH0ubnVapXVai213t/fv0Jz7Ipu58ls5y2yFZd/XuQN+buak+SbeZHTlXH1Z6iEq3XCGz4nAEDlqdZGepMmTRQdHa3MzEy1bt1aknT27FmtX79eU6dOlSS1adNG/v7+yszMVP/+/SVJubm52r59u6ZNmyZJSkhIUGFhob766iu1a3fhENAtW7aosLDQPqFPSEjQpEmTlJuba//FICMjQ1arVW3atLlkjJU5YffFybrk2ROmiiKnC3wxL1+bsHvDZwQA8A7eMDcHAAAAPEWNyn7BX375RTk5OcrJyZF04SZGOTk52r9/vywWi1JTUzV58mStWLFC27dv18CBAxUcHKzk5GRJUlhYmAYNGqTRo0frs88+0zfffKMHH3xQLVu2VLdu3SRJzZs311133aXBgwdr8+bN2rx5swYPHqxevXopLi5OkpSYmKgWLVooJSVF33zzjT777DONGTNGgwcPdulUUAC4Wm3YsEG9e/dWTEyMLBaLPvzwQ4fnjTFKS0tTTEyMgoKC1LlzZ+3YscNhjM1m04gRI1S3bl2FhISoT58+OnjwoMOYgoICpaSkKCwsTGFhYUpJSdGxY8ccxuzfv1+9e/dWSEiI6tatq5EjR+rs2bNVkTYA+BTm5gAAAEDlqPRG+rZt29S6dWv7US2jRo1S69at9fzzz0uSnnrqKaWmpmrYsGFq27atfvrpJ2VkZKh27dr213j55ZfVt29f9e/fXx07dlRwcLBWrVolPz8/+5i3335bLVu2VGJiohITE9WqVSu99dZb9uf9/Py0Zs0aBQYGqmPHjurfv7/69u2r6dOnV3bKAOCTTp48qZtuuklz5swp8/lp06Zp5syZmjNnjrZu3aro6Gh1795dJ06csI9JTU3VihUrtHz5cm3cuFG//PKLevXqpeLiYvuY5ORk5eTkKD09Xenp6crJyVFKSor9+eLiYvXs2VMnT57Uxo0btXz5cr3//vsaPXp01SUPAD6CuTkAAABQOSr90i6dO3eWMeaSz1ssFqWlpSktLe2SYwIDAzV79mzNnj37kmPCw8O1dOlSp7E0bNhQq1evvmzMAIDSevTooR49epT5nDFGs2bN0rhx49SvXz9J0pIlSxQVFaVly5Zp6NChKiws1MKFC/XWW2/Zj1pcunSpYmNjtXbtWiUlJWnXrl1KT0/X5s2b1b59e0nSggULlJCQoN27dysuLk4ZGRnauXOnDhw4oJiYGEnSjBkzNHDgQE2aNIkjGQHACebmAAAAQOWo1mukAwB8w549e5SXl6fExET7OqvVqk6dOmnTpk0aOnSosrOzVVRU5DAmJiZG8fHx2rRpk5KSkpSVlaWwsDB7E12Sbr31VoWFhWnTpk2Ki4tTVlaW4uPj7U10SUpKSpLNZlN2dra6dOlSKj6bzSabzWZ/XHKT1qKiIhUVFZU7z5Kxrmzj6Upysda4dGPN2XaeqKI5/XZbT8RnVXq76mD1cy22klxcjdGTPycAgGfZsGGDXnrpJWVnZys3N1crVqxQ37597c8bYzRhwgTNnz9fBQUFat++vV599VXdeOON9jE2m01jxozRO++8o9OnT6tr166aO3euGjRoYB9TUFCgkSNHauXKlZKkPn36aPbs2brmmmvsY/bv36/hw4dr3bp1CgoKUnJysqZPn66AgIAqfx8AwN1opAMAXJaXlydJioqKclgfFRWlffv22ccEBASoTp06pcaUbJ+Xl6fIyMhSrx8ZGekw5uL91KlTRwEBAfYxF5syZYomTJhQan1GRoaCg4PLk6KDzMxMl7fxdH9te96l8R9//HEVRVJ5XM1J8s28yOnKTGtXse1crROnTp2q2I4AAFedkksuPvzww/rDH/5Q6vmSSy4uXrxYN9xwgyZOnKju3btr9+7d9kt1paamatWqVVq+fLkiIiI0evRo9erVS9nZ2fZLdSUnJ+vgwYNKT0+XJA0ZMkQpKSlatWqVpF8vuVivXj1t3LhRR44c0YABA2SMcXrWEgD4ChrpAIAKs1gsDo+NMaXWXeziMWWNr8iY3xo7dqxGjRplf3z8+HHFxsYqMTHRpUvBFBUVKTMzU927d5e/v3+5t/NkJTk9t62GbOedf1a/tT0tqQqjujIVzUnyzbzI6crEp33q0nhrDaO/tj3vcp0oOVMGAIDL4ZKLvi0+7VPZil2bw+59sWcVRQPAGRrpAACXRUdHS7pwtHj9+vXt6/Pz8+1Hj0dHR+vs2bMqKChwOCo9Pz9fHTp0sI85dOhQqdc/fPiww+ts2bLF4fmCggIVFRWVOlK9hNVqldVqLbXe39+/Qg3xim7nyWznLS5N2L0hf1dzknwzL3K6Mq7+DJVwtU54w+cEAPB8nn7JRQDwJTTSAQAua9KkiaKjo5WZmanWrVtLks6ePav169dr6tSpkqQ2bdrI399fmZmZ6t+/vyQpNzdX27dv17Rp0yRJCQkJKiws1FdffaV27S5cT2HLli0qLCy0N9sTEhI0adIk5ebm2pv2GRkZslqtatOmTbXmDQAAAHgST7/kolQ59y/i3kVlb+uJvOGeOK4ip7K3rWqu3rtIqtj9i1wZSyMdAFCmX375RT/++KP98Z49e5STk6Pw8HA1bNhQqampmjx5spo2baqmTZtq8uTJCg4OVnJysiQpLCxMgwYN0ujRoxUREaHw8HCNGTNGLVu2tJ9S2rx5c911110aPHiwXn/9dUkXrsXYq1cvxcXFSZISExPVokULpaSk6KWXXtLRo0c1ZswYDR48mNNHAQAAAHnuJRelyr1/EfcuuoB74rgHOV1QXXlV9N5Fkmu1wpV7F9FIBwCUadu2bQ6nZ5Zcc3zAgAFavHixnnrqKZ0+fVrDhg1TQUGB2rdvr4yMDPsNjSTp5ZdfVs2aNdW/f3+dPn1aXbt21eLFi+03NJKkt99+WyNHjrSfatqnTx/NmTPH/ryfn5/WrFmjYcOGqWPHjgoKClJycrKmT59e1W8BAAAA4NE8/ZKLUuXcv4h7FzninjjVi5wcVVdert67SKrY/YtcuXcRjXQAQJk6d+4sYy59KpXFYlFaWprS0tIuOSYwMFCzZ8/W7NmzLzkmPDxcS5cudRpLw4YNtXr16svGDAAAAFxNvOGSi5V5/yLuXXSBN7wHnnxPnIoipwuqK6+K3rtIcq1WuJIPjXQAAAAAAAAPxSUXAcAz0EgHAAAAAADwUFxyEQA8A410AAAAAAAAD8UlFwHAM9RwdwAAAAAAAAAAAHgyGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ERNdwfgy+LTPpWt2OLSNntf7FlF0QAAAAAAAAAAKoIj0gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaro7AAAAAAAAAOBy4tM+la3YUu7xe1/sWYXRALjacEQ6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4MRV0UifO3eumjRposDAQLVp00Zffvmlu0MCAFQA9RwAvB+1HAC8H7UcwNXI5xvp7777rlJTUzVu3Dh98803uv3229WjRw/t37/f3aEBAFxAPQcA70ctBwDvRy0HcLXy+Ub6zJkzNWjQID366KNq3ry5Zs2apdjYWM2bN8/doQEAXEA9BwDvRy0HAO9HLQdwtarp7gCq0tmzZ5Wdna1nnnnGYX1iYqI2bdpU5jY2m002m83+uLCwUJJ09OhRFRUVlWu/RUVFOnXqlGoW1VDxeYtLMR85csSl8dWponmRU/Xi589RdeZU89xJ18afNzp16ryOHDkif3//cm1z4sQJSZIxxuX4vJmr9bwyarn068+dK5+Rp/OGf0uuou45IqcrUx21XLo66zm1vPJ4w78lV1HLHZHTlaGWVx1v67P44r8lyTfzIqfq5Q0/f67Wcqka+izGh/30009GkvnXv/7lsH7SpEnmhhtuKHOb8ePHG0ksLCwsHr0cOHCgOsqox3C1nlPLWVhYvGW5muo5tZyFhcVXF2o5fRYWFhbvX8pTy336iPQSFovjX1aMMaXWlRg7dqxGjRplf3z+/HkdPXpUERERl9zmYsePH1dsbKwOHDig0NDQigfuYXwxL3LyHr6YV0VyMsboxIkTiomJqeLoPFN563ll1HKJnztv4Ys5Sb6ZFzn96mqu59TyK0dO3sMX8yKnX1HLf0WfxXW+mJPkm3mRk/eo6j6LTzfS69atKz8/P+Xl5Tmsz8/PV1RUVJnbWK1WWa1Wh3XXXHNNhfYfGhrqUz+MJXwxL3LyHr6Yl6s5hYWFVWE0nsnVel6ZtVzi585b+GJOkm/mRU4XXG31nFpe+cjJe/hiXuR0AbX8AvosFeeLOUm+mRc5eY+q6rP49M1GAwIC1KZNG2VmZjqsz8zMVIcOHdwUFQDAVdRzAPB+1HIA8H7UcgBXM58+Il2SRo0apZSUFLVt21YJCQmaP3++9u/fr8cee8zdoQEAXEA9BwDvRy0HAO9HLQdwtfL5Rvr999+vI0eO6IUXXlBubq7i4+P18ccfq1GjRlW2T6vVqvHjx5c6dcnb+WJe5OQ9fDEvX8ypKlHPKwc5eQ9fzIucQC2vHOTkPXwxL3ICtbxy+GJOkm/mRU7eo6rzshhjTJW8MgAAAAAAAAAAPsCnr5EOAAAAAAAAAMCVopEOAAAAAAAAAIATNNIBAAAAAAAAAHCCRjoAAAAAAAAAAE7QSK8Cc+fOVZMmTRQYGKg2bdroyy+/dHdIV2TDhg3q3bu3YmJiZLFY9OGHH7o7pCs2ZcoU3XLLLapdu7YiIyPVt29f7d69291hXZF58+apVatWCg0NVWhoqBISEvTJJ5+4O6xKNWXKFFksFqWmpro7lCuSlpYmi8XisERHR7s7LFyEWu75qOXeiVqO6kQt93zUcu9ELUd18rVaLvlePffFWi5Rz71FddZyGumV7N1331VqaqrGjRunb775Rrfffrt69Oih/fv3uzu0Cjt58qRuuukmzZkzx92hVJr169dr+PDh2rx5szIzM3Xu3DklJibq5MmT7g6twho0aKAXX3xR27Zt07Zt23TnnXfqnnvu0Y4dO9wdWqXYunWr5s+fr1atWrk7lEpx4403Kjc31758//337g4Jv0Et9w7Ucu9DLUd1opZ7B2q596GWozr5Yi2XfK+e+2Itl6jn3qTaarlBpWrXrp157LHHHNY1a9bMPPPMM26KqHJJMitWrHB3GJUuPz/fSDLr1693dyiVqk6dOuaNN95wdxhX7MSJE6Zp06YmMzPTdOrUyTz55JPuDumKjB8/3tx0003uDgNOUMu9E7Xcs1HLUd2o5d6JWu7ZqOWobr5ey43xzXruq7XcGOq5J6rOWs4R6ZXo7Nmzys7OVmJiosP6xMREbdq0yU1RoTwKCwslSeHh4W6OpHIUFxdr+fLlOnnypBISEtwdzhUbPny4evbsqW7durk7lErz73//WzExMWrSpIkeeOAB/ec//3F3SPg/1HLvRS33bNRyVCdqufeilns2ajmqE7Xce/laLZeo556uump5zSp51avU//7v/6q4uFhRUVEO66OiopSXl+emqHA5xhiNGjVKt912m+Lj490dzhX5/vvvlZCQoDNnzqhWrVpasWKFWrRo4e6wrsjy5cv19ddfa+vWre4OpdK0b99ef//733XDDTfo0KFDmjhxojp06KAdO3YoIiLC3eFd9ajl3ola7tmo5ahu1HLvRC33bNRyVDdquXfypVouUc+9QXXWchrpVcBisTg8NsaUWgfP8cQTT+i7777Txo0b3R3KFYuLi1NOTo6OHTum999/XwMGDND69eu9tsgfOHBATz75pDIyMhQYGOjucCpNjx497P/fsmVLJSQk6Prrr9eSJUs0atQoN0aG36KWexdqueeilsOdqOXehVruuajlcCdquXfxpVouUc+9QXXWchrplahu3bry8/Mr9ZfR/Pz8Un9BhWcYMWKEVq5cqQ0bNqhBgwbuDueKBQQE6He/+50kqW3bttq6dateeeUVvf76626OrGKys7OVn5+vNm3a2NcVFxdrw4YNmjNnjmw2m/z8/NwYYeUICQlRy5Yt9e9//9vdoUDUcm9ELfds1HK4A7Xc+1DLPRu1HO5ALfc+vlbLJeq5N6rKWs410itRQECA2rRpo8zMTIf1mZmZ6tChg5uiQlmMMXriiSf0wQcfaN26dWrSpIm7Q6oSxhjZbDZ3h1FhXbt21ffff6+cnBz70rZtW/35z39WTk6O1xf3EjabTbt27VL9+vXdHQpELfcm1HLvQC2HO1DLvQe13DtQy+EO1HLvcbXUcol67g2qspZzRHolGzVqlFJSUtS2bVslJCRo/vz52r9/vx577DF3h1Zhv/zyi3788Uf74z179ignJ0fh4eFq2LChGyOruOHDh2vZsmX66KOPVLt2bftfuMPCwhQUFOTm6Crm2WefVY8ePRQbG6sTJ05o+fLl+uKLL5Senu7u0Cqsdu3apa6pFhISooiICK++1tqYMWPUu3dvNWzYUPn5+Zo4caKOHz+uAQMGuDs0/B9quXeglnsHajnchVruHajl3oFaDnfxxVou+V4998VaLlHPvUW11nKDSvfqq6+aRo0amYCAAHPzzTeb9evXuzukK/L5558bSaWWAQMGuDu0CisrH0lm0aJF7g6twh555BH7z129evVM165dTUZGhrvDqnSdOnUyTz75pLvDuCL333+/qV+/vvH39zcxMTGmX79+ZseOHe4OCxehlns+arn3opajulDLPR+13HtRy1FdfK2WG+N79dwXa7kx1HNvUZ213GKMMZXfngcAAAAAAAAAwDdwjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ6PtmXLFt17771q2LChrFaroqKilJCQoNGjR1fpfnfu3Km0tDTt3bu3SvdTVY4ePaoHHnhAkZGRslgs6tu3b6W87qlTp5SWlqYvvviiUl4PQOVZvHixLBaLtm3bVqHt9+7dq549eyo8PFwWi0Wpqanau3evLBaLFi9eXGo/FamPX3zxhSwWi/75z39eduyyZcs0a9Ysl/dRWaq63lXG98yVfBae6Oeff1ZaWppycnLcHQrgkzZv3qw//vGPql+/vgICAhQdHa377rtPWVlZVbK/xo0bq1evXlXy2pWt5PvJ2+a4AwcOVOPGjd0dBoBqcKVzfXguX5vT+zoa6fBYa9asUYcOHXT8+HFNmzZNGRkZeuWVV9SxY0e9++67VbrvnTt3asKECV5byP76179qxYoVevnll5WVlaVp06ZVyuueOnVKEyZM8LpfMgBc3l/+8hdt2bJFb775prKysvSXv/ylzHE9e/ZUVlaW6tevX6XxeEIjvSrrXWV8z1TXZ1Fdfv75Z02YMIFGOlAFZs+erY4dO+rgwYOaNm2a1q5dq+nTp+unn37Sbbfdpjlz5rg7RFTAc889pxUrVrg7DADAFfC1Ob2vq+nuAIBLmTZtmpo0aaJPP/1UNWv++qP6wAMPVFpj2Fdt375d119/vf785z9XyusZY3TmzJlKeS0Anmn79u1q166dwxksZTV569Wrp3r16lVfYD6mqKhIFoulUl6LzwJAefzrX/9Samqq7r77bq1YsaLUvPree+/Vk08+qdatW6tjx45ujLRqnT59WkFBQe4Ow6lTp04pODi43OOvv/76KowGAMrP1frly0rm+7/9vnWGOb134Yh0eKwjR46obt26ZRafGjVK/+i+++67SkhIUEhIiGrVqqWkpCR98803DmO2bdumBx54QI0bN1ZQUJAaN26sP/3pT9q3b599zOLFi/XHP/5RktSlSxdZLJZSlzYoyw8//KA//elPioqKktVqVcOGDfXQQw/JZrPZx2zfvl333HOP6tSpo8DAQP3+97/XkiVLHF6n5NTSZcuW6emnn1b9+vVVq1Yt9e7dW4cOHdKJEyc0ZMgQ1a1bV3Xr1tXDDz+sX375RZLsl2FYu3atdu3aZY+95IjKo0ePatiwYbr22msVEBCg6667TuPGjXOIUZIsFoueeOIJvfbaa2revLmsVquWLFliL+4TJkywv/bAgQOdvi8A3GfgwIGqVauWfvzxR919992qVauWYmNjNXr0aPu/+5Ka8+OPP+qTTz6x/9u+1JHSZZ16aIzR5MmT1ahRIwUGBqpt27bKzMxU586d1blz51KvUVRUpHHjxikmJkahoaHq1q2bdu/ebX++c+fOWrNmjfbt22ePpzzN5/J8D5TnPdm7d+9l692///1vJScnKzIyUlarVc2bN9err77qsK+S9/att97S6NGjde2118pqteqNN95w+j2TmZmpe+65Rw0aNFBgYKB+97vfaejQofrf//3fy34WnTt3Vnx8vLZu3arbb79dwcHBuu666/Tiiy/q/PnzpWKryHdNCWOM5s6dq9///vcKCgpSnTp1dN999+k///mPw7jyxPTFF1/olltukSQ9/PDD9vckLS3tch87gMuYMmWKLBaL5s2bV2peXbNmTc2dO1cWi0UvvviifX1aWposFot27NihP/3pTwoLC1NUVJQeeeQRFRYWurT/FStWqFWrVgoMDNR1112nv/3tb6XG7N+/Xw8++KBDTZ0xY4ZD3ZIu1OT27dsrPDxcoaGhuvnmm7Vw4UIZYxzGlVxW5oMPPlDr1q0VGBioCRMmSLowZ7/rrrsUHBysunXr6rHHHtOJEyfKlcvhw4c1ZMgQxcbGymq1ql69eurYsaPWrl3rMG7t2rXq2rWrQkNDFRwcrI4dO+qzzz5zGFPyHn/99de67777VKdOHV1//fWaNWuW/Xv5Yk8//bQCAgLs3wdlXdrl/Pnzmj17tr02X3PNNbr11lu1cuVKh3Hl+c4E4H3KM0eVpB07digxMVHBwcGqV6+ehg8frjVr1pTrMleXql+SdObMGY0dO1ZNmjRRQECArr32Wg0fPlzHjh1zeI3z589r2rRpatasmaxWqyIjI/XQQw/p4MGDDuNK5pFZWVnq0KGDvY+zaNEiSReuZHDzzTcrODhYLVu2VHp6+mXfo/Pnz2vixImKi4uz18lWrVrplVdecfm9vNR8f8eOHbJYLFq4cGGp/Zf8zlVSly91aZf09HR17dpVYWFhCg4OVvPmzTVlyhSHMdu2bVOfPn0UHh6uwMBAtW7dWv/4xz8u+x7gChjAQz366KNGkhkxYoTZvHmzOXv27CXHTpo0yVgsFvPII4+Y1atXmw8++MAkJCSYkJAQs2PHDvu49957zzz//PNmxYoVZv369Wb58uWmU6dOpl69eubw4cPGGGPy8/PN5MmTjSTz6quvmqysLJOVlWXy8/Mvuf+cnBxTq1Yt07hxY/Paa6+Zzz77zCxdutT079/fHD9+3BhjzA8//GBq165trr/+evP3v//drFmzxvzpT38ykszUqVPtr/X5558bSaZRo0Zm4MCBJj093bz22mumVq1apkuXLqZ79+5mzJgxJiMjw0ydOtX4+fmZESNGGGOMOXPmjMnKyjKtW7c21113nT32wsJCc/r0adOqVSsTEhJipk+fbjIyMsxzzz1natasae6++26HfCSZa6+91rRq1cosW7bMrFu3zuTk5Jj09HQjyQwaNMj+2j/++KPrHy6ASrdo0SIjyWzdutW+bsCAASYgIMA0b97cTJ8+3axdu9Y8//zzxmKxmAkTJhhjjCksLDRZWVkmOjradOzY0f5v+8yZM2bPnj1Gklm0aFGp/ezZs8e+buzYsUaSGTJkiElPTzcLFiwwDRs2NPXr1zedOnWyjyupb40bNzZ//vOfzZo1a8w777xjGjZsaJo2bWrOnTtnjDFmx44dpmPHjiY6OtoeT1ZWltP8y/s9UJ735MyZM07r3Y4dO0xYWJhp2bKl+fvf/24yMjLM6NGjTY0aNUxaWlqpfK+99lpz3333mZUrV5rVq1ebvLw8p98z8+bNM1OmTDErV64069evN0uWLDE33XSTiYuLc/guLOuz6NSpk4mIiDBNmzY1r732msnMzDTDhg0zksySJUtKxVaR75oSgwcPNv7+/mb06NEmPT3dLFu2zDRr1sxERUWZvLw8l2IqLCy05/Pf//3f9vfkwIEDTj93AM6dO3fOBAcHm/bt2zsd165dOxMcHGyvw+PHjzeSTFxcnHn++edNZmammTlzprFarebhhx8u174bNWpkrr32WtOwYUPz5ptvmo8//tj8+c9/NpLMSy+9ZB+Xn59vrr32WlOvXj3z2muvmfT0dPPEE08YSebxxx93eM2BAweahQsXmszMTJOZmWn++te/mqCgIHv9/u2+69evb6677jrz5ptvms8//9x89dVXJi8vz0RGRpprr73WLFq0yB5Tw4YNjSTz+eefO80pKSnJ1KtXz8yfP9988cUX5sMPPzTPP/+8Wb58uX3MW2+9ZSwWi+nbt6/54IMPzKpVq0yvXr2Mn5+fWbt2rX1cyXvcqFEj8/TTT5vMzEzz4YcfmsOHD5uAgAAzbtw4h32fO3fOxMTEmH79+tnXDRgwwDRq1MhhXEpKirFYLObRRx81H330kfnkk0/MpEmTzCuvvGIfU97vTACeo6y5/sXKO0f9+eefTUREhGnYsKFZvHix+fjjj01KSopp3LhxuWrhperX+fPnTVJSkqlZs6Z57rnnTEZGhpk+fboJCQkxrVu3NmfOnLG/xpAhQ4wk88QTT9jnofXq1TOxsbH23owxv84j4+LizMKFC82nn35qevXqZSSZCRMmmJYtW5p33nnHfPzxx+bWW281VqvV/PTTT07jnzJlivHz8zPjx483n332mUlPTzezZs1yeI+udL5/5MgR07p1a9OxY8dS++/fv7+JjIw0RUVFxpiy5/RvvPGGsVgspnPnzmbZsmVm7dq1Zu7cuWbYsGH2MevWrTMBAQHm9ttvN++++65JT083AwcOLPX7GyoXjXR4rP/93/81t912m5FkJBl/f3/ToUMHM2XKFHPixAn7uP3795uaNWuW+gX/xIkTJjo62vTv3/+S+zh37pz55ZdfTEhIiMPk8r333ivXF0iJO++801xzzTVOm+0PPPCAsVqtZv/+/Q7re/ToYYKDg82xY8eMMb8W4t69ezuMS01NNZLMyJEjHdb37dvXhIeHO6zr1KmTufHGGx3Wvfbaa0aS+cc//uGwfurUqUaSycjIsK+TZMLCwszRo0cdxh4+fNhIMuPHj79kngDc41KN9LL+3d99990mLi7OYV2jRo1Mz549HdaVp5F+9OhRY7Vazf333++wbVZWlpFUZiP94j/e/eMf/zCSHJrlPXv2LNUcuBRXvgfK+544q3dJSUmmQYMGprCw0GH9E088YQIDA+21syTfO+64o9RrlPd75vz586aoqMjs27fPSDIfffSR/blLNdIlmS1btji8TosWLUxSUpL98ZV+15R8vjNmzHAYd+DAARMUFGSeeuopl2PaunUrE3+gkuXl5RlJ5oEHHnA67v777zeSzKFDh4wxvzZJpk2b5jBu2LBhJjAw0Jw/f/6y+27UqJGxWCwmJyfHYX337t1NaGioOXnypDHGmGeeeabMGvH4448bi8Vidu/eXebrFxcXm6KiIvPCCy+YiIgIh5gaNWpk/Pz8Sm379NNPXzKm8tTkWrVqmdTU1Es+f/LkSRMeHl6qthYXF5ubbrrJtGvXzr6u5D1+/vnnS71Ov379TIMGDUxxcbF93ccff2wkmVWrVtnXXdxI37Bhg5FUqgn/W1fyuxMA9ylPI728c9T/+q//MhaLpdQfzpKSklxqpF9cv0oORLn4u+Pdd981ksz8+fONMcbs2rXLSHJoChtjzJYtW4wk8+yzz9rXlcwjt23bZl935MgR4+fnZ4KCghya5jk5OUaS+dvf/uY0/l69epnf//73TsdUxnz/b3/7m5Hk8F1U8rvT6NGj7esuntOfOHHChIaGmttuu83p922zZs1M69at7Q353+ZXv359h+8QVB4u7QKPFRERoS+//FJbt27Viy++qHvuuUf/7//9P40dO1YtW7a0n9L46aef6ty5c3rooYd07tw5+xIYGKhOnTo5nJb0yy+/6Omnn9bvfvc71axZUzVr1lStWrV08uRJ7dq1q0Jxnjp1SuvXr1f//v2dXtdq3bp16tq1q2JjYx3WDxw4UKdOnVJWVpbD+l69ejk8bt68uaQLN6K4eP3Ro0dLnXJf1v5DQkJ03333ldq/pFKnm955552qU6eO09cE4PksFot69+7tsK5Vq1YOl7S6Eps3b5bNZlP//v0d1t96662lTjcv0adPn1LxSKpwTK58D0hX9p6cOXNGn332me69914FBwc77O/uu+/WmTNntHnzZodt/vCHP7iUT35+vh577DHFxsaqZs2a8vf3V6NGjSSpXN9V0dHRateuncO6S+VX0e+a1atXy2Kx6MEHH3R4D6Kjo3XTTTeVes9diQlA9TP/d2mUiy+jVVa9PnPmjPLz8yVdOD3+tzWguLjYYfyNN96om266yWFdcnKyjh8/rq+//lrShTlqixYtStWIgQMHyhijdevW2detW7dO3bp1U1hYmPz8/OTv76/nn39eR44cscf021hvuOEGh3Wff/75JWMqj3bt2mnx4sWaOHGiNm/erKKiIofnN23apKNHj2rAgAEO78v58+d11113aevWrTp58qTDNmV9Rzz88MM6ePCgwyVjFi1apOjoaPXo0eOS8X3yySeSpOHDh19yjKvfmQC8gytz1PXr1ys+Pl4tWrRweI0//elPLu3z4vpVUq8vvvzrH//4R4WEhNh7Dp9//nmZ49q1a6fmzZuX6k3Ur19fbdq0sT8ODw9XZGSkfv/73ysmJsa+vmQee7n5Zbt27fTtt99q2LBh+vTTT3X8+HGH5ytrvv/nP/9ZVqvV4TLB77zzjmw2mx5++OFLxrdp0yYdP35cw4YNu+TlLX/88Uf98MMP9vviXRxjbm6uw6UzUXlopMPjtW3bVk8//bTee+89/fzzz/rLX/6ivXv32m84eujQIUnSLbfcIn9/f4fl3XffdbimbHJysubMmaNHH31Un376qb766itt3bpV9erV0+nTpysUX0FBgYqLi9WgQQOn444cOVLmXZhLCv+RI0cc1oeHhzs8DggIcLr+cjcDPXLkiKKjo0sV4sjISNWsWbPU/rljNOAbgoODFRgY6LDOarVW2g2ES2pHVFRUqefKWidd+EPpxfFIqnAdduV7QLqy9+TIkSM6d+6cZs+eXWpfd999tySV2p8r9fT8+fNKTEzUBx98oKeeekqfffaZvvrqK/tkvTzv0cXvr3Qhv7K2reh3zaFDh2SMUVRUVKn3YfPmzaXeA1diAlB56tatq+DgYO3Zs8fpuL179yo4OLjUv/3L1etHHnnE4d9/165dHcZHR0eX2lfJupLvj/LOkb/66islJiZKkhYsWKB//etf2rp1q8aNG+cQU4myXrNkPnypmC7n3Xff1YABA/TGG28oISFB4eHheuihh5SXlyfp1++j++67r1RtnDp1qowxOnr06GXj7NGjh+rXr2+/BnBBQYFWrlyphx56SH5+fpeM7/Dhw/Lz83Oaj6vfmQC8gytz1CNHjrg0d7+Ui+vXkSNHVLNmzVIHGFosFkVHRzvU/bK2ly7U/sv1RqQLc9OK9kbGjh2r6dOna/PmzerRo4ciIiLUtWtXbdu2zR5fZcz3w8PD1adPH/3973+3/6F58eLFateunW688cZLxnf48GFJctpjKqnlY8aMKRXjsGHDyowRlaN8t5AFPIS/v7/Gjx+vl19+Wdu3b5d04RcESfrnP/9pP2KvLIWFhVq9erXGjx+vZ555xr7eZrOVmtC6Ijw8XH5+fqVuinGxiIgI5ebmllr/888/S/o1j6oSERGhLVu2yBjj0EzPz8/XuXPnSu2/PDf2A4CSJkvJZO638vLyLnlUemUq7/dAZahTp478/PyUkpJyySP+mjRp4vDYlXq6fft2ffvtt1q8eLEGDBhgX1/WTefcqW7durJYLPryyy/tjbXfKmsdgOrn5+enLl26KD09XQcPHizzl/KDBw8qOztbPXr0cNqkLUtaWpqeeOIJ++PatWs7PF/SYC5rXcn3R3nnyMuXL5e/v79Wr17t8MfQDz/8sMzYyqq9ERERTmO6nLp162rWrFmaNWuW9u/fr5UrV+qZZ55Rfn6+0tPT7bHOnj1bt956a5mvcXGjqqw4S75n/va3v+nYsWNatmzZZY9glKR69eqpuLhYeXl5l/wjbnV+ZwKoPq7MUSMiIi45d3fFxfUrIiJC586d0+HDhx2a6cYY5eXl2W8sX1L/c3NzS30v/fzzz1XeG6lZs6ZGjRqlUaNG6dixY1q7dq2effZZJSUl6cCBA5U633/44Yf13nvvKTMzUw0bNtTWrVs1b948p/GVvHfOekwl79HYsWPVr1+/MsfExcU53Q8qhkY6PFZubm6ZE8CS09pLjlJJSkpSzZo19T//8z9OT5+3WCwyxpT65f6NN94odRqqK0dHBgUFqVOnTnrvvfc0adKkSxb9rl27asWKFfr5558dTj/6+9//ruDg4EtOtitL165d9Y9//EMffvih7r33Xof9lzx/OVd61CgA39O+fXtZrVa9++67DpO4zZs3a9++fRVupLtytHJ5vwdc3b9Uut4FBwerS5cu+uabb9SqVSv7kS+V9folk/CLv6tef/31Cu2nqvTq1Usvvviifvrpp1KX9akovmOAqjF27Fh98sknGjZsmFasWOHQLC8uLtbjjz8uY4zGjh3r8ms3btzYaZ3fsWOHvv32W4dLqSxbtky1a9fWzTffLOnCHHTKlCn6+uuv7eukC3NUi8WiLl26SLpQH2vWrOkQ/+nTp/XWW2+VO94uXbpo2rRpZcbkqoYNG+qJJ57QZ599pn/961+SpI4dO+qaa67Rzp07Hf7AUBEPP/ywpk2bpnfeeUeLFy9WQkKCmjVr5nSbHj16aMqUKZo3b55eeOGFMsdUxXcmAPdzZY7aqVMnTZ8+XTt37nS4vMvy5cuvKIauXbtq2rRpWrp0qf7yl7/Y17///vs6efKkvedw5513SpKWLl1qb65L0tatW7Vr1y77mUbV4ZprrtF9992nn376Sampqdq7d69atGhRKfN9SUpMTNS1116rRYsWqWHDhgoMDLzsJXQ6dOigsLAwvfbaa3rggQfKbNLHxcWpadOm+vbbbzV58uQKxwfX0UiHx0pKSlKDBg3Uu3dvNWvWTOfPn1dOTo5mzJihWrVq6cknn5R0YQL/wgsvaNy4cfrPf/6ju+66S3Xq1NGhQ4f01VdfKSQkRBMmTFBoaKjuuOMOvfTSS6pbt64aN26s9evXa+HChbrmmmsc9h0fHy9Jmj9/vmrXrq3AwEA1adKkzFPTJWnmzJm67bbb1L59ez3zzDP63e9+p0OHDmnlypV6/fXXVbt2bY0fP16rV69Wly5d9Pzzzys8PFxvv/221qxZo2nTpiksLKxK38+HHnpIr776qgYMGKC9e/eqZcuW2rhxoyZPnqy7775b3bp1u+xr1K5dW40aNdJHH32krl27Kjw83P5eArg6hYeHa9SoUZoyZYrq1Kmje++9VwcPHtSECRNUv3591ahRsavItWzZUh988IHmzZunNm3aqEaNGmrbtm2ZY8v7PeAKZ/XulVde0W233abbb79djz/+uBo3bqwTJ07oxx9/1KpVqxyu53spl/qeadasma6//no988wzMsYoPDxcq1atUmZmpkvxV7WOHTtqyJAhevjhh7Vt2zbdcccdCgkJUW5urjZu3KiWLVvq8ccfd+k1r7/+egUFBentt99W8+bNVatWLcXExDj88RmA6zp27KhZs2YpNTVVt912m5544gk1bNhQ+/fv16uvvqotW7Zo1qxZ6tChQ6XvOyYmRn369FFaWprq16+vpUuXKjMzU1OnTlVwcLAk6S9/+Yv+/ve/q2fPnnrhhRfUqFEjrVmzRnPnztXjjz9uv855z549NXPmTCUnJ2vIkCE6cuSIpk+f7tIZMKmpqXrzzTfVs2dPTZw4UVFRUXr77bf1ww8/XHbbwsJCdenSRcnJyWrWrJlq166trVu3Kj093f6H5Fq1amn27NkaMGCAjh49qvvuu0+RkZE6fPiwvv32Wx0+fPiyRyKWaNasmRISEjRlyhQdOHBA8+fPv+w2t99+u1JSUjRx4kQdOnRIvXr1ktVq1TfffKPg4GCNGDGiSr4zAVSfdevWae/evaXW33333eWeo5bUwh49euiFF15QVFSUli1bZq+FFZ2/d+/eXUlJSXr66ad1/PhxdezYUd99953Gjx+v1q1bKyUlRdKFJvCQIUM0e/Zs1ahRQz169NDevXv13HPPKTY21qEJXxV69+6t+Ph4tW3bVvXq1dO+ffs0a9YsNWrUSE2bNpWkSpnvSxfOMHrooYc0c+ZMhYaGql+/fpft/dSqVUszZszQo48+qm7dumnw4MGKiorSjz/+qG+//VZz5syRdOFAmx49eigpKUkDBw7Utddeq6NHj2rXrl36+uuv9d57713ZG4Wyue02p8BlvPvuuyY5Odk0bdrU1KpVy/j7+5uGDRualJQUs3PnzlLjP/zwQ9OlSxcTGhpqrFaradSokbnvvvvM2rVr7WMOHjxo/vCHP5g6deqY2rVrm7vuusts377dNGrUyAwYMMDh9WbNmmWaNGli/Pz8jCSzaNEip/Hu3LnT/PGPfzQREREmICDANGzY0AwcONCcOXPGPub77783vXv3NmFhYSYgIMDcdNNNpV635K7P7733nsP6S92lu+SO2YcPH7av69Spk7nxxhtLxXjkyBHz2GOPmfr165uaNWuaRo0ambFjxzrEaIwxkszw4cPLzHPt2rWmdevWxmq1Gkml3jcA7lFWjRgwYIAJCQkpNbakbvxWo0aNTM+ePR3W7dmzp1T9u/iu8sYYc/78eTNx4kTToEEDExAQYFq1amVWr15tbrrpJnPvvffax12qvpW1n6NHj5r77rvPXHPNNcZisZSKtyzl+R5w5T1xVu/27NljHnnkEXPttdcaf39/U69ePdOhQwczceLEy+Zb4lLfMzt37jTdu3c3tWvXNnXq1DF//OMfzf79+40kM378ePv2ZX0Wl6r/AwYMMI0aNbpsbK581xhjzJtvvmnat29vQkJCTFBQkLn++uvNQw89ZLZt2+ZyTMYY884775hmzZoZf3//UvkCuDJZWVnmvvvuM1FRUaZmzZomMjLS9OvXz2zatKnU2Ev9my+r7lxKyffKP//5T3PjjTeagIAA07hxYzNz5sxSY/ft22eSk5NNRESE8ff3N3Fxceall14yxcXFDuPefPNNExcXZ6xWq7nuuuvMlClTzMKFC0vFVNZ3WomSGhsYGGjCw8PNoEGDzEcffWQkmc8///yS+Zw5c8Y89thjplWrViY0NNQEBQWZuLg4M378eHPy5EmHsevXrzc9e/Y04eHhxt/f31x77bWmZ8+eDjX3Uu/xb82fP99IMkFBQaawsLDU82XV0eLiYvPyyy+b+Ph4ExAQYMLCwkxCQoJZtWqVw7jyfGcC8Bwl9fdSS0kNLM8c1Rhjtm/fbrp16+ZQC5csWWIkmW+//dZpLM7q1+nTp83TTz9tGjVqZPz9/U39+vXN448/bgoKChzGFRcXm6lTp5obbrjB+Pv7m7p165oHH3zQHDhwwGHcpeaRl6rzznoZJWbMmGE6dOhg6tata+/dDBo0yOzdu9dhXGXM940x5v/9v/9n/5wyMzNLPX+p79aPP/7YdOrUyYSEhJjg4GDTokULM3XqVIcx3377renfv7+JjIw0/v7+Jjo62tx5553mtddec/oeoOIsxvzfLdoBAAAqyZ49e9SsWTONHz9ezz77rLvDAQAAAODEkCFD9M477+jIkSNXdDkTwJdxaRcAAHBFvv32W73zzjvq0KGDQkNDtXv3bk2bNk2hoaEaNGiQu8MDAAAA8BsvvPCCYmJidN111+mXX37R6tWr9cYbb+i///u/aaIDTtBIBwAAVyQkJETbtm3TwoULdezYMYWFhalz586aNGmSoqKi3B0eAAAAgN/w9/fXSy+9pIMHD+rcuXNq2rSpZs6cab8XHYCycWkXAAAAAAAAAACcqNiteAEAAAAAAAAAuErQSAcAAAAAAPBQ8+bNU6tWrRQaGqrQ0FAlJCTok08+sT9vjFFaWppiYmIUFBSkzp07a8eOHQ6vYbPZNGLECNWtW1chISHq06ePDh486DCmoKBAKSkpCgsLU1hYmFJSUnTs2DGHMfv371fv3r0VEhKiunXrauTIkTp79myV5Q4AnoRGOgAAAAAAgIdq0KCBXnzxRW3btk3btm3TnXfeqXvuucfeLJ82bZpmzpypOXPmaOvWrYqOjlb37t114sQJ+2ukpqZqxYoVWr58uTZu3KhffvlFvXr1UnFxsX1McnKycnJylJ6ervT0dOXk5CglJcX+fHFxsXr27KmTJ09q48aNWr58ud5//32NHj26+t4MAHAjrpF+GefPn9fPP/+s2rVry2KxuDscAFc5Y4xOnDihmJgY1ajB30LLi1oOwNNQz11HLQfgadxZy8PDw/XSSy/pkUceUUxMjFJTU/X0009LunD0eVRUlKZOnaqhQ4eqsLBQ9erV01tvvaX7779fkvTzzz8rNjZWH3/8sZKSkrRr1y61aNFCmzdvVvv27SVJmzdvVkJCgn744QfFxcXpk08+Ua9evXTgwAHFxMRIkpYvX66BAwcqPz9foaGh5Yqdeg7Ak7hUyw2cOnDggJHEwsLC4lHLgQMHqrT2zZ0717Rs2dLUrl3b1K5d29x6663m448/tj9//vx5M378eFO/fn0TGBhoOnXqZLZv3+7wGmfOnDFPPPGEiYiIMMHBwaZ3796l4j569Kh58MEHTWhoqAkNDTUPPvigKSgocBizb98+06tXLxMcHGwiIiLMiBEjjM1mcykfajkLC4unLlVdz30JtZyFhcVTl+qs5efOnTPvvPOOCQgIMDt27DD/8z//YySZr7/+2mFcnz59zEMPPWSMMeazzz4zkszRo0cdxrRq1co8//zzxhhjFi5caMLCwkrtLywszLz55pvGGGOee+4506pVK4fnjx49aiSZdevWXTLmM2fOmMLCQvuyc+dOt39mLCwsLBcv5anlNQWnateuLUk6cOBAuf+6WlRUpIyMDCUmJsrf378qw6tWvpgXOXkPX8yrIjkdP35csbGx9tpUVUpOH/3d734nSVqyZInuueceffPNN7rxxhvtp48uXrxYN9xwgyZOnKju3btr9+7d9thSU1O1atUqLV++XBERERo9erR69eql7Oxs+fn5Sbpw+ujBgweVnp4uSRoyZIhSUlK0atUqSb+ePlqvXj1t3LhRR44c0YABA2SM0ezZs8udT0VqucTPnbfwxZwk38yLnH5VXfXcl1DLf0VO3sMX8yKnX1VnLf/++++VkJCgM2fOqFatWlqxYoVatGihTZs2SZKioqIcxkdFRWnfvn2SpLy8PAUEBKhOnTqlxuTl5dnHREZGltpvZGSkw5iL91OnTh0FBATYx5RlypQpmjBhQqn1b7zxhoKDgy+XOgBUqVOnTunRRx8tVy2nkX4ZJacZldzUozyKiooUHBys0NBQn5lYSL6ZFzl5D1/M60pyqupTIHv37u3weNKkSZo3b542b96sFi1aaNasWRo3bpz69esn6UKjPSoqSsuWLbOfPrpw4UK99dZb6tatmyRp6dKlio2N1dq1a+2nj6anpzucPrpgwQIlJCRo9+7diouLU0ZGhnbu3Olw+uiMGTM0cOBATZo0qdx1uSK1XOLnzlv4Yk6Sb+ZFTqVxSnv5Uct/RU7ewxfzIqfSqqOWx8XFKScnR8eOHdP777+vAQMGaP369ZeMwRhz2bguHlPW+IqMudjYsWM1atQo++OSP0D07dvXpT5LZmamunfv7lM/d76Wk+SbeZGT96hIXsePH9ejjz5arlpOIx0A4FRxcbHee+89nTx5UgkJCdqzZ4/y8vKUmJhoH2O1WtWpUydt2rRJQ4cOVXZ2toqKihzGxMTEKD4+Xps2bVJSUpKysrIUFhZmb6JL0q233qqwsDBt2rRJcXFxysrKUnx8vL2JLklJSUmy2WzKzs5Wly5dyozZZrPJZrPZHx8/flzShS/VoqKicudeMtaVbTwdOXkPX8yLnEpvBwBAeQQEBNjPFm3btq22bt2qV155xX5d9Ly8PNWvX98+Pj8/3370eHR0tM6ePauCggKHo9Lz8/PVoUMH+5hDhw6V2u/hw4cdXmfLli0OzxcUFKioqKjUkeq/ZbVaZbVaS6339/d3uYFXkW08nS/mJPlmXuTkPVzJy5X8aaQDAMrki6ePZmRkVOj00czMTJe38XTk5D18MS9yunAKKQAAFWWMkc1mU5MmTRQdHa3MzEy1bt1aknT27FmtX79eU6dOlSS1adNG/v7+yszMVP/+/SVJubm52r59u6ZNmyZJSkhIUGFhob766iu1a9dOkrRlyxYVFhbam+0JCQmaNGmScnNz7U37jIwMWa1WtWnTplrzBwB3oJEOACiTL54+mpiY6PLlAHztdDdy8h6+mBc5/arkTBkAAC7n2WefVY8ePRQbG6sTJ05o+fLl+uKLL5Seni6LxaLU1FRNnjxZTZs2VdOmTTV58mQFBwcrOTlZkhQWFqZBgwZp9OjRioiIUHh4uMaMGaOWLVvaL8PYvHlz3XXXXRo8eLBef/11SRfuX9SrVy/FxcVJkhITE9WiRQulpKTopZde0tGjRzVmzBgNHjzYpTk2AHgrGukAgDJx+uiVb+fJyMl7+GJe5OTaKaQVNW/ePM2bN0979+6VJN144416/vnn1aNHD0kX/ig5YcIEzZ8/XwUFBWrfvr1effVV3XjjjfbXsNlsGjNmjN555x2dPn1aXbt21dy5c9WgQQP7mIKCAo0cOVIrV66UJPXp00ezZ8/WNddcYx+zf/9+DR8+XOvWrVNQUJCSk5M1ffp0BQQEVPn7AADe7tChQ0pJSVFubq7CwsLUqlUrpaenq3v37pKkp556SqdPn9awYcPs9TwjI8Phxnkvv/yyatasqf79+9vr+eLFi+Xn52cf8/bbb2vkyJH2yzP26dNHc+bMsT/v5+enNWvWaNiwYerYsaNDPQeAqwGNdABeJT7tU9mKy38zn70v9qzCaK4unD4KoLJQy6tHgwYN9OKLL9r/KLpkyRLdc889+uabb3TjjTdq2rRpmjlzphYvXqwbbrhBEydOVPfu3bV792578yU1NVWrVq3S8uXLFRERodGjR6tXr17Kzs62N1+Sk5N18OBBpaenS7pwBGNKSopWrVol6cK9Nnr27Kl69epp48aNOnLkiAYMGCBjjGbPnu2GdwZAZaCWV5+FCxc6fd5isSgtLU1paWmXHBMYGKjZs2c7rbvh4eFaunSp0301bNhQq1evdjoGgPdwtZZLV3c9p5EOACiF00cBwPv17t3b4fGkSZM0b948bd68WS1atNCsWbM0btw49evXT9KFRntUVJSWLVumoUOHqrCwUAsXLtRbb71lr91Lly5VbGys1q5dq6SkJO3atUvp6enavHmz/ebRCxYsUEJCgnbv3q24uDhlZGRo586dOnDggP3m0TNmzNDAgQM1adIk6jkAAAC8Qg13BwAA8Dwlp4/GxcWpa9eu2rJlS6nTR1NTUzVs2DC1bdtWP/30U5mnj/bt21f9+/dXx44dFRwcrFWrVpU6fbRly5ZKTExUYmKiWrVqpbfeesv+fMnpo4GBgerYsaP69++vvn37cvooALiouLhYy5cv18mTJ5WQkKA9e/YoLy/Pfvq+dOGyWJ06dbLfVDo7O1tFRUUOY2JiYhQfH28fk5WVpbCwMHsTXZJuvfVWhYWFOYyJj4+3N9ElKSkpSTabTdnZ2VWaNwAAAFBZKv2IdK7FCADej9NHAcA3fP/990pISNCZM2dUq1YtrVixQi1atLA3uS++30RUVJT27dsn6cK9MAICAhzudVEyJi8vzz4mMjKy1H4jIyMdxly8nzp16iggIMA+piw2m002m83+uOQGrUVFRSoqKipX/iXjf/tfX0BO3sMX8yrJxVrDVGg7T1TRz8mTcwIAVL5Kb6RzLUYAAADAM8TFxSknJ0fHjh3T+++/rwEDBmj9+vX25y0Wx2tiGmNKrbvYxWPKGl+RMRebMmWKJkyYUGp9RkaGgoODncZYlszMTJe38XTk5D18Ma+/tj3v0viPP/64iiKpPK5+TqdOnaqiSAAAnqjSG+lcixEAAADwDAEBAfYDXNq2bautW7fqlVde0dNPPy3pwtHiJTdzlqT8/Hz70ePR0dE6e/asCgoKHI5Kz8/Pt98UOjo6WocOHSq138OHDzu8zpYtWxyeLygoUFFRUakj1X9r7NixGjVqlP3x8ePHFRsbq8TERJfm8kVFRcrMzFT37t3l7+9f7u08GTl5D1/MqySn57bVkO18+W9Qtz0tqQqjujIV/ZxKzpQBAFwdqvRmo8XFxXrvvffKfS3GoUOHXvZajElJSZe9FmNcXNxlr8XYpUuXMmOujFNIffH0Pck38yIn78EppI7bAABQEcYY2Ww2NWnSRNHR0crMzFTr1q0lSWfPntX69es1depUSVKbNm3k7++vzMxM9e/fX5KUm5ur7du3a9q0aZKkhIQEFRYW6quvvlK7du0kSVu2bFFhYaG92Z6QkKBJkyYpNzfX3rTPyMiQ1WpVmzZtLhmr1WqV1Wottd7f379CDcmKbufJyMl7+GJetvMW2YrL30j3hvxd/Zy8IScAQOWpkka6N1+LsTJPIfXF0/ck38yLnLzH1X4KKaePAgDK69lnn1WPHj0UGxurEydOaPny5friiy+Unp4ui8Wi1NRUTZ48WU2bNlXTpk01efJkBQcHKzk5WZIUFhamQYMGafTo0YqIiFB4eLjGjBmjli1b2s8cbd68ue666y4NHjxYr7/+uqQLl1zs1auX4uLiJEmJiYlq0aKFUlJS9NJLL+no0aMaM2aMBg8ezFmiAAAA8BpV0kj35msxVsYppL54+p7km3mRk/fgFNILOH0UAFBehw4dUkpKinJzcxUWFqZWrVopPT1d3bt3lyQ99dRTOn36tIYNG6aCggK1b99eGRkZ9vsWSdLLL7+smjVrqn///jp9+rS6du2qxYsX2+9bJElvv/22Ro4caT+jtE+fPpozZ479eT8/P61Zs0bDhg1Tx44dFRQUpOTkZE2fPr2a3gkAAADgylVJI92br8VYmaeQ+uLpe5Jv5kVO3uNqP4XUG/IBAHiGhQsXOn3eYrEoLS1NaWlplxwTGBio2bNna/bs2ZccEx4erqVLlzrdV8OGDbV69WqnYwAAAABPVqM6dlLWtRhLlFyLsaRJ/ttrMZYouRbjb6+zWHItxhJlXYtx+/btys3NtY8pz7UYAQAAAAAAAAD4rUo/Ip1rMQIAAAAAAAAAfEmlN9K5FiMAAAAAAAAAwJdUeiOdazECAAAAAAAAAHxJtVwjHQAAAAAAAAAAb0UjHQAAAAAAAAAAJ2ikAwAAAAAAAADgBI10AAAAAAAAAACcoJEOAAAAAAAAAIATNd0dAAAAAOApGj+zxqXxVj+jae2qKBgAAADgKuXqvFyq+rk5R6QDAAAAAAAAAOAEjXQAAAAAAAAAAJzg0i4AUEm4HAAAAAAAAIBv4oh0AAAAAAAAAACcoJEOAAAAAAAAAIATNNIBAAAAAAAAAHCCRjoAAAAAAAAAAE7QSAcAAAAAAAAAwAka6QAAAAAAAAAAOEEjHQAAAAAAAAAAJ2ikAwAAAAAAAADgRE13BwAAAAAAAFBZGj+zxqXxVj+jae2qKBgAgM/giHQAAAAAAAAAAJygkQ4AAAAAAAAAgBNc2gUAAAAAgCoUn/apbMWWco/f+2LPKowGAABUBEekAwAAAAAAAADgBI10AAAAAAAADzVlyhTdcsstql27tiIjI9W3b1/t3r3bYYwxRmlpaYqJiVFQUJA6d+6sHTt2OIyx2WwaMWKE6tatq5CQEPXp00cHDx50GFNQUKCUlBSFhYUpLCxMKSkpOnbsmMOY/fv3q3fv3goJCVHdunU1cuRInT17tkpyBwBPQiMdAFAKk3UAAADAM6xfv17Dhw/X5s2blZmZqXPnzikxMVEnT560j5k2bZpmzpypOXPmaOvWrYqOjlb37t114sQJ+5jU1FStWLFCy5cv18aNG/XLL7+oV69eKi4uto9JTk5WTk6O0tPTlZ6erpycHKWkpNifLy4uVs+ePXXy5Elt3LhRy5cv1/vvv6/Ro0dXz5sBAG5EIx0AUAqTdQAAAMAzpKena+DAgbrxxht10003adGiRdq/f7+ys7MlXTjAZdasWRo3bpz69eun+Ph4LVmyRKdOndKyZcskSYWFhVq4cKFmzJihbt26qXXr1lq6dKm+//57rV27VpK0a9cupaen64033lBCQoISEhK0YMECrV692n5QTUZGhnbu3KmlS5eqdevW6tatm2bMmKEFCxbo+PHj7nmDAKCacLNRAEAp6enpDo8XLVqkyMhIZWdn64477ig1WZekJUuWKCoqSsuWLdPQoUPtk/W33npL3bp1kyQtXbpUsbGxWrt2rZKSkuyT9c2bN6t9+/aSpAULFighIUG7d+9WXFycfbJ+4MABxcTESJJmzJihgQMHatKkSQoNDa3GdwYAAABwr8LCQklSeHi4JGnPnj3Ky8tTYmKifYzValWnTp20adMmDR06VNnZ2SoqKnIYExMTo/j4eG3atElJSUnKyspSWFiYfV4uSbfeeqvCwsK0adMmxcXFKSsrS/Hx8fZ5uSQlJSXJZrMpOztbXbp0KRWvzWaTzWazPy5puBcVFamoqKhcOZeMK+94b+CLOUm+mZcv52StYSq8bVWz+rkeW0k+rsToylga6QCAy/K2yToAAADgi4wxGjVqlG677TbFx8dLkvLy8iRJUVFRDmOjoqK0b98++5iAgADVqVOn1JiS7fPy8hQZGVlqn5GRkQ5jLt5PnTp1FBAQYB9zsSlTpmjChAml1mdkZCg4OPiyOf9WZmamS+O9gS/mJPlmXr6Y01/bnnd5m48//rgKIiltWruKb+vKZ3Xq1Klyj6WRDgBwyhsn65Vx1EvJ+N/+1xeQk/fwxbwqeuRLdb4Hrh75UpGjXioyHgAASXriiSf03XffaePGjaWes1gsDo+NMaXWXeziMWWNr8iY3xo7dqxGjRplf3z8+HHFxsYqMTGx3GeXFhUVKTMzU927d5e/v3+5tvF0vpiT5Jt5leT03LYasp13/m/qt7anJVVhVFemojlJ1ZdXfNqnLm9jrWH017bnXfr5c+WyVDTSAQBOeeNkvTKPepF888gDcvIevpiXq0e+VNdRL1LFj3xx9XNy5ciXipoyZYo++OAD/fDDDwoKClKHDh00depUxcXF2ccYYzRhwgTNnz9fBQUFat++vV599VXdeOON9jE2m01jxozRO++8o9OnT6tr166aO3euGjRoYB9TUFCgkSNHauXKlZKkPn36aPbs2brmmmvsY/bv36/hw4dr3bp1CgoKUnJysqZPn66AgIAqfy8AwBeMGDFCK1eu1IYNGxxqcHR0tKQLB6DUr1/fvj4/P99+QEp0dLTOnj2rgoIChwNd8vPz1aFDB/uYQ4cOldrv4cOHHV5ny5YtDs8XFBSoqKio1MEvJaxWq6xWa6n1/v7+LjdaK7KNp/PFnCSp9aR1shWXv0G798WeVRhN5bCdt7iUkzd8rq7mJFVfXq7G9Vuu/LtyJR8a6QCAS/LWyXplHPUi+fbRFOTk+XwxL284msfVI18qctSL5NqRLxVVcuPoW265RefOndO4ceOUmJionTt3KiQkRNKvN45evHixbrjhBk2cOFHdu3fX7t27Vbt2bUkXbhy9atUqLV++XBERERo9erR69eql7Oxs+fn5Sbpw4+iDBw/a77ExZMgQpaSkaNWqVZJ+vXF0vXr1tHHjRh05ckQDBgyQMUazZ8+u8vcCALyZMUYjRozQihUr9MUXX6hJkyYOzzdp0kTR0dHKzMxU69atJUlnz57V+vXrNXXqVElSmzZt5O/vr8zMTPXv31+SlJubq+3bt2vatGmSpISEBBUWFuqrr75Su3YX/rK8ZcsWFRYW2ufvCQkJmjRpknJzc+2/B2RkZMhqtapNmzZV/2YAgBtVeiOdI18AwPt5+2S9Mo96uZLtPBk5eQ9fzMuTj+ap6JEvrn5O1ZETN44GAN8wfPhwLVu2TB999JFq165tv7xhWFiYgoKCZLFYlJqaqsmTJ6tp06Zq2rSpJk+erODgYCUnJ9vHDho0SKNHj1ZERITCw8M1ZswYtWzZ0l7fmzdvrrvuukuDBw/W66+/LunCH0Z79epl7+kkJiaqRYsWSklJ0UsvvaSjR49qzJgxGjx4MLUcgM+r9EY6R74AgPdjsg4AvsfbbhzN/S4ujZy8hzfcG8JV3pCTr93vYt68eZKkzp07O6xftGiRBg4cKEl66qmndPr0aQ0bNsx+wGJGRoa9xyJJL7/8smrWrKn+/fvbD1hcvHixvcciSW+//bZGjhxpr/t9+vTRnDlz7M/7+flpzZo1GjZsmDp27OhwwCIA+LpKb6Rz5AsAeD8m64DniE/71OeuL4nq5403juZ+F5dHTt7Dk+8NUVGenJMv3e9CulDDL8disSgtLU1paWmXHBMYGKjZs2c7PbAwPDxcS5cudbqvhg0bavXq1ZeNCQB8TZVfI93bjnwBADBZBwBf4403juZ+F5dGTt7DG+4N4SpvyMmX7ncBAPAcVdpI98YjXyrjFFJfPy3Rl/IiJ+/BKaRyeSwAAJL33jia+11cHjl5D0++N0RFeXJOvnS/CwCA56jSRro3HvlSmaeQ+uppib6YFzl5j6v9FNLqOn0UAOD9vP3G0QAAAIAnqbJGurce+VIZp5D6+mmJvpQXOXkPTiG9gNNHAQDlxY2jAQAAgMpT6Y10bz/ypTJPIfXV0xJ9MS9y8h5X+ymkvviZAgCqBjeOBgAAACpPpTfSOfIFAAAAcD9uHA0AAABUnkpvpHPkCwAAcIf4tE9dPjNk74s9qygaAAAAAIAvqZJLu1wOR74AVY+GEgAAAAAAAFA5arg7AAAAAAAAAAAAPBmNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMCJmu4OAAAAAAAASYpP+1S2YotL2+x9sWcVRQMAAPArGumAXJ+wM1kHAAAAAAAArh5c2gUAAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwoqa7AwAAANUvPu1T2Yot5R6/98WeVRgNAAAAAACejSPSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADjBzUbhMm5QBwAAALgf83Lg6rBhwwa99NJLys7OVm5urlasWKG+ffvanzfGaMKECZo/f74KCgrUvn17vfrqq7rxxhvtY2w2m8aMGaN33nlHp0+fVteuXTV37lw1aNDAPqagoEAjR47UypUrJUl9+vTR7Nmzdc0119jH7N+/X8OHD9e6desUFBSk5ORkTZ8+XQEBAVX+PgCAu3FEOgCgTBs2bFDv3r0VExMji8WiDz/80OF5Y4zS0tIUExOjoKAgde7cWTt27HAYY7PZNGLECNWtW1chISHq06ePDh486DCmoKBAKSkpCgsLU1hYmFJSUnTs2DGHMfv371fv3r0VEhKiunXrauTIkTp79mxVpA0AAAB4lJMnT+qmm27SnDlzynx+2rRpmjlzpubMmaOtW7cqOjpa3bt314kTJ+xjUlNTtWLFCi1fvlwbN27UL7/8ol69eqm4uNg+Jjk5WTk5OUpPT1d6erpycnKUkpJif764uFg9e/bUyZMntXHjRi1fvlzvv/++Ro8eXXXJA4AHoZEOACgTE3YAAADA/Xr06KGJEyeqX79+pZ4zxmjWrFkaN26c+vXrp/j4eC1ZskSnTp3SsmXLJEmFhYVauHChZsyYoW7duql169ZaunSpvv/+e61du1aStGvXLqWnp+uNN95QQkKCEhIStGDBAq1evVq7d++WJGVkZGjnzp1aunSpWrdurW7dumnGjBlasGCBjh8/Xn1vCAC4CY10AECZmLADgPfj7CIA8G179uxRXl6eEhMT7eusVqs6deqkTZs2SZKys7NVVFTkMCYmJkbx8fH2MVlZWQoLC1P79u3tY2699VaFhYU5jImPj1dMTIx9TFJSkmw2m7Kzs6s0T18Wn/apGj+zxqUFgHtUeiOdyToA+D4m7ADgHTi7CAB8W15eniQpKirKYX1UVJT9uby8PAUEBKhOnTpOx0RGRpZ6/cjISIcxF++nTp06CggIsI8pi81m0/Hjxx0WSSoqKnJpqcg2nr5IkrWGkdXPtcXdcVdFXu6OmZw8Ly9X47L6GVlrmArXl/Ko9JuNlkzWH374Yf3hD38o9XzJZH3x4sW64YYbNHHiRHXv3l27d+9W7dq1JV2YrK9atUrLly9XRESERo8erV69eik7O1t+fn6SLkzWDx48qPT0dEnSkCFDlJKSolWrVkn6dbJer149bdy4UUeOHNGAAQNkjNHs2bMrO20AuKo4m7Dv27fPPsZdE3abzSabzWZ/fPFkvbxKxrqyjaf77YSpItt5oorm9NttPRGfVentqoPVz7XYfjtZd0V15dSjRw/16NGjzOcuPrtIkpYsWaKoqCgtW7ZMQ4cOtZ9d9NZbb6lbt26SpKVLlyo2NlZr165VUlKS/eyizZs32/8wumDBAiUkJGj37t2Ki4uzn1104MAB+x9GZ8yYoYEDB2rSpEkKDQ2thncDAHyXxeJ442FjTKl1F7t4TFnjKzLmYlOmTNGECRNKrc/IyFBwcLDTGC+WmZnp0nhv8Ne2513e5uOPP66CSCqXq3mRk3t48s/ftHYV39aVWnHq1Klyj630RjqTdQC4enjqhL0yJ+sSE3aJSaA78VlVb04VnbC7WidcmbBXlcudXTR06NDLnl2UlJR02bOL4uLiLnt2UZcuXaonaQDwMdHR0ZIuHHxSv359+/r8/Hz7wSjR0dE6e/asCgoKHA5yyc/PV4cOHexjDh06VOr1Dx8+7PA6W7ZscXi+oKBARUVFpQ58+a2xY8dq1KhR9sfHjx9XbGysEhMTy92bKSoqUmZmprp37y5/f/9ybePpSnJ6blsN2c47/x3qYtvTkqooqitX0bzIqXp5w89ffNqnLm9jrWH017bnXaoVrlwyttIb6c4wWQcA3+DpE/bKmKxLTNh/i0lg9eOz+lV15uTqhL0ik3XJtQl7VeHsIu/lDWd3uIqzi8rezhN5Q06+dnaRM02aNFF0dLQyMzPVunVrSdLZs2e1fv16TZ06VZLUpk0b+fv7KzMzU/3795ck5ebmavv27Zo2bZokKSEhQYWFhfrqq6/Urt2Fvypv2bJFhYWF9rl7QkKCJk2apNzcXPvvABkZGbJarWrTps0lY7RarbJaraXW+/v7uzzHrsg2ns523iJbsWtzWG94D1zNi5zcw5N//lyN67dcqRWu5FOtjXRPn6xLlTNh98XJuuQdEyZXkVPZ23oib/isqmPC7imfkadP2Ctzsn4l23kyJoEX+GJe5HRlKjphd7VOeNLnxNlF3suTz+6oKM4uuoCcroyvnV30yy+/6Mcff7Q/3rNnj3JychQeHq6GDRsqNTVVkydPVtOmTdW0aVNNnjxZwcHBSk5OliSFhYVp0KBBGj16tCIiIhQeHq4xY8aoZcuW9isBNG/eXHfddZcGDx6s119/XdKFS+j26tVLcXFxkqTExES1aNFCKSkpeumll3T06FGNGTNGgwcP5qx/AFeFam2kl/DUybrEtbvKw5MnTBVFThf4Yl6+NmGvzksBMGEHAN/G2UXeyxvO7nAVZxc5Iqcr42tnF23bts3hrPqS2jhgwAAtXrxYTz31lE6fPq1hw4apoKBA7du3V0ZGhv0+dJL08ssvq2bNmurfv79Onz6trl27avHixfb70EnS22+/rZEjR9qvENCnTx+Hm1X7+flpzZo1GjZsmDp27KigoCAlJydr+vTpVf0WAIBHqNZGuqdP1iWu3eWMN0yYXEVOjnwxL1+bsFfnpQCYsAOAb+PsIu/nyWd3VBRnF11ATlfG184u6ty5s4y59NmvFotFaWlpSktLu+SYwMBAzZ49W7Nnz77kmPDwcC1dutRpLA0bNtTq1asvGzMA+KJqbaR7+mRd4tpd5eHJE6aKIqcLfDEvX5uwV2c+TNgBwPtxdhEAAABQOSq9kc5kHQAAAPAMnF0EAAAAVI5Kb6QzWQcAAAA8A2cXAQAAAJWj0hvpTNYBAAAAAAAAAL6khrsDAAAAAAAAAADAk9FIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBNXRSN97ty5atKkiQIDA9WmTRt9+eWX7g4JAFAB1HMA8H7UcgDwftRyAFcjn2+kv/vuu0pNTdW4ceP0zTff6Pbbb1ePHj20f/9+d4cGAHAB9RwAvB+1HAC8H7UcwNWqprsDqGozZ87UoEGD9Oijj0qSZs2apU8//VTz5s3TlClT3BwdAKC8qOcA4P2o5QDg/dxZy+PTPpWt2FLu8Xtf7FmF0QC42vh0I/3s2bPKzs7WM88847A+MTFRmzZtKnMbm80mm81mf1xYWChJOnr0qIqKisq136KiIp06dUpHjhyRv79/BaP3PCV51SyqoeLz5f/iOnLkSBVGdWXIyZEv5lWdOdU8d9K18eeNTp0671KtOHHihCTJGONyfN7M1XpeGbVc8s167g3/llxF3XNETlemOmq5dHXWc2p55fGGf0uuopY7IqcrQy2vOu7us3jyz52rqHuOyKl6ecPPn6u1XKqGPovxYT/99JORZP71r385rJ80aZK54YYbytxm/PjxRhILCwuLRy8HDhyojjLqMVyt59RyFhYWb1mupnpOLWdhYfHVhVpOn4WFhcX7l/LUcp8+Ir2ExeL4lxVjTKl1JcaOHatRo0bZH58/f15Hjx5VRETEJbe52PHjxxUbG6sDBw4oNDS04oF7GF/Mi5y8hy/mVZGcjDE6ceKEYmJiqjg6z1Teel4ZtVzi585b+GJOkm/mRU6/uprrObX8ypGT9/DFvMjpV9TyX9FncZ0v5iT5Zl7k5D2qus/i0430unXrys/PT3l5eQ7r8/PzFRUVVeY2VqtVVqvVYd0111xTof2Hhob61A9jCV/Mi5y8hy/m5WpOYWFhVRiNZ3K1nldmLZf4ufMWvpiT5Jt5kdMFV1s9p5ZXPnLyHr6YFzldQC2/gD5LxfliTpJv5kVO3qOq+iw1KhqQNwgICFCbNm2UmZnpsD4zM1MdOnRwU1QAAFdRzwHA+1HLAcD7UcsBXM18+oh0SRo1apRSUlLUtm1bJSQkaP78+dq/f78ee+wxd4cGAHAB9RwAvB+1HAC8H7UcwNXK5xvp999/v44cOaIXXnhBubm5io+P18cff6xGjRpV2T6tVqvGjx9f6tQlb+eLeZGT9/DFvHwxp6pEPa8c5OQ9fDEvcgK1vHKQk/fwxbzICdTyyuGLOUm+mRc5eY+qzstijDFV8soAAAAAAAAAAPgAn75GOgAAAAAAAAAAV4pGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSO9CsydO1dNmjRRYGCg2rRpoy+//NLdIV2RDRs2qHfv3oqJiZHFYtGHH37o7pCu2JQpU3TLLbeodu3aioyMVN++fbV79253h3VF5s2bp1atWik0NFShoaFKSEjQJ5984u6wKtWUKVNksViUmprq7lCuSFpamiwWi8MSHR3t7rBwEWq556OWeydqOaoTtdzzUcu9E7Uc1cnXarnke/XcF2u5RD33FtVZy2mkV7J3331XqampGjdunL755hvdfvvt6tGjh/bv3+/u0Crs5MmTuummmzRnzhx3h1Jp1q9fr+HDh2vz5s3KzMzUuXPnlJiYqJMnT7o7tApr0KCBXnzxRW3btk3btm3TnXfeqXvuuUc7duxwd2iVYuvWrZo/f75atWrl7lAqxY033qjc3Fz78v3337s7JPwGtdw7UMu9D7Uc1Yla7h2o5d6HWo7q5Iu1XPK9eu6LtVyinnuTaqvlBpWqXbt25rHHHnNY16xZM/PMM8+4KaLKJcmsWLHC3WFUuvz8fCPJrF+/3t2hVKo6deqYN954w91hXLETJ06Ypk2bmszMTNOpUyfz5JNPujukKzJ+/Hhz0003uTsMOEEt907Ucs9GLUd1o5Z7J2q5Z6OWo7r5ei03xjfrua/WcmOo556oOms5R6RXorNnzyo7O1uJiYkO6xMTE7Vp0yY3RYXyKCwslCSFh4e7OZLKUVxcrOXLl+vkyZNKSEhwdzhXbPjw4erZs6e6devm7lAqzb///W/FxMSoSZMmeuCBB/Sf//zH3SHh/1DLvRe13LNRy1GdqOXei1ru2ajlqE7Ucu/la7Vcop57uuqq5TWr5FWvUv/7v/+r4uJiRUVFOayPiopSXl6em6LC5RhjNGrUKN12222Kj493dzhX5Pvvv1dCQoLOnDmjWrVqacWKFWrRooW7w7oiy5cv19dff62tW7e6O5RK0759e/3973/XDTfcoEOHDmnixInq0KGDduzYoYiICHeHd9Wjlnsnarlno5ajulHLvRO13LNRy1HdqOXeyZdquUQ99wbVWctppFcBi8Xi8NgYU2odPMcTTzyh7777Ths3bnR3KFcsLi5OOTk5OnbsmN5//30NGDBA69ev99oif+DAAT355JPKyMhQYGCgu8OpND169LD/f8uWLZWQkKDrr79eS5Ys0ahRo9wYGX6LWu5dqOWei1oOd6KWexdqueeilsOdqOXexZdquUQ99wbVWctppFeiunXrys/Pr9RfRvPz80v9BRWeYcSIEVq5cqU2bNigBg0auDucKxYQEKDf/e53kqS2bdtq69ateuWVV/T666+7ObKKyc7OVn5+vtq0aWNfV1xcrA0bNmjOnDmy2Wzy8/NzY4SVIyQkRC1bttS///1vd4cCUcu9EbXcs1HL4Q7Ucu9DLfds1HK4A7Xc+/haLZeo596oKms510ivRAEBAWrTpo0yMzMd1mdmZqpDhw5uigplMcboiSee0AcffKB169apSZMm7g6pShhjZLPZ3B1GhXXt2lXff/+9cnJy7Evbtm315z//WTk5OV5f3EvYbDbt2rVL9evXd3coELXcm1DLvQO1HO5ALfce1HLvQC2HO1DLvcfVUssl6rk3qMpazhHplWzUqFFKSUlR27ZtlZCQoPnz52v//v167LHH3B1ahf3yyy/68ccf7Y/37NmjnJwchYeHq2HDhm6MrOKGDx+uZcuW6aOPPlLt2rXtf+EOCwtTUFCQm6OrmGeffVY9evRQbGysTpw4oeXLl+uLL75Qenq6u0OrsNq1a5e6plpISIgiIiK8+lprY8aMUe/evdWwYUPl5+dr4sSJOn78uAYMGODu0PB/qOXegVruHajlcBdquXeglnsHajncxRdrueR79dwXa7lEPfcW1VrLDSrdq6++aho1amQCAgLMzTffbNavX+/ukK7I559/biSVWgYMGODu0CqsrHwkmUWLFrk7tAp75JFH7D939erVM127djUZGRnuDqvSderUyTz55JPuDuOK3H///aZ+/frG39/fxMTEmH79+pkdO3a4OyxchFru+ajl3otajupCLfd81HLvRS1HdfG1Wm6M79VzX6zlxlDPvUV11nKLMcZUfnseAAAAAAAAAADfwDXSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6rtjixYtlsVgclnr16qlz585avXq1u8PzaAMHDlStWrXcHYaDks9z79699nWdO3dW586dHcZZLBalpaVVa2wAPMd3332nhx9+WE2aNFFgYKBq1aqlm2++WdOmTdPRo0ft4xo3bqxevXpVe3wWi0VPPPGE0zF79+6VxWLR4sWLqycoN2jcuLEGDhzo7jAAeLiS+d+2bdsqtP3evXvVs2dPhYeHy2KxKDU1tcwaW9Y8s7y++OILWSwW/fOf/7zs2GXLlmnWrFku78NTMM8G4E7lmeeX1SNwp4vrZsl3xhdffOG2mOCbaro7APiORYsWqVmzZjLGKC8vT3PmzFHv3r21cuVK9e7d293hoZJlZWWpQYMG7g4DgBssWLBAw4YNU1xcnP7rv/5LLVq0UFFRkbZt26bXXntNWVlZWrFihbvD3MHJdQAAkUhJREFUvKz69esrKytL119/vbtDqTIrVqxQaGiou8MA4OP+8pe/aMuWLXrzzTcVHR2t+vXryxhTalzPnj2VlZWl+vXrV2k8y5Yt0/bt25Wamlql+6kqzLMBuIuvzPNvvvlmZWVlqUWLFu4OBT6GRjoqTXx8vNq2bWt/fNddd6lOnTp65513aKT7oFtvvdXdIQBwg6ysLD3++OPq3r27PvzwQ1mtVvtz3bt31+jRo5Wenu7GCMvParV6XS07deqUgoODyz2+devWVRgNAFywfft2tWvXTn379rWvK+uo83r16qlevXrVF5iHOH36tIKCgso93tu+mwD4Bl+a54eGhlJLUSW4tAuqTGBgoAICAuTv7++wfsKECWrfvr3Cw8MVGhqqm2++WQsXLix11IrNZtPo0aMVHR2t4OBg3XHHHcrOzi7zNPWNGzcqISFBgYGBuvbaa/Xcc8/pjTfeKHXq6LvvvqvExETVr19fQUFBat68uZ555hmdPHmyVPwLFizQDTfcIKvVqhYtWmjZsmUaOHCgGjdu7DDu7Nmzmjhxopo1ayar1ap69erp4Ycf1uHDh8v9Xv3444+6++67VatWLcXGxmr06NGy2WwVet9KLqOQnp6um2++WUFBQWrWrJnefPPNUvvdvHmzOnbsqMDAQMXExGjs2LEqKioqV8wXnzpVcqru559/rscff1x169ZVRESE+vXrp59//tlhW1c+WwCeZfLkybJYLJo/f77D5LpEQECA+vTpU2p9eWpSXl6ehg4dqgYNGiggIEBNmjTRhAkTdO7cOYdxNptNL7zwgpo3b67AwEBFRESoS5cu2rRp0yXjNsbo2Weflb+/vxYsWCCp7Eu7pKWlyWKxaMeOHfrTn/6ksLAwRUVF6ZFHHlFhYeFl359vvvlGvXr1UmRkpKxWq2JiYtSzZ08dPHjQIZa5c+fq97//vYKCglSnTh3dd999+s9//uPwWp07d1Z8fLw2bNigDh06KDg4WI888oj69u2rRo0a6fz586X23759e9188832x2XV1WPHjmn06NG67rrrZLVaFRkZqbvvvls//PCDfUxlfLcB8G4llyB0Nk8tOXX+xx9/1CeffGK/zOOlLt1S1qVdjDGaPHmyGjVqpMDAQLVt21aZmZmXvGxAUVGRxo0bp5iYGIWGhqpbt27avXu3/fnOnTtrzZo12rdvn8OlJ51Zt26dOnfurIiICAUFBalhw4b6wx/+oFOnTtnHlLculszFP/jgA7Vu3VqBgYGaMGGCWrdurdtvv73UvouLi3XttdeqX79+9nVlXdrlp59+0pAhQxQbG6uAgADFxMTovvvu06FDh+xjjh8/rjFjxqhJkyYKCAjQtddeq9TU1DJ/1wGAi1V0nl+ivHWyvH2Z8nwPXUpZl3Zx5fXKm0t5vj/mzZunm266SbVq1VLt2rXVrFkzPfvss07jh+fiiHRUmuLiYp07d07GGB06dEgvvfSSTp48qeTkZIdxe/fu1dChQ9WwYUNJF5q5I0aM0E8//aTnn3/ePu7hhx/Wu+++q6eeekp33nmndu7cqXvvvVfHjx93eL3vvvtO3bt31w033KAlS5YoODhYr732mpYuXVoqxn//+9+6++67lZqaqpCQEP3www+aOnWqvvrqK61bt84+bv78+Ro6dKj+8Ic/6OWXX1ZhYaEmTJhQqrieP39e99xzj7788ks99dRT6tChg/bt26fx48erc+fO2rZt22WPPikqKlKfPn00aNAgjR49Whs2bNBf//pXhYWFObwf5X3fJOnbb7/V6NGj9cwzzygqKkpvvPGGBg0apN/97ne64447JEk7d+5U165d1bhxYy1evFjBwcGaO3euli1b5jTey3n00UfVs2dPLVu2TAcOHNB//dd/6cEHH3R4f8v72QLwLMXFxVq3bp3atGmj2NjYcm9XnpqUl5endu3aqUaNGnr++ed1/fXXKysrSxMnTtTevXu1aNEiSdK5c+fUo0cPffnll0pNTdWdd96pc+fOafPmzdq/f786dOhQav82m00DBw7UmjVrtGrVKt11112XjfkPf/iD7r//fg0aNEjff/+9xo4dK0ll/gGgxMmTJ9W9e3c1adJEr776qqKiopSXl6fPP/9cJ06csI8bOnSoFi9erJEjR2rq1Kk6evSoXnjhBXXo0EHffvutoqKi7GNzc3P14IMP6qmnntLkyZNVo0YNHTt2TPfcc4/WrVunbt262cf+8MMP+uqrr/S3v/3tkjGeOHFCt912m/bu3aunn35a7du31y+//KINGzYoNzdXzZo1q5TvNgC+4XLz1JJT5++9915df/31mj59uqQLl87Kzc0t1z7GjRunKVOmaMiQIerXr58OHDigRx99VEVFRbrhhhtKjX/22WfVsWNHvfHGGzp+/Liefvpp9e7dW7t27ZKfn5/mzp2rIUOG6H/+53/KdfmBkuu733777XrzzTd1zTXX6KefflJ6errOnj2r4OBgl+vi119/rV27dum///u/1aRJE4WEhCgmJkZPPvmk/v3vf6tp06b2sRkZGfr555/18MMPXzLGn376SbfccouKior07LPPqlWrVjpy5Ig+/fRTFRQUKCoqSqdOnVKnTp108OBB+5gdO3bo+ef/P3t3Hh9Vdf9//D2E7MKQBEiIslUhAmErCARUQCARCYjWoqamIAhYEEyBB4q0EiyLBBD8giAiEmQxahWVxZhQFaTsqaiAxdoiiyagEMI+GZL7+4PfXBkShkyYbMPr+XjMo507n3vvOWeGz4yfnHvu8/rmm2+0YcOGa/5BAcCNq7S/8x3cyZMlrctIJa+XlFRJjlfSvpTk+yMtLU0jRozQqFGjNGvWLFWrVk3ff/+99u3b53bbUUkYwHVaunSpIanIw9/f31iwYIHLfQsKCgy73W688MILRlhYmFFYWGgYhmHs3bvXkGQ888wzTvFvvfWWIckYOHCgue33v/+9ERwcbPz8889Ox23evLkhyThw4ECx5y4sLDTsdruxceNGQ5Lx1VdfmftGREQYHTt2dIo/ePCg4evrazRs2LBIe9577z2n2J07dxqSrtn/gQMHGpKMd955x2n7fffdZ0RFRV11v6uNm2EYRsOGDY2AgADj4MGD5rbz588boaGhxvDhw81tDz/8sBEYGGjk5OSY2y5evGjcfvvtRcata9euRteuXZ3aIMmYNGmS+dzxORgxYoRTXEpKiiHJyM7ONgzDvfcWQOWSk5NjSDIeeeSREu9T0pw0fPhw46abbnKKMwzDmDVrliHJ2Lt3r2EYhvHmm28akozFixe7PK8kY+TIkcbx48eNO++807j55puN3bt3O8UcOHDAkGQsXbrU3DZp0iRDkpGSkuIUO2LECCMgIMAp315p165dhiTjgw8+uGrM1q1bDUnG7NmznbYfPnzYCAwMNMaPH29u69q1qyHJ+Mc//uEUa7fbjfDwcCMhIcFp+/jx4w0/Pz/jl19+Mbc1bNjQKa++8MILhiQjMzPzqm283u82AFWP43fczp07zW3u/E5t2LCh0adPH6dtxeVYx3kcvzNPnDhh+Pv7Gw8//LDTvo5cefnvz88++8yQZNx3331Ose+8844hydi6dau5rU+fPk6/2V35+9//bkgq8h1xOXfyYsOGDQ0fHx9j//79TrG//PKL4efnZzz33HNO2wcMGGCEh4cbdrvd3Hbl7+zBgwcbvr6+xr59+67axunTpxvVqlVzeg8v79/69euvui8AuPs7/8oaQWl/P16tLmMY7n0PXZk3Hd8Zn332mdvHK2lfSvL98dRTTxm1atW66uuoeljaBR7z5ptvaufOndq5c6c+/vhjDRw4UCNHjtT8+fOd4hwz6KxWq3x8fOTr66vnn39ex48f17FjxyRJGzdulCQNGDDAad+HHnpI1as7X0ixceNG3XPPPapdu7a5rVq1akX2laT//e9/SkhIUEREhHnurl27SpK+/fZbSdL+/fuVk5NTZP8GDRqoS5cuTtvWrl2rWrVqqW/fvrp48aL5aNOmjSIiIkp0h2iLxVJkDflWrVrp4MGDTttKMm4Obdq0MWeuS5eW2WnatKnTMT/77DP16NHDaeajj4+PHn744Wu22ZUrL/Vq1aqVJJnndue9BeAdSpKT1q5dq+7duysyMtIpn/bu3VvSr7nj448/VkBAgAYPHnzN8x44cEAxMTE6deqUtm3bptatW5e4zcXlsgsXLhTJt5e77bbbFBISomeeeUavvvpqsTNN1q5dK4vFoscee8ypnxEREWrdunWR742QkBDdc889TtuqV6+uxx57TO+//7653ExBQYGWL1+u+++/X2FhYVdt48cff6ymTZs6zWQvro3X+90GwDuU9HdqaW3btk02m63I78JOnToVWU7R4Vq/Nd3Vpk0b+fn5adiwYVq2bFmRZbYk9/Niq1atisymDwsLU9++fbVs2TJzaa7c3Fx9+OGH+uMf/+jyd/DHH3+s7t27q1mzZleNWbt2raKjo9WmTRunNsbFxRVZ3gAAPM2dPFmSuoyDp7+HSnK8kvalJN8fHTp00MmTJ/Xoo4/qww8/1C+//FKqdqPyoJAOj2nWrJnat2+v9u3b695779WiRYsUGxur8ePH6+TJk5KkHTt2KDY2VtKlNcj/+c9/aufOnZo4caKkSzfikaTjx49LklORV7pUPLiyQHD8+PEiccXte+bMGd11113avn27pkyZos8//1w7d+7U+++/X6JzF7ft6NGjOnnypLkW/OWPnJycEiXJoKAgBQQEOG3z9/fXhQsXzOclHTeH4ooo/v7+TnHHjx9XREREkbjitrnjynM71lYrzXsLoHKpXbu2goKCdODAAbf2K0lOOnr0qNasWVMkl7Zo0UKSzHz6888/KzIyUtWqXfsnzI4dO/Tdd9/p4Ycf1i233HJdbb4ylxXHarVq48aNatOmjZ577jm1aNFCkZGRmjRpknn/iaNHj8owDIWHhxfp67Zt24p8b9SrV6/Ycw0ePFgXLlxQWlqaJOmTTz5Rdna2y6UBpEvjd62x8MR3GwDvUJLfqdfDnd/dDqXJz67ceuut2rBhg+rWrauRI0fq1ltv1a233qqXX37ZjHE3L7rK3T/++KMyMzMlSW+99Za5/JgrJc3dX3/9dZH21ahRQ4ZhkLsBuFTa3/kOJc2TJa3LOHj6e6gkxytpX0ry/ZGYmKg33nhDBw8e1O9+9zvVrVtXHTt2NL8HUPUw/RNlqlWrVvrkk0/03XffqUOHDkpLS5Ovr6/Wrl3rlLw++OADp/0cP5CPHj2qm2++2dx+8eJF8wf35bGX32THIScnx+n5p59+qp9++kmff/65+ddOSWaRv7hzX+uYjhtqXu3O1TVq1Ch2u7tKOm7uCAsLK9IfqWgfPc2d9xZA5eLj46MePXro448/1pEjR9wuTrtSu3ZttWrVSlOnTi329cjISElSnTp1tHnzZhUWFl6zmP7www8rIiJCEydOVGFhof7yl794rL1X07JlS6WlpckwDH399ddKTU3VCy+8oMDAQD377LOqXbu2LBaLvvjii2Jv4nTltqutZ9u8eXN16NBBS5cu1fDhw7V06VJFRkaaf3S9mjp16jjd+LQ45fXdBgDX+t19tVnpnnbXXXfprrvuUkFBgXbt2qV58+YpKSlJ4eHheuSRR9zOi1fL3XFxcYqMjNTSpUsVFxenpUuXqmPHjmrevLnL9pU0dwcGBl71Xh6XX70LAFe63t/5Jc2TJa3LVCR3cv61vj+kS/eIe/zxx3X27Flt2rRJkyZNUnx8vL777js1bNiwXPoEz2FGOsrU7t27JV368Sdd+lFZvXp1+fj4mDHnz5/X8uXLnfZz3Hzu7bffdtr+97//XRcvXnTa1rVrV3366adOsywKCwv17rvvOsU5ftBeWaRYtGiR0/OoqChFRETonXfecdp+6NAhbdmyxWlbfHy8jh8/roKCAnM2/uWPqKgoeUJJx80d3bt31z/+8Q+n/3ApKCgoMuae5s57C6DymTBhggzD0NChQ5Wfn1/kdbvdrjVr1rh93Pj4eO3Zs0e33nprsfnUUUjv3bu3Lly4oNTU1BId9y9/+Yvmzp2r559/3rxhaHmwWCxq3bq15syZo1q1aulf//qXpEv9NAxDP/74Y7H9bNmyZYnP8fjjj2v79u3avHmz1qxZo4EDBzp9TxSnd+/e+u6774rcyOly5fXdBgAdO3aUv79/kd+F27Ztu67lY6686qmkfHx81LFjR73yyiuS5JS7PZEXfXx8lJiYqA8++EBffPGFdu3aVaKlynr37q3PPvtM+/fvv2pMfHy8/vvf/yosLKzYNpbXHyUAVF3X8zu/pHmypHWZilSanH+174/LBQcHq3fv3po4caLy8/O1d+/eMu8LPI8Z6fCYPXv2mIXQ48eP6/3331dmZqYeeOABNW7cWJLUp08fvfTSS0pISNCwYcN0/PhxzZo1q0gSbdGihR599FHNnj1bPj4+uueee7R3717Nnj1bVqvVaRbixIkTtWbNGvXo0UMTJ05UYGCgXn31VZ09e1aSzNjOnTsrJCRETz75pCZNmiRfX1+tXLlSX331ldO5q1WrpsmTJ2v48OF66KGHNHjwYJ08eVKTJ09WvXr1nM79yCOPaOXKlbrvvvv09NNPq0OHDvL19dWRI0f02Wef6f7779cDDzxw3WNb0nFzx1/+8hd99NFHuueee/T8888rKChIr7zyijluZcWd9xZA5RMTE6OFCxdqxIgRateunf70pz+pRYsWstvt+vLLL/Xaa68pOjq6yNqD1/LCCy8oMzNTnTt31ujRoxUVFaULFy7ohx9+0Pr16/Xqq6/qlltu0aOPPqqlS5fqySef1P79+9W9e3cVFhZq+/btatasmTnz43JPP/20brrpJg0bNkxnzpzR//3f/111tuD1WLt2rRYsWKD+/fvrN7/5jQzD0Pvvv6+TJ0+qV69ekqQuXbpo2LBhevzxx7Vr1y7dfffdCg4OVnZ2tjZv3qyWLVvqT3/6U4nO9+ijj2rMmDF69NFHS7Q0gCQlJSXp7bff1v33369nn31WHTp00Pnz57Vx40bFx8ere/fu5fbdBgChoaEaM2aMpk+frpCQED3wwAM6cuRIsb+73dGyZUu9//77Wrhwodq1a6dq1aqpffv2xca++uqr+vTTT9WnTx81aNBAFy5cMGd1O+4n4cm8OHjwYM2YMUMJCQkKDAws0f2JXnjhBX388ce6++679dxzz6lly5Y6efKk0tPTNWbMGN1+++1KSkrSe++9p7vvvlt//vOf1apVKxUWFurQoUPKyMjQ2LFj1bFjxxKOIIAb0fX8zi9pnixpXaYilbQvJfn+GDp0qAIDA9WlSxfVq1dPOTk5mj59uqxWq+64446K7CZKiUI6PObydVmtVqsaN26sl156SSNGjDC333PPPXrjjTc0Y8YM9e3bVzfffLOGDh2qunXrasiQIU7HW7p0qerVq6clS5Zozpw5atOmjd555x3de++9qlWrlhnXunVrZWZmaty4cfrjH/+okJAQJSYmqmvXrnrmmWdktVolXbp0dN26dRo7dqwee+wxBQcH6/7779fbb7+t3/72t07nHjZsmCwWi1JSUvTAAw+oUaNGevbZZ/Xhhx/q0KFDZpyPj48++ugjvfzyy1q+fLmmT5+u6tWr65ZbblHXrl3dmlnoijvjVlLR0dHasGGDxo4dq4EDB5rj9rvf/U7Dhg3zSLuvpqTvLYDKaejQoerQoYPmzJmjGTNmKCcnR76+vmratKkSEhL01FNPuX3MevXqadeuXfrb3/6mmTNn6siRI6pRo4YaN26se++9VyEhIZIu3U9h/fr1mj59ut566y3NnTtXNWrUUOvWrXXvvfde9fhDhgxRcHCwEhMTdfbsWb3++uul7v/VNGnSRLVq1VJKSop++ukn+fn5KSoqSqmpqRo4cKAZt2jRInXq1EmLFi3SggULVFhYqMjISHXp0kUdOnQo8fmsVqseeOABrVq1Sl26dClyY7vi1KhRQ5s3b1ZycrJee+01TZ48WSEhIbrjjjvM3F9e320AIElTp05VcHCwXn31VS1dulS33367Fi5cqIkTJ5b6d+HTTz+tvXv36rnnnlNeXp4Mw5BhGMXGtmnTRhkZGZo0aZJycnJ00003KTo6Wh999JG5XJYn82LTpk3VuXNnbdmyRX/4wx/M/1Zx5eabb9aOHTs0adIkvfjiizp+/Ljq1KmjO++8U6GhoZIuzXT84osv9OKLL+q1117TgQMHFBgYqAYNGqhnz57MSAdQIqX9nV/SPOlOXaailLQvJfn+uOuuu5Samqp33nlHubm5ql27tu688069+eab5soNqFosxtV+UQCV0JYtW9SlSxetXLlSCQkJLmNjY2P1ww8/6LvvvvPIuU+ePKmmTZuqf//+eu211zxyTPzKnfcWAAAA3uvAgQO6/fbbNWnSJD333HMV3RwAAABJFNJRiWVmZmrr1q1q166dAgMD9dVXX+nFF1+U1WrV119/7XTTzTFjxqht27aqX7++Tpw4oZUrV+r999/XkiVLSrTu4JVycnI0depUde/eXWFhYTp48KDmzJmjf//739q1a5datGjhya7ecNx5bwEAAOC9vvrqK7311lvq3Lmzatasqf379yslJUWnTp3Snj17FB4eXtFNBAAAkMTSLqjEatasqYyMDM2dO1enT59W7dq11bt3b02fPr1IobWgoEDPP/+8cnJyZLFY1Lx5cy1fvlyPPfZYqc7t7++vH374QSNGjNCJEycUFBSkTp066dVXX6WI7gHuvLcAAADwXsHBwdq1a5eWLFmikydPymq1qlu3bpo6dSpFdAAAUKkwIx0AAAAAAAAAABdKdxt0AAAAAAAAAABuEBTSAQAAAAAAAABwgUI6AKCIhQsXqlWrVqpZs6Zq1qypmJgYffzxx+brhmEoOTlZkZGRCgwMVLdu3bR3716nY9hsNo0aNUq1a9dWcHCw+vXrpyNHjjjF5ObmKjExUVarVVarVYmJiTp58qRTzKFDh9S3b18FBwerdu3aGj16tPLz88us7wAAAAAAAFdijfRrKCws1E8//aQaNWrIYrFUdHMA3OAMw9Dp06cVGRmpatXK7m+ha9askY+Pj2677TZJ0rJlyzRz5kx9+eWXatGihWbMmKGpU6cqNTVVTZs21ZQpU7Rp0ybt379fNWrUkCT96U9/0po1a5SamqqwsDCNHTtWJ06cUFZWlnx8fCRJvXv31pEjR/Taa69JkoYNG6ZGjRppzZo1ki7dSLhNmzaqU6eOZs+erePHj2vgwIF68MEHNW/evBL3h1wOoLIpr3zuTcjlACobcnnpkM8BVCZu5XIDLh0+fNiQxIMHDx6V6nH48OFyz4chISHG66+/bhQWFhoRERHGiy++aL524cIFw2q1Gq+++qphGIZx8uRJw9fX10hLSzNjfvzxR6NatWpGenq6YRiGsW/fPkOSsW3bNjNm69athiTj3//+t2EYhrF+/XqjWrVqxo8//mjGvPXWW4a/v7+Rl5dX4raTy3nw4FFZHxWRz6sqcjkPHjwq64Nc7h7yOQ8ePCrjoyS5vLrgkmNm5eHDh1WzZs0S7WO325WRkaHY2Fj5+vqWZfMqPcbiV4zFJYzDr0ozFqdOnVL9+vXN3FQeCgoK9O677+rs2bOKiYnRgQMHlJOTo9jYWDPG399fXbt21ZYtWzR8+HBlZWXJbrc7xURGRio6OlpbtmxRXFyctm7dKqvVqo4dO5oxnTp1ktVq1ZYtWxQVFaWtW7cqOjpakZGRZkxcXJxsNpuysrLUvXv3EvWhNLlc8s7PK32qOryxX/TpVxWRz6s6cvmv6FPV4Y39ok+/IpeXDnWWS7yxT5J39os+VR1lXWehkH4NjsuMHOsEl4TdbldQUJBq1qzpVR/G0mAsfsVYXMI4/Op6xqI8LoH85ptvFBMTowsXLuimm27S6tWr1bx5c23ZskWSFB4e7hQfHh6ugwcPSpJycnLk5+enkJCQIjE5OTlmTN26dYuct27duk4xV54nJCREfn5+ZkxxbDabbDab+fz06dOSpMDAQAUGBpao/5JUvXp1BQUFKTAw0Gs+r/Sp6vDGftGnX9ntdknlk8+9RWl+l0ve+duDPlUd3tgv+lQUudw91Fku8cY+Sd7ZL/pUdZR1nYVCOgCgWFFRUdq9e7dOnjyp9957TwMHDtTGjRvN16/8kjEM45pfPFfGFBdfmpgrTZ8+XZMnTy6yPSMjQ0FBQS7bWJzMzEy396ns6FPV4Y39ok/SuXPnyqglAAAAAMoChXQAQLH8/PzMm422b99eO3fu1Msvv6xnnnlG0qXZ4vXq1TPjjx07Zs4ej4iIUH5+vnJzc51mpR87dkydO3c2Y44ePVrkvD///LPTcbZv3+70em5urux2e5GZ6pebMGGCxowZYz53XKoVGxvr9izGzMxM9erVy2v+Sk+fqg5v7Bd9+tWpU6fKsFUAAAAAPI1COgCgRAzDkM1mU+PGjRUREaHMzEy1bdtWkpSfn6+NGzdqxowZkqR27drJ19dXmZmZGjBggCQpOztbe/bsUUpKiiQpJiZGeXl52rFjhzp06CBJ2r59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9fuqm319/eXv79/ke2+vr6lKt6Vdr/KjD5VHd7YL/okr+s/AAAA4O0opAMAinjuuefUu3dv1a9fX6dPn1ZaWpo+//xzpaeny2KxKCkpSdOmTVOTJk3UpEkTTZs2TUFBQUpISJAkWa1WDRkyRGPHjlVYWJhCQ0M1btw4tWzZUj179pQkNWvWTPfee6+GDh2qRYsWSZKGDRum+Ph4RUVFSZJiY2PVvHlzJSYmaubMmTpx4oTGjRunoUOHujWzHAAAAAAA4HpQSAdQIaKTP5GtwL2b8vzwYp8yag2udPToUSUmJio7O1tWq1WtWrVSenq6evXqJUkaP368zp8/rxEjRig3N1cdO3ZURkaG012u58yZo+rVq2vAgAE6f/68evToodTUVPn4+JgxK1eu1OjRoxUbGytJ6tevn+bPn2++7uPjo3Xr1mnEiBHq0qWLAgMDlZCQoFmzZpXTSAAoC+5+B5D/AaDyIZcDQNVHbcY9FNIBAEUsWbLE5esWi0XJyclKTk6+akxAQIDmzZunefPmXTUmNDRUK1ascHmuBg0aaO3atS5jAAAAAAAAylK1im4AAAAAAAAAAACVGTPSAQAAKjEunQcAAACAiseMdAAAAAAAAAAAXKCQDgAAAAAAAACACxTSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALhAIR0AAAAAAAAAABcopAMAAAAAAAAA4EL1im4AAAAAAAAAAFRm0cmfyFZgKXH8Dy/2KcPWoCIwIx0AAAAAAAAAABcopAMAAAAAAAAA4AKFdAAAAAAAAAAAXKCQDgAAAAAAAACACxTSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALjg8UL6woUL1apVK9WsWVM1a9ZUTEyMPv74Y/N1wzCUnJysyMhIBQYGqlu3btq7d6/TMWw2m0aNGqXatWsrODhY/fr105EjR5xicnNzlZiYKKvVKqvVqsTERJ08edIp5tChQ+rbt6+Cg4NVu3ZtjR49Wvn5+Z7uMgAAAAAAAADAi1X39AFvueUWvfjii7rtttskScuWLdP999+vL7/8Ui1atFBKSopeeuklpaamqmnTppoyZYp69eql/fv3q0aNGpKkpKQkrVmzRmlpaQoLC9PYsWMVHx+vrKws+fj4SJISEhJ05MgRpaenS5KGDRumxMRErVmzRpJUUFCgPn36qE6dOtq8ebOOHz+ugQMHyjAMzZs3z9PdBgAAAAAAAAB4QKNn17m9j7+PoZQOZdCY/8/jM9L79u2r++67T02bNlXTpk01depU3XTTTdq2bZsMw9DcuXM1ceJEPfjgg4qOjtayZct07tw5rVq1SpKUl5enJUuWaPbs2erZs6fatm2rFStW6JtvvtGGDRskSd9++63S09P1+uuvKyYmRjExMVq8eLHWrl2r/fv3S5IyMjK0b98+rVixQm3btlXPnj01e/ZsLV68WKdOnfJ0twEAAIBKhStFAQAAAM8p0zXSCwoKlJaWprNnzyomJkYHDhxQTk6OYmNjzRh/f3917dpVW7ZskSRlZWXJbrc7xURGRio6OtqM2bp1q6xWqzp27GjGdOrUSVar1SkmOjpakZGRZkxcXJxsNpuysrLKstsAAABAhXNcKbpr1y7t2rVL99xzj+6//36zWO64UnT+/PnauXOnIiIi1KtXL50+fdo8RlJSklavXq20tDRt3rxZZ86cUXx8vAoKCsyYhIQE7d69W+np6UpPT9fu3buVmJhovu64UvTs2bPavHmz0tLS9N5772ns2LHlNxgAAADAdfL40i6S9M033ygmJkYXLlzQTTfdpNWrV6t58+ZmkTs8PNwpPjw8XAcPHpQk5eTkyM/PTyEhIUVicnJyzJi6desWOW/dunWdYq48T0hIiPz8/MyY4thsNtlsNvO5Y/a63W6X3W4vUf8dcSWN92aMxa8Yi0sc/fevZpR6X29Rms+Et40BAKDs9O3b1+n51KlTtXDhQm3btk3Nmzd3ulJUurQkY3h4uFatWqXhw4ebV4ouX75cPXv2lCStWLFC9evX14YNGxQXF2deKbpt2zZzksvixYsVExOj/fv3KyoqyrxS9PDhw+Ykl9mzZ2vQoEGaOnWqatasWY6jAgAAAJROmRTSo6KitHv3bp08eVLvvfeeBg4cqI0bN5qvWywWp3jDMIpsu9KVMcXFlybmStOnT9fkyZOLbM/IyFBQUJDLNl4pMzPTrXhvxlj8irG45G/tC93eZ/369WXQkornzmfi3LlzZdgSAIC3Kigo0LvvvlviK0WHDx9+zStF4+LirnmlaFRU1DWvFO3evXuxbfbEBBdH/OX/6w3oU9Xhjf0q7cSYyjwGpX2fKnOfAACeVyaFdD8/P/Nmo+3bt9fOnTv18ssv65lnnpF0abZ4vXr1zPhjx46Zs8cjIiKUn5+v3Nxcp1npx44dU+fOnc2Yo0ePFjnvzz//7HSc7du3O72em5sru91eZKb65SZMmKAxY8aYz0+dOqX69esrNja2xLNl7Ha7MjMz1atXL/n6+pZoH2/FWPyKsbjEMQ5/3VVNtkLXf0C70p7kuDJqVcUozWeCezwAANxRla8U9eQEF8k7JzPQp6rDG/vl7sSYqjApxt33iUkuAHBjKZNC+pUMw5DNZlPjxo0VERGhzMxMtW3bVpKUn5+vjRs3asaMGZKkdu3aydfXV5mZmRowYIAkKTs7W3v27FFKSookKSYmRnl5edqxY4c6dLh0K9bt27crLy/PLLbHxMRo6tSpys7ONov2GRkZ8vf3V7t27a7aVn9/f/n7+xfZ7uvr63bxszT7eCvG4leMxSW2QotsBe4V0r113Nz5THjrGAAAykZVvlLUExNcJO+czECfqg5v7FdpJ8ZU5kkxpX2fmOQCADcWjxfSn3vuOfXu3Vv169fX6dOnlZaWps8//1zp6emyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISJElWq1VDhgzR2LFjFRYWptDQUI0bN04tW7Y012Zs1qyZ7r33Xg0dOlSLFi2SJA0bNkzx8fGKioqSJMXGxqp58+ZKTEzUzJkzdeLECY0bN05Dhw5lHUYAAADcEKrylaKenOByPftVZvSp6vDGfrk7MaYq9N/d96kq9AkA4DnVPH3Ao0ePKjExUVFRUerRo4e2b9+u9PR09erVS5I0fvx4JSUlacSIEWrfvr1+/PFHZWRkqEaNGuYx5syZo/79+2vAgAHq0qWLgoKCtGbNGvn4+JgxK1euVMuWLRUbG6vY2Fi1atVKy5cvN1/38fHRunXrFBAQoC5dumjAgAHq37+/Zs2a5ekuAwAAAFVCcVeKOjiuFHUUyS+/UtTBcaXo5VeBOq4UdSjuStE9e/YoOzvbjCnJlaIAgEumT5+uO+64QzVq1FDdunXVv39/7d+/3ynGMAwlJycrMjJSgYGB6tatm/bu3esUY7PZNGrUKNWuXVvBwcHq16+fjhw54hSTm5urxMREWa1WWa1WJSYm6uTJk04xhw4dUt++fRUcHKzatWtr9OjRys/PL5O+A0Bl4vEZ6UuWLHH5usViUXJyspKTk68aExAQoHnz5mnevHlXjQkNDdWKFStcnqtBgwZau3atyxgAAADAG3GlKAB4h40bN2rkyJG64447dPHiRU2cOFGxsbHat2+fgoODJUkpKSl66aWXlJqaqqZNm2rKlCnq1auX9u/fb05cTEpK0po1a5SWlqawsDCNHTtW8fHxysrKMicuJiQk6MiRI0pPT5d0KacnJiZqzZo1ki7dvLpPnz6qU6eONm/erOPHj2vgwIEyDMNlDQcAvEG5rJEOAAAAoHw5rhTNzs6W1WpVq1atilwpev78eY0YMUK5ubnq2LFjsVeKVq9eXQMGDND58+fVo0cPpaamFrlSdPTo0YqNjZUk9evXT/Pnzzdfd1wpOmLECHXp0kWBgYFKSEjgSlEAKCFHUdth6dKlqlu3rrKysnT33XfLMAzNnTtXEydO1IMPPihJWrZsmcLDw7Vq1SoNHz5ceXl5WrJkiZYvX27+MXTFihWqX7++NmzYoLi4OH377bdKT0/Xtm3b1LFjR0nS4sWLFRMTo/379ysqKkoZGRnat2+fDh8+rMjISEnS7NmzNWjQIE2dOpU/kALwahTSAQAAAC/ElaIA4J3y8vIkXcq/knTgwAHl5OSYf9CULt1nomvXrtqyZYuGDx+urKws2e12p5jIyEhFR0dry5YtiouL09atW2W1Ws0iuiR16tRJVqtVW7ZsUVRUlLZu3aro6GiziC5JcXFxstlsysrKUvfu3cu6+wBQYSikAwAAAAAAVAGGYWjMmDG68847FR0dLenSjaMlFbmBc3h4uA4ePGjG+Pn5Od082hHj2D8nJ0d169Ytcs66des6xVx5npCQEPn5+ZkxV7LZbLLZbObzU6dOSZLsdrvsdnuJ+u2IK2l8VeCNfZK8s1+OvvhXM0q1X2VU2j5dvm9Z8/dxv22O/rjTRndiKaQDAAAAAABUAU899ZS+/vprbd68uchrFovF6blhGEW2XenKmOLiSxNzuenTp2vy5MlFtmdkZCgoKMhl+650+Q2wvYU39knyzn79rX2hW/Hr168vo5Z4jrt9ksqvXykdSr+vO5+/c+fOlTiWQjoAeEijZ9e5Fe/vY1zXF0NZmj59ut5//339+9//VmBgoDp37qwZM2aYN46TLv1Ynjx5sl577TVzbd1XXnlFLVq0MGNsNpvGjRunt956y1xbd8GCBbrlllvMmNzcXI0ePVofffSRpEtr686bN0+1atUyYw4dOqSRI0fq008/dVpb18/Pr+wHAwAAAKgERo0apY8++kibNm1y+j0dEREh6dJs8Xr16pnbjx07Zs4ej4iIUH5+vnJzc51mpR87dkydO3c2Y44ePVrkvD///LPTcbZv3+70em5urux2e5GZ6g4TJkzQmDFjzOenTp1S/fr1FRsbW+I11e12uzIzM9WrVy/5+vqWaJ/Kzhv7JHlnvxx9+uuuarIVuv7j1OX2JMeVYauuT2n7JJVfv6KTP3F7H/9qhv7WvtCtz5/jKpmSoJAOAChi48aNGjlypO644w5dvHhREydOVGxsrPbt26fg4GBJUkpKil566SWlpqaqadOmmjJlinr16qX9+/ebN6pLSkrSmjVrlJaWprCwMI0dO1bx8fHKysoyb1SXkJCgI0eOmDdRGjZsmBITE7VmzRpJUkFBgfr06aM6depo8+bNOn78uAYOHCjDMFyu2QsAAIAbkzdNcJEuTWAZNWqUVq9erc8//1yNGzd2er1x48aKiIhQZmam2rZtK0nKz8/Xxo0bNWPGDElSu3bt5Ovrq8zMTA0YMECSlJ2drT179iglJUWSFBMTo7y8PO3YsUMdOlwakO3btysvL88stsfExGjq1KnKzs42i/YZGRny9/dXu3btim2/v7+//P39i2z39fV1u9Bamn0qO2/sk+Sd/bIVWmQrKHnRuSr0390+SeXXL3fbdTl3Pn/u9IdCOgCgCEdR22Hp0qWqW7eusrKydPfdd8swDM2dO1cTJ07Ugw8+KElatmyZwsPDtWrVKg0fPlx5eXlasmSJli9frp49e0qSVqxYofr162vDhg2Ki4vTt99+q/T0dG3bts28qdHixYsVExOj/fv3KyoqShkZGdq3b58OHz5s3tRo9uzZGjRokKZOnVriWSwAUBLeVnwBAFR9I0eO1KpVq/Thhx+qRo0a5lrkVqtVgYGBslgsSkpK0rRp09SkSRM1adJE06ZNU1BQkBISEszYIUOGaOzYsQoLC1NoaKjGjRunli1bmr/VmzVrpnvvvVdDhw7VokWLJF2a5BIfH29emRobG6vmzZsrMTFRM2fO1IkTJzRu3DgNHTqU3+UAvF61im4AAKDyy8vLkySFhoZKkg4cOKCcnBzFxsaaMf7+/uratau2bNkiScrKypLdbneKiYyMVHR0tBmzdetWWa1Ws4guSZ06dZLVanWKiY6ONovokhQXFyebzaasrKwy6jEAAABQOSxcuFB5eXnq1q2b6tWrZz7efvttM2b8+PFKSkrSiBEj1L59e/3444/KyMgwrxSVpDlz5qh///4aMGCAunTpoqCgIK1Zs8a8UlSSVq5cqZYtWyo2NlaxsbFq1aqVli9fbr7u4+OjdevWKSAgQF26dNGAAQPUv39/zZo1q3wGAwAqEDPSAQAuGYahMWPG6M4771R0dLQkmbNgrlwHMTw8XAcPHjRj/Pz8nNZgdMQ49s/JyVHdunWLnLNu3bpOMVeeJyQkRH5+fmbMlWw2m2w2m/ncseaZ3W4v1d27K/Pd1t1Fn6oOR38cd553d7/KqCr0yd/HvbY5+uJuGyvz+wQAqFwM49rfTRaLRcnJyUpOTr5qTEBAgObNm+dyecTQ0FCtWLHC5bkaNGigtWvXXrNNAOBtKKQDAFx66qmn9PXXX2vz5s1FXrNYnNcsMwyjyLYrXRlTXHxpYi43ffp0TZ48ucj2jIwMBQUFuWxfcbzxjvP0qer4W/tCt+LXr19fRi3xnMrcp9Iu0+Lu5+/cuXOlOxEAAACACkEhHQBwVaNGjdJHH32kTZs26ZZbbjG3R0RESLo0W9xxkyFJOnbsmDl7PCIiQvn5+crNzXWalX7s2DHzZkURERE6evRokfP+/PPPTsfZvn270+u5ubmy2+1FZqo7TJgwQWPGjDGfnzp1SvXr11dsbKxbazd68x3n6VPl5+jXX3dVk62w5Dfa2ZMcV4atuj5VoU/RyZ+4Fe9fzdDf2he6/flzXCkDAAAAoGqgkA4AKMIwDI0aNUqrV6/W559/rsaNGzu93rhxY0VERCgzM1Nt27aVJOXn52vjxo2aMWOGJKldu3by9fVVZmamBgwYIEnKzs7Wnj17lJKSIkmKiYlRXl6eduzYoQ4dLk0D3b59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9eu2Pb7+/vL39+/yPbS3jneG+84T5+qDluhxa071leFMajMfXKnXZdz9/NXFd4nAAAAAL+ikA4AKGLkyJFatWqVPvzwQ9WoUcNci9xqtSowMFAWi0VJSUmaNm2amjRpoiZNmmjatGkKCgpSQkKCGTtkyBCNHTtWYWFhCg0N1bhx49SyZUv17NlTktSsWTPde++9Gjp0qBYtWiRJGjZsmOLj4xUVFSVJio2NVfPmzZWYmKiZM2fqxIkTGjdunIYOHerW7HIAAAAAAIDSopAOAChi4cKFkqRu3bo5bV+6dKkGDRokSRo/frzOnz+vESNGKDc3Vx07dlRGRoZq1Khhxs+ZM0fVq1fXgAEDdP78efXo0UOpqany8fExY1auXKnRo0crNjZWktSvXz/Nnz/ffN3Hx0fr1q3TiBEj1KVLFwUGBiohIUGzZs0qo94DAAAAAAA4o5AOACjCMIxrxlgsFiUnJys5OfmqMQEBAZo3b57mzZt31ZjQ0FCtWLHC5bkaNGigtWvXXrNNAAAAAAAAZaFaRTcAAAAAAAAAAIDKjEI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALhAIR0AAAAAAAAAABcopAMAAAAAAAAA4EL1im4AAAAAAAAAAO8RnfyJbAWWEsf/8GKfMmwN4BnMSAcAAAAAAAAAwAUK6QAAAAAAAAAAuODxQvr06dN1xx13qEaNGqpbt6769++v/fv3O8UYhqHk5GRFRkYqMDBQ3bp10969e51ibDabRo0apdq1ays4OFj9+vXTkSNHnGJyc3OVmJgoq9Uqq9WqxMREnTx50inm0KFD6tu3r4KDg1W7dm2NHj1a+fn5nu42AAAAAAAAAMBLebyQvnHjRo0cOVLbtm1TZmamLl68qNjYWJ09e9aMSUlJ0UsvvaT58+dr586dioiIUK9evXT69GkzJikpSatXr1ZaWpo2b96sM2fOKD4+XgUFBWZMQkKCdu/erfT0dKWnp2v37t1KTEw0Xy8oKFCfPn109uxZbd68WWlpaXrvvfc0duxYT3cbAAAAAAAAAOClPF5IT09P16BBg9SiRQu1bt1aS5cu1aFDh5SVlSXp0mz0uXPnauLEiXrwwQcVHR2tZcuW6dy5c1q1apUkKS8vT0uWLNHs2bPVs2dPtW3bVitWrNA333yjDRs2SJK+/fZbpaen6/XXX1dMTIxiYmK0ePFirV271pwBn5GRoX379mnFihVq27atevbsqdmzZ2vx4sU6deqUp7sOAAAAVBpcKQoAAAB4TvWyPkFeXp4kKTQ0VJJ04MAB5eTkKDY21ozx9/dX165dtWXLFg0fPlxZWVmy2+1OMZGRkYqOjtaWLVsUFxenrVu3ymq1qmPHjmZMp06dZLVatWXLFkVFRWnr1q2Kjo5WZGSkGRMXFyebzaasrCx17969rLsPFMGdqwEAQHlwXCl6xx136OLFi5o4caJiY2O1b98+BQcHS/r1StHU1FQ1bdpUU6ZMUa9evbR//37VqFFD0qUrRdesWaO0tDSFhYVp7Nixio+PV1ZWlnx8fCRdulL0yJEjSk9PlyQNGzZMiYmJWrNmjaRfrxStU6eONm/erOPHj2vgwIEyDEPz5s2rgNEBAAAA3FOmhXTDMDRmzBjdeeedio6OliTl5ORIksLDw51iw8PDdfDgQTPGz89PISEhRWIc++fk5Khu3bpFzlm3bl2nmCvPExISIj8/PzPmSjabTTabzXzumLlut9tlt9tL1G9HXEnjvRlj8SvHGPhXM0q1n7co7Thcvm9l5e/jXp8cY+BOvyr7GAAAKg9HUdth6dKlqlu3rrKysnT33XcXuVJUkpYtW6bw8HCtWrVKw4cPN68UXb58uXr27ClJWrFiherXr68NGzYoLi7OvFJ027Zt5iSXxYsXKyYmRvv371dUVJR5pejhw4fNSS6zZ8/WoEGDNHXqVNWsWbMcRwYAAABwX5kW0p966il9/fXX2rx5c5HXLBbnGbmGYRTZdqUrY4qLL03M5aZPn67JkycX2Z6RkaGgoCCX7btSZmamW/HejLH41d/aF7oVv379+jJqScVydxykyj8WKR1Kt587/z7OnTtXupMAAG54Ve1KUU9McHHEX/6/3oA+VR2O/rR7IV22wpJflbonOa6smnTdqsIEofKY4FKaeABA1VZmhfRRo0bpo48+0qZNm3TLLbeY2yMiIiRdmi1er149c/uxY8fM2eMRERHKz89Xbm6u06z0Y8eOqXPnzmbM0aNHi5z3559/djrO9u3bnV7Pzc2V3W4vMlPdYcKECRozZoz5/NSpU6pfv75iY2NLPFPGbrcrMzNTvXr1kq+vb4n28VaMxa8cY/HXXdW85kd0aZR2HKTKPxbRyZ+4Fe9fzdDf2he69e+D+zsAAEqjKl4p6skJLpJ3TuygT1WHN06mqcx9Ko8JLhKTXADgRuPxQrphGBo1apRWr16tzz//XI0bN3Z6vXHjxoqIiFBmZqbatm0rScrPz9fGjRs1Y8YMSVK7du3k6+urzMxMDRgwQJKUnZ2tPXv2KCUlRZIUExOjvLw87dixQx06XPqW3L59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9eu2Pb7+/vL39+/yHZfX1+3C8Gl2cdbMRa/shVa3Foj3VvHzd1xkCr/WLjbHwd3/n1U9jEAAFROVfFKUU9McJG8c2IHfao6vHEyTVXoU3lMcJGY5AIANxqPF9JHjhypVatW6cMPP1SNGjXMGSZWq1WBgYGyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISzNghQ4Zo7NixCgsLU2hoqMaNG6eWLVuaazM2a9ZM9957r4YOHapFixZJunRTo/j4eEVFRUmSYmNj1bx5cyUmJmrmzJk6ceKExo0bp6FDh7IOIwAAAG4IVfVKUU9OcLme/Soz+lR1eONkmsrcp/KY4OKIBwDcOKp5+oALFy5UXl6eunXrpnr16pmPt99+24wZP368kpKSNGLECLVv314//vijMjIyVKNGDTNmzpw56t+/vwYMGKAuXbooKChIa9askY+PjxmzcuVKtWzZUrGxsYqNjVWrVq20fPly83UfHx+tW7dOAQEB6tKliwYMGKD+/ftr1qxZnu42AAAAUKkYhqGnnnpK77//vj799FOXV4o6OK4UdRTJL79S1MFxpejlV4E6rhR1KO5K0T179ig7O9uMudaVogAAAEBlUiZLu1yLxWJRcnKykpOTrxoTEBCgefPmad68eVeNCQ0N1YoVK1yeq0GDBlq7du012wQAAAB4E64UBQAAADynzG42CgAAAKDiLFy4UJLUrVs3p+1Lly7VoEGDJF26UvT8+fMaMWKEcnNz1bFjx2KvFK1evboGDBig8+fPq0ePHkpNTS1ypejo0aMVGxsrSerXr5/mz59vvu64UnTEiBHq0qWLAgMDlZCQwJWiAIAbXnTyJ24vR/TDi33KqDUAXKGQDgAAAHghrhQFAAAAPMfja6QDAAAAAAAAAOBNKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkA4AAAAAAAAAgAvcbBQAgBtQdPInshVYShz/w4t9yrA1nuFun6Sq0S8AAAAAQMVjRjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAVFKbNm1S3759FRkZKYvFog8++MDpdcMwlJycrMjISAUGBqpbt27au3evU4zNZtOoUaNUu3ZtBQcHq1+/fjpy5IhTTG5urhITE2W1WmW1WpWYmKiTJ086xRw6dEh9+/ZVcHCwateurdGjRys/P78sug0AlQ6FdAAAAAAAgErq7Nmzat26tebPn1/s6ykpKXrppZc0f/587dy5UxEREerVq5dOnz5txiQlJWn16tVKS0vT5s2bdebMGcXHx6ugoMCMSUhI0O7du5Wenq709HTt3r1biYmJ5usFBQXq06ePzp49q82bNystLU3vvfeexo4dW3adB4BKpHpFNwAAAAAAAADF6927t3r37l3sa4ZhaO7cuZo4caIefPBBSdKyZcsUHh6uVatWafjw4crLy9OSJUu0fPly9ezZU5K0YsUK1a9fXxs2bFBcXJy+/fZbpaena9u2berYsaMkafHixYqJidH+/fsVFRWljIwM7du3T4cPH1ZkZKQkafbs2Ro0aJCmTp2qmjVrlsNoAEDFYUY6AAAAAABAFXTgwAHl5OQoNjbW3Obv76+uXbtqy5YtkqSsrCzZ7XanmMjISEVHR5sxW7duldVqNYvoktSpUydZrVanmOjoaLOILklxcXGy2WzKysoq034CQGXAjHQAQLE2bdqkmTNnKisrS9nZ2Vq9erX69+9vvm4YhiZPnqzXXntNubm56tixo1555RW1aNHCjLHZbBo3bpzeeustnT9/Xj169NCCBQt0yy23mDG5ubkaPXq0PvroI0lSv379NG/ePNWqVcuMOXTokEaOHKlPP/1UgYGBSkhI0KxZs+Tn51fm4wAAAABUVjk5OZKk8PBwp+3h4eE6ePCgGePn56eQkJAiMY79c3JyVLdu3SLHr1u3rlPMlecJCQmRn5+fGVMcm80mm81mPj916pQkyW63y263l6ifjriSxlcFjr74VzNKvW9lVNp+0afyVRU+f/4+7rfN0R932uhOLIV0AECxHGsxPv744/rd735X5HXHWoypqalq2rSppkyZol69emn//v2qUaOGpEtrMa5Zs0ZpaWkKCwvT2LFjFR8fr6ysLPn4+Ei6tBbjkSNHlJ6eLkkaNmyYEhMTtWbNGkm/rsVYp04dbd68WcePH9fAgQNlGIbmzZtXTqMBAAAAVF4Wi8XpuWEYRbZd6cqY4uJLE3Ol6dOna/LkyUW2Z2RkKCgoyGUbr5SZmelWfFXwt/aFbu+zfv36MmiJZ7nbL/pUMSrz5y+lQ+n3dSdXnDt3rsSxFNIBAMViLUYAAACgcouIiJB0abZ4vXr1zO3Hjh0zZ49HREQoPz9fubm5TrPSjx07ps6dO5sxR48eLXL8n3/+2ek427dvd3o9NzdXdru9yEz1y02YMEFjxowxn586dUr169dXbGxsiX/L2+12ZWZmqlevXvL19S3RPpWdo09/3VVNtkLXf/S40p7kuDJq1fUrbb/oU/mqCp+/6ORP3N7Hv5qhv7UvdCtXOK6SKQkK6QAAt11rLcbhw4dfcy3GuLi4a67FGBUVdc21GLt3716kfZ64fNQRf/n/egMuSyx+38qI96rofuXB3UtIS3P5aGniAQAoTuPGjRUREaHMzEy1bdtWkpSfn6+NGzdqxowZkqR27drJ19dXmZmZGjBggCQpOztbe/bsUUpKiiQpJiZGeXl52rFjhzp0uDQNdPv27crLyzOL7TExMZo6daqys7PNon1GRob8/f3Vrl27q7bR399f/v7+Rbb7+vq6XRQvzT6Vna3QIluBe4XMqjAG7vaLPlWMyvz5c7ddl3MnV7jTHwrpAAC3Vfa1GD15+ajEJaQSlyVWJN6r8u1TaS8hdTdPuHMJKQDgxnbmzBl9//335vMDBw5o9+7dCg0NVYMGDZSUlKRp06apSZMmatKkiaZNm6agoCAlJCRIkqxWq4YMGaKxY8cqLCxMoaGhGjdunFq2bGleOdqsWTPde++9Gjp0qBYtWiTp0pKL8fHxioqKkiTFxsaqefPmSkxM1MyZM3XixAmNGzdOQ4cO5SpRADcECukAgFKrrGsxeuLyUYlLSC/HZYnlj/fqV+XZJ3cvIS3N5aOSe5eQAgBubLt27XK6CtPxO3fgwIFKTU3V+PHjdf78eY0YMUK5ubnq2LGjMjIyzPsWSdKcOXNUvXp1DRgwQOfPn1ePHj2Umppq3rdIklauXKnRo0ebV5T269dP8+fPN1/38fHRunXrNGLECHXp0kWBgYFKSEjQrFmzynoIAKBSoJAOAHBbZV+L0ZOXj17PfpUZlyVe4o39ok/Xp7SXkLqbJ6rC+wQAqBy6desmw7j60mMWi0XJyclKTk6+akxAQIDmzZunefPmXTUmNDRUK1ascNmWBg0aaO3atddsMwB4o2oV3QAAQNVz+VqMDo61GB1F8svXYnRwrMV4+TqLjrUYHYpbi3HPnj3Kzs42Y0qyFiMAAAAAAICnMCMdAFAs1mIEAAAAAAC4hEI6ykV08iduXSr9w4t9yrA1AEqCtRgBAAAAAAAu8fjSLps2bVLfvn0VGRkpi8WiDz74wOl1wzCUnJysyMhIBQYGqlu3btq7d69TjM1m06hRo1S7dm0FBwerX79+OnLkiFNMbm6uEhMTZbVaZbValZiYqJMnTzrFHDp0SH379lVwcLBq166t0aNHKz8/39NdBgCv5FiL8cpHamqqpF/XYszOztaFCxe0ceNGRUdHOx3DsRbj8ePHde7cOa1Zs0b169d3inGsxXjq1CmdOnVKK1asUK1atZxiHGsxnjt3TsePH9e8efOKXQMdAOCM3+aoaqKTP1GjZ9e59QAAACgPHi+knz17Vq1bt3aaTXi5lJQUvfTSS5o/f7527typiIgI9erVS6dPnzZjkpKStHr1aqWlpWnz5s06c+aM4uPjVVBQYMYkJCRo9+7dSk9PV3p6unbv3q3ExETz9YKCAvXp00dnz57V5s2blZaWpvfee09jx471dJcBAACASonf5gAAAIBneHxpl969e6t3797FvmYYhubOnauJEyfqwQcflCQtW7ZM4eHhWrVqlYYPH668vDwtWbJEy5cvN9fQXbFiherXr68NGzYoLi5O3377rdLT07Vt2zZ17NhRkrR48WLFxMRo//79ioqKUkZGhvbt26fDhw8rMjJSkjR79mwNGjRIU6dOZV1dAAAAeD1+mwMAAACeUa5rpB84cEA5OTnmOriS5O/vr65du2rLli0aPny4srKyZLfbnWIiIyMVHR2tLVu2KC4uTlu3bpXVajV/qEtSp06dZLVatWXLFkVFRWnr1q2Kjo42f6hLUlxcnGw2m7KyspzW/b2czWaTzWYzn586dUqSZLfbZbfbS9RPR1xJ472ZYwz8qxml2s+bMBaXlHYcLt+3svL3ca9PjjFwp1+VfQwAAFVHVfhtDgAAAFQW5VpIz8nJkSSFh4c7bQ8PD9fBgwfNGD8/P4WEhBSJceyfk5OjunXrFjl+3bp1nWKuPE9ISIj8/PzMmOJMnz5dkydPLrI9IyNDQUFB1+qik8zMTLfivdnf2he6Fb9+/foyaknFYywucXccpMo/FikdSrefO7ni3LlzpTsJAABXqOy/zT0xwcURf/n/egNv7pO3Tbbwxsk0VaFP5THBpTTxAICqrVwL6Q4Wi8XpuWEYRbZd6cqY4uJLE3OlCRMmaMyYMebzU6dOqX79+oqNjS3xJad2u12ZmZnq1auXfH19S7SPt3KMxV93VZOt0PV7fLk9yXFl2KqKwVhcUtpxkCr/WEQnf+JWvH81Q39rX+hWrnAUEQAA8JTK+tvckxNcJO+c5OKNffLGyRaSd06mqcx9Ko8JLhKTXADgRlOuhfSIiAhJl2ak1KtXz9x+7Ngxc4ZKRESE8vPzlZub6zTz5dixY+rcubMZc/To0SLH//nnn52Os337dqfXc3NzZbfbi8yGuZy/v7/8/f2LbPf19XW7KF6afbyVrdAiW0HJi6bePG6MxSXujoNU+cfC3f44uJMrKvsYAACqjsr+29wTE1wk75zk4s198rbJFt44maYq9Kk8JrhITHIBgBtNuRbSGzdurIiICGVmZqpt27aSpPz8fG3cuFEzZsyQJLVr106+vr7KzMzUgAEDJEnZ2dnas2ePUlJSJEkxMTHKy8vTjh071KHDpT81b9++XXl5eeYP+piYGE2dOlXZ2dnmfxhkZGTI399f7dq1K89uAwAAAJVOZf9t7skJLtezX2XmjX3yxskWkndOpqnMfSqPCS6OeADAjcPjhfQzZ87o+++/N58fOHBAu3fvVmhoqBo0aKCkpCRNmzZNTZo0UZMmTTRt2jQFBQUpISFBkmS1WjVkyBCNHTtWYWFhCg0N1bhx49SyZUv17NlTktSsWTPde++9Gjp0qBYtWiRJGjZsmOLj4xUVFSVJio2NVfPmzZWYmKiZM2fqxIkTGjdunIYOHerWDBYAAACgquK3OQAAAOAZHi+k79q1S927dzefOy7HHDhwoFJTUzV+/HidP39eI0aMUG5urjp27KiMjAzVqFHD3GfOnDmqXr26BgwYoPPnz6tHjx5KTU2Vj4+PGbNy5UqNHj1asbGxkqR+/fpp/vz55us+Pj5at26dRowYoS5duigwMFAJCQmaNWuWp7sMAAAAVEr8NgcAAAA8w+OF9G7duskwrn6HbIvFouTkZCUnJ181JiAgQPPmzdO8efOuGhMaGqoVK1a4bEuDBg20du3aa7YZAAAA8Eb8NgcAAAA8o1pFNwAAAAAAAAAAgMqMQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAWPr5GOX0UnfyJbgcWtfX54sU8ZtQYAAAAAAAAAUBoU0gEAAACgCnJ34g6TdgAAAEqPpV0AAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwIUbopC+YMECNW7cWAEBAWrXrp2++OKLim4SAKAUyOcAUPWRywGg6iOXA7gReX0h/e2331ZSUpImTpyoL7/8UnfddZd69+6tQ4cOVXTTAABuIJ8DQNVHLgeAqo9cDuBG5fWF9JdeeklDhgzRE088oWbNmmnu3LmqX7++Fi5cWNFNAwC4gXwOAFUfuRwAqj5yOYAbVfWKbkBZys/PV1ZWlp599lmn7bGxsdqyZUux+9hsNtlsNvN5Xl6eJOnEiROy2+0lOq/dbte5c+dU3V5NBYUWt9p8/Phxt+Iru9KOhbeNg8RYOHjzv4/qF8+6F19o6Ny5Qh0/fly+vr4l2uf06dOSJMMw3G5fVeZuPvdELpd+/by68x5Vdt6Yi7w1r/Be/ao8+1QeuVy6MfM5udxzqsK/JXeRy53Rp+tDLi87FV1nIZdfQo4oX/TJWXn1y91cLpVDncXwYj/++KMhyfjnP//ptH3q1KlG06ZNi91n0qRJhiQePHjwqNSPw4cPl0carTTczefkch48eFSVx42Uz8nlPHjw8NYHuZw6Cw8ePKr+oyS53KtnpDtYLM5/WTEMo8g2hwkTJmjMmDHm88LCQp04cUJhYWFX3edKp06dUv369XX48GHVrFmz9A33AozFrxiLSxiHX5VmLAzD0OnTpxUZGVnGraucSprPPZHLJe/8vNKnqsMb+0WffnUj53Ny+fWjT1WHN/aLPv2KXP4r6izu88Y+Sd7ZL/pUdZR1ncWrC+m1a9eWj4+PcnJynLYfO3ZM4eHhxe7j7+8vf39/p221atUq1flr1qzpVR/G68FY/IqxuIRx+JW7Y2G1WsuwNZWTu/nck7lc8s7PK32qOryxX/Tpkhstn5PLPY8+VR3e2C/6dAm5/BLqLKXnjX2SvLNf9KnqKKs6i1ffbNTPz0/t2rVTZmam0/bMzEx17ty5gloFAHAX+RwAqj5yOQBUfeRyADcyr56RLkljxoxRYmKi2rdvr5iYGL322ms6dOiQnnzyyYpuGgDADeRzAKj6yOUAUPWRywHcqLy+kP7www/r+PHjeuGFF5Sdna3o6GitX79eDRs2LLNz+vv7a9KkSUUuXboRMRa/YiwuYRx+xVi4h3zuGfSp6vDGftEnkMs9gz5VHd7YL/oEcrlneGOfJO/sF32qOsq6XxbDMIwyOTIAAAAAAAAAAF7Aq9dIBwAAAAAAAADgelFIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKR70KZNm9S3b19FRkbKYrHogw8+qOgmVZjp06frjjvuUI0aNVS3bl31799f+/fvr+hmlbuFCxeqVatWqlmzpmrWrKmYmBh9/PHHFd2sSmH69OmyWCxKSkqq6KaUu+TkZFksFqdHRERERTcLV1iwYIEaN26sgIAAtWvXTl988UVFN+m6eON3lDd+19wI3xvekv/J5VUDubzyI5dXTeRylCdvy+WS9+Vzb8zlEvm8qijPXE4h3YPOnj2r1q1ba/78+RXdlAq3ceNGjRw5Utu2bVNmZqYuXryo2NhYnT17tqKbVq5uueUWvfjii9q1a5d27dqle+65R/fff7/27t1b0U2rUDt37tRrr72mVq1aVXRTKkyLFi2UnZ1tPr755puKbhIu8/bbbyspKUkTJ07Ul19+qbvuuku9e/fWoUOHKrpppeaN31He+F3j7d8b3pb/yeWVG7m8aiCXVz3kcpQnb8zlkvflc2/M5RL5vCopt1xuoExIMlavXl3Rzag0jh07ZkgyNm7cWNFNqXAhISHG66+/XtHNqDCnT582mjRpYmRmZhpdu3Y1nn766YpuUrmbNGmS0bp164puBlzo0KGD8eSTTzptu/32241nn322glrkWd76HeWt3zXe8r3hbfmfXF75kcurJnJ55UYuR3nz9lxuGN6Zz701lxsG+bwyKs9czox0lIu8vDxJUmhoaAW3pOIUFBQoLS1NZ8+eVUxMTEU3p8KMHDlSffr0Uc+ePSu6KRXqP//5jyIjI9W4cWM98sgj+t///lfRTcL/l5+fr6ysLMXGxjptj42N1ZYtWyqoVSgJb/uu8bbvDW/M/+TyyotcXnWRyys3cjnKE7m86vK2XC6Rzyu78srl1cvkqMBlDMPQmDFjdOeddyo6Orqim1PuvvnmG8XExOjChQu66aabtHr1ajVv3ryim1Uh0tLS9K9//Us7d+6s6KZUqI4dO+rNN99U06ZNdfToUU2ZMkWdO3fW3r17FRYWVtHNu+H98ssvKigoUHh4uNP28PBw5eTkVFCrcC3e9F3jjd8b3pj/yeWVG7m8aiKXV27kcpQ3cnnV5E25XCKfVwXlmcsppKPMPfXUU/r666+1efPmim5KhYiKitLu3bt18uRJvffeexo4cKA2btxY5ROvuw4fPqynn35aGRkZCggIqOjmVKjevXub/79ly5aKiYnRrbfeqmXLlmnMmDEV2DJczmKxOD03DKPINlQe3vRd423fG96a/8nlVQO5vGohl1de5HJUJHJ51eJNuVwin1cF5ZnLKaSjTI0aNUofffSRNm3apFtuuaWim1Mh/Pz8dNttt0mS2rdvr507d+rll1/WokWLKrhl5SsrK0vHjh1Tu3btzG0FBQXatGmT5s+fL5vNJh8fnwpsYcUJDg5Wy5Yt9Z///KeimwJJtWvXlo+PT5FZLseOHSsyGwaVg7d913jb98aNkv/J5ZULubzqIZdXbuRyVARyedXjbblcIp9XRWWZy1kjHWXCMAw99dRTev/99/Xpp5+qcePGFd2kSsMwDNlstopuRrnr0aOHvvnmG+3evdt8tG/fXn/4wx+0e/fuKp+or4fNZtO3336revXqVXRToEs/lNq1a6fMzEyn7ZmZmercuXMFtQrFuVG+a6r698aNkv/J5ZULubzqIJdXDeRyVARyedVxo+RyiXxeFZRlLmdGugedOXNG33//vfn8wIED2r17t0JDQ9WgQYMKbFn5GzlypFatWqUPP/xQNWrUMP+CbLVaFRgYWMGtKz/PPfecevfurfr16+v06dNKS0vT559/rvT09IpuWrmrUaNGkfXRgoODFRYW5hXrprlj3Lhx6tu3rxo0aKBjx45pypQpOnXqlAYOHFjRTcP/N2bMGCUmJqp9+/aKiYnRa6+9pkOHDunJJ5+s6KaVmjd+R3njd403fm94a/4nl1d+5PKqgVxeNZDLUVG8MZdL3pfPvTGXS+TzqqJcc7kBj/nss88MSUUeAwcOrOimlbvixkGSsXTp0opuWrkaPHiw0bBhQ8PPz8+oU6eO0aNHDyMjI6Oim1VpdO3a1Xj66acruhnl7uGHHzbq1atn+Pr6GpGRkcaDDz5o7N27t6KbhSu88sor5r/f3/72t8bGjRsruknXxRu/o7zxu+ZG+d7whvxPLq8ayOWVH7m86iKXo7x4Wy43DO/L596Yyw2DfF5VlGcutxiGYXi+PA8AAAAAAAAAgHdgjXQAAAAAAAAAAFygkA4AAAAAAAAAgAsU0gEAAAAAAAAAcIFCOgAAAAAAAAAALlBIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkA4AAAAAAAAAgAsU0gEAAAAAAAAAcIFCOgAAAAAAAAAALlBIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkF5FpKamymKxmI+AgABFRESoe/fumj59uo4dO1bRTSyx9evXKzk5uaKbUayyHOfPP/9cFotFn3/+uecaXAI//PCDLBaLUlNTPXbMQYMGyWKxqEaNGjpz5kyR1w8ePKhq1arJYrE4vdflNQaV+TMGeML//d//yWKxKDo62qPHTU5OlsVi8egxrzRo0CA1atSoRHGX5+Pg4GA1atRI/fr109KlS2Wz2UrdhvLoZ3Ec3zE//PCDx47ZqFEjWSwWdevWrdjX33zzTXMML8+95TUGCxYs8Oj3DwAAAABUFArpVczSpUu1detWZWZm6pVXXlGbNm00Y8YMNWvWTBs2bKjo5pXI+vXrNXny5IpuhkveMM4O9erV09atW9WnTx+PHtfX11cXL17U22+/XeS1pUuXqkaNGkW2//a3v9XWrVv129/+1qNtuVJV+IwB1+ONN96QJO3du1fbt2/32HGfeOIJbd261WPHu16BgYHaunWrtm7dqrVr1+qFF15QcHCwhg4dqnbt2unIkSMV3US39OnTR1u3blW9evU8etwaNWpo06ZN+u9//1vktTfeeEM1a9Yssr283msK6QAAAAC8BYX0KiY6OlqdOnXSXXfdpd/97neaM2eOvv76awUHB+vBBx/U0aNHK7qJV3Xu3Lkqc/yqPM5X8vf3V6dOnVSnTh2PHtfPz0/9+/c3C3oOhmEoNTVVDz/8cJF9atasqU6dOhVb1AFQMrt27dJXX31l/nFsyZIlJdqvoKDgqrO4HfnzlltuUadOnTzTUA+oVq2aOnXqpE6dOql79+764x//qLfeekvr16/Xd999p4ceeqiim+iWOnXqqFOnTvL39/foce+8807dfPPNRfLxf//7X23atKnYfFzZ3msAAAAAqOwopHuBBg0aaPbs2Tp9+rQWLVrk9NquXbvUr18/hYaGKiAgQG3bttU777zjFOO41DwzM1OPP/64QkNDFRwcrL59++p///ufU2xmZqbuv/9+3XLLLQoICNBtt92m4cOH65dffnGKc1wy/q9//UsPPfSQQkJCdOutt2rQoEF65ZVXJMnpkv0ffvjB5RIkVy4RcrXjS5cKuQsWLFCbNm0UGBiokJAQPfTQQ0X64q7rHefi7Nq1S4888ogaNWqkwMBANWrUSI8++qgOHjxoxvzwww+qXr26pk+fXmT/TZs2yWKx6N13373qOYobV8f47d27V48++qisVqvCw8M1ePBg5eXllWA0Lhk8eLC2bNmi/fv3m9s2bNiggwcP6vHHHy8SX9zSLoMGDdJNN92k77//Xvfdd59uuukm1a9fX2PHjnUq+l1tWZgr++fqMyaV/PPx5ZdfKj4+XnXr1pW/v78iIyPVp0+fKjcDFt7HUTh/8cUX1blzZ6WlpRX5Q6Lj30VKSoqmTJmixo0by9/fX5999pnL/Hnlch/9+/dXw4YNVVhYWKQdHTt2dLq65JVXXtHdd9+tunXrKjg4WC1btlRKSorsdrvHxyA2NlZDhw7V9u3btWnTJqfX3n77bcXExCg4OFg33XST4uLi9OWXX17zmG+//bZiY2NVr149BQYGqlmzZnr22Wd19uxZM2b58uWyWCzFzuR+4YUX5Ovrq59++umq5yhuaZdu3bopOjpaO3fu1F133aWgoCD95je/0YsvvljsuBenWrVq+uMf/6hly5Y57fPGG2+ofv366tmzZ5F9ilvapVGjRoqPj1d6erp++9vfKjAwULfffnuRAv3VloW5sn+NGjXS3r17tXHjRjMXX76sz6lTpzRu3Dg1btxYfn5+uvnmm5WUlOQ05pL07rvvqmPHjrJareb4DB48uERjAwAAAACeQiHdS9x3333y8fFxKih89tln6tKli06ePKlXX31VH374odq0aaOHH3642GL1kCFDVK1aNa1atUpz587Vjh071K1bN508edKM+e9//6uYmBgtXLhQGRkZev7557V9+3bdeeedxRZLHnzwQd12221699139eqrr+qvf/2rOYPQcbn+9VzmfuXxJWn48OFKSkpSz5499cEHH2jBggXau3evOnfufN0zyT0xzpf74YcfFBUVpblz5+qTTz7RjBkzlJ2drTvuuMP844RjTeBXX31VBQUFTvvPnz9fkZGReuCBB0rVn9/97ndq2rSp3nvvPT377LNatWqV/vznP5d4/549e6phw4ZORZYlS5bo7rvvVpMmTUp8HLvdrn79+qlHjx768MMPNXjwYM2ZM0czZsxwqz+SrvkZK8nn4+zZs+rVq5eOHj2qV155RZmZmZo7d64aNGig06dPu90mwFPOnz+vt956S3fccYeio6M1ePBgnT59+qp/TPu///s/ffrpp5o1a5Y+/vhj3X777eZrxeXPKw0ePFiHDh3Sp59+6rT93//+t3bs2OH0B7P//ve/SkhI0PLly7V27VoNGTJEM2fO1PDhwz3Q86L69esnSU75eNq0aXr00UfVvHlzvfPOO1q+fLlOnz6tu+66S/v27XN5vP/85z+67777tGTJEqWnpyspKUnvvPOO+vbta8Y8/PDDioiIMP9Y53Dx4kUtWrRIDzzwgCIjI93uS05Ojv7whz/oscce00cffaTevXtrwoQJWrFiRYmPMXjwYP3000/65JNPJF26AmHZsmUaNGiQqlUr+c+9r776SmPHjtWf//xnffjhh2rVqpWGDBlS5A8WJbF69Wr95je/Udu2bc1cvHr1akmXroLo2rWrli1bptGjR+vjjz/WM888o9TUVPXr10+GYUi6lMcffvhh/eY3v1FaWprWrVun559/XhcvXnS7PQAAAABwXQxUCUuXLjUkGTt37rxqTHh4uNGsWTPz+e233260bdvWsNvtTnHx8fFGvXr1jIKCAqdjP/DAA05x//znPw1JxpQpU4o9X2FhoWG3242DBw8akowPP/zQfG3SpEmGJOP5558vst/IkSON4j56Bw4cMCQZS5cuLfKaJGPSpEnXPP7WrVsNScbs2bOdth8+fNgIDAw0xo8fX2xfHMpynD/77DNDkvHZZ59d9dgXL140zpw5YwQHBxsvv/yyud2x7+rVq81tP/74o1G9enVj8uTJLvtU3Lg6xi8lJcUpdsSIEUZAQIBRWFjo8pgDBw40goODzWNFREQYdrvdOH78uOHv72+kpqYaP//8c5H3rbgxGDhwoCHJeOedd5zOcd999xlRUVEu971a/672GSvp52PXrl2GJOODDz5wOQ5AeXvzzTcNScarr75qGIZhnD592rjpppuMu+66yynO8e/i1ltvNfLz851ec5WfHa852O12Izw83EhISHCKGz9+vOHn52f88ssvxbazoKDAsNvtxptvvmn4+PgYJ06cMF8bOHCg0bBhw2v29fI8U5xvv/3WkGT86U9/MgzDMA4dOmRUr17dGDVqlFPc6dOnjYiICGPAgAFX7eeVHN9vGzduNCQZX331ldO+fn5+xtGjR81tb7/9tiHJ2Lhxo8s+Ob5jDhw4YG7r2rWrIcnYvn27U2zz5s2NuLg4l8czDMNo2LCh0adPH/NYDz30kGEYhrFu3TrDYrEYBw4cMN59990i+bO4MWjYsKEREBBgHDx40Nx2/vx5IzQ01Bg+fLjLfa/WvxYtWhhdu3YtEjt9+nSjWrVqRb5v//73vxuSjPXr1xuGYRizZs0yJBknT5685lgAAAAAQFliRroXMf7/7C1J+v777/Xvf/9bf/jDHyRdmi3neNx3333Kzs52Wo5Dkhnr0LlzZzVs2FCfffaZue3YsWN68sknVb9+fVWvXl2+vr5q2LChJOnbb78t0qbf/e53Hutfca48/tq1a2WxWPTYY4859TkiIkKtW7cusixIaVzvOF/uzJkzeuaZZ3TbbbepevXqql69um666SadPXvWaTy7deum1q1bO82CfPXVV2WxWDRs2LBS98Uxo9OhVatWunDhgo4dO1biYzz++OM6evSoPv74Y61cuVJ+fn76/e9/71Y7LBaL06xPR1suX+LGE0r6+bjtttsUEhKiZ555Rq+++uo1Z7IC5WXJkiUKDAzUI488Ikm66aab9Pvf/15ffPGF/vOf/xSJ79evn3x9fYs9Vknyc/Xq1fXYY4/p/fffN5d9Kigo0PLly3X//fcrLCzMjP3yyy/Vr18/hYWFycfHR76+vvrjH/+ogoICfffdd6XprkuX52JJ+uSTT3Tx4kX98Y9/dPr3HRAQoK5du14z///vf/9TQkKCIiIizPZ37dpVkvP325/+9CdJ0uLFi81t8+fPV8uWLXX33XeXqi8RERHq0KGD07bS5MDBgwfro48+0vHjx7VkyRJ1797daSmVkmjTpo0aNGhgPg8ICFDTpk3LJB9HR0erTZs2Tu9XXFyc0zJed9xxhyRpwIABeuedd/Tjjz96tB0AAAAAUFIU0r3E2bNndfz4cfOScscSFePGjZOvr6/TY8SIEZJUZF3ziIiIIseNiIjQ8ePHJUmFhYWKjY3V+++/r/Hjx+sf//iHduzYoW3btkm6tOTAlUq7ZEtJXXn8o0ePyjAMhYeHF+n3tm3bivTZXZ4Y58slJCRo/vz5euKJJ/TJJ59ox44d2rlzp+rUqVNkPEePHq1//OMf2r9/v+x2uxYvXqyHHnqo2PetpC4vgkkyb4BX3Ht5NQ0bNlSPHj30xhtv6I033tAjjzyioKAgt9oRFBSkgICAIm25cOGCW8e5lpJ+PqxWqzZu3Kg2bdroueeeU4sWLRQZGalJkyaVyXrPQEl8//332rRpk/r06SPDMHTy5EmdPHnSXMroynWsJdc5uKT5efDgwbpw4YLS0tIkXSpYZ2dnOy3rcujQId1111368ccf9fLLL+uLL77Qzp07zT/+uZNTSspR2L0yH99xxx1F/n2//fbbLnPxmTNndNddd2n79u2aMmWKPv/8c+3cuVPvv/9+kfaHh4fr4Ycf1qJFi1RQUKCvv/5aX3zxhZ566qlS9+XKXCxdyoHujttDDz2kgIAAzZkzR2vWrNGQIUMqrC3XcvToUX399ddF3qsaNWrIMAzz/br77rv1wQcfmH8kueWWWxQdHa233nrLo+0BAAAAgGupXtENgGesW7dOBQUF6tatmySpdu3akqQJEybowQcfLHafqKgop+c5OTlFYnJycnTbbbdJkvbs2aOvvvpKqampGjhwoBnz/fffX7Vdxd2M7GochdTLbzApySzkl+T4tWvXlsVi0RdffGEWhS9X3DZ3eGKcHfLy8rR27VpNmjRJzz77rLndZrPpxIkTReITEhL0zDPP6JVXXlGnTp2Uk5OjkSNHXld/PGXw4MF67LHHVFhYqIULF5bJOa72+XDnjyPufD5atmyptLQ0GYahr7/+WqmpqXrhhRcUGBjo9H4B5eWNN96QYRj6+9//rr///e9FXl+2bJmmTJkiHx8fc5urHFzS/Ny8eXN16NBBS5cu1fDhw7V06VJFRkYqNjbWjPnggw909uxZvf/+++ZVSpK0e/fuEp2jND766CNJKpKP//73vzu1oSQ+/fRT/fTTT/r888/NWeiSnO4Rcrmnn35ay5cv14cffqj09HTVqlWryFVdFSEoKEiPPPKIpk+frpo1a171e+l6XZ6PL8+b7ubjwMDAYv8A5Hjd4f7779f9998vm82mbdu2afr06UpISFCjRo0UExNTyl4AAAAAgHsopHuBQ4cOady4cbJareZN3aKiotSkSRN99dVXmjZtWomOs3LlSqdL/bds2aKDBw/qiSeekPRr0eXKAuSiRYvcau/ls54DAwPN7eHh4QoICNDXX3/tFP/hhx+W+Njx8fF68cUX9eOPP2rAgAFutetaPDXODhaLRYZhFBnP119/vchNRaVLhYthw4Zp/vz52rJli9q0aaMuXbqUvkMe9MADD+iBBx6Q1WpVp06dyuQcjuUJvv76a8XFxZnbHcW0y13tM1aaz4fFYlHr1q01Z84cpaam6l//+td19AIoHceNI2+99Va9/vrrRV5fu3atZs+erY8//ljx8fEeP//jjz+uP/3pT9q8ebPWrFmjMWPGFFuwvzyfGYbhtPyJJ2VmZur1119X586ddeedd0qS4uLiVL16df33v/91e1kxd7/f2rVrp86dO2vGjBnas2ePhg0bpuDg4FL0xPP+9Kc/6ejRo+ratWuRK3085fJ87Fh6RZLWrFlTJPZqs9nj4+M1bdo0hYWFqXHjxiU6r7+/v7p27apatWrpk08+0ZdffkkhHQAAAEC5oZBexezZs8dcR/TYsWP64osvtHTpUvn4+Gj16tWqU6eOGbto0SL17t1bcXFxGjRokG6++WadOHFC3377rf71r3/p3XffdTr2rl279MQTT+j3v/+9Dh8+rIkTJ+rmm282lyi5/fbbdeutt+rZZ5+VYRgKDQ3VmjVrlJmZ6VYfWrZsKUmaMWOGevfuLR8fH7Vq1Up+fn567LHH9MYbb+jWW29V69attWPHDq1atarEx+7SpYuGDRumxx9/XLt27dLdd9+t4OBgZWdna/PmzWrZsqW5vq0rZTnODjVr1tTdd9+tmTNnqnbt2mrUqJE2btyoJUuWqFatWsXuM2LECKWkpCgrK6vYYlpFCQgIKHaGrCdFRESoZ8+emj59ukJCQtSwYUP94x//MJdeuNzVPmMl/XysXbtWCxYsUP/+/fWb3/xGhmHo/fff18mTJ9WrV68y7SdQnI8//lg//fSTZsyYYc7Avlx0dLTmz5+vJUuWlEkh/dFHH9WYMWP06KOPymazadCgQU6v9+rVS35+fnr00Uc1fvx4XbhwQQsXLlRubu51nbewsNBcPsxms+nQoUP6+OOP9c4776hZs2Z65513zNhGjRrphRde0MSJE/W///1P9957r0JCQnT06FHt2LFDwcHBmjx5crHn6dy5s0JCQvTkk09q0qRJ8vX11cqVK/XVV19dtW1PP/20Hn74YVksFvN7sjJo06aNPvjggzI9x3333afQ0FANGTJEL7zwgqpXr67U1FQdPny4SKzj6p63335bv/nNbxQQEKCWLVsqKSlJ7733nu6++279+c9/VqtWrVRYWKhDhw4pIyNDY8eOVceOHfX888/ryJEj6tGjh2655RadPHlSL7/8stMa9gAAAABQHiikVzGONWn9/PxUq1YtNWvWTM8884yeeOIJp+KuJHXv3l07duzQ1KlTlZSUpNzcXIWFhal58+bFzsZdsmSJli9frkceeUQ2m03du3fXyy+/rNDQUEmSr6+v1qxZo6efflrDhw9X9erV1bNnT23YsMHpxmTXkpCQoH/+859asGCBXnjhBRmGoQMHDqhRo0aaPXu2JCklJUVnzpzRPffco7Vr17p1s7RFixapU6dOWrRokRYsWKDCwkJFRkaqS5cuRW7mdjVlOc6XW7VqlZ5++mmNHz9eFy9eVJcuXZSZmak+ffoUG3/zzTfrzjvv1Ndff62EhIQS9cWbLF++XKNGjdIzzzyjgoIC9e3bV2+99Zbat2/vFOfqM1aSz0eTJk1Uq1YtpaSk6KeffpKfn5+ioqKKLGsElJclS5bIz8/PaV3yy9WuXVsPPPCA/v73v5trhXuS1WrVAw88oFWrVqlLly5q2rSp0+u333673nvvPf3lL3/Rgw8+qLCwMCUkJGjMmDHq3bt3qc97/vx5c8ZxYGCg6tSpo9atW2vx4sX6wx/+ID8/P6f4CRMmqHnz5nr55Zf11ltvyWazKSIiQnfccYeefPLJq54nLCxM69at09ixY/XYY48pODhY999/v95++2399re/LXaf/v37y9/fX927d1eTJk1K3ceqqGbNmkpPT1dSUpIee+wx1apVS0888YR69+5tXsXmMHnyZGVnZ2vo0KE6ffq0GjZsqB9++EHBwcH64osv9OKLL+q1117TgQMHFBgYqAYNGqhnz57m937Hjh21a9cuPfPMM/r5559Vq1YttW/fXp9++qlatGhRAb0HAAAAcKOyGIZhVHQjULFSU1P1+OOPa+fOnUUKkqhcjh07poYNG2rUqFFKSUmp6OYAwA1rzZo16tevn9atW6f77ruvopsDAAAAAChjzEgHqoAjR47of//7n2bOnKlq1arp6aefrugmAcANad++fTp48KDGjh2rNm3aXNeMewAAAABA1VGtohsA4Npef/11devWTXv37tXKlSt18803V3STAOCGNGLECPXr108hISF66623zBuVAgAAAAC8G0u7AAAAAAAAAADgAjPSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMCF6hXdgMqusLBQP/30k2rUqMENxQBUOMMwdPr0aUVGRqpaNf4WWlLkcgCVDfkcAAAAqFoopF/DTz/9pPr161d0MwDAyeHDh3XLLbeUev9NmzZp5syZysrKUnZ2tlavXq3+/fubrxuGocmTJ+u1115Tbm6uOnbsqFdeeUUtWrQwY2w2m8aNG6e33npL58+fV48ePbRgwQKnduXm5mr06NH66KOPJEn9+vXTvHnzVKtWLTPm0KFDGjlypD799FMFBgYqISFBs2bNkp+fnxnzzTff6KmnntKOHTsUGhqq4cOH669//WuJi+LkcgCV1fXmcwAAAADlw+1C+o1WfKlRo4akS/+RU7NmzRLtY7fblZGRodjYWPn6+pZoH1wd4+lZjKdnlfd4njp1SvXr1zdzU2mdPXtWrVu31uOPP67f/e53RV5PSUnRSy+9pNTUVDVt2lRTpkxRr169tH//fvPcSUlJWrNmjdLS0hQWFqaxY8cqPj5eWVlZ8vHxkSQlJCToyJEjSk9PlyQNGzZMiYmJWrNmjSSpoKBAffr0UZ06dbR582YdP35cAwcOlGEYmjdvntnnXr16qXv37tq5c6e+++47DRo0SMHBwRo7dmyJ+luaXC5VnX8vtNOzaKdn0c7ieSqfAwAAACgfbhfSb7Tii6PgXrNmTbcK6UFBQapZs2al/g/GqoLx9CzG07Mqajyvd3mS3r17q3fv3sW+ZhiG5s6dq4kTJ+rBBx+UJC1btkzh4eFatWqVhg8frry8PC1ZskTLly9Xz549JUkrVqxQ/fr1tWHDBsXFxenbb79Venq6tm3bpo4dO0qSFi9erJiYGO3fv19RUVHKyMjQvn37dPjwYUVGRkqSZs+erUGDBmnq1KmqWbOmVq5cqQsXLig1NVX+/v6Kjo7Wd999p5deekljxowp0ViUJpdLVeffC+30LNrpWbTTNZabAgAAAKoGtxdk7N27t6ZMmWIWVy53ZfElOjpay5Yt07lz57Rq1SpJMosvs2fPVs+ePdW2bVutWLFC33zzjTZs2CBJZvHl9ddfV0xMjGJiYrR48WKtXbtW+/fvlySz+LJixQq1bdtWPXv21OzZs7V48WKdOnVKkpyKL9HR0XrwwQf13HPP6aWXXpJhGKUeNADwZgcOHFBOTo5iY2PNbf7+/uratau2bNkiScrKypLdbneKiYyMVHR0tBmzdetWWa1Ws4guSZ06dZLVanWKiY6ONovokhQXFyebzaasrCwzpmvXrvL393eK+emnn/TDDz94fgAAAAAAAACu4NE10q9VfBk+fPg1iy9xcXHXLL5ERUVds/jSvXv3qxZfJkyYoB9++EGNGzcu0gebzSabzWY+dxTl7Xa77HZ7icbBEVfSeLjGeHoW4+lZ5T2e5XGenJwcSVJ4eLjT9vDwcB08eNCM8fPzU0hISJEYx/45OTmqW7dukePXrVvXKebK84SEhMjPz88pplGjRkXO43itrHK5I/7y/62saKdn0U7Pop2uzwcAAACgavBoId0bii/Tp0/X5MmTi2zPyMhQUFBQ8R2/iszMTLfi4Rrj6VmMp2eV13ieO3euXM4jFV1uwDCMay5BcGVMcfGeiHFcVXS19ngyl0tV598L7fQs2ulZtNNZeeZzAAAAANfPo4V0h6pcfJkwYYLGjBljPnfcCCo2NtatNdIzMzPVq1evSr0WaFXBeHoW4+lZ5T2ejpnVZSkiIkLSpT841qtXz9x+7Ngx84+RERERys/PV25urtMfRo8dO6bOnTubMUePHi1y/J9//tnpONu3b3d6PTc3V3a73SnG8QfSy88jFf3DrYMncrlUdf690E7Pop2eRTuLVx75HAAAAIDneLSQ7g3FF39/f6elYBx8fX3d/o+qtlM/la3AvRtI/fBiH7fibySleQ9wdYynZ5XXeJbHORo3bqyIiAhlZmaqbdu2kqT8/Hxt3LhRM2bMkCS1a9dOvr6+yszM1IABAyRJ2dnZ2rNnj1JSUiRJMTExysvL044dO9ShQwdJ0vbt25WXl2fm+5iYGE2dOlXZ2dnm90ZGRob8/f3Vrl07M+a5555Tfn6+/Pz8zJjIyMgiVx05eDKXS+7n84rK5VXl3zXt9Cza6VnelM8BAAAAeI7bNxt15fLii4Oj+OIomlxefHFwFF8uL6w4ii8OxRVf9uzZo+zsbDOmuOLLpk2blJ+f7xTjqvgCADeCM2fOaPfu3dq9e7ekS/e42L17tw4dOiSLxaKkpCRNmzZNq1ev1p49ezRo0CAFBQUpISFBkmS1WjVkyBCNHTtW//jHP/Tll1/qscceU8uWLdWzZ09JUrNmzXTvvfdq6NCh2rZtm7Zt26ahQ4cqPj5eUVFRkqTY2Fg1b95ciYmJ+vLLL/WPf/xD48aN09ChQ82Z4wkJCfL399egQYO0Z88erV69WtOmTdOYMWOuebUTAAAAAACAJ7g9I/3MmTP6/vvvzeeO4ktoaKgaNGhgFl+aNGmiJk2aaNq0aVctvoSFhSk0NFTjxo27avFl0aJFkqRhw4Zdtfgyc+ZMnThxotjiy+TJkzVo0CA999xz+s9//qNp06bp+eefp/gC4Ia2a9cude/e3XzuWAZl4MCBSk1N1fjx43X+/HmNGDFCubm56tixozIyMlSjRg1znzlz5qh69eoaMGCAzp8/rx49eig1NVU+Pj5mzMqVKzV69GjzBtP9+vXT/Pnzzdd9fHy0bt06jRgxQl26dFFgYKASEhI0a9YsM8ZqtSozM1MjR45U+/btFRISojFjxjgt3QIAAAAAAFCW3C6kU3wBgKqvW7du5j0jimOxWJScnKzk5OSrxgQEBGjevHmaN2/eVWNCQ0O1YsUKl21p0KCB1q5d6zKmZcuW2rRpk8sYAAAAAACAsuJ2IZ3iCwAAAAAAAADgRuLRNdIBAAAAAAAAAPA2FNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADggscL6cnJybJYLE6PiIgI83XDMJScnKzIyEgFBgaqW7du2rt3r9MxbDabRo0apdq1ays4OFj9+vXTkSNHnGJyc3OVmJgoq9Uqq9WqxMREnTx50inm0KFD6tu3r4KDg1W7dm2NHj1a+fn5nu4yAHgdcjkAAAAAAMCvymRGeosWLZSdnW0+vvnmG/O1lJQUvfTSS5o/f7527typiIgI9erVS6dPnzZjkpKStHr1aqWlpWnz5s06c+aM4uPjVVBQYMYkJCRo9+7dSk9PV3p6unbv3q3ExETz9YKCAvXp00dnz57V5s2blZaWpvfee09jx44tiy4DgNchlwMAAAAAAFxSvUwOWr2608xFB8MwNHfuXE2cOFEPPvigJGnZsmUKDw/XqlWrNHz4cOXl5WnJkiVavny5evbsKUlasWKF6tevrw0bNiguLk7ffvut0tPTtW3bNnXs2FGStHjxYsXExGj//v2KiopSRkaG9u3bp8OHDysyMlKSNHv2bA0aNEhTp05VzZo1y6LrAOA1yOUAAAAAAACXlMmM9P/85z+KjIxU48aN9cgjj+h///ufJOnAgQPKyclRbGysGevv76+uXbtqy5YtkqSsrCzZ7XanmMjISEVHR5sxW7duldVqNQsvktSpUydZrVanmOjoaLPwIklxcXGy2WzKysoqi24DgFchlwMAAAAAAFzi8RnpHTt21JtvvqmmTZvq6NGjmjJlijp37qy9e/cqJydHkhQeHu60T3h4uA4ePChJysnJkZ+fn0JCQorEOPbPyclR3bp1i5y7bt26TjFXnickJER+fn5mTHFsNptsNpv5/NSpU5Iku90uu91eojFwxPlXM0oUX9y++JVjTBgbz2A8Pau8x7O8zkMulxkvuZ/Py/vfV1X5d007PYt2epa35nMAAAAAnuHxQnrv3r3N/9+yZUvFxMTo1ltv1bJly9SpUydJksVicdrHMIwi2650ZUxx8aWJudL06dM1efLkItszMjIUFBTkso1X+lv7QrfiJWn9+vVu73OjyMzMrOgmeBXG07PKazzPnTtXLuchlztzN59XVC6vKv+uaadn0U7P8rZ8DgAAAMAzymSN9MsFBwerZcuW+s9//qP+/ftLujTDsF69embMsWPHzBmHERERys/PV25urtNMxmPHjqlz585mzNGjR4uc6+eff3Y6zvbt251ez83Nld1uLzK78XITJkzQmDFjzOenTp1S/fr1FRsbW+K1eO12uzIzM/XXXdVkK3RdVLrSnuQ4t+JvBI7x7NWrl3x9fSu6OVUe4+lZ5T2ejpnV5e1GzOVS6fN5eefyqvLvmnZ6Fu30rBslnwMAAAAonTIvpNtsNn377be666671LhxY0VERCgzM1Nt27aVJOXn52vjxo2aMWOGJKldu3by9fVVZmamBgwYIEnKzs7Wnj17lJKSIkmKiYlRXl6eduzYoQ4dOkiStm/frry8PLNAExMTo6lTpyo7O9ss9GRkZMjf31/t2rW7anv9/f3l7+9fZLuvr6/b/1FlK7TIVuBeIb0y/wdmRSvNe4CrYzw9q7zGs6Lesxs5l0vu5/OKep+qyr9r2ulZtNOzvD2fAwAAACgdjxfSx40bp759+6pBgwY6duyYpkyZolOnTmngwIGyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISJElWq1VDhgzR2LFjFRYWptDQUI0bN04tW7ZUz549JUnNmjXTvffeq6FDh2rRokWSpGHDhik+Pl5RUVGSpNjYWDVv3lyJiYmaOXOmTpw4oXHjxmno0KFuzUYEgBsRuRwAAAAAAOBXHi+kHzlyRI8++qh++eUX1alTR506ddK2bdvUsGFDSdL48eN1/vx5jRgxQrm5uerYsaMyMjJUo0YN8xhz5sxR9erVNWDAAJ0/f149evRQamqqfHx8zJiVK1dq9OjRio2NlST169dP8+fPN1/38fHRunXrNGLECHXp0kWBgYFKSEjQrFmzPN1lAPA65HIAAAAAAIBfebyQnpaW5vJ1i8Wi5ORkJScnXzUmICBA8+bN07x5864aExoaqhUrVrg8V4MGDbR27VqXMQCAosjlAAAAAAAAv6pW0Q0AAAAAAAAAAKAyo5AOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAF6pXdAPgrNGz69ze54cX+5RBSwAApUUuBwAAAADAu9wQM9IXLFigxo0bKyAgQO3atdMXX3xR0U0CAJQC+RwAAAAAAFQEry+kv/3220pKStLEiRP15Zdf6q677lLv3r116NChim4aAMAN5HMAAAAAAFBRvL6Q/tJLL2nIkCF64okn1KxZM82dO1f169fXwoULK7ppAAA3kM8BAAAAAEBF8eo10vPz85WVlaVnn33WaXtsbKy2bNlS7D42m002m818npeXJ0k6ceKE7HZ7ic5rt9t17tw5VbdXU0GhpZStL7nbxr3j9j7bJ/Qog5aUDcd4Hj9+XL6+vhXdnCqP8fSs8h7P06dPS5IMwyjzc1Um7uZzT+RyqXzzeWlyuXQpn1eVf9e007Nop2eRzwEAAAC44tWF9F9++UUFBQUKDw932h4eHq6cnJxi95k+fbomT55cZHvjxo3LpI0Vpfbsim4BgOtx+vRpWa3Wim5GuXE3n98ouVwinwNV3Y2WzwEAAICqyqsL6Q4Wi/MsQsMwimxzmDBhgsaMGWM+Lyws1IkTJxQWFnbVfa506tQp1a9fX4cPH1bNmjVL33BIYjw9jfH0rPIeT8MwdPr0aUVGRpb5uSqjkuZzT+Ryqer8e6GdnkU7PYt2Fu9Gz+cAAOD/tXe/IXXW/x/HX7af2hB3lpk7nmQm0hhMk9TalNrGIJlkFoOlTcwRCcZcky3YIoYrgkY3dmuNCsYoCuyOG8GGoaTWmDbxTzlXy5hpf3SWqNlseqbv340vnW8nt9M3PZ4/+nzAgbPP9bku39eLz97gh8tzAISbJb2RHh8frxUrVsx5WnF4eHjOU41/io6OVnR0tNfY6tWr5/XzV61aFdK/MIYb8vQv8vSvQOa5HJ9c/Lf93J+9XAqf/y/U6V/U6V/UOddy7OcAAABAuFrSXzYaFRWlrKws1dfXe43X19crNzc3SFUBAP4t+jkAAAAAAAimJf1EuiTt379fpaWlys7OVk5Ojt59910NDAyooqIi2KUBAP4F+jkAAAAAAAiWJb+RXlRUpJGREb322msaHBxUWlqazp07p+Tk5EX7mdHR0aqurp7zsQKYH/L0L/L0L/IMHPr57VGnf1Gnf1EnAAAAgKUgwsws2EUAAAAAAAAAABCqlvRnpAMAAAAAAAAAsFBspAMAAAAAAAAA4AMb6QAAAAAAAAAA+MBGOgAAAAAAAAAAPrCRvghOnDihlJQU3XnnncrKytLnn38e7JJCzpEjRxQREeH1cjqdnuNmpiNHjsjlcmnlypXaunWrenp6vK4xNTWlvXv3Kj4+XjExMSosLNSPP/4Y6FsJis8++0xPPPGEXC6XIiIidObMGa/j/spvdHRUpaWlcjgccjgcKi0t1djY2CLfXWD9U5a7d++es1Y3bdrkNYcsl6Zg9vI33nhDDz30kGJjY5WQkKCnnnpKV65c8Zrjr7W5EOHUy++77745tUZERGjPnj2SgpdnuPRzX3W63W4dPHhQ6enpiomJkcvl0rPPPquff/7Z6xpbt26dk3FxcXHA6pTo6QAAAADmj410P/voo49UVVWlV155RZ2dnXr00UeVn5+vgYGBYJcWcjZs2KDBwUHPq7u723PszTff1LFjx3T8+HG1tbXJ6XTqscce08TEhGdOVVWVTp8+rZqaGp0/f16///67CgoKNDMzE4zbCajr168rIyNDx48fv+Vxf+W3a9cudXV1qa6uTnV1derq6lJpaemi318g/VOWkrR9+3avtXru3Dmv42S59AS7lzc3N2vPnj1qbW1VfX29bt68qby8PF2/ft1rnj/W5kKFSy9va2vzqrO+vl6StHPnTs+cYOQZLv3cV52Tk5Pq6OjQ4cOH1dHRodraWn377bcqLCycM7e8vNwr43feecfr+GLW+Sd6OgAAAIB5MfjVww8/bBUVFV5j69evt0OHDgWpotBUXV1tGRkZtzw2OztrTqfTjh496hm7ceOGORwOe/vtt83MbGxszCIjI62mpsYz56effrI77rjD6urqFrX2UCPJTp8+7fm3v/K7fPmySbLW1lbPnJaWFpNk33zzzSLfVXD8PUszs7KyMnvyySdvew5ZLk2h1suHh4dNkjU3N3vG/LE2Fyqce/m+ffssNTXVZmdnzSw08gyXfn6rXvl3Fy9eNEnW39/vGduyZYvt27fvtucEok56OgAAAID54ol0P5qenlZ7e7vy8vK8xvPy8nThwoUgVRW6ent75XK5lJKSouLiYl29elWS1NfXp6GhIa8co6OjtWXLFk+O7e3tcrvdXnNcLpfS0tKWfdb+yq+lpUUOh0MbN270zNm0aZMcDseyy7ipqUkJCQlat26dysvLNTw87DlGlktPKPby8fFxSVJcXJzX+ELXpj+EYy+fnp7WBx98oOeee04RERGe8VDI86/CuZ+Pj48rIiJCq1ev9hr/8MMPFR8frw0bNuill17yerI+UHXS0wEAAADMx/8Fu4Cl5Ndff9XMzIzWrFnjNb5mzRoNDQ0FqarQtHHjRr3//vtat26drl27ptdff125ubnq6enxZHWrHPv7+yVJQ0NDioqK0l133TVnznLP2l/5DQ0NKSEhYc71ExISllXG+fn52rlzp5KTk9XX16fDhw9r27Ztam9vV3R0NFkuQaHWy81M+/fv1yOPPKK0tDTPuD/W5kKFay8/c+aMxsbGtHv3bs9YKOT5d+Haz2/cuKFDhw5p165dWrVqlWe8pKREKSkpcjqdunTpkl5++WV9+eWXno/ZCUSd9HQAAAAA88VG+iL469Nt0n82Qf4+ttzl5+d73qenpysnJ0epqal67733PF/6NZ8cyfq//JHfreYvt4yLioo879PS0pSdna3k5GSdPXtWO3bsuO15ZBn+QqWXV1ZW6quvvtL58+e9xv21NhciXHv5yZMnlZ+fL5fL5RkLhTxvJ5z6udvtVnFxsWZnZ3XixAmvY+Xl5Z73aWlpuv/++5Wdna2Ojg5lZmYGpE56OgAAAID54qNd/Cg+Pl4rVqyY8zTS8PDwnKfJ4C0mJkbp6enq7e2V0+mUJJ85Op1OTU9Pa3R09LZzlit/5ed0OnXt2rU51//ll1+WdcaJiYlKTk5Wb2+vJLJcikKpl+/du1cff/yxGhsblZSU5HPufNamv4VDL+/v71dDQ4Oef/55n/NCIc9w6+dut1tPP/20+vr6VF9f7/U0+q1kZmYqMjLSK+NA90p6OgAAAID/FRvpfhQVFaWsrCzPnyj/qb6+Xrm5uUGqKjxMTU3p66+/VmJioufPvv+a4/T0tJqbmz05ZmVlKTIy0mvO4OCgLl26tOyz9ld+OTk5Gh8f18WLFz1zvvjiC42Pjy/rjEdGRvTDDz8oMTFRElkuRaHQy81MlZWVqq2t1aeffqqUlJR/PGc+a9PfwqGXnzp1SgkJCXr88cd9zguFPMOpn/+5id7b26uGhgbdfffd/3hOT0+P3G63J+Ng9Ep6OgAAAID/WUC/2nQZqKmpscjISDt58qRdvnzZqqqqLCYmxr7//vtglxZSDhw4YE1NTXb16lVrbW21goICi42N9eR09OhRczgcVltba93d3fbMM89YYmKi/fbbb55rVFRUWFJSkjU0NFhHR4dt27bNMjIy7ObNm8G6rYCZmJiwzs5O6+zsNEl27Ngx6+zstP7+fjPzX37bt2+3Bx54wFpaWqylpcXS09OtoKAg4Pe7mHxlOTExYQcOHLALFy5YX1+fNTY2Wk5Ojt17771kucQFu5e/8MIL5nA4rKmpyQYHBz2vyclJMzO/rs2FCLdePjMzY2vXrrWDBw96jQczz3Dp577qdLvdVlhYaElJSdbV1eW1ZqempszM7LvvvrNXX33V2trarK+vz86ePWvr16+3Bx98MGB10tMBAAAALAQb6YvgrbfesuTkZIuKirLMzExrbm4Odkkhp6ioyBITEy0yMtJcLpft2LHDenp6PMdnZ2eturranE6nRUdH2+bNm627u9vrGn/88YdVVlZaXFycrVy50goKCmxgYCDQtxIUjY2NJmnOq6yszMz8l9/IyIiVlJRYbGysxcbGWklJiY2OjgboLgPDV5aTk5OWl5dn99xzj0VGRtratWutrKxsTk5kuTQFs5ffak1KslOnTpmZ+XVtLkS49fJPPvnEJNmVK1e8xoOZZ7j0c1919vX13XbNNjY2mpnZwMCAbd682eLi4iwqKspSU1PtxRdftJGRkYDVSU8HAAAAsBARZmaL9LA7AAAAAAAAAABhj89IBwAAAAAAAADABzbSAQAAAAAAAADwgY10AAAAAAAAAAB8YCMdAAAAAAAAAAAf2EgHAAAAAAAAAMAHNtIBAAAAAAAAAPCBjXQAAAAAAAAAAHxgIx0AAAAAAAAAAB/YSAcAAAAAAAAAwAc20gEAAAAAAAAA8IGNdAAAAAAAAAAAfGAjHQAAAAAAAAAAH/4fKZD+li6sh4QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9fc/8NfIMizCyCIgikouqOGWK2oJKqCCWmZqJOGSWm6RmmlWYrlipn40l9TEREXNfUPQzCJwo6hcsvrmmiCmgIg2jPD+/eFvbg4zDDPINsPr+XjMQ+fOmXvf585w7p0zd+6VCSEEiIiIiIiIiIiIiIhIpxqVPQAiIiIiIiIiIiIioqqMjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oONdKKn8L///Q8ymQy+vr6VPRQiogoXExMDmUym8zZ16lQprmHDhhg+fLh0/8qVK5DJZIiJiSnVcmUyGSZMmFBiXHJyMqKiopCdnW3QfKOiojRysLOzQ7169RAcHIzly5cjNzdX6znDhw9Hw4YNjRr/zZs3ERUVhbS0NKOeR0Ski7oWnz17tlTPv3LlCkJCQuDs7AyZTIbIyEiddVq9nCtXrhi9jG+//RYymQxff/11ibFbtmzB0qVLjV6GMYrbDm3btg3PPvssbG1tIZPJkJaWJm0bTI2/vz/8/f0rexhEBiu6X2ljYwMPDw8EBARg/vz5yMzMrOwhGuzQoUOIioqq7GFIfvnlF8hkMvz0008a0//55x/I5fKn2obo8rT7+oZQb1e+/fZbvXEXLlxAVFSUzm1XafbjqWxVxLZK33ugNCzLZC5E1dSXX34JADh//jxOnTqFTp06VfKIiIgq3oYNG9CsWTONaZ6ensXG16lTBykpKWjUqFG5jis5ORmzZ8/G8OHDUatWLYOfFx8fD4VCgfz8fNy8eRPHjh3DtGnTsGjRIuzfvx+tW7eWYj/88EO8/fbbRo3r5s2bmD17Nho2bIg2bdoY9VwiorL2zjvv4NSpU/jyyy/h4eGBOnXqQAihFRcSEoKUlBTUqVOnXMezZcsWnDt3DpGRkeW2DF3bodu3byM8PBy9e/fGypUrIZfL0bRpU7zxxhvo3bt3uY2lvKxcubKyh0BUKur9SpVKhczMTCQlJWHhwoX49NNPsW3bNvTq1auyh1iiQ4cO4fPPP68yzfSdO3fC29sbbdu21Zi+adMm5OfnAwDWr1+P9u3bl8nyKmpf3xAXLlzA7Nmz4e/vr9U0L81+PJWtithW6XsPlAYb6USldPbsWfz8888ICQnBwYMHsX79ejbSiaha8vX1NWrHWy6Xo3PnzuU4oqfTrl07uLq6SveHDh2KCRMmoHv37ujfvz9+//13yOVyAKgSHxCIiJ7GuXPn0LFjR7z44ovSNF1HbdWuXRu1a9euuIGVI13bod9//x0qlQrDhg1D9+7dpenqXydVtgcPHsDOzs7g+BYtWpTjaIjKT9H9ypdffhnvvPMOunXrhoEDB+KPP/6Au7t7JY6weMb+nVbU/L/++mu8/PLLWtO//PJLuLm5oUGDBti6dSs+++wz2NralnocBQUFePToUZXf11fjfnzlM8VtFU/tQlRK69evBwAsWLAAXbp0QVxcHB48eKARc+PGDQwaNAgODg6oVasWXnvtNZw5c0bnz5zOnj2L/v37w9nZGTY2Nmjbti22b99eUekQEVWY4n7uuXfvXrRq1QpyuRzPPPMMli1bpvcn9Zs2bULz5s1hZ2eH1q1b48CBA9JjUVFRePfddwEA3t7e0s+ES/r5Z3Fat26NmTNn4tq1a9i2bZs0XddPQnfs2IFOnTpBoVDAzs4OzzzzDEaOHAng8c9QO3ToAAAYMWKENC71EUtnz57F0KFD0bBhQ9ja2qJhw4Z49dVXcfXqVY1lqH/+fPz4cbz11ltwdXWFi4sLBg4ciJs3b2qNf8uWLfDz80PNmjVRs2ZNtGnTRtqOqR09ehQ9e/aEo6Mj7Ozs0LVrVxw7dqxU64uIKtfw4cNRs2ZN/Pnnn+jbty9q1qwJLy8vTJkyBUqlEsB/P4v/888/cfjwYakeFffTZ12ndhFCYN68eWjQoAFsbGzQvn17JCYmFvtTbZVKhZkzZ8LT0xOOjo7o1asXLl26JD3u7++PgwcP4urVqxqneCjOu+++C4VCgYKCAmnaxIkTIZPJsGjRImnanTt3UKNGDSxfvhyA9nZo+PDh6NatGwBgyJAhkMlk0vgNPbXLX3/9haFDh8LT0xNyuRzu7u7o2bOn1mm8tm3bBj8/P9jb26NmzZoIDg7WOt2C+vX79ddfERQUBAcHB/Ts2RORkZGwt7fHvXv3tJY/ZMgQuLu7Q6VSSeuy6GugVCrx8ccfo3nz5rCxsYGLiwsCAgKQnJwsxQghsHLlSrRp0wa2trZwcnLCoEGD8Ndff5W4DojKS/369bF48WLk5uZizZo1Go8Z8jlaXb8SExMxYsQIODs7w97eHv369dN6bycmJmLAgAGoV68ebGxs0LhxY4wdOxb//POPRpy6Nvz4448YNGgQnJyc0KhRIwwfPhyff/45AGjUsStXrug95cmT+4P65g8Y93f622+/4cKFC1qN9FOnTuHcuXMIDw/H6NGjkZOTg507d2o939/fH76+vvjuu+/QpUsX2NnZYeTIkVIu0dHRmDNnDry9vSGXy3H8+HGtPPfs2QOZTKZzv3LVqlWQyWT45ZdfpNfTkH1hQ8TExOCVV14BAAQEBEivxZO1v+h+vPoUkhs2bICPjw9sbW3Rvn17nDx5EkIILFq0CN7e3qhZsyZ69OiBP//8U2u5T7NPnZ2djSlTpuCZZ56BXC6Hm5sb+vbti99++02KuXv3LsaNG4e6devC2toazzzzDGbOnClt34vmou8zkzGvDWDc35shn1N0bavy8/MxZ84cNGvWDHK5HLVr18aIESNw+/ZtjbiGDRsiNDQU8fHxeO6552Bra4tmzZpJZ45Qj0Xfe6A02EgnKoWHDx9i69at6NChA3x9fTFy5Ejk5uZix44dUkxeXh4CAgJw/PhxLFy4ENu3b4e7uzuGDBmiNb/jx4+ja9euyM7OxurVq7F37160adMGQ4YMKdfzihERlQX10SdP3owVHx+PgQMHwsXFBdu2bUN0dDS2bt2KjRs36ow/ePAgVqxYgY8//hg7d+6Es7MzXnrpJekDxBtvvIGJEycCAHbt2oWUlBSkpKTgueeeK3We/fv3BwB89913xcakpKRgyJAheOaZZxAXF4eDBw/io48+ktbJc889hw0bNgAAPvjgA2lcb7zxBoDHzR0fHx8sXboUR44cwcKFC5Geno4OHTpofYBT52llZYUtW7YgOjoa3377LYYNG6YR89FHH+G1116Dp6cnYmJisHv3bkRERGh8IImNjUVQUBAcHR2xceNGbN++Hc7OzggODmYznchEqVQq9O/fHz179sTevXsxcuRILFmyBAsXLgTwuB6lpKTAw8MDXbt2leqRMadumTlzJmbOnInevXtj7969ePPNN/HGG2/g999/1xn//vvv4+rVq1i3bh2++OIL/PHHH+jXr5/UCF+5ciW6du0KDw8PaTwpKSnFLr9Xr164d+8eTp8+LU07evQobG1tkZiYKE07duwYhBDFnhLiww8/lBpf8+bNQ0pKitE/N+/bty9SU1MRHR2NxMRErFq1Cm3bttW4Tse8efPw6quvokWLFti+fTs2bdqE3NxcPP/887hw4YLG/PLz89G/f3/06NEDe/fuxezZszFy5Eg8ePBAq2mRnZ2NvXv3YtiwYbCystI5vkePHqFPnz745JNPEBoait27dyMmJgZdunTBtWvXpLixY8ciMjISvXr1wp49e7By5UqcP38eXbp0wa1bt4xaJ0RlqW/fvrCwsNDYDzP2c/SoUaNQo0YN6VoMp0+fhr+/v8bf6f/93//Bz88Pq1atQkJCAj766COcOnUK3bp1k76oetLAgQPRuHFj7NixA6tXr8aHH36IQYMGAYBGHSvtabGKzh8w7u90586dqFu3rtav59UHVIwcORJDhw6FnZ2d1kEWaunp6Rg2bBjCwsJw6NAhjBs3Tnrsf//7H7755ht8+umnOHz4sNbpHgEgNDQUbm5u0j7wk2JiYvDcc8+hVatWAIzfF9YnJCQE8+bNAwB8/vnn0msREhKi93kHDhzAunXrsGDBAmzduhW5ubkICQnBlClT8MMPP2DFihX44osvpC8onjwd2tPsU+fm5qJbt25Ys2YNRowYgf3792P16tVo2rQp0tPTAQD//vsvAgIC8NVXX2Hy5Mk4ePAghg0bhujoaAwcOFBrniV9ZjLmtTH2782QzylFFRYWYsCAAViwYAHCwsJw8OBBLFiwQPqS/uHDhxrxP//8M6ZMmYJ33nlHOihr1KhRUp0o7XtAL0FERvvqq68EALF69WohhBC5ubmiZs2a4vnnn5diPv/8cwFAHD58WOO5Y8eOFQDEhg0bpGnNmjUTbdu2FSqVSiM2NDRU1KlTRxQUFJRfMkREpbRhwwYBQOftyXrWoEEDERERId2/fPmyVh3s0KGD8PLyEkqlUpqWm5srXFxcRNHdFQDC3d1d3Lt3T5qWkZEhatSoIebPny9NW7RokQAgLl++bFA+s2bNEgDE7du3dT7+8OFDAUD06dNHmhYRESEaNGgg3f/0008FAJGdnV3scs6cOaOVf3EePXok7t+/L+zt7cWyZcuk6ep1P27cOI346OhoAUCkp6cLIYT466+/hIWFhXjttdeKXUZeXp5wdnYW/fr105heUFAgWrduLTp27FjiOImo8qjrwZkzZ6RpERERAoDYvn27Rmzfvn2Fj4+PxrQGDRqIkJAQjWm66rR6OeqaevfuXSGXy8WQIUM0npuSkiIAiO7du0vTjh8/LgCIvn37asRu375dABApKSnStJCQEI26qk9eXp6wtrYWH3/8sRBCiBs3bggA4r333hO2trbi33//FUIIMXr0aOHp6ak3P/UYd+zYobEM9bZBn3/++UcAEEuXLi025tq1a8LS0lJMnDhRY3pubq7w8PAQgwcPlqapX78vv/xSaz7PPfec6NKli8a0lStXCgDi119/laZ1795d4zVQf35Zu3ZtsWNUv3aLFy/WmH79+nVha2srpk2bVuxziZ6WrlpWlLu7u2jevLl039DP0ep5v/TSSxpxP/zwgwAg5syZo3N5hYWFQqVSiatXrwoAYu/evdJj6trw0UcfaT1v/PjxOuuGrtqjBkDMmjWrxPkb+3fapk0brbqTl5cnHB0dRefOnaVpERERQiaTiT///FMjtnv37gKAOHbsmM5cGjVqJPLz80vMc/LkycLW1lZjH/nChQsCgFi+fLnW+lArbl9YXbOPHz9e7HOFEGLHjh3FxhXdjxfi8evg4eEh7t+/L03bs2ePACDatGkjCgsLpelLly4VAMQvv/wihHj6feqPP/5YABCJiYnFxqxevVrn9n3hwoUCgEhISNDIxZDPTIa+Nsb+vZX0OUUI7W3V1q1bBQCxc+dOjeeqPz+tXLlSmtagQQNhY2Mjrl69Kk17+PChcHZ2FmPHjpWm6XsPlAaPSCcqhfXr18PW1hZDhw4FANSsWROvvPIKvv/+e/zxxx8AgBMnTsDBwUHr4kSvvvqqxv0///wTv/32G1577TUA0Diis2/fvkhPT9f4ySsRUVXz1Vdf4cyZMxo3S0vDL8OSl5eHs2fP4sUXX4S1tbU0vWbNmujXr5/O5wQEBMDBwUG67+7uDjc3t1L97NNQQsfF94pSn7Zl8ODB2L59O/7++2+jlnH//n289957aNy4MSwtLWFpaYmaNWsiLy8PFy9e1IpXHyWvpj5iRL0eEhMTUVBQgPHjxxe7zOTkZNy9excREREa26DCwkL07t0bZ86cQV5enlF5EFHlk8lkWjW0VatWZVYnT548CaVSicGDB2tM79y5c7EX8yqpZhnLzs4Ofn5+OHr0KIDHNa9WrVp49913kZ+fj6SkJACPj1IvzwsUOjs7o1GjRli0aBE+++wz/PTTTygsLNSIOXLkCB49eoTXX39do9ba2Nige/fuOk89puucxiNGjEBycrLG54MNGzZIv5QtzuHDh2FjYyOdakyXAwcOQCaTYdiwYRpj9PDwQOvWrUt9ejSisvLkvlhpPkerY9W6dOmCBg0a4Pjx49K0zMxMvPnmm/Dy8oKlpSWsrKzQoEEDANC5L6br77QsFZ2/MX+nf/31F9LS0rTmsX37dty7d0+jHowcORJCCJ1HJjs5OaFHjx46x9e/f/9ifwnzpJEjR+Lhw4cap0jcsGED5HI5wsLCpGnG7guXh4CAANjb20v3mzdvDgDo06ePxqm+1NPV27Cn3ac+fPgwmjZtqnd79c0338De3l761YPa8OHDAUDrqHdDPjMZ8tqU5u+tNNv8AwcOoFatWujXr5/GMtq0aQMPDw+t7VCbNm1Qv3596b6NjQ2aNm1arp8J2UgnMtKff/6J7777DiEhIRBCIDs7G9nZ2VIhU5+P6c6dOzovglJ0mvqnV1OnToWVlZXGTf2TKWN/wkREVJGaN2+O9u3ba9yMkZWVBSGEQTVTzcXFRWuaXC7X+rlfWVLvkHl6ehYb88ILL2DPnj1Ss6RevXrw9fXF1q1bDVpGWFgYVqxYgTfeeANHjhzB6dOncebMGdSuXVtnbkXXg/oiqOpY9bkE9V0oT70dGjRokNZ2aOHChRBC4O7duwaNn4iqDjs7O9jY2GhMk8vl+Pfff8tk/nfu3AGgu04bWruL1qzS6NWrF06ePIm8vDwcPXoUPXr0gIuLC9q1a4ejR4/i8uXLuHz5crk20tXnlw0ODkZ0dDSee+451K5dG5MmTUJubi6A/2pthw4dtGrttm3btPb37ezs4OjoqLWs1157DXK5XPoZ/YULF3DmzBmMGDFC7xhv374NT09P1KhRfAvg1q1b0va46BhPnjzJzyRUqfLy8nDnzh1pP6w0n6M9PDy05uvh4SHVs8LCQgQFBWHXrl2YNm0ajh07htOnT+PkyZMAdNeq0p6yxVBF52/M3+nXX38NNzc36RoQauvXr4eNjQ169+4t9TNatWqFhg0bIiYmRuO6E7rGYOhjT3r22WfRoUMHqVFfUFCA2NhYDBgwAM7OzlKcsfvC5eHJ8QCQDvQpbrp6u/q0+9S3b98u8eLWd+7cgYeHh9a1O9zc3GBpaSm9l9UM+cxkyGtTmr+30mzzb926hezsbFhbW2stJyMjo8Rl6MqvrBl+uBgRAXjcKBdC4Ouvv8bXX3+t9fjGjRsxZ84cuLi4aJyvUS0jI0PjvqurKwBgxowZOs9pBQA+Pj5lMHIioqrJyckJMplM57lXi9bMyrRv3z4A0HkBvScNGDAAAwYMgFKpxMmTJzF//nyEhYWhYcOG8PPzK/Z5OTk5OHDgAGbNmoXp06dL05VKZakb2bVr1wbw+OLXXl5eOmPU26Hly5ejc+fOOmOKa4oRUfWl/vBaXO0u7qj0stazZ098+OGH+O6773Ds2DHMmjVLmp6QkABvb2/pfnlq0KCBdH7h33//Hdu3b0dUVBTy8/OxevVqqdZ+/fXX0tGt+hR3gVMnJycMGDAAX331FebMmYMNGzbAxsZG61evRdWuXRtJSUkoLCwstpnu6uoKmUyG77//Xmp4PEnXNKKKcvDgQRQUFEj7YaX5HK1rvzIjIwONGzcGAJw7dw4///wzYmJiEBERIcXouqCkmiEXI1ZTf7lZ9KKQRZuf+uZvzN/pzp078eKLL8LCwkKa9vvvv0u/1nnySN4nHTlyBH379i12DPrGp8+IESMwbtw4XLx4EX/99RfS09M1vgQsj33hivS0+9S1a9fGjRs39C7DxcUFp06dghBCY91nZmbi0aNH0hiMVdJrU1F9K/WFSePj43U+/uTR9ZWFjXQiIxQUFGDjxo1o1KgR1q1bp/X4gQMHsHjxYhw+fBjdu3fH9u3bcfjwYfTp00eKiYuL03iOj48PmjRpgp9//lm6CAIRUXVib2+P9u3bY8+ePfj000+lozvu37+vcVV5Y5XFkY5q6hrdsGFDrdMY6Ft+9+7dUatWLRw5cgQ//fQT/Pz8ih2XTCaDEELrQ9G6deu0jgwyVFBQECwsLLBq1apim/hdu3ZFrVq1cOHCBUyYMKFUyyGi6qdTp06Qy+XYtm2bxofqkydP4urVq6VupBt7JFnHjh3h6OiIpUuXIiMjA4GBgQAeH6m+cOFCbN++HS1atND7a6Ky1rRpU3zwwQfYuXMnfvzxRwBAcHAwLC0t8X//939PfSqIESNGYPv27Th06BBiY2Px0ksvoVatWnqf06dPH2zduhUxMTHFnt4lNDQUCxYswN9//23wto6oIly7dg1Tp06FQqHA2LFjAZTuc/TmzZs1/v6Sk5Nx9epV6aLv6sZk0X2xNWvWGDXeJ/f1bG1tpenu7u6wsbHBL7/8ohG/d+9eg+dt6N/p9evXcebMGXzyySca09Vf+K1du1b6AkHt4cOHGDBgAL788kuNRnpZefXVVzF58mTExMTgr7/+Qt26dREUFCQ9Xh77wmX5eaAkT7tP3adPH3z00Uf45ptvij2VTs+ePbF9+3bs2bMHL730kjT9q6++kh4vjZJem4rqW4WGhiIuLg4FBQVaF8gtrbJ+D7CRTmSEw4cP4+bNm1i4cKHOIxJ9fX2xYsUKrF+/HrGxsViyZAmGDRuGOXPmoHHjxjh8+DCOHDkCABpHgqxZswZ9+vRBcHAwhg8fjrp16+Lu3bu4ePEifvzxR+zYsaOiUiQiqhQff/wxQkJCEBwcjLfffhsFBQVYtGgRatasWeojUFq2bAkAWLZsGSIiImBlZQUfH58Sj2RITU2FQqGASqXCzZs3cezYMWzatAlubm7Yv3+/xnnci/roo49w48YN9OzZE/Xq1UN2djaWLVsGKysrdO/eHQDQqFEj2NraYvPmzWjevDlq1qwJT09PeHp64oUXXsCiRYvg6uqKhg0b4sSJE1i/fn2JDZLiNGzYEO+//z4++eQTPHz4EK+++ioUCgUuXLiAf/75B7Nnz0bNmjWxfPlyRERE4O7duxg0aBDc3Nxw+/Zt/Pzzz7h9+zZWrVpVquUTkflydnbG5MmTMX/+fDg5OeGll17CjRs3MHv2bNSpU0fvKUT0admyJXbt2oVVq1ahXbt2qFGjht5ThllYWKB79+7Yv38/vL290ahRIwCPGxpyuRzHjh3DpEmTSjUWQ/3yyy+YMGECXnnlFTRp0gTW1tb45ptv8Msvv0hHVTZs2BAff/wxZs6cib/++gu9e/eGk5MTbt26hdOnT8Pe3h6zZ882aHlBQUGoV68exo0bh4yMjBJP6wI8bpJs2LABb775Ji5duoSAgAAUFhbi1KlTaN68OYYOHYquXbtizJgxGDFiBM6ePYsXXngB9vb2SE9PR1JSElq2bIm33nrrqdYVUUnOnTsnnRc5MzMT33//PTZs2AALCwvs3r1b+rUdYPzn6LNnz+KNN97AK6+8guvXr2PmzJmoW7eudGqKZs2aoVGjRpg+fTqEEHB2dsb+/fuRmJhoVA7qfdCFCxeiT58+sLCwQKtWrWBtbY1hw4bhyy+/RKNGjdC6dWucPn0aW7ZsMXjehv6d7ty5E7Vq1UJAQID03EePHuGrr75C8+bNpS8PiurXrx/27duH27dva6zrslCrVi289NJLiImJQXZ2NqZOnaqxrXB0dCzzfWH1tSO++OILODg4wMbGBt7e3jpPCfK0nnafOjIyEtu2bcOAAQMwffp0dOzYEQ8fPsSJEycQGhqKgIAAvP766/j8888RERGBK1euoGXLlkhKSsK8efPQt2/fUp/GrKTXBqiYvtXQoUOxefNm9O3bF2+//TY6duwIKysr3LhxA8ePH8eAAQM0vkAwRFm/B9hIJzLC+vXrYW1tXezOqqurK1566SV8/fXXuH//Pr755htERkZi2rRpkMlkCAoKwsqVK9G3b1+NDUFAQABOnz6NuXPnIjIyEllZWXBxcUGLFi14NAgRVQu9e/fGzp078dFHH2HIkCHw8PDAuHHjcPPmTWzatKlU8/T398eMGTOwceNGrF27FoWFhTh+/HiJp2ZRXyRaLpfD2dkZLVu2xMKFCzFixIgSm/CdOnXC2bNn8d577+H27duoVasW2rdvj2+++QbPPvssgMfnvf3yyy8xe/ZsBAUFQaVSYdasWYiKisKWLVvw9ttvY9q0aXj06BG6du2KxMREhISElGodAI+/pGjSpAmWL1+O1157DZaWlmjSpIlGY2nYsGGoX78+oqOjMXbsWOTm5sLNzQ1t2rSRLl5ERFTU3LlzYW9vj9WrV2PDhg1o1qwZVq1ahZkzZ5a66fH222/j/PnzeP/995GTkwMhRIkXe+7Vqxf279+v0UCQy+Xo1q0bEhMTy/X86MDjcyw3atQIK1euxPXr1yGTyfDMM89g8eLFmDhxohQ3Y8YMtGjRAsuWLcPWrVuhVCrh4eGBDh064M033zR4eTVq1MDrr7+OefPmwcvLy6AjEC0tLXHo0CHMnz8fW7duxdKlS+Hg4IDWrVtL2z3gcaOkc+fOWLNmDVauXInCwkJ4enqia9eu6Nixo3ErhqgU1J+1ra2tUatWLTRv3hzvvfce3njjDa3GrrGfo9evX49NmzZh6NChUCqVCAgIwLJly6TzQFtZWWH//v14++23MXbsWFhaWqJXr144evRosadB0SUsLAw//PADVq5ciY8//hhCCFy+fBkNGzbE4sWLAQDR0dG4f/8+evTogQMHDhj1Kx5D/k537typdSHQgwcPIiMjQ+O0KUWNGTMGu3btwqZNmzB58mSDx2SoESNGSNcO0rWPWdb7wt7e3li6dCmWLVsGf39/FBQUYMOGDeW2f/s0+9QODg5ISkpCVFQUvvjiC8yePRtOTk7o0KEDxowZA+Dx6YGOHz+OmTNnYtGiRbh9+zbq1q2LqVOnSqc2K62SXpuK6FtZWFhg3759WLZsGTZt2oT58+fD0tIS9erVQ/fu3aUvqYxR1u8BmShpr4SIytS8efPwwQcf4Nq1ayVeSIKIqDpTqVRo06YN6tati4SEhMoeDhERGeDy5cto1qwZZs2ahffff7+yh0NEhJiYGIwYMQJnzpzR+wsXc5GRkYG6detiz5496NevX2UPh8is8Ih0onK0YsUKAI9/IqZSqfDNN9/gf//7H4YNG8YmOhFREaNGjUJgYCDq1KmDjIwMrF69GhcvXsSyZcsqe2hERKTDzz//jK1bt6JLly5wdHTEpUuXEB0dDUdHR4waNaqyh0dEVC15eHiU+pziRKQfG+lE5cjOzg5LlizBlStXoFQqUb9+fbz33nv44IMPKntoRERVTm5uLqZOnYrbt2/DysoKzz33HA4dOlTuP8knIqLSsbe3x9mzZ7F+/XpkZ2dDoVDA398fc+fOhbu7e2UPj4iIiKhM8dQuRERERERERERERER6lO5S6kRERERERERERERE1QQb6UREREREREREREREerCRTkRERERERERERESkBy82WoLCwkLcvHkTDg4OkMlklT0cIqrmhBDIzc2Fp6cnatTgd6GGYi0noqqG9dx4rOVEVNWwlpcO6zkRVSXG1HI20ktw8+ZNeHl5VfYwiIg0XL9+HfXq1avsYZgM1nIiqqpYzw3HWk5EVRVruXFYz4moKjKklrORXgIHBwcAj1emo6NjJY+m/KhUKiQkJCAoKAhWVlaVPZxKx/WhietDW2Wtk3v37sHLy0uqTWQYY2u5ub7nmZfpMMecAOb1JNZz45V2v9wc33fMyXSYY17M6T+s5aVTmnrO953pMMe8mJPpKO/9cjbSS6D+mZGjo6PZN9Lt7Ozg6OhoVn9ApcX1oYnrQ1tlrxP+BNI4xtbyyn59ywvzMh3mmBPAvHRhPTdcaffLzfF9x5xMhznmxZy0sZYbpzT1nO8702GOeTEn01He++U8iRcREWmZP38+OnToAAcHB7i5ueHFF1/EpUuXNGKEEIiKioKnpydsbW3h7++P8+fPa8QolUpMnDgRrq6usLe3R//+/XHjxg2NmKysLISHh0OhUEChUCA8PBzZ2dkaMdeuXUO/fv1gb28PV1dXTJo0Cfn5+eWSOxERERERERFRUWykExGRlhMnTmD8+PE4efIkEhMT8ejRIwQFBSEvL0+KiY6OxmeffYYVK1bgzJkz8PDwQGBgIHJzc6WYyMhI7N69G3FxcUhKSsL9+/cRGhqKgoICKSYsLAxpaWmIj49HfHw80tLSEB4eLj1eUFCAkJAQ5OXlISkpCXFxcdi5cyemTJlSMSuDiIiIiIiIiKo9ntqFiIi0xMfHa9zfsGED3NzckJqaihdeeAFCCCxduhQzZ87EwIEDAQAbN26Eu7s7tmzZgrFjxyInJwfr16/Hpk2b0KtXLwBAbGwsvLy8cPToUQQHB+PixYuIj4/HyZMn0alTJwDA2rVr4efnh0uXLsHHxwcJCQm4cOECrl+/Dk9PTwDA4sWLMXz4cMydO9esT7tFRERERERERFUDG+lERFSinJwcAICzszMA4PLly8jIyEBQUJAUI5fL0b17dyQnJ2Ps2LFITU2FSqXSiPH09ISvry+Sk5MRHByMlJQUKBQKqYkOAJ07d4ZCoUBycjJ8fHyQkpICX19fqYkOAMHBwVAqlUhNTUVAQIDWeJVKJZRKpXT/3r17AB6fL02lUpWYrzrGkFhTwrxMhznmBDAvXc8hIiIiIiLTwEY6VXsNpx/Umia3EIjuCPhGHYGyQPtiA1cWhFTE0IiqBCEEJk+ejG7dusHX1xcAkJGRAQBwd3fXiHV3d8fVq1elGGtrazg5OWnFqJ+fkZEBNzc3rWW6ublpxBRdjpOTE6ytraWYoubPn4/Zs2drTU9ISICdnV2JOaslJiYaHGtKmJfpMMecAOYFAA8ePCjHkRCZruL2v/UxhX1zY/MyhZyIiMj0met2t7yUeSP9u+++w6JFi5Camor09HTs3r0bL774ovS4EAKzZ8/GF198gaysLHTq1Amff/45nn32WSlGqVRi6tSp2Lp1Kx4+fIiePXti5cqVqFevnhSTlZWFSZMmYd++fQCA/v37Y/ny5ahVq5YUc+3aNYwfPx7ffPMNbG1tERYWhk8//RTW1tZlnTYRkdmaMGECfvnlFyQlJWk9VvSq1kKIEq90XTRGV3xpYp40Y8YMTJ48Wbp/7949eHl5ISgoyKBTwahUKiQmJiIwMLBUVzD3jTpi9HPORQUb/RxjPW1eVZU55mWOOQHM60nqX8oQEREREZFpKPNGel5eHlq3bo0RI0bg5Zdf1npcfXG6mJgYNG3aFHPmzEFgYCAuXboEBwcHAI8vTrd//37ExcXBxcUFU6ZMQWhoKFJTU2FhYQHg8cXpbty4IZ3Hd8yYMQgPD8f+/fsB/Hdxutq1ayMpKQl37txBREQEhBBYvnx5WadNRGSWJk6ciH379uG7777T+DLTw8MDwOOjxevUqSNNz8zMlI4e9/DwQH5+PrKysjSOSs/MzESXLl2kmFu3bmkt9/bt2xrzOXXqlMbjWVlZUKlUWkeqq8nlcsjlcq3pVlZWRjXvjI1XM/YbffWyKkpp86rqzDEvc8wJYF7qWCIiIiIiMh01ynqGffr0wZw5c6SLzz2p6MXpfH19sXHjRjx48ABbtmwBAOnidIsXL0avXr3Qtm1bxMbG4tdff8XRo0cBQLo43bp16+Dn5wc/Pz+sXbsWBw4cwKVLlwBAujhdbGws2rZti169emHx4sVYu3YtjwAiIiqBEAITJkzArl278M0338Db21vjcW9vb3h4eGicxiA/Px8nTpyQmuTt2rWDlZWVRkx6ejrOnTsnxfj5+SEnJwenT5+WYk6dOoWcnByNmHPnziE9PV2KSUhIgFwuR7t27co+eSIiIiIiIiKiIsq8ka5PSRenA1DixekAlHhxOnWMvovTERFR8caPH4/Y2Fhs2bIFDg4OyMjIQEZGBh4+fAjg8alWIiMjMW/ePOzevRvnzp3D8OHDYWdnh7CwMACAQqHAqFGjMGXKFBw7dgw//fQThg0bhpYtW6JXr14AgObNm6N3794YPXo0Tp48iZMnT2L06NEIDQ2Fj48PACAoKAgtWrRAeHg4fvrpJxw7dgxTp07F6NGjDTpNCxERERERERHR06rQi41W9YvTAY/Pz65UKqX76qPXVSoVVCqVQXmaInVu5pxjceQWQntaDaHxb1HVbT1V5/dHcSprnVTU8latWgUA8Pf315i+YcMGDB8+HAAwbdo0PHz4EOPGjZOueZGQkCCdpgsAlixZAktLSwwePFi65kVMTIx0mi4A2Lx5MyZNmiR9gdq/f3+sWLFCetzCwgIHDx7EuHHj0LVrV41rXhARERERERERVYQKbaSrVdWL0wHA/PnzMXv2bK3pCQkJsLOz0ztGc/DkKRiqi+iOxT/2SftCndMPHTpUTqOp2qrj+6MkFb1OHjx4UCHLEUL3l0hPkslkiIqKQlRUVLExNjY2WL58ud5rUzg7OyM2NlbvsurXr48DBw6UOCYiIiIiIiIiovJQoY30qn5xOgCYMWMGJk+eLN2/d+8evLy8EBQUZNanEFCpVEhMTERgYGC1u/iVb9QRrWnyGgKftC/Eh2drQFmo/cXLuajgihhalVGd3x/Fqax1wms8EBERERERERFVvAptpD95cbq2bdsC+O/idAsXLgSgeXG6wYMHA/jv4nTR0dEANC9O17Hj48OJdV2cbu7cuUhPT5ea9oZcnE4ul0Mul2tNt7KyqhYNxOqS55OUBcX/QkFZKNP5eHVbR2rV8f1RkopeJ1z/REREREREREQVr8wb6ffv38eff/4p3b98+TLS0tLg7OyM+vXrSxena9KkCZo0aYJ58+YVe3E6FxcXODs7Y+rUqcVenG7NmjUAgDFjxhR7cbpFixbh7t27vDhdGWg4/aDRz7myIKQcRkJERERERERERERUMcq8kX727FkEBARI99WnSYmIiEBMTAwvTkdEREREREREREREJqXMG+n+/v56L1LHi9MRERERERERERERkSmpUdkDICIiIiIiIiIiIiKqythIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKjzC82SkRERERERERERERUWg2nHzT6OXILgeiO5TCY/4+NdKIKVJoicGVBSDmMhIiIiIiIiIiIiAzFU7sQEREREREREREREenBRjoRERERERERERERkR48tQuZldKcOoWIiIiIiIiIiIhIHx6RTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERFXU/Pnz0aFDBzg4OMDNzQ0vvvgiLl26pBEjhEBUVBQ8PT1ha2sLf39/nD9/XiNGqVRi4sSJcHV1hb29Pfr3748bN25oxGRlZSE8PBwKhQIKhQLh4eHIzs7WiLl27Rr69esHe3t7uLq6YtKkScjPzy+X3ImIqhI20omIiIiIzBAbL0RE5uHEiRMYP348Tp48icTERDx69AhBQUHIy8uTYqKjo/HZZ59hxYoVOHPmDDw8PBAYGIjc3FwpJjIyErt370ZcXBySkpJw//59hIaGoqCgQIoJCwtDWloa4uPjER8fj7S0NISHh0uPFxQUICQkBHl5eUhKSkJcXBx27tyJKVOmVMzKICKqRGykExERERGZITZeiIjMQ3x8PIYPH45nn30WrVu3xoYNG3Dt2jWkpqYCePyl6NKlSzFz5kwMHDgQvr6+2LhxIx48eIAtW7YAAHJycrB+/XosXrwYvXr1Qtu2bREbG4tff/0VR48eBQBcvHgR8fHxWLduHfz8/ODn54e1a9fiwIED0hexCQkJuHDhAmJjY9G2bVv06tULixcvxtq1a3Hv3r3KWUFERBXEsrIHQEREREREZS8+Pl7j/oYNG+Dm5obU1FS88MILWo0XANi4cSPc3d2xZcsWjB07Vmq8bNq0Cb169QIAxMbGwsvLC0ePHkVwcLDUeDl58iQ6deoEAFi7di38/Pxw6dIl+Pj4SI2X69evw9PTEwCwePFiDB8+HHPnzoWjo2MFrhkiItOWk5MDAHB2dgYAXL58GRkZGQgKCpJi5HI5unfvjuTkZIwdOxapqalQqVQaMZ6envD19UVycjKCg4ORkpIChUIh1XIA6Ny5MxQKBZKTk+Hj44OUlBT4+vpKtRwAgoODoVQqkZqaioCAAK3xKpVKKJVK6b664a5SqaBSqQzKWR1naLwpMMecAPPMy5xzktcQpX5ueZNbGD82dT7GjNGYWDbSiYiIiIiqAVNrvBARkTYhBCZPnoxu3brB19cXAJCRkQEAcHd314h1d3fH1atXpRhra2s4OTlpxaifn5GRATc3N61lurm5acQUXY6TkxOsra2lmKLmz5+P2bNna01PSEiAnZ1diTk/KTEx0ah4U2COOQHmmZc55vRJ+0Kjn3Po0KFyGIm26I6lf64xr9WDBw8MjmUjnaiKazj9oNHPubIgpBxGQkRERKbKFBsvZXEEozr+yX/NgTnnVJWPjCuN0uZlCjlV5TEaq7Q5VcY6mDBhAn755RckJSVpPSaTyTTuCyG0phVVNEZXfGlinjRjxgxMnjxZun/v3j14eXkhKCjI4F8kqVQqJCYmIjAwEFZWVgY9p6ozx5wA88zLnHP68GwNKAv114mizkUFl9OoNPlGHTH6OfIaAp+0LzTqtTLmtFRspBMREVUBpfnSDOAXZ0RkGFNsvJTlEYyAeR5FZo45VeUj456GsXmZQk7m+P4zNidjjmIsCxMnTsS+ffvw3XffoV69etJ0Dw8PAI+/tKxTp440PTMzU/oS08PDA/n5+cjKytL4cjQzMxNdunSRYm7duqW13Nu3b2vM59SpUxqPZ2VlQaVSaX1hqiaXyyGXy7WmW1lZGd2ULM1zqjpzzAkwz7zMMSdloQzKAuMa6RW1Dowd15OMea2MyYeNdCIiIiIiM2aqjZeyOIIRMO+jyMwxp6p8ZFxplDYv5lSxSvs3VVEX1xRCYOLEidi9eze+/fZbeHt7azzu7e0NDw8PJCYmom3btgCA/Px8nDhxAgsXLgQAtGvXDlZWVkhMTMTgwYMBAOnp6Th37hyio6MBAH5+fsjJycHp06fRsePjcyqcOnUKOTk5Us338/PD3LlzkZ6eLm07EhISIJfL0a5du/JfGURElYiNdCIiIiIiM2TqjZeyPILxaZ5XlZljTlX5yLinYWxezKlyGPs3VVE5jR8/Hlu2bMHevXvh4OAgnRJLoVDA1tYWMpkMkZGRmDdvHpo0aYImTZpg3rx5sLOzQ1hYmBQ7atQoTJkyBS4uLnB2dsbUqVPRsmVL6WLSzZs3R+/evTF69GisWbMGADBmzBiEhobCx8cHABAUFIQWLVogPDwcixYtwt27dzF16lSMHj2aF44mIrPHRjqVO57jm4iIiKjisfFCRGQeVq1aBQDw9/fXmL5hwwYMHz4cADBt2jQ8fPgQ48aNQ1ZWFjp16oSEhAQ4ODhI8UuWLIGlpSUGDx6Mhw8fomfPnoiJiYGFhYUUs3nzZkyaNEm6yHT//v2xYsUK6XELCwscPHgQ48aNQ9euXWFra4uwsDB8+umn5ZQ9EVHVwUY6EREREZEZYuOFiMg8CFHyxWplMhmioqIQFRVVbIyNjQ2WL1+O5cuXFxvj7OyM2NhYvcuqX78+Dhw4UOKYiIjMDRvpRERERERmiI0XIiIiIqKyU6OyB0BEREREREREREREVJWxkU5EREREREREREREpAdP7UJkhkpzgVeAF3klIiIiIiIiIiLShY10IiIiIiIiIiIiIj18o45AWSAzOJ4HK5ofntqFiIiIiIiIiIiIiEgPHpFORESkR2lPlURERFTeeGQcERERUcVhI52oFNhYIyIiIiIiIiIiqj7YSCciIiIiIiIiIqIyw19NkTniOdKJiIiIiIiIiIiIiPRgI52IiIiIiIiIiIiISA+e2oWqJJ6DnIiIiIiIiIiIiKoKHpFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkh2VlD4AqR8PpBzXuyy0EojsCvlFHoCyQVdKoiIiIiIiIiIiqj9L0Ya4sCCmn0RCRPmykExERmbCiX4zqo/7SlIiIiIiIiIiMw0Y6EUmKa8jp+8UCvwknIiIiIiIiIiJzx3OkExERERERERERERHpwUY6EREREREREREREZEebKQTEREREREREREREenBRjoRERERERERERERkR5spBMRERERERERERER6cFGOhERERERERERERGRHmykExGRTt999x369esHT09PyGQy7NmzR+NxIQSioqLg6ekJW1tb+Pv74/z58xoxSqUSEydOhKurK+zt7dG/f3/cuHFDIyYrKwvh4eFQKBRQKBQIDw9Hdna2Rsy1a9fQr18/2Nvbw9XVFZMmTUJ+fn55pE1EREREREREpIWNdCIi0ikvLw+tW7fGihUrdD4eHR2Nzz77DCtWrMCZM2fg4eGBwMBA5ObmSjGRkZHYvXs34uLikJSUhPv37yM0NBQFBQVSTFhYGNLS0hAfH4/4+HikpaUhPDxcerygoAAhISHIy8tDUlIS4uLisHPnTkyZMqX8kiciIiIiIiIieoJlZQ+AiIiqpj59+qBPnz46HxNCYOnSpZg5cyYGDhwIANi4cSPc3d2xZcsWjB07Fjk5OVi/fj02bdqEXr16AQBiY2Ph5eWFo0ePIjg4GBcvXkR8fDxOnjyJTp06AQDWrl0LPz8/XLp0CT4+PkhISMCFCxdw/fp1eHp6AgAWL16M4cOHY+7cuXB0dKyAtUFERERERERE1VmlHJEeFRUFmUymcfPw8JAer8jTBRARkfEuX76MjIwMBAUFSdPkcjm6d++O5ORkAEBqaipUKpVGjKenJ3x9faWYlJQUKBQKqYkOAJ07d4ZCodCI8fX1lZroABAcHAylUonU1NRyzZOIiIiIiIiICKjEI9KfffZZHD16VLpvYWEh/V99uoCYmBg0bdoUc+bMQWBgIC5dugQHBwcAj08XsH//fsTFxcHFxQVTpkxBaGgoUlNTpXmFhYXhxo0biI+PBwCMGTMG4eHh2L9/fwVmSkRkfjIyMgAA7u7uGtPd3d1x9epVKcba2hpOTk5aMernZ2RkwM3NTWv+bm5uGjFFl+Pk5ARra2sppiilUgmlUindv3fvHgBApVJBpVKVmJ86RqVSQW4hSow3FfIaj3MxZB2YkidfL3NhjjkBzEvXc4iIiIiIyDRUWiPd0tJS4yh0tYo8XQARET0dmUymcV8IoTWtqKIxuuJLE/Ok+fPnY/bs2VrTExISYGdnp3d8T0pMTER0R4PDTUZiYmJlD6FcmGNe5pgTwLwA4MGDB+U4EiIiIiIiKmuV1kj/448/4OnpCblcjk6dOmHevHl45plnSjxdwNixY0s8XUBwcHCJpwsorpH+tEcxmoqiR1iqj1JU/1vdcX1o0rc+zOnvwhiVdVRlVVnf6i9CMzIyUKdOHWl6ZmamdPS4h4cH8vPzkZWVpXFUemZmJrp06SLF3Lp1S2v+t2/f1pjPqVOnNB7PysqCSqXSOlJdbcaMGZg8ebJ0/969e/Dy8kJQUJBB51RXqVRITExEYGAg2s79psR4UyGvIfBJ+0IEBgbCysqqsodTZp58vcwlL3PMCWBeT1LvYxIRERERkWmolEZ6p06d8NVXX6Fp06a4desW5syZgy5duuD8+fMVeroAXcrqKMaqrrgjLD9pX1ixA6niuD406Vofhw4dqoSRVB0VfVRlVTmC0dvbGx4eHkhMTETbtm0BAPn5+Thx4gQWLlwIAGjXrh2srKyQmJiIwYMHAwDS09Nx7tw5REdHAwD8/PyQk5OD06dPo2PHx4Xp1KlTyMnJkZrtfn5+mDt3LtLT06WmfUJCAuRyOdq1a6dzfHK5HHK5XGu6lZWVUc07KysrKAv0H2FvioxdD6bCHPMyx5wA5qWOJSIiIiIi01EpjfQ+ffpI/2/ZsiX8/PzQqFEjbNy4EZ07dwZQcacLKOppj2I0Fb5RRzTuq49S/PBsDSgLza9pZCyuD0361se5qOBKGlXlqqyjKivyCMb79+/jzz//lO5fvnwZaWlpcHZ2Rv369REZGYl58+ahSZMmaNKkCebNmwc7OzuEhYUBABQKBUaNGoUpU6bAxcUFzs7OmDp1Klq2bCmdlqt58+bo3bs3Ro8ejTVr1gB4fD2L0NBQ6ZdDQUFBaNGiBcLDw7Fo0SLcvXsXU6dOxejRo82qLhMRERERERFR1VVpp3Z5kr29PVq2bIk//vgDL774IoCKOV2ALmV1FGNVV9wRlspCmVkefVlaXB+adK0Pc/q7KI2Krg0VuayzZ88iICBAuq/+kjEiIgIxMTGYNm0aHj58iHHjxiErKwudOnVCQkKCdFFoAFiyZAksLS0xePBgPHz4ED179kRMTIzGBaY3b96MSZMmSafr6t+/P1asWCE9bmFhgYMHD2LcuHHo2rUrbG1tERYWhk8//bS8VwEREREREREREYAq0khXKpW4ePEinn/++Qo9XQARERXP398fQhR/nQCZTIaoqChERUUVG2NjY4Ply5dj+fLlxcY4OzsjNjZW71jq16+PAwcOlDhmIiIiIiIiIqLyUCmN9KlTp6Jfv36oX78+MjMzMWfOHNy7dw8RERGQyWQVdroAIiIiIiIiIiIiIqKSVEoj/caNG3j11Vfxzz//oHbt2ujcuTNOnjyJBg0aAECFnS6AiIiIiIiIiMxLw+kHjYqXWwhEdyynwRARkdmolEZ6XFyc3scr8nQBRERERERERERERET61KjsARARERERERERkW7fffcd+vXrB09PT8hkMuzZs0fjcSEEoqKi4OnpCVtbW/j7++P8+fMaMUqlEhMnToSrqyvs7e3Rv39/3LhxQyMmKysL4eHhUCgUUCgUCA8PR3Z2tkbMtWvX0K9fP9jb28PV1RWTJk1Cfn5+eaRNRFTlsJFORERERGSm2HwhIjJ9eXl5aN26dbGnqo2OjsZnn32GFStW4MyZM/Dw8EBgYCByc3OlmMjISOzevRtxcXFISkrC/fv3ERoaioKCAikmLCwMaWlpiI+PR3x8PNLS0hAeHi49XlBQgJCQEOTl5SEpKQlxcXHYuXMnpkyZUn7JExFVIWykExERERGZKTZfiIhMX58+fTBnzhwMHDhQ6zEhBJYuXYqZM2di4MCB8PX1xcaNG/HgwQNs2bIFAJCTk4P169dj8eLF6NWrF9q2bYvY2Fj8+uuvOHr0KADg4sWLiI+Px7p16+Dn5wc/Pz+sXbsWBw4cwKVLlwAACQkJuHDhAmJjY9G2bVv06tULixcvxtq1a3Hv3r2KWyFERJWEjXQiIiIiIjPF5gsRkXm7fPkyMjIyEBQUJE2Ty+Xo3r07kpOTAQCpqalQqVQaMZ6envD19ZViUlJSoFAo0KlTJymmc+fOUCgUGjG+vr7w9PSUYoKDg6FUKpGamlqueRIRVQWVcrFRIiIiIiKqXCU1X8aOHVti8yU4OLjE5ouPj0+JzZeAgACt8SmVSiiVSum+uuGuUqmgUqkMzlMda8xzqjp1LvIaolTPq4pKm9OTz62K+FppP68iyC2MG5s6F2PHWBVep4yMDACAu7u7xnR3d3dcvXpVirG2toaTk5NWjPr5GRkZcHNz05q/m5ubRkzR5Tg5OcHa2lqK0aUs6jlrue7nVkWmUCOMxZx0P7e8GVvLgdLVc2Ni2UgnIiIiIqqGqnrzZf78+Zg9e7bW9ISEBNjZ2RmSoobExESjn1PVfdK+0Kj4Q4cOldNIyo6xOQHmmRdzejrRHUv3PGPrxIMHD0q3oHIgk8k07gshtKYVVTRGV3xpYooqy3rOWv4Ya0TlYE6PVVRepa3lgHG1wphazkY6EREREVE1VlWbLzNmzMDkyZOl+/fu3YOXlxeCgoLg6Oiod3xPUqlUSExMRGBgIKysrAx+XlWmzunDszWgLNT/Wj3pXFRwOY7q6ZQ2J8A882JOT8c36ohR8fIaAp+0LzS6TlSFU1N5eHgAePyFZZ06daTpmZmZ0heYHh4eyM/PR1ZWlsYXo5mZmejSpYsUc+vWLa353759W2M+p06d0ng8KysLKpVK68vSJ5VFPWct18QaUbGYk6aKysvYWg6Urp4bU8vZSCciIiIiqoaqevNFLpdDLpdrTbeysipVE6W0z6vKlIUyKAsM//BrCvkbmxNgnnkxp6dj7HtIzdg6URVeJ29vb3h4eCAxMRFt27YFAOTn5+PEiRNYuHAhAKBdu3awsrJCYmIiBg8eDABIT0/HuXPnEB0dDQDw8/NDTk4OTp8+jY4dHx8GeurUKeTk5Ej13s/PD3PnzkV6erq03UhISIBcLke7du2KHWNZ1nPW8sdMYR1U5RpRWszpsYrKq7S1HDCuVhiTDxvpRERE1Yxv1BGjd0quLAgpp9EQUWUxheYLEREB9+/fx59//indv3z5MtLS0uDs7Iz69esjMjIS8+bNQ5MmTdCkSRPMmzcPdnZ2CAsLAwAoFAqMGjUKU6ZMgYuLC5ydnTF16lS0bNkSvXr1AgA0b94cvXv3xujRo7FmzRoAwJgxYxAaGgofHx8AQFBQEFq0aIHw8HAsWrQId+/exdSpUzF69GijfilERGSq2EgnIiIiIjJTbL4QEZm+s2fPalyUWX2alIiICMTExGDatGl4+PAhxo0bh6ysLHTq1AkJCQlwcHCQnrNkyRJYWlpi8ODBePjwIXr27ImYmBhYWFhIMZs3b8akSZOkC0z3798fK1askB63sLDAwYMHMW7cOHTt2hW2trYICwvDp59+Wt6rgIioSmAj3Qw0nH6wsodARERERFUQmy9ERKbP398fQohiH5fJZIiKikJUVFSxMTY2Nli+fDmWL19ebIyzszNiY2P1jqV+/fo4cOBAiWMmIjJHbKQTEREREZkpNl+IiIiIiMpGjcoeABERERERERERERFRVcZGOhERERERERERERGRHmykExERERERERERERHpwUY6EREREREREREREZEebKQTEREREREREREREenBRjoRERERERERERERkR6WlT0AIjJtDacfNPo5VxaElMNIiKgqYo0gIiIiIiIic8Aj0omIiIiIiIiIiIiI9GAjnYiIiIiIiIiIiIhIDzbSiYiIiIiIiIiIiIj0YCOdiIiIiIiIiIiIiEgPXmy0iinNRdmITE1p3+e8ACEREREREREREVUGNtLLCRviREREREREREREROaBp3YhIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0oPnSCciIqIS8dofREREREREVJ2xkU5ERETVVmm+ILiyIKQcRkJEREREJfGNOgJlgczgeO63EVFZ4qldiIiIiIiIiIiIiIj04BHpREREVKUYe5S43EIgumM5DYaIiIiIiIgIPCKdiIiIiIiIiIiIiEgvNtKJiIiIiIiIiIiIiPTgqV2IiIjILBh78anS4gVKiYiIiIiIqh8ekU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHpYVvYAiIiIiIiIyptv1BEoC2QGx19ZEFKOoyEiIiIiU8NGOhEREVE5azj9oFHxcguB6I7lNJgyZK55ERERERERFcVGOhEREVEVZewRtERERERERFQ+2EgnIpNh7JGPAH+WTURERERERERET48XGyUiIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg410IiIiIiIiIiIiIiI92EgnIiIiIiIiIiIiItKDjXQiIiIiIiIiIiIiIj3YSCciIiIiIiIiIiIi0qNaNNJXrlwJb29v2NjYoF27dvj+++8re0hERFQKrOdERKaPtZyIyPSxlhNRdWRZ2QMob9u2bUNkZCRWrlyJrl27Ys2aNejTpw8uXLiA+vXrV/bwiKicNZx+0OjnXFkQUg4joafFek5EZPpYy4mITB9rORFVV2bfSP/ss88watQovPHGGwCApUuX4siRI1i1ahXmz59fyaMjoqrIkOa73EIguiPgG3UEygIZADbgyxvrORGR6WMtJyIyfazlRFRdmXUjPT8/H6mpqZg+fbrG9KCgICQnJ+t8jlKphFKplO7n5OQAAO7evQuVSmXwsi0f5ZVixJXHslDgwYNCWKpqoKBQVtnDqXRcH5q4PrTpWid37twp9+Xm5uYCAIQQ5b6sqsTYev60tVylUuHBgwe4c+eOydVzfcz1b9kc8zLHnID/8rpz5w6srKwqezhl5smaYWhe1bGeV3QtV1O/Psb+PVXEdr20mJMmc8yLOT0dY/ffSrt9Yi3/T3n3WUzhfWcs1j1NzKlimcL7rzSfxUtTz42q5cKM/f333wKA+OGHHzSmz507VzRt2lTnc2bNmiUA8MYbb7xV6dv169crooxWGcbWc9Zy3njjzVRu1ames5bzxhtv5npjLWefhTfeeDP9myG13KyPSFeTyTS/WRFCaE1TmzFjBiZPnizdLywsxN27d+Hi4lLsc8zBvXv34OXlhevXr8PR0bGyh1PpuD40cX1oq6x1IoRAbm4uPD09K2yZVYmh9fxpa7m5vueZl+kwx5wA5vWk6lzPK6qWq5nj+445mQ5zzIs5/Ye1/D/l3Wfh+850mGNezMl0lPd+uVk30l1dXWFhYYGMjAyN6ZmZmXB3d9f5HLlcDrlcrjGtVq1a5TXEKsfR0dGs/oCeFteHJq4PbZWxThQKRYUuryowtp6XVS031/c88zId5pgTwLzUqls9r6xarmaO7zvmZDrMMS/m9Bhr+WMV1Wfh+850mGNezMl0lNd+eY3SDsgUWFtbo127dkhMTNSYnpiYiC5dulTSqIiIyFis50REpo+1nIjI9LGWE1F1ZtZHpAPA5MmTER4ejvbt28PPzw9ffPEFrl27hjfffLOyh0ZEREZgPSciMn2s5UREpo+1nIiqK7NvpA8ZMgR37tzBxx9/jPT0dPj6+uLQoUNo0KBBZQ+tSpHL5Zg1a5bWz62qK64PTVwf2rhOKl5F1nNzfX2Zl+kwx5wA5kWVs29ujq8PczId5pgXcyLW8rJhjjkB5pkXczId5Z2XTAghymXORERERERERERERERmwKzPkU5ERERERERERERE9LTYSCciIiIiIiIiIiIi0oONdCIiIiIiIiIiIiIiPdhIJyIiIiIiIiIiIiLSg430amT+/Pno0KEDHBwc4ObmhhdffBGXLl3SiBFCICoqCp6enrC1tYW/vz/Onz9fSSOuWPPnz4dMJkNkZKQ0rTquj7///hvDhg2Di4sL7Ozs0KZNG6SmpkqPV6d18ujRI3zwwQfw9vaGra0tnnnmGXz88ccoLCyUYqrT+qguVq5cCW9vb9jY2KBdu3b4/vvvK3tIGr777jv069cPnp6ekMlk2LNnj8bjhrwnlUolJk6cCFdXV9jb26N///64ceOGRkxWVhbCw8OhUCigUCgQHh6O7OzscsmprLZPVS2vVatWoVWrVnB0dISjoyP8/Pxw+PBhk86pqNJuO6taXlFRUZDJZBo3Dw8Pk86JHqvqNd1YJW0DTJEh2wBTU1L9Nwe66r8pKqn+U9VgbrUcML96bo61HGA9NxUVWcvZSK9GTpw4gfHjx+PkyZNITEzEo0ePEBQUhLy8PCkmOjoan332GVasWIEzZ87Aw8MDgYGByM3NrcSRl78zZ87giy++QKtWrTSmV7f1kZWVha5du8LKygqHDx/GhQsXsHjxYtSqVUuKqU7rZOHChVi9ejVWrFiBixcvIjo6GosWLcLy5culmOq0PqqDbdu2ITIyEjNnzsRPP/2E559/Hn369MG1a9cqe2iSvLw8tG7dGitWrND5uCHvycjISOzevRtxcXFISkrC/fv3ERoaioKCAikmLCwMaWlpiI+PR3x8PNLS0hAeHl4uOZXV9qmq5VWvXj0sWLAAZ8+exdmzZ9GjRw8MGDBAasCaYk5PepptZ1XM69lnn0V6erp0+/XXX00+p+rOFGq6sUraBpgiQ7YBpqak+m/qiqv/pkpf/afKZ461HDC/em6OtRxgPTclFVbLBVVbmZmZAoA4ceKEEEKIwsJC4eHhIRYsWCDF/Pvvv0KhUIjVq1dX1jDLXW5urmjSpIlITEwU3bt3F2+//bYQonquj/fee09069at2Mer2zoJCQkRI0eO1Jg2cOBAMWzYMCFE9Vsf1UHHjh3Fm2++qTGtWbNmYvr06ZU0Iv0AiN27d0v3DXlPZmdnCysrKxEXFyfF/P3336JGjRoiPj5eCCHEhQsXBABx8uRJKSYlJUUAEL/99ls5Z1W67ZMp5CWEEE5OTmLdunUmn9PTbDurYl6zZs0SrVu31vmYqeZEplfTjVV0G2Auim4DzIW6/pu64uq/qdJX/6lqMPdaLoR51nNzreVCsJ5XRRVZy3lEejWWk5MDAHB2dgYAXL58GRkZGQgKCpJi5HI5unfvjuTk5EoZY0UYP348QkJC0KtXL43p1XF97Nu3D+3bt8crr7wCNzc3tG3bFmvXrpUer27rpFu3bjh27Bh+//13AMDPP/+MpKQk9O3bF0D1Wx/mLj8/H6mpqRqvJwAEBQWZzOtpyHsyNTUVKpVKI8bT0xO+vr5STEpKChQKBTp16iTFdO7cGQqFokLWRWm2T1U9r4KCAsTFxSEvLw9+fn4mn9PTbDural5//PEHPD094e3tjaFDh+Kvv/4y+ZyqM3Oo6dVV0W2AqSta/01dcfXflBVX/6nysZabLnOr5QDreVVXUbXcslzmSlWeEAKTJ09Gt27d4OvrCwDIyMgAALi7u2vEuru74+rVqxU+xooQFxeHH3/8EWfOnNF6rDquj7/++gurVq3C5MmT8f777+P06dOYNGkS5HI5Xn/99Wq3Tt577z3k5OSgWbNmsLCwQEFBAebOnYtXX30VQPV8j5izf/75BwUFBTpfT/VrXdUZ8p7MyMiAtbU1nJyctGLUz8/IyICbm5vW/N3c3Mp9XZR2+1RV8/r111/h5+eHf//9FzVr1sTu3bvRokUL6cOfKeb0tNvOqphXp06d8NVXX6Fp06a4desW5syZgy5duuD8+fMmm1N1Zw41vTrStQ0wVcXVf1Omr/6bKn3138XFpbKHV+2xlpsmc6rlAOu5KajIWs5GejU1YcIE/PLLL0hKStJ6TCaTadwXQmhNMwfXr1/H22+/jYSEBNjY2BQbV13WBwAUFhaiffv2mDdvHgCgbdu2OH/+PFatWoXXX39diqsu62Tbtm2IjY3Fli1b8OyzzyItLQ2RkZHw9PRERESEFFdd1kd1YQ6vZ2lyKBqjK74i1kVZb58qOy8fHx+kpaUhOzsbO3fuREREBE6cOFHseKp6TuW57azMvPr06SP9v2XLlvDz80OjRo2wceNGdO7cWed4qnpO9Jg51PTqRN82wNQUV/9NtfliaP03Nfrq/+TJkytxZPQk1nLTYk61HGA9NwUVWct5apdqaOLEidi3bx+OHz+OevXqSdPVV7Qt+s1uZmam1jfA5iA1NRWZmZlo164dLC0tYWlpiRMnTuB///sfLC0tpZyry/oAgDp16mhtDJo3by5dyKW6vUfeffddTJ8+HUOHDkXLli0RHh6Od955B/PnzwdQ/daHuXN1dYWFhYVJv56GvCc9PDyQn5+PrKwsvTG3bt3Smv/t27fLdV08zfapquZlbW2Nxo0bo3379pg/fz5at26NZcuWmWxOZbHtrIp5FWVvb4+WLVvijz/+MNnXqrozh5pe3RS3DTBVxdV/U1VS/X/ywsqm7Mn6T5WPtdz0mFstB1jPTVF51nI20qsRIQQmTJiAXbt24ZtvvoG3t7fG497e3vDw8EBiYqI0LT8/HydOnECXLl0qerjlrmfPnvj111+RlpYm3dq3b4/XXnsNaWlpeOaZZ6rV+gCArl274tKlSxrTfv/9dzRo0ABA9XuPPHjwADVqaJZJCwsLFBYWAqh+68PcWVtbo127dhqvJwAkJiaazOtpyHuyXbt2sLKy0ohJT0/HuXPnpBg/Pz/k5OTg9OnTUsypU6eQk5NTLuuiLLZPVTEvXYQQUCqVJptTWWw7q2JeRSmVSly8eBF16tQx2dequjOHml5dlLQNMBfq+m+qSqr/FhYWlT3EMvFk/afKx1puOqpLLQdYz01Budbycr+cKVUZb731llAoFOLbb78V6enp0u3BgwdSzIIFC4RCoRC7du0Sv/76q3j11VdFnTp1xL179ypx5BWn6JWKq9v6OH36tLC0tBRz584Vf/zxh9i8ebOws7MTsbGxUkx1WicRERGibt264sCBA+Ly5cti165dwtXVVUybNk2KqU7rozqIi4sTVlZWYv369eLChQsiMjJS2NvbiytXrlT20CS5ubnip59+Ej/99JMAID777DPx008/iatXrwohDHtPvvnmm6JevXri6NGj4scffxQ9evQQrVu3Fo8ePZJievfuLVq1aiVSUlJESkqKaNmypQgNDS2XnMpq+1TV8poxY4b47rvvxOXLl8Uvv/wi3n//fVGjRg2RkJBgsjnpUpptZ1XLa8qUKeLbb78Vf/31lzh58qQIDQ0VDg4O0t++KeZEplHTjVXSNsAUGbINMDUl1X9zUbT+m6KS6j9VPnOs5UKYXz03x1ouBOu5qajIWs5GejUCQOdtw4YNUkxhYaGYNWuW8PDwEHK5XLzwwgvi119/rbxBV7CixaM6ro/9+/cLX19fIZfLRbNmzcQXX3yh8Xh1Wif37t0Tb7/9tqhfv76wsbERzzzzjJg5c6ZQKpVSTHVaH9XF559/Lho0aCCsra3Fc889J06cOFHZQ9Jw/PhxnbU8IiJCCGHYe/Lhw4diwoQJwtnZWdja2orQ0FBx7do1jZg7d+6I1157TTg4OAgHBwfx2muviaysrHLJqay2T1Utr5EjR0rvpdq1a4uePXtq7HSbYk66lGbbWdXyGjJkiKhTp46wsrISnp6eYuDAgeL8+fMmnRM9VtVrurFK2gaYIkO2AaampPpvLky98SJEyfWfqgZzq+VCmF89N8daLgTruamoyFouE0KIsj/OnYiIiIiIiIiIiIjIPPAc6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpAcb6UREREREREREREREerCRTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkV4NxcTEQCaTFXv79ttvK3uIT+XYsWNo37497O3tIZPJsGfPHr3x169fx4QJE9CoUSPY2NjAyckJ/v7+2Lx5M4QQpR7H8OHD0bBhQ41pDRs2xPDhw0s9z9L69ttvIZPJ8PXXX1f4stXvt7Nnz+qNi4qKgkwmq6BREVFF+eWXXzBq1Cg0atQItra2sLW1RZMmTTB27NgS60JxLly4gKioKFy5cqVMx3rlyhXIZDLExMSU6XxLY968eTq3X+p6burbaiKqWvR9Ppg6dWqljKWsa/zTeJp9eGO3Lbo+QxhKvT/9zz//lOr5RGSaTp48iVdeeQV16tSBtbU1PDw8MGjQIKSkpDzVfIvWvsrcVza1+lZ03XEf3nxYVvYAqPJs2LABzZo105reokWLShhN2RBCYPDgwWjatCn27dsHe3t7+Pj4FBv/ww8/IDQ0FDVr1sS7776LVq1aIScnB9u3b8ewYcOwf/9+bNmyBTVqlM13Trt374ajo2OZzMvcvPHGG+jdu3dlD4OIytCaNWswYcIE+Pj44O2338azzz4LmUyGixcvYuvWrejQoQP+/PNPNGrUyKj5XrhwAbNnz4a/v3+pmw1V3bx58zBo0CC8+OKLGtOfe+45pKSkmPS2moiqLl2fDzw9PStpNNXThx9+iLfffruyh0FEJmL58uWIjIxEx44dER0djQYNGuDatWv4/PPP0a1bNyxbtgwTJkwok2XVqVMHKSkpRu+7E/fhzQkb6dWYr68v2rdvX9nDKFM3b97E3bt38dJLL6Fnz556Y7OzszFw4EAoFAqcOnUK7u7u0mMDBgxAq1atMH36dLRp0wbTp08vk/G1bdu2TOZjjurVq4d69epV9jCIqIz88MMPGDduHEJCQvD111/D2tpaeqxHjx4YP348duzYAVtb20ocpelxdHRE586dK3sYRGSmzPHzgal48OAB7Ozs2KAiIoP98MMPiIyMRN++fbF7925YWv7X4hs6dCheeuklvP3222jbti26du361MuTy+XcD/3/1DXbUNyHNx88tQvp9fnnn+OFF16Am5sb7O3t0bJlS0RHR0OlUmnE/fTTTwgNDYWbmxvkcjk8PT0REhKCGzduSDFCCKxcuRJt2rSBra0tnJycMGjQIPz1118GjSUpKQk9e/aEg4MD7Ozs0KVLFxw8eFB6PCoqSmrEvvfee5DJZHqPVFy3bh0yMzOxYMECjSa62rRp09CsWTMsWrRIylf9c5ytW7di5syZ8PT0hKOjI3r16oVLly6VmENxP+8xdH5Hjx5Fz5494ejoCDs7O3Tt2hXHjh0rcblq//77LyZPngwPDw/Y2tqie/fu+Omnn7Ti9u3bBz8/P9jZ2cHBwQGBgYE6fxZW0mtSnPT0dLRr1w5NmjTBH3/8AUD3qV0aNmyI0NBQxMfH47nnnoOtrS2aNWuGL7/8UudY/Pz8YGNjg7p16+LDDz/EunXrqtxPg4mqi3nz5sHCwgJr1qzRaKI/6ZVXXtE40vHs2bMYOnQoGjZsCFtbWzRs2BCvvvoqrl69KsXExMTglVdeAQAEBARIpx548iemT1srizK01v39998YM2YMvLy8YG1tDU9PTwwaNAi3bt0C8LgGT5kyBW3atIFCoYCzszP8/Pywd+9ejfnIZDLk5eVh48aNUn7+/v4Aiv9ZqCF1W11nz58/j1dffRUKhQLu7u4YOXIkcnJySr1+iKj6KOt9xJMnT6Jr166wsbGBp6cnZsyYofU5oziGbDOA/04Vc/z4cbz11ltwdXWFi4sLBg4ciJs3b2rEqlQqTJs2DR4eHrCzs0O3bt1w+vRpg9fPzZs3MXjwYDg4OEChUGDIkCHIyMjQihs+fDhq1qyJX3/9FUFBQXBwcJAOAtJ1aheZTIYJEyZg06ZNaN68Oezs7NC6dWscOHCgxDH99ttveOaZZ9CpUydkZmYanAsRVX3z58+HTCbDqlWrNJroAGBpaYmVK1dCJpNhwYIF0vSn2R/UdWoXY+b3tD0h4PGpeQcOHAhHR0coFAoMGzYMt2/f1ogpLCxEdHQ0mjVrBrlcDjc3N7z++usa/SkASExMxIABA1CvXj3Y2NigcePGGDt2rNbpY9Q5/vjjjxg0aBCcnJykLz0N3W7o2odXbwv+/PNP9O3bFzVr1oSXlxemTJkCpVKp8fwbN25g0KBBcHBwQK1atfDaa6/hzJkzVea0lNUJG+nVWEFBAR49eqRxKygo0Ij5v//7P4SFhWHTpk04cOAARo0ahUWLFmHs2LFSTF5eHgIDA3Hr1i18/vnnSExMxNKlS1G/fn3k5uZKcWPHjkVkZCR69eqFPXv2YOXKlTh//jy6dOkiNRmKc+LECfTo0QM5OTlYv349tm7dCgcHB/Tr1w/btm0D8PjUILt27QIATJw4ESkpKdi9e3ex80xMTISFhQX69eun83GZTIb+/fvj7t27SE1N1Xjs/fffx9WrV7Fu3Tp88cUX+OOPP9CvXz+t9WcoQ+YXGxuLoKAgODo6YuPGjdi+fTucnZ0RHBxscIPo/fffx19//YV169Zh3bp1uHnzJvz9/TU2XFu2bMGAAQPg6OiIrVu3Yv369cjKyoK/vz+SkpKkOENeE13OnTuHTp06QS6XIyUlBU2aNNE75p9//hlTpkzBO++8g71796JVq1YYNWoUvvvuOynml19+QWBgIB48eICNGzdi9erV+PHHHzF37lyD1gsRla2CggIcP34c7du3R506dQx+3pUrV+Dj44OlS5fiyJEjWLhwIdLT09GhQwdphzYkJATz5s0D8PjL3pSUFKSkpCAkJARA2dTKJxla6/7++2906NABu3fvxuTJk3H48GEsXboUCoUCWVlZAAClUom7d+9i6tSp2LNnD7Zu3Ypu3bph4MCB+Oqrr6R5paSkwNbWFn379pXyW7lyZbFjNLRuq7388sto2rQpdu7cienTp2PLli145513jF43RGR+dH0+UCvrfcQLFy6gZ8+eyM7ORkxMDFavXo2ffvoJc+bMMWishmwznvTGG2/AysoKW7ZsQXR0NL799lsMGzZMI2b06NH49NNP8frrr2Pv3r14+eWXMXDgQKmO6/Pw4UP06tULCQkJmD9/Pnbs2AEPDw8MGTJEZ3x+fj769++PHj16YO/evZg9e7be+R88eBArVqzAxx9/jJ07d8LZ2RkvvfSS3gbUiRMn0KVLF7Rq1QrHjx+Hm5tbiXkQkWl4cn+7uF92e3l5oV27dvjmm2+0ehVlvT9oyPyepiek9tJLL6Fx48b4+uuvERUVhT179iA4OFjjS9i33noL7733HgIDA7Fv3z588skniI+PR5cuXTS2D//3f/8HPz8/rFq1CgkJCfjoo49w6tQpdOvWTeeXugMHDkTjxo2xY8cOrF69GsDTbTeAx434/v37o2fPnti7dy9GjhyJJUuWYOHChVJMXl4eAgICcPz4cSxcuBDbt2+Hu7t7sdsXKmeCqp0NGzYIADpvFhYWxT6voKBAqFQq8dVXXwkLCwtx9+5dIYQQZ8+eFQDEnj17in1uSkqKACAWL16sMf369evC1tZWTJs2Te+YO3fuLNzc3ERubq407dGjR8LX11fUq1dPFBYWCiGEuHz5sgAgFi1aVOJ6aNasmfDw8NAbs2rVKgFAbNu2TQghxPHjxwUA0bdvX4247du3CwAiJSVFmhYRESEaNGigEdegQQMREREh3Td0fnl5ecLZ2Vn069dPI66goEC0bt1adOzYUW8e6uU899xz0roSQogrV64IKysr8cYbb0jz8/T0FC1bthQFBQVSXG5urnBzcxNdunSRphn6mqjfb2fOnBGJiYnC0dFRDBo0SDx8+FBjjLNmzRJFS1KDBg2EjY2NuHr1qjTt4cOHwtnZWYwdO1aa9sorrwh7e3tx+/ZtjXXTokULAUBcvnxZ7/ohorKVkZEhAIihQ4dqPfbo0SOhUqmk25M1SVfs/fv3hb29vVi2bJk0fceOHQKAOH78uEb809ZK9TZkw4YN0jRDa93IkSOFlZWVuHDhgt5lFM1PpVKJUaNGibZt22o8Zm9vr7G9UFPXc3XuxtRtdZ2Njo7WmOe4ceOEjY2N3teCiMybvs8HKpWqXPYRhwwZImxtbUVGRoZGXLNmzUq1/1bcNkOd27hx4zTio6OjBQCRnp4uhBDi4sWLAoB45513NOI2b94sAOisyU9Sf27Yu3evxvTRo0drbVsiIiIEAPHll19qzUfXZwgAwt3dXdy7d0+alpGRIWrUqCHmz58vTVPX+du3b4tNmzYJa2trMWnSJI3XjIjMg7797ScNGTJEABC3bt0SQhi3P1i0f6FrX9nQ+T1tT0i9nOJqdGxsrBDiv1petOafOnVKABDvv/++zvkXFhYKlUolrl69qlXL1cv+6KOPNJ5jzHaj6D68EP9tC7Zv367x/L59+wofHx/p/ueffy4AiMOHD2vEjR07Vuv1oPLHI9Krsa+++gpnzpzRuJ06dUoj5qeffkL//v3h4uICCwsLWFlZ4fXXX0dBQQF+//13AEDjxo3h5OSE9957D6tXr8aFCxe0lnXgwAHIZDIMGzZM4wgXDw8PtG7dWu+Vi/Py8nDq1CkMGjQINWvWlKZbWFggPDwcN27cMOi0KqUhhAAArVOO9O/fX+N+q1atAEDrp6SGKml+ycnJuHv3LiIiIjTWX2FhIXr37o0zZ84gLy+vxOWEhYVp5NKgQQN06dIFx48fBwBcunQJN2/eRHh4uMYFVmvWrImXX34ZJ0+exIMHD0r1mmzcuBF9+/bFG2+8ge3bt8PGxsagddOmTRvUr19fum9jY4OmTZtqrGv1kU+urq7StBo1amDw4MEGLYOIKk67du1gZWUl3RYvXiw9dv/+fbz33nto3LgxLC0tYWlpiZo1ayIvLw8XL14scd5lVSvVjKl1hw8fRkBAAJo3b653njt27EDXrl1Rs2ZNWFpawsrKCuvXrzcoP10MrdtP0rXN+ffff/mTfyLS+fnA0tKyXPYRjx8/jp49e2qcYtHCwsLgI+yM3WaUtL+t3h9+7bXXNOIGDx6sdcoEXY4fPw4HBwet5YSFhRX7nJdffrnE+aoFBATAwcFBuu/u7g43Nzednz/mzp2L4cOHY8GCBVi2bJnGa0ZE1YsxPY2n2R8saX5P0xN6UnE1Wl3D1f8+eUpdAOjYsSOaN2+u8QvVzMxMvPnmm/Dy8pL2yxs0aAAAOrcjRWv20243gMevS9GzJLRq1Uqr3+Hg4IDevXtrxL366qsGLYPKFi82Wo01b95c78WErl27hueffx4+Pj5YtmwZGjZsCBsbG5w+fRrjx4/Hw4cPAQAKhQInTpzA3Llz8f777yMrKwt16tTB6NGj8cEHH8DKygq3bt2CEELnucgB4Jlnnil2HFlZWRBC6Dw9gPrcunfu3DEmdQBA/fr18ccffyAvLw/29vY6Y9Tn1vby8tKY7uLionFfLpcDgLROjFXS/NQ/cxo0aFCx87h7926xeah5eHjonPbzzz8D+G89FreuCwsLpdfD2NckLi4Otra2eOONN7Q24voUXTfA4/Xz5Lq+c+eOzvdWce83Iipfrq6usLW11fnhfsuWLXjw4AHS09N1NhuOHTuGDz/8EB06dICjoyNkMhn69u1rUH0tq1qpZsz25/bt2yVeMHnXrl0YPHgwXnnlFbz77rvw8PCApaUlVq1apfPaD4YwtG4/eTGkst6GEZH5KO7zQXnsI965c6fYfVNDGLvNKKn2qcdVdPmWlpY690eLKm5/tLh87Ozs4OjoWOJ81QzZJ1aLjY1F3bp1MXToUIPnT0SmxdXVFXZ2drh8+bLeuCtXrsDOzg7Ozs4a0yujp1HantCTiqvRT25bgOK3V+rPJ4WFhQgKCsLNmzfx4YcfomXLlrC3t0dhYSE6d+6scz0UnefTbjeAx9uCogcZyuVy/PvvvxrLYb+j6mAjnYq1Z88e5OXlYdeuXdK3cgCQlpamFduyZUvExcVBCIFffvkFMTEx+Pjjj2Fra4vp06fD1dUVMpkM33//vVRQn6RrmpqTkxNq1KiB9PR0rcfUFwh68khkQwUGBiIhIQH79+/XuZMphMC+ffvg7OyMdu3aGT3/sqTOb/ny5cVe6dmQIqrrYkcZGRlSkVf/W9y6rlGjBpycnCCEMPo12bx5Mz788EN0794dCQkJaNOmTYnjNZSLi4vOc6rpypeIyp+FhQV69OiBhIQEpKena+x0tmjRAgC0LgKck5ODAwcOYNasWZg+fbo0XX1ecUOUVa1UM2b7U7t2ba0LGBUVGxsLb29vbNu2TeMLxaIXEzKGoXWbiOhplMc+oouLS7H7piUpi21GUeocMzIyULduXWn6o0ePDDpox8XFRecF5orLx5gDS4wVHx+PIUOG4Pnnn8exY8c0PssRkXmwsLBAQEAA4uPjcePGDZ0HdNy4cQOpqano06cPLCwsKmGU/3mantCTiqvRunoaRdfJzZs3pW3QuXPn8PPPPyMmJgYRERFSzJ9//lnssovW7afdbhjK2O0LlS/+xouKpS4STxY0IQTWrl2r9zmtW7fGkiVLUKtWLfz4448AgNDQUAgh8Pfff6N9+/Zat5YtWxY7T3t7e3Tq1Am7du3S+FawsLAQsbGxqFevHpo2bWp0fm+88Qbc3NwwY8YMnT9fio6Oxm+//YZp06bBysrK6PmXpa5du6JWrVq4cOGCzvXXvn17WFtblzifrVu3Sj/tAh7/lDU5ORn+/v4AAB8fH9StWxdbtmzRiMvLy8POnTvh5+cHOzu7Ur0mzs7OOHr0KJo3b46AgACcPHnyKdfKf7p3745vvvlG48IhhYWF2LFjR5ktg4iMM2PGDBQUFODNN9/UebGeomQyGYQQWjvR69at07o4UnFHzJRVrVQzptb16dMHx48f13uqMZlMBmtra42d8IyMDOzdu1crtrijDIsytG4TET2N8thHDAgIwLFjxzQOhigoKNB70Xo1Y7YZhlLvD2/evFlj+vbt2zUuulqcgIAA5ObmYt++fRrTt2zZUqrxPI0GDRpIzarnn38ef/zxR4WPgYjK34wZMyCEwLhx47RqX0FBAd566y0IITBjxoxKGuF/nqYn9KTiarS6hvfo0QPA4wNYnnTmzBlcvHgRPXv2BKC73wUAa9asMTinp91uGKp79+7Izc3F4cOHNabHxcWV2TLIcDwivRo7d+6czj/uRo0aoXbt2ggMDIS1tTVeffVVTJs2Df/++y9WrVqldfXhAwcOYOXKlXjxxRfxzDPPQAiBXbt2ITs7G4GBgQAeNzfGjBmDESNG4OzZs3jhhRdgb2+P9PR0JCUloWXLlnjrrbeKHev8+fMRGBiIgIAATJ06FdbW1li5ciXOnTuHrVu3luqIjlq1amHXrl0IDQ1Fu3bt8O6776J169a4d+8etm3bhs2bN2PIkCF49913jZ53WatZsyaWL1+OiIgI3L17F4MGDYKbmxtu376Nn3/+Gbdv38aqVatKnE9mZiZeeukljB49Gjk5OZg1axZsbGykDWuNGjUQHR2N1157DaGhoRg7diyUSiUWLVqE7OxsLFiwQJpXaV4TBwcHxMfHY+DAgdIVtAMCAp56/cycORP79+9Hz549MXPmTNja2mL16tXSuZB5Xkiiite1a1d8/vnnmDhxIp577jmMGTMGzz77rHSk4s6dOwFA+lm7o6MjXnjhBSxatAiurq5o2LAhTpw4gfXr16NWrVoa8/b19QUAfPHFF3BwcICNjQ28vb3h4uJSJrXySYbWuo8//hiHDx/GCy+8gPfffx8tW7ZEdnY24uPjMXnyZDRr1gyhoaHYtWsXxo0bh0GDBuH69ev45JNPUKdOHa0mR8uWLfHtt99i//79qFOnDhwcHODj46M1PmPqNhFRaZXHPuIHH3yAffv2oUePHvjoo49gZ2eHzz//3KBrWRizzTBU8+bNMWzYMCxduhRWVlbo1asXzp07h08//dSgU7C8/vrrWLJkCV5//XXMnTsXTZo0waFDh3DkyJFSjedp1alTBydOnEBwcDBeeOEFJCYmSttPIjIPXbt2xdKlSxEZGYlu3bphwoQJqF+/Pq5du4bPP/8cp06dwtKlS9GlS5fKHupT94TUdu3aBUtLSwQGBuL8+fP48MMP0bp1a+n6aD4+PhgzZgyWL1+OGjVqoE+fPrhy5Qo+/PBDeHl54Z133gEANGvWDI0aNcL06dMhhICzszP279+PxMREg3N62u2GoSIiIrBkyRIMGzYMc+bMQePGjXH48GFp+8J+RwWroIuaUhWivnJ9cbe1a9dKsfv37xetW7cWNjY2om7duuLdd98Vhw8f1rja8G+//SZeffVV0ahRI2FraysUCoXo2LGjiImJ0Vr2l19+KTp16iTs7e2Fra2taNSokXj99dfF2bNnSxz3999/L3r06CE9t3PnzmL//v0aMeqrSC9atMjg9XHt2jUxfvx48cwzzwhra2uhUCjECy+8IGJjYzWuWC3Ef1da3rFjh87lPnm15IiICNGgQQONuKJXvTZmfkIIceLECRESEiKcnZ2FlZWVqFu3rggJCdF6flHq5WzatElMmjRJ1K5dW8jlcvH888/rXPd79uwRnTp1EjY2NsLe3l707NlT/PDDD1pxhrwm6vfbmTNnpGlKpVK8/PLLwsbGRhw8eFAI8d+VsIuur5CQEK3ldu/eXXTv3l1rLJ06dRJyuVx4eHiId999VyxcuFAAENnZ2XrXDxGVn7S0NDFixAjh7e0t5HK5sLGxEY0bNxavv/66OHbsmEbsjRs3xMsvvyycnJyEg4OD6N27tzh37pxW7RRCiKVLlwpvb29hYWGhVS9LWyuLq72G1DohhLh+/boYOXKk8PDwEFZWVsLT01MMHjxY3Lp1S4pZsGCBaNiwoZDL5aJ58+Zi7dq1OutfWlqa6Nq1q7CzsxMApJqnrufqbbCaIXVbvZzbt29rTFfX6cuXL+tdP0RkvnTtr+lSlvuIQgjxww8/iM6dO2vsv33xxRcG1SRDtxnF5aarniqVSjFlyhTh5uYmbGxsROfOnUVKSorO7ZC+MdWsWVM4ODiIl19+WSQnJ+v8nGBvb69zHro+QwAQ48eP14otOi5ddT47O1t07dpVODs7l/j6EpFpSklJEYMGDRLu7u7C0tJSuLm5iYEDB4rk5GStWGP2B4vWGF37ysbuX5a2J6ReTmpqqujXr59UZ1999VWNfW0hhCgoKBALFy4UTZs2FVZWVsLV1VUMGzZMXL9+XSPuwoULIjAwUDg4OAgnJyfxyiuviGvXrgkAYtasWSXmKITh2w1d25zitgW6Phtcu3ZNDBw4UGP7cujQIQFA7N27V++6o7IlE+KJ3+YREZmRoKAgXLlyBb///ntlD4WIiIiIiIiIqEzMmzcPH3zwAa5du6bzHPlUPnhqFyIyC5MnT0bbtm3h5eWFu3fvYvPmzUhMTMT69esre2hERERERERERKWyYsUKAI9PSaNSqfDNN9/gf//7H4YNG8YmegVjI52IzEJBQQE++ugjZGRkQCaToUWLFti0aROGDRtW2UMjIiIiIiIiIioVOzs7LFmyBFeuXIFSqUT9+vXx3nvv4YMPPqjsoVU7PLULEREREREREREREZEevLQrERFpWbVqFVq1agVHR0c4OjrCz88Phw8flh4XQiAqKgqenp6wtbWFv78/zp8/rzEPpVKJiRMnwtXVFfb29ujfvz9u3LihEZOVlYXw8HAoFAooFAqEh4cjOztbI+batWvo168f7O3t4erqikmTJiE/P7/cciciIiIiIiIiKoqNdCIi0lKvXj0sWLAAZ8+exdmzZ9GjRw8MGDBAapZHR0fjs88+w4oVK3DmzBl4eHggMDAQubm50jwiIyOxe/duxMXFISkpCffv30doaCgKCgqkmLCwMKSlpSE+Ph7x8fFIS0tDeHi49HhBQQFCQkKQl5eHpKQkxMXFYefOnZgyZUrFrQwiIiIiIiIiqvZ4ahciIjKIs7MzFi1ahJEjR8LT0xORkZF47733ADw++tzd3R0LFy7E2LFjkZOTg9q1a2PTpk0YMmQIAODmzZvw8vLCoUOHEBwcjIsXL6JFixY4efIkOnXqBAA4efIk/Pz88Ntvv8HHxweHDx9GaGgorl+/Dk9PTwBAXFwchg8fjszMTDg6OlbOyiAiIiIiIiKiaoUXGy1BYWEhbt68CQcHB8hkssoeDhFVc0II5ObmwtPTEzVqVMyPigoKCrBjxw7k5eXBz88Ply9fRkZGBoKCgqQYuVyO7t27Izk5GWPHjkVqaipUKpVGjKenJ3x9fZGcnIzg4GCkpKRAoVBITXQA6Ny5MxQKBZKTk+Hj44OUlBT4+vpKTXQACA4OhlKpRGpqKgICAnSOWalUQqlUSvcLCwtx9+5duLi4sJYTUZVQGfXc1HG/nIiqGtby0mE9J6KqxJhazkZ6CdRHUBIRVSXXr19HvXr1ynUZv/76K/z8/PDvv/+iZs2a2L17N1q0aIHk5GQAgLu7u0a8u7s7rl69CgDIyMiAtbU1nJyctGIyMjKkGDc3N63lurm5acQUXY6TkxOsra2lGF3mz5+P2bNnG5kxEVHFq4h6bi64X05EVRVruXFYz4moKjKklrORXgIHBwcAj1emoacQUKlUSEhIQFBQEKysrMpzeBXKHPNiTqbDHPMqTU737t2Dl5eXVJvKk4+PD9LS0pCdnY2dO3ciIiICJ06ckB4vevSIEKLEI0qKxuiKL01MUTNmzMDkyZOl+zk5Oahfvz4uX75s1LpTqVQ4fvw4AgICzOp9x5xMgznmxZz+k5ubC29v7wqp5+aiNPvlAPchTIU55gSYZ17M6T8VuW9uTthnecwccwLMMy/mZDrKu8/CRnoJ1I0aR0dHowq8nZ0dHB0dze7NaG55MSfTYY55PU1OFfETSGtrazRu3BgA0L59e5w5cwbLli2TzouekZGBOnXqSPGZmZnS0eMeHh7Iz89HVlaWxlHpmZmZ6NKlixRz69YtreXevn1bYz6nTp3SeDwrKwsqlUrrSPUnyeVyyOVyrenOzs5GN1/s7Ozg4uJidu875lT1mWNezOk/6lj+pN1wpdkvB7gPYSrMMSfAPPNiTtpYy43DPstj5pgTYJ55MSfTUd59Fp7Ei4iIDCKEgFKphLe3Nzw8PJCYmCg9lp+fjxMnTkhN8nbt2sHKykojJj09HefOnZNi/Pz8kJOTg9OnT0sxp06dQk5OjkbMuXPnkJ6eLsUkJCRALpejXbt25ZovEREREREREZEaj0gnIiIt77//Pvr06QMvLy/k5uYiLi4O3377LeLj4yGTyRAZGYl58+ahSZMmaNKkCebNmwc7OzuEhYUBABQKBUaNGoUpU6bAxcUFzs7OmDp1Klq2bIlevXoBAJo3b47evXtj9OjRWLNmDQBgzJgxCA0NhY+PDwAgKCgILVq0QHh4OBYtWoS7d+9i6tSpGD16tFFHIxIRERERERERPQ020omISMutW7cQHh6O9PR0KBQKtGrVCvHx8QgMDAQATJs2DQ8fPsS4ceOQlZWFTp06ISEhQeOcYkuWLIGlpSUGDx6Mhw8fomfPnoiJiYGFhYUUs3nzZkyaNAlBQUEAgP79+2PFihXS4xYWFjh48CDGjRuHrl27wtbWFmFhYfj0008raE0QEREREREREfHULkREpMP69etx5coVKJVKZGZm4ujRo1ITHXh87rCoqCikp6fj33//xYkTJ+Dr66sxDxsbGyxfvhx37tzBgwcPsH//fnh5eWnEODs7IzY2Fvfu3cO9e/cQGxuLWrVqacTUr18fBw4cwIMHD3Dnzh0sX75c5/nPiYiIiIjM0apVq9CqVSvpnOJ+fn44fPiw9LgQAlFRUfD09IStrS38/f1x/vx5jXkolUpMnDgRrq6usLe3R//+/XHjxg2NmKysLISHh0OhUEChUCA8PBzZ2dkaMdeuXUO/fv1gb28PV1dXTJo0Cfn5+eWWOxFRVcIj0onMlG/UESgLjLvozZUFIeU0GiIiKi1j6zlrORERVQRunypOvXr1sGDBAjRu3BgAsHHjRgwYMAA//fQTnn32WURHR+Ozzz5DTEwMmjZtijlz5iAwMBCXLl2SfjEaGRmJ/fv3Iy4uDi4uLpgyZQpCQ0ORmpoq/WI0LCwMN27cQHx8PIDHp10MDw/H/v37AQAFBQUICQlB7dq1kZSUhDt37iAiIgJCCCxfvrwS1gwRPS32jozDRjoRERERERERURXVr18/jftz587FqlWrcPLkSbRo0QJLly7FzJkzMXDgQACPG+3u7u7YsmULxo4di5ycHKxfvx6bNm2SrlcUGxsLLy8vHD16FMHBwbh48SLi4+Nx8uRJdOrUCQCwdu1a+Pn54dKlS/Dx8UFCQgIuXLiA69evw9PTEwCwePFiDB8+HHPnzuU1jIjI7LGRTgQeTUFERERERERVX0FBAXbs2IG8vDz4+fnh8uXLyMjIkK45BAByuRzdu3dHcnIyxo4di9TUVKhUKo0YT09P+Pr6Ijk5GcHBwUhJSYFCoZCa6ADQuXNnKBQKJCcnw8fHBykpKfD19ZWa6AAQHBwMpVKJ1NRUBAQE6ByzUqmEUqmU7t+7dw8AoFKpoFKpDMpbHWdovCkwx5wA88zLnHOS1xClfm5VVJrXyphYNtKJiIiIiIiIiKqwX3/9FX5+fvj3339Rs2ZN7N69Gy1atEBycjIAwN3dXSPe3d0dV69eBQBkZGTA2toaTk5OWjEZGRlSjJubm9Zy3dzcNGKKLsfJyQnW1tZSjC7z58/H7NmztaYnJCTAzs6upNQ1JCYmGhVvCswxJ8A88zLHnD5pX2j0cw4dOlQOIylbxrxWDx48MDiWjXQiIiIiIiIioirMx8cHaWlpyM7Oxs6dOxEREYETJ05Ij8tkmr+wFkJoTSuqaIyu+NLEFDVjxgxMnjxZun/v3j14eXkhKCjI4NPBqFQqJCYmIjAwEFZWVgY9p6ozx5wA88zLnHP68GwNKAuNO0f6uajgchrV0yvNa6X+lYwh2EgnIiIiIiIiIqrCrK2tpYuNtm/fHmfOnMGyZcvw3nvvAXh8tHidOnWk+MzMTOnocQ8PD+Tn5yMrK0vjqPTMzEx06dJFirl165bWcm/fvq0xn1OnTmk8npWVBZVKpXWk+pPkcjnkcrnWdCsrK6ObkqV5TlVnjjkB5pmXOeakLJQZfbFRU1gHxrxWxuRTo7QDIiIiIiIiIiKiiieEgFKphLe3Nzw8PDROY5Cfn48TJ05ITfJ27drByspKIyY9PR3nzp2TYvz8/JCTk4PTp09LMadOnUJOTo5GzLlz55Ceni7FJCQkQC6Xo127duWaLxFRVcAj0omIiIiIiIiIqqj3338fffr0gZeXF3JzcxEXF4dvv/0W8fHxkMlkiIyMxLx589CkSRM0adIE8+bNg52dHcLCwgAACoUCo0aNwpQpU+Di4gJnZ2dMnToVLVu2RK9evQAAzZs3R+/evTF69GisWbMGADBmzBiEhobCx8cHABAUFIQWLVogPDwcixYtwt27dzF16lSMHj3a4FO0EBGZMjbSiYiIiIiIiIiqqFu3biE8PBzp6elQKBRo1aoV4uPjERgYCACYNm0aHj58iHHjxiErKwudOnVCQkICHBwcpHksWbIElpaWGDx4MB4+fIiePXsiJiYGFhYWUszmzZsxadIkBAUFAQD69++PFStWSI9bWFjg4MGDGDduHLp27QpbW1uEhYXh008/raA1QURUudhIJyIiIiIiIiKqotavX6/3cZlMhqioKERFRRUbY2Njg+XLl2P58uXFxjg7OyM2NlbvsurXr48DBw7ojSEiMlc8RzoRERERERERERERkR48Ip2IiIiIiIioHPlGHYGyQGZw/JUFIeU4GvPXcPpBo+LlFgLRHctpMEREZDZ4RDoRERERERERERERkR48Ip2IiIiIiIiqBGOP3AZ49DYRERFVDB6RTkRERERERERERESkBxvpRERERERERERERER6sJFORERERERERERERKQHG+lERERERERERERERHqwkU5EREREREREREREpEeZN9Lnz5+PDh06wMHBAW5ubnjxxRdx6dIljRghBKKiouDp6QlbW1v4+/vj/PnzGjFKpRITJ06Eq6sr7O3t0b9/f9y4cUMjJisrC+Hh4VAoFFAoFAgPD0d2drZGzLVr19CvXz/Y29vD1dUVkyZNQn5+flmnTUREREQG8o06gobTDxp8o9LhfjkRERERUdkp80b6iRMnMH78eJw8eRKJiYl49OgRgoKCkJeXJ8VER0fjs88+w4oVK3DmzBl4eHggMDAQubm5UkxkZCR2796NuLg4JCUl4f79+wgNDUVBQYEUExYWhrS0NMTHxyM+Ph5paWkIDw+XHi8oKEBISAjy8vKQlJSEuLg47Ny5E1OmTCnrtImIiIiIqhTulxMRERERlR3Lsp5hfHy8xv0NGzbAzc0NqampeOGFFyCEwNKlSzFz5kwMHDgQALBx40a4u7tjy5YtGDt2LHJycrB+/Xps2rQJvXr1AgDExsbCy8sLR48eRXBwMC5evIj4+HicPHkSnTp1AgCsXbsWfn5+uHTpEnx8fJCQkIALFy7g+vXr8PT0BAAsXrwYw4cPx9y5c+Ho6FjW6RMRERERVQncLyciIiIiKjtl3kgvKicnBwDg7OwMALh8+TIyMjIQFBQkxcjlcnTv3h3JyckYO3YsUlNToVKpNGI8PT3h6+uL5ORkBAcHIyUlBQqFQtpZB4DOnTtDoVAgOTkZPj4+SElJga+vr7SzDgDBwcFQKpVITU1FQEBAeadPRERERFQlmNp+uVKphFKplO7fu3cPAKBSqaBSqQzOWx1rzHOqOnPOSV5DlPq5VVFp82JOT0duYdzY1LkYO8aq/DoREVHZK9dGuhACkydPRrdu3eDr6wsAyMjIAAC4u7trxLq7u+Pq1atSjLW1NZycnLRi1M/PyMiAm5ub1jLd3Nw0Yooux8nJCdbW1lJMUWWxw26OO7aAeeZlCjuBxjL3DyFVeYzGKk1O5pQ/ERFVHFPcL58/fz5mz56tNT0hIQF2dnYl5lxUYmKi0c+p6swxp0/aFxr9nEOHDpXDSMqWsXkxp6cT3bF0zzP2b+rBgwelWxAREZmkcm2kT5gwAb/88guSkpK0HpPJZBr3hRBa04oqGqMrvjQxTyrLHXZz3LEFzDOvqrwTWFrm+iHEHN9/xuTEnXUiIioNU9wvnzFjBiZPnizdv3fvHry8vBAUFGTUqWBUKhUSExMRGBgIKysrg59XlZlzTh+erQFlof73X1HnooLLaVRPr7R5Maen4xt1xKh4eQ2BT9oXGv03pT7wjoiIqodya6RPnDgR+/btw3fffYd69epJ0z08PAA8PiqlTp060vTMzEzpKBUPDw/k5+cjKytL4+iXzMxMdOnSRYq5deuW1nJv376tMZ9Tp05pPJ6VlQWVSqV1RIxaWeywm+OOLWCeeZnCTqCxzP1DiDm+/4zJiTvrRERkLFPdL5fL5ZDL5VrTraysSrUvUNrnVWXmmJOyUAZlgXH7sKawDozNizk9HWPfQ2rG/k2ZwutERERlp8wb6UIITJw4Ebt378a3334Lb29vjce9vb3h4eGBxMREtG3bFgCQn5+PEydOYOHChQCAdu3awcrKComJiRg8eDAAID09HefOnUN0dDQAwM/PDzk5OTh9+jQ6dnz8u61Tp04hJydH2qn38/PD3LlzkZ6eLn04SEhIgFwuR7t27XSOvyx32M1xxxYwz7yq8k5gaZnrh5C2c78xKq8rC0LKcTRlw5i/KVN4jYiIqGow9f1yIiIiIqKqpMwb6ePHj8eWLVuwd+9eODg4SOc8VCgUsLW1hUwmQ2RkJObNm4cmTZqgSZMmmDdvHuzs7BAWFibFjho1ClOmTIGLiwucnZ0xdepUtGzZEr169QIANG/eHL1798bo0aOxZs0aAMCYMWMQGhoKHx8fAEBQUBBatGiB8PBwLFq0CHfv3sXUqVMxevRoo34OSkRERERkarhfTkRERERUdsq8kb5q1SoAgL+/v8b0DRs2YPjw4QCAadOm4eHDhxg3bhyysrLQqVMnJCQkwMHBQYpfsmQJLC0tMXjwYDx8+BA9e/ZETEwMLCwspJjNmzdj0qRJCAoKAgD0798fK1askB63sLDAwYMHMW7cOHTt2hW2trYICwvDp59+WtZpExEREf0/9u49Lso67//4e0QYDgoJCkjiodZQQ1vTNLRSUyHzkLmttWykZWppGqvelXmX2HpIU7PVtDRTNzPbtiwPRWCW5oqmFJWH/G33eiwQb0U0DyPi9/eHN1MjODIIzMHX8/G4HjXXfK+5Pp8Z/MyXD9cB8CjMywEAAIDKUyWXdrkci8WitLQ0paWlXXJMYGCgZs+erdmzZ19yTHh4uJYuXep0Xw0bNtTq1asvGxMAAADgS5iXAwAAAJWnhrsDAAAAAAAAAADAk9FIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAQClTpkzRLbfcotq1aysyMlJ9+/bV7t27HcYYY5SWlqaYmBgFBQWpc+fO2rFjh8MYm82mESNGqG7dugoJCVGfPn108OBBhzEFBQVKSUlRWFiYwsLClJKSomPHjjmM2b9/v3r37q2QkBDVrVtXI0eO1NmzZ6skdwAAAAAAgIvRSAcAlLJ+/XoNHz5cmzdvVmZmps6dO6fExESdPHnSPmbatGmaOXOm5syZo61btyo6Olrdu3fXiRMn7GNSU1O1YsUKLV++XBs3btQvv/yiXr16qbi42D4mOTlZOTk5Sk9PV3p6unJycpSSkmJ/vri4WD179tTJkye1ceNGLV++XO+//75Gjx5dPW8GAAAAAAC46tV0dwDwPvFpn8pWbCn3+L0v9qzCaABUhfT0dIfHixYtUmRkpLKzs3XHHXfIGKNZs2Zp3Lhx6tevnyRpyZIlioqK0rJlyzR06FAVFhZq4cKFeuutt9StWzdJ0tKlSxUbG6u1a9cqKSlJu3btUnp6ujZv3qz27dtLkhYsWKCEhATt3r1bcXFxysjI0M6dO3XgwAHFxMRIkmbMmKGBAwdq0qRJCg0NrcZ3BgAAAAAAXI1opAMALquwsFCSFB4eLknas2eP8vLylJiYaB9jtVrVqVMnbdq0SUOHDlV2draKioocxsTExCg+Pl6bNm1SUlKSsrKyFBYWZm+iS9Ktt96qsLAwbdq0SXFxccrKylJ8fLy9iS5JSUlJstlsys7OVpcuXUrFa7PZZLPZ7I+PHz8uSSoqKlJRUVG58y4Z68o2no6cvEdJPtYapkLbeSJfzsnVGD05JwAAAJTGgaWgkQ4AcMoYo1GjRum2225TfHy8JCkvL0+SFBUV5TA2KipK+/bts48JCAhQnTp1So0p2T4vL0+RkZGl9hkZGekw5uL91KlTRwEBAfYxF5syZYomTJhQan1GRoaCg4Mvm/PFMjMzXd7G05GT9/hr2/Mujf/444+rKJLK44s5ufrzd+rUqSqKBAAAAEBVoJEOAHDqiSee0HfffaeNGzeWes5icfxrvDGm1LqLXTymrPEVGfNbY8eO1ahRo+yPjx8/rtjYWCUmJrp0KZiioiJlZmaqe/fu8vf3L/d2noycvEdJXs9tqyHb+fIf+bI9LakKo7oyvpyTqz9/JWfKAAAAAPAONNIBAJc0YsQIrVy5Uhs2bFCDBg3s66OjoyVdOFq8fv369vX5+fn2o8ejo6N19uxZFRQUOByVnp+frw4dOtjHHDp0qNR+Dx8+7PA6W7ZscXi+oKBARUVFpY5UL2G1WmW1Wkut9/f3r1CjtaLbeTJy8h628xaXTiH1hvfAF3Ny9efPG3ICAHiGKVOm6IMPPtAPP/ygoKAgdejQQVOnTlVcXJx9jDFGEyZM0Pz581VQUKD27dvr1Vdf1Y033mgfY7PZNGbMGL3zzjs6ffq0unbtqrlz5zrM8wsKCjRy5EitXLlSktSnTx/Nnj1b11xzjX3M/v37NXz4cK1bt05BQUFKTk7W9OnTFRAQUPVvBgC4EY10AEApxhiNGDFCK1as0BdffKEmTZo4PN+kSRNFR0crMzNTrVu3liSdPXtW69ev19SpUyVJbdq0kb+/vzIzM9W/f39JUm5urrZv365p06ZJkhISElRYWKivvvpK7dq1kyRt2bJFhYWF9mZ7QkKCJk2apNzcXHvTPiMjQ1arVW3atKn6NwNew9VrFkpctxAAAHi+9evXa/jw4brlllt07tw5jRs3TomJidq5c6dCQkIkSdOmTdPMmTO1ePFi3XDDDZo4caK6d++u3bt3q3bt2pKk1NRUrVq1SsuXL1dERIRGjx6tXr16KTs7W35+fpKk5ORkHTx4UOnp6ZKkIUOGKCUlRatWrZIkFRcXq2fPnqpXr542btyoI0eOaMCAATLGaPbs2W54dwCg+tBIBwCUMnz4cC1btkwfffSRateubb8WeVhYmIKCgmSxWJSamqrJkyeradOmatq0qSZPnqzg4GAlJyfbxw4aNEijR49WRESEwsPDNWbMGLVs2VLdunWTJDVv3lx33XWXBg8erNdff13Shcl6r1697EfYJCYmqkWLFkpJSdFLL72ko0ePasyYMRo8eLBLl2kBAAAAvFFJU7vEokWLFBkZqezsbN1xxx0yxmjWrFkaN26c+vXrJ0lasmSJoqKitGzZMg0dOlSFhYVauHCh3nrrLftcfOnSpYqNjdXatWuVlJSkXbt2KT09XZs3b1b79u0lSQsWLFBCQoJ2796tuLg4ZWRkaOfOnTpw4IBiYmIkSTNmzNDAgQM1adIk5ucAKk3jZ9a4vI3Vz2hauyoI5v/UqLqXBgB4q3nz5qmwsFCdO3dW/fr17cu7775rH/PUU08pNTVVw4YNU9u2bfXTTz8pIyPDfsSLJL388svq27ev+vfvr44dOyo4OFirVq2yH/EiSW+//bZatmypxMREJSYmqlWrVnrrrbfsz/v5+WnNmjUKDAxUx44d1b9/f/Xt21fTp0+vnjcDAAAA8CCFhYWSpPDwcEnSnj17lJeXp8TERPsYq9WqTp06adOmTZKk7OxsFRUVOYyJiYlRfHy8fUxWVpbCwsLsTXRJuvXWWxUWFuYwJj4+3t5El6SkpCTZbDZlZ2dXUcYA4Bk4Ih0AUIox5rJjLBaL0tLSlJaWdskxgYGBmj17ttPTPMPDw7V06VKn+2rYsKFWr1592ZgAAAAAX2aM0ahRo3TbbbcpPj5ekuxnj158/6CoqCjt27fPPiYgIMDh3kUlY0q2z8vLU2RkZKl9RkZGOoy5eD916tRRQECAfczFbDabbDab/XHJDbeLiopUVFRUrrxLxpV3vDfwxZwk38yrJBdrjcv/nlzWdp6oojn9dtuqZvVzPbaSfFyJ0ZWxNNIBAAAAAAC8wBNPPKHvvvtOGzduLPWcxeJ4rxhjTKl1F7t4TFnjKzLmt6ZMmaIJEyaUWp+RkaHg4GCn8V0sMzPTpfHewBdzknwzr7+2Pe/S+I8//riKIqk8ruYkVV9eV3KJFld+/k6dOlXusTTSAQAAAAAAPNyIESO0cuVKbdiwQQ0aNLCvj46OlnThaPH69evb1+fn59uPHo+OjtbZs2dVUFDgcFR6fn6+OnToYB9z6NChUvs9fPiww+ts2bLF4fmCggIVFRWVOlK9xNixYzVq1Cj74+PHjys2NlaJiYnlvqZ6UVGRMjMz1b17d/n7+5drG0/nizlJvplXSU7Pbash23nnf5z6re1pSVUY1ZWpaE5S9eUVn/apy9tYaxj9te15l37+Ss6SKQ8a6QAAAAAAAB7KGKMRI0ZoxYoV+uKLL9SkSROH55s0aaLo6GhlZmaqdevWkqSzZ89q/fr1mjp1qiSpTZs28vf3V2Zmpvr37y9Jys3N1fbt2zVt2jRJUkJCggoLC/XVV1+pXbsLh4Ju2bJFhYWF9mZ7QkKCJk2apNzcXHvTPiMjQ1arVW3atCkzfqvVKqvVWmq9v7+/y43Wimzj6XwxJ8k387Kdt8hWXP6mszfk72pOUvXl5Wpcv+XKz58r+dBIBwAAAAAA8FDDhw/XsmXL9NFHH6l27dr2a5GHhYUpKChIFotFqampmjx5spo2baqmTZtq8uTJCg4OVnJysn3soEGDNHr0aEVERCg8PFxjxoxRy5Yt1a1bN0lS8+bNddddd2nw4MF6/fXXJUlDhgxRr169FBcXJ0lKTExUixYtlJKSopdeeklHjx7VmDFjNHjw4HIfXQ4A3opGOgAAAAAAgIeaN2+eJKlz584O6xctWqSBAwdKkp566imdPn1aw4YNU0FBgdq3b6+MjAzVrl3bPv7ll19WzZo11b9/f50+fVpdu3bV4sWL5efnZx/z9ttva+TIkUpMTJQk9enTR3PmzLE/7+fnpzVr1mjYsGHq2LGjgoKClJycrOnTp1dR9gDgOWikAwBwFYpP+9SlU+X2vtizCqMBAADApRhjLjvGYrEoLS1NaWlplxwTGBio2bNna/bs2ZccEx4erqVLlzrdV8OGDbV69erLxgQAvqaGuwMAAAAAAAAAAMCT0UgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ERNdwcAAL6i8TNrXBpv9TOa1q6KggEAAAAAwE3i0z6VrdhS7vF7X+xZhdEAlYMj0gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4wc1GAQAAAMALcSM3AACA6sMR6QAAAAAAAAAAOEEjHQAAAAAAAAAAJ2ikAwAAAAAAAADgBI10AAAAAAAAAACc4GajAAAAwP9p/Mwal8Zb/YymtauiYAAAAAB4DI5IBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJyo9Eb6hg0b1Lt3b8XExMhisejDDz90eN4Yo7S0NMXExCgoKEidO3fWjh07HMbYbDaNGDFCdevWVUhIiPr06aODBw86jCkoKFBKSorCwsIUFhamlJQUHTt2zGHM/v371bt3b4WEhKhu3boaOXKkzp49W9kpAwAAAB6JuTkAAABQOSq9kX7y5EnddNNNmjNnTpnPT5s2TTNnztScOXO0detWRUdHq3v37jpx4oR9TGpqqlasWKHly5dr48aN+uWXX9SrVy8VFxfbxyQnJysnJ0fp6elKT09XTk6OUlJS7M8XFxerZ8+eOnnypDZu3Kjly5fr/fff1+jRoys7ZQAAAMAjMTcHAAAAKkfNyn7BHj16qEePHmU+Z4zRrFmzNG7cOPXr10+StGTJEkVFRWnZsmUaOnSoCgsLtXDhQr311lvq1q2bJGnp0qWKjY3V2rVrlZSUpF27dik9PV2bN29W+/btJUkLFixQQkKCdu/erbi4OGVkZGjnzp06cOCAYmJiJEkzZszQwIEDNWnSJIWGhlZ26gAAAIBHYW4OAAAAVI5Kb6Q7s2fPHuXl5SkxMdG+zmq1qlOnTtq0aZOGDh2q7OxsFRUVOYyJiYlRfHy8Nm3apKSkJGVlZSksLMw+UZekW2+9VWFhYdq0aZPi4uKUlZWl+Ph4+0RdkpKSkmSz2ZSdna0uXbpUT9IAAACAB/L0ubnNZpPNZrM/Pn78uCSpqKhIRUVF5c6zZKwr23i6klysNUyFtvNEFc3pt9t6Ij6r0ttVB6ufa7GV5OJqjJ78OQEAKl+1NtLz8vIkSVFRUQ7ro6KitG/fPvuYgIAA1alTp9SYku3z8vIUGRlZ6vUjIyMdxly8nzp16iggIMA+piyVMWH3xcm65B0TJleRU9nbeiJv+KyqY8LuyZ8RAMC7ePrcfMqUKZowYUKp9RkZGQoODi5Pig4yMzNd3sbT/bXteZfGf/zxx1UUSeVxNSfJN/MipyszrV3FtnO1Tpw6dapiOwIAeKVqbaSXsFgsDo+NMaXWXeziMWWNr8iYi1XmhN0XJ+uSZ0+YKoqcLvDFvHxtws5kHQBQ2Tx1bj527FiNGjXK/vj48eOKjY1VYmKiS5eCKSoqUmZmprp37y5/f/9yb+fJSnJ6blsN2c47/6x+a3taUhVGdWUqmpPkm3mR05WJT/vUpfHWGkZ/bXve5TpRcuAdAODqUK2N9OjoaEkXjkipX7++fX1+fr79CJXo6GidPXtWBQUFDke+5Ofnq0OHDvYxhw4dKvX6hw8fdnidLVu2ODxfUFCgoqKiUkfD/FZlTNh9cbIueceEyVXk5MgX8/K1CTuTdQBAZfH0ubnVapXVai213t/fv0Jz7Ipu58ls5y2yFZd/XuQN+buak+SbeZHTlXH1Z6iEq3XCGz4nAEDlqdZGepMmTRQdHa3MzEy1bt1aknT27FmtX79eU6dOlSS1adNG/v7+yszMVP/+/SVJubm52r59u6ZNmyZJSkhIUGFhob766iu1a3fhENAtW7aosLDQPqFPSEjQpEmTlJuba//FICMjQ1arVW3atLlkjJU5YffFybrk2ROmiiKnC3wxL1+bsHvDZwQA8A7eMDcHAAAAPEWNyn7BX375RTk5OcrJyZF04SZGOTk52r9/vywWi1JTUzV58mStWLFC27dv18CBAxUcHKzk5GRJUlhYmAYNGqTRo0frs88+0zfffKMHH3xQLVu2VLdu3SRJzZs311133aXBgwdr8+bN2rx5swYPHqxevXopLi5OkpSYmKgWLVooJSVF33zzjT777DONGTNGgwcPdulUUAC4Wm3YsEG9e/dWTEyMLBaLPvzwQ4fnjTFKS0tTTEyMgoKC1LlzZ+3YscNhjM1m04gRI1S3bl2FhISoT58+OnjwoMOYgoICpaSkKCwsTGFhYUpJSdGxY8ccxuzfv1+9e/dWSEiI6tatq5EjR+rs2bNVkTYA+BTm5gAAAEDlqPRG+rZt29S6dWv7US2jRo1S69at9fzzz0uSnnrqKaWmpmrYsGFq27atfvrpJ2VkZKh27dr213j55ZfVt29f9e/fXx07dlRwcLBWrVolPz8/+5i3335bLVu2VGJiohITE9WqVSu99dZb9uf9/Py0Zs0aBQYGqmPHjurfv7/69u2r6dOnV3bKAOCTTp48qZtuuklz5swp8/lp06Zp5syZmjNnjrZu3aro6Gh1795dJ06csI9JTU3VihUrtHz5cm3cuFG//PKLevXqpeLiYvuY5ORk5eTkKD09Xenp6crJyVFKSor9+eLiYvXs2VMnT57Uxo0btXz5cr3//vsaPXp01SUPAD6CuTkAAABQOSr90i6dO3eWMeaSz1ssFqWlpSktLe2SYwIDAzV79mzNnj37kmPCw8O1dOlSp7E0bNhQq1evvmzMAIDSevTooR49epT5nDFGs2bN0rhx49SvXz9J0pIlSxQVFaVly5Zp6NChKiws1MKFC/XWW2/Zj1pcunSpYmNjtXbtWiUlJWnXrl1KT0/X5s2b1b59e0nSggULlJCQoN27dysuLk4ZGRnauXOnDhw4oJiYGEnSjBkzNHDgQE2aNIkjGQHACebmAAAAQOWo1mukAwB8w549e5SXl6fExET7OqvVqk6dOmnTpk0aOnSosrOzVVRU5DAmJiZG8fHx2rRpk5KSkpSVlaWwsDB7E12Sbr31VoWFhWnTpk2Ki4tTVlaW4uPj7U10SUpKSpLNZlN2dra6dOlSKj6bzSabzWZ/XHKT1qKiIhUVFZU7z5Kxrmzj6Upysda4dGPN2XaeqKI5/XZbT8RnVXq76mD1cy22klxcjdGTPycAgGfZsGGDXnrpJWVnZys3N1crVqxQ37597c8bYzRhwgTNnz9fBQUFat++vV599VXdeOON9jE2m01jxozRO++8o9OnT6tr166aO3euGjRoYB9TUFCgkSNHauXKlZKkPn36aPbs2brmmmvsY/bv36/hw4dr3bp1CgoKUnJysqZPn66AgIAqfx8AwN1opAMAXJaXlydJioqKclgfFRWlffv22ccEBASoTp06pcaUbJ+Xl6fIyMhSrx8ZGekw5uL91KlTRwEBAfYxF5syZYomTJhQan1GRoaCg4PLk6KDzMxMl7fxdH9te96l8R9//HEVRVJ5XM1J8s28yOnKTGtXse1crROnTp2q2I4AAFedkksuPvzww/rDH/5Q6vmSSy4uXrxYN9xwgyZOnKju3btr9+7d9kt1paamatWqVVq+fLkiIiI0evRo9erVS9nZ2fZLdSUnJ+vgwYNKT0+XJA0ZMkQpKSlatWqVpF8vuVivXj1t3LhRR44c0YABA2SMcXrWEgD4ChrpAIAKs1gsDo+NMaXWXeziMWWNr8iY3xo7dqxGjRplf3z8+HHFxsYqMTHRpUvBFBUVKTMzU927d5e/v3+5t/NkJTk9t62GbOedf1a/tT0tqQqjujIVzUnyzbzI6crEp33q0nhrDaO/tj3vcp0oOVMGAIDL4ZKLvi0+7VPZil2bw+59sWcVRQPAGRrpAACXRUdHS7pwtHj9+vXt6/Pz8+1Hj0dHR+vs2bMqKChwOCo9Pz9fHTp0sI85dOhQqdc/fPiww+ts2bLF4fmCggIVFRWVOlK9hNVqldVqLbXe39+/Qg3xim7nyWznLS5N2L0hf1dzknwzL3K6Mq7+DJVwtU54w+cEAPB8nn7JRQDwJTTSAQAua9KkiaKjo5WZmanWrVtLks6ePav169dr6tSpkqQ2bdrI399fmZmZ6t+/vyQpNzdX27dv17Rp0yRJCQkJKiws1FdffaV27S5cT2HLli0qLCy0N9sTEhI0adIk5ebm2pv2GRkZslqtatOmTbXmDQAAAHgST7/kolQ59y/i3kVlb+uJvOGeOK4ip7K3rWqu3rtIqtj9i1wZSyMdAFCmX375RT/++KP98Z49e5STk6Pw8HA1bNhQqampmjx5spo2baqmTZtq8uTJCg4OVnJysiQpLCxMgwYN0ujRoxUREaHw8HCNGTNGLVu2tJ9S2rx5c911110aPHiwXn/9dUkXrsXYq1cvxcXFSZISExPVokULpaSk6KWXXtLRo0c1ZswYDR48mNNHAQAAAHnuJRelyr1/EfcuuoB74rgHOV1QXXlV9N5Fkmu1wpV7F9FIBwCUadu2bQ6nZ5Zcc3zAgAFavHixnnrqKZ0+fVrDhg1TQUGB2rdvr4yMDPsNjSTp5ZdfVs2aNdW/f3+dPn1aXbt21eLFi+03NJKkt99+WyNHjrSfatqnTx/NmTPH/ryfn5/WrFmjYcOGqWPHjgoKClJycrKmT59e1W8BAAAA4NE8/ZKLUuXcv4h7FzninjjVi5wcVVdert67SKrY/YtcuXcRjXQAQJk6d+4sYy59KpXFYlFaWprS0tIuOSYwMFCzZ8/W7NmzLzkmPDxcS5cudRpLw4YNtXr16svGDAAAAFxNvOGSi5V5/yLuXXSBN7wHnnxPnIoipwuqK6+K3rtIcq1WuJIPjXQAAAAAAAAPxSUXAcAz0EgHAAAAAADwUFxyEQA8A410AAAAAAAAD8UlFwHAM9RwdwAAAAAAAAAAAHgyGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ERNdwfgy+LTPpWt2OLSNntf7FlF0QAAAAAAAAAAKoIj0gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaro7AAAAAAAAAOBy4tM+la3YUu7xe1/sWYXRALjacEQ6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4MRV0UifO3eumjRposDAQLVp00Zffvmlu0MCAFQA9RwAvB+1HAC8H7UcwNXI5xvp7777rlJTUzVu3Dh98803uv3229WjRw/t37/f3aEBAFxAPQcA70ctBwDvRy0HcLXy+Ub6zJkzNWjQID366KNq3ry5Zs2apdjYWM2bN8/doQEAXEA9BwDvRy0HAO9HLQdwtarp7gCq0tmzZ5Wdna1nnnnGYX1iYqI2bdpU5jY2m002m83+uLCwUJJ09OhRFRUVlWu/RUVFOnXqlGoW1VDxeYtLMR85csSl8dWponmRU/Xi589RdeZU89xJ18afNzp16ryOHDkif3//cm1z4sQJSZIxxuX4vJmr9bwyarn068+dK5+Rp/OGf0uuou45IqcrUx21XLo66zm1vPJ4w78lV1HLHZHTlaGWVx1v67P44r8lyTfzIqfq5Q0/f67Wcqka+izGh/30009GkvnXv/7lsH7SpEnmhhtuKHOb8ePHG0ksLCwsHr0cOHCgOsqox3C1nlPLWVhYvGW5muo5tZyFhcVXF2o5fRYWFhbvX8pTy336iPQSFovjX1aMMaXWlRg7dqxGjRplf3z+/HkdPXpUERERl9zmYsePH1dsbKwOHDig0NDQigfuYXwxL3LyHr6YV0VyMsboxIkTiomJqeLoPFN563ll1HKJnztv4Ys5Sb6ZFzn96mqu59TyK0dO3sMX8yKnX1HLf0WfxXW+mJPkm3mRk/eo6j6LTzfS69atKz8/P+Xl5Tmsz8/PV1RUVJnbWK1WWa1Wh3XXXHNNhfYfGhrqUz+MJXwxL3LyHr6Yl6s5hYWFVWE0nsnVel6ZtVzi585b+GJOkm/mRU4XXG31nFpe+cjJe/hiXuR0AbX8AvosFeeLOUm+mRc5eY+q6rP49M1GAwIC1KZNG2VmZjqsz8zMVIcOHdwUFQDAVdRzAPB+1HIA8H7UcgBXM58+Il2SRo0apZSUFLVt21YJCQmaP3++9u/fr8cee8zdoQEAXEA9BwDvRy0HAO9HLQdwtfL5Rvr999+vI0eO6IUXXlBubq7i4+P18ccfq1GjRlW2T6vVqvHjx5c6dcnb+WJe5OQ9fDEvX8ypKlHPKwc5eQ9fzIucQC2vHOTkPXwxL3ICtbxy+GJOkm/mRU7eo6rzshhjTJW8MgAAAAAAAAAAPsCnr5EOAAAAAAAAAMCVopEOAAAAAAAAAIATNNIBAAAAAAAAAHCCRjoAAAAAAAAAAE7QSK8Cc+fOVZMmTRQYGKg2bdroyy+/dHdIV2TDhg3q3bu3YmJiZLFY9OGHH7o7pCs2ZcoU3XLLLapdu7YiIyPVt29f7d69291hXZF58+apVatWCg0NVWhoqBISEvTJJ5+4O6xKNWXKFFksFqWmpro7lCuSlpYmi8XisERHR7s7LFyEWu75qOXeiVqO6kQt93zUcu9ELUd18rVaLvlePffFWi5Rz71FddZyGumV7N1331VqaqrGjRunb775Rrfffrt69Oih/fv3uzu0Cjt58qRuuukmzZkzx92hVJr169dr+PDh2rx5szIzM3Xu3DklJibq5MmT7g6twho0aKAXX3xR27Zt07Zt23TnnXfqnnvu0Y4dO9wdWqXYunWr5s+fr1atWrk7lEpx4403Kjc31758//337g4Jv0Et9w7Ucu9DLUd1opZ7B2q596GWozr5Yi2XfK+e+2Itl6jn3qTaarlBpWrXrp157LHHHNY1a9bMPPPMM26KqHJJMitWrHB3GJUuPz/fSDLr1693dyiVqk6dOuaNN95wdxhX7MSJE6Zp06YmMzPTdOrUyTz55JPuDumKjB8/3tx0003uDgNOUMu9E7Xcs1HLUd2o5d6JWu7ZqOWobr5ey43xzXruq7XcGOq5J6rOWs4R6ZXo7Nmzys7OVmJiosP6xMREbdq0yU1RoTwKCwslSeHh4W6OpHIUFxdr+fLlOnnypBISEtwdzhUbPny4evbsqW7durk7lErz73//WzExMWrSpIkeeOAB/ec//3F3SPg/1HLvRS33bNRyVCdqufeilns2ajmqE7Xce/laLZeo556uump5zSp51avU//7v/6q4uFhRUVEO66OiopSXl+emqHA5xhiNGjVKt912m+Lj490dzhX5/vvvlZCQoDNnzqhWrVpasWKFWrRo4e6wrsjy5cv19ddfa+vWre4OpdK0b99ef//733XDDTfo0KFDmjhxojp06KAdO3YoIiLC3eFd9ajl3ola7tmo5ahu1HLvRC33bNRyVDdquXfypVouUc+9QXXWchrpVcBisTg8NsaUWgfP8cQTT+i7777Txo0b3R3KFYuLi1NOTo6OHTum999/XwMGDND69eu9tsgfOHBATz75pDIyMhQYGOjucCpNjx497P/fsmVLJSQk6Prrr9eSJUs0atQoN0aG36KWexdqueeilsOdqOXehVruuajlcCdquXfxpVouUc+9QXXWchrplahu3bry8/Mr9ZfR/Pz8Un9BhWcYMWKEVq5cqQ0bNqhBgwbuDueKBQQE6He/+50kqW3bttq6dateeeUVvf76626OrGKys7OVn5+vNm3a2NcVFxdrw4YNmjNnjmw2m/z8/NwYYeUICQlRy5Yt9e9//9vdoUDUcm9ELfds1HK4A7Xc+1DLPRu1HO5ALfc+vlbLJeq5N6rKWs410itRQECA2rRpo8zMTIf1mZmZ6tChg5uiQlmMMXriiSf0wQcfaN26dWrSpIm7Q6oSxhjZbDZ3h1FhXbt21ffff6+cnBz70rZtW/35z39WTk6O1xf3EjabTbt27VL9+vXdHQpELfcm1HLvQC2HO1DLvQe13DtQy+EO1HLvcbXUcol67g2qspZzRHolGzVqlFJSUtS2bVslJCRo/vz52r9/vx577DF3h1Zhv/zyi3788Uf74z179ignJ0fh4eFq2LChGyOruOHDh2vZsmX66KOPVLt2bftfuMPCwhQUFOTm6Crm2WefVY8ePRQbG6sTJ05o+fLl+uKLL5Senu7u0Cqsdu3apa6pFhISooiICK++1tqYMWPUu3dvNWzYUPn5+Zo4caKOHz+uAQMGuDs0/B9quXeglnsHajnchVruHajl3oFaDnfxxVou+V4998VaLlHPvUW11nKDSvfqq6+aRo0amYCAAHPzzTeb9evXuzukK/L5558bSaWWAQMGuDu0CisrH0lm0aJF7g6twh555BH7z129evVM165dTUZGhrvDqnSdOnUyTz75pLvDuCL333+/qV+/vvH39zcxMTGmX79+ZseOHe4OCxehlns+arn3opajulDLPR+13HtRy1FdfK2WG+N79dwXa7kx1HNvUZ213GKMMZXfngcAAAAAAAAAwDdwjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ6PtmXLFt17771q2LChrFaroqKilJCQoNGjR1fpfnfu3Km0tDTt3bu3SvdTVY4ePaoHHnhAkZGRslgs6tu3b6W87qlTp5SWlqYvvviiUl4PQOVZvHixLBaLtm3bVqHt9+7dq549eyo8PFwWi0Wpqanau3evLBaLFi9eXGo/FamPX3zxhSwWi/75z39eduyyZcs0a9Ysl/dRWaq63lXG98yVfBae6Oeff1ZaWppycnLcHQrgkzZv3qw//vGPql+/vgICAhQdHa377rtPWVlZVbK/xo0bq1evXlXy2pWt5PvJ2+a4AwcOVOPGjd0dBoBqcKVzfXguX5vT+zoa6fBYa9asUYcOHXT8+HFNmzZNGRkZeuWVV9SxY0e9++67VbrvnTt3asKECV5byP76179qxYoVevnll5WVlaVp06ZVyuueOnVKEyZM8LpfMgBc3l/+8hdt2bJFb775prKysvSXv/ylzHE9e/ZUVlaW6tevX6XxeEIjvSrrXWV8z1TXZ1Fdfv75Z02YMIFGOlAFZs+erY4dO+rgwYOaNm2a1q5dq+nTp+unn37Sbbfdpjlz5rg7RFTAc889pxUrVrg7DADAFfC1Ob2vq+nuAIBLmTZtmpo0aaJPP/1UNWv++qP6wAMPVFpj2Fdt375d119/vf785z9XyusZY3TmzJlKeS0Anmn79u1q166dwxksZTV569Wrp3r16lVfYD6mqKhIFoulUl6LzwJAefzrX/9Samqq7r77bq1YsaLUvPree+/Vk08+qdatW6tjx45ujLRqnT59WkFBQe4Ow6lTp04pODi43OOvv/76KowGAMrP1frly0rm+7/9vnWGOb134Yh0eKwjR46obt26ZRafGjVK/+i+++67SkhIUEhIiGrVqqWkpCR98803DmO2bdumBx54QI0bN1ZQUJAaN26sP/3pT9q3b599zOLFi/XHP/5RktSlSxdZLJZSlzYoyw8//KA//elPioqKktVqVcOGDfXQQw/JZrPZx2zfvl333HOP6tSpo8DAQP3+97/XkiVLHF6n5NTSZcuW6emnn1b9+vVVq1Yt9e7dW4cOHdKJEyc0ZMgQ1a1bV3Xr1tXDDz+sX375RZLsl2FYu3atdu3aZY+95IjKo0ePatiwYbr22msVEBCg6667TuPGjXOIUZIsFoueeOIJvfbaa2revLmsVquWLFliL+4TJkywv/bAgQOdvi8A3GfgwIGqVauWfvzxR919992qVauWYmNjNXr0aPu/+5Ka8+OPP+qTTz6x/9u+1JHSZZ16aIzR5MmT1ahRIwUGBqpt27bKzMxU586d1blz51KvUVRUpHHjxikmJkahoaHq1q2bdu/ebX++c+fOWrNmjfbt22ePpzzN5/J8D5TnPdm7d+9l692///1vJScnKzIyUlarVc2bN9err77qsK+S9/att97S6NGjde2118pqteqNN95w+j2TmZmpe+65Rw0aNFBgYKB+97vfaejQofrf//3fy34WnTt3Vnx8vLZu3arbb79dwcHBuu666/Tiiy/q/PnzpWKryHdNCWOM5s6dq9///vcKCgpSnTp1dN999+k///mPw7jyxPTFF1/olltukSQ9/PDD9vckLS3tch87gMuYMmWKLBaL5s2bV2peXbNmTc2dO1cWi0UvvviifX1aWposFot27NihP/3pTwoLC1NUVJQeeeQRFRYWurT/FStWqFWrVgoMDNR1112nv/3tb6XG7N+/Xw8++KBDTZ0xY4ZD3ZIu1OT27dsrPDxcoaGhuvnmm7Vw4UIZYxzGlVxW5oMPPlDr1q0VGBioCRMmSLowZ7/rrrsUHBysunXr6rHHHtOJEyfKlcvhw4c1ZMgQxcbGymq1ql69eurYsaPWrl3rMG7t2rXq2rWrQkNDFRwcrI4dO+qzzz5zGFPyHn/99de67777VKdOHV1//fWaNWuW/Xv5Yk8//bQCAgLs3wdlXdrl/Pnzmj17tr02X3PNNbr11lu1cuVKh3Hl+c4E4H3KM0eVpB07digxMVHBwcGqV6+ehg8frjVr1pTrMleXql+SdObMGY0dO1ZNmjRRQECArr32Wg0fPlzHjh1zeI3z589r2rRpatasmaxWqyIjI/XQQw/p4MGDDuNK5pFZWVnq0KGDvY+zaNEiSReuZHDzzTcrODhYLVu2VHp6+mXfo/Pnz2vixImKi4uz18lWrVrplVdecfm9vNR8f8eOHbJYLFq4cGGp/Zf8zlVSly91aZf09HR17dpVYWFhCg4OVvPmzTVlyhSHMdu2bVOfPn0UHh6uwMBAtW7dWv/4xz8u+x7gChjAQz366KNGkhkxYoTZvHmzOXv27CXHTpo0yVgsFvPII4+Y1atXmw8++MAkJCSYkJAQs2PHDvu49957zzz//PNmxYoVZv369Wb58uWmU6dOpl69eubw4cPGGGPy8/PN5MmTjSTz6quvmqysLJOVlWXy8/Mvuf+cnBxTq1Yt07hxY/Paa6+Zzz77zCxdutT079/fHD9+3BhjzA8//GBq165trr/+evP3v//drFmzxvzpT38ykszUqVPtr/X5558bSaZRo0Zm4MCBJj093bz22mumVq1apkuXLqZ79+5mzJgxJiMjw0ydOtX4+fmZESNGGGOMOXPmjMnKyjKtW7c21113nT32wsJCc/r0adOqVSsTEhJipk+fbjIyMsxzzz1natasae6++26HfCSZa6+91rRq1cosW7bMrFu3zuTk5Jj09HQjyQwaNMj+2j/++KPrHy6ASrdo0SIjyWzdutW+bsCAASYgIMA0b97cTJ8+3axdu9Y8//zzxmKxmAkTJhhjjCksLDRZWVkmOjradOzY0f5v+8yZM2bPnj1Gklm0aFGp/ezZs8e+buzYsUaSGTJkiElPTzcLFiwwDRs2NPXr1zedOnWyjyupb40bNzZ//vOfzZo1a8w777xjGjZsaJo2bWrOnTtnjDFmx44dpmPHjiY6OtoeT1ZWltP8y/s9UJ735MyZM07r3Y4dO0xYWJhp2bKl+fvf/24yMjLM6NGjTY0aNUxaWlqpfK+99lpz3333mZUrV5rVq1ebvLw8p98z8+bNM1OmTDErV64069evN0uWLDE33XSTiYuLc/guLOuz6NSpk4mIiDBNmzY1r732msnMzDTDhg0zksySJUtKxVaR75oSgwcPNv7+/mb06NEmPT3dLFu2zDRr1sxERUWZvLw8l2IqLCy05/Pf//3f9vfkwIEDTj93AM6dO3fOBAcHm/bt2zsd165dOxMcHGyvw+PHjzeSTFxcnHn++edNZmammTlzprFarebhhx8u174bNWpkrr32WtOwYUPz5ptvmo8//tj8+c9/NpLMSy+9ZB+Xn59vrr32WlOvXj3z2muvmfT0dPPEE08YSebxxx93eM2BAweahQsXmszMTJOZmWn++te/mqCgIHv9/u2+69evb6677jrz5ptvms8//9x89dVXJi8vz0RGRpprr73WLFq0yB5Tw4YNjSTz+eefO80pKSnJ1KtXz8yfP9988cUX5sMPPzTPP/+8Wb58uX3MW2+9ZSwWi+nbt6/54IMPzKpVq0yvXr2Mn5+fWbt2rX1cyXvcqFEj8/TTT5vMzEzz4YcfmsOHD5uAgAAzbtw4h32fO3fOxMTEmH79+tnXDRgwwDRq1MhhXEpKirFYLObRRx81H330kfnkk0/MpEmTzCuvvGIfU97vTACeo6y5/sXKO0f9+eefTUREhGnYsKFZvHix+fjjj01KSopp3LhxuWrhperX+fPnTVJSkqlZs6Z57rnnTEZGhpk+fboJCQkxrVu3NmfOnLG/xpAhQ4wk88QTT9jnofXq1TOxsbH23owxv84j4+LizMKFC82nn35qevXqZSSZCRMmmJYtW5p33nnHfPzxx+bWW281VqvV/PTTT07jnzJlivHz8zPjx483n332mUlPTzezZs1yeI+udL5/5MgR07p1a9OxY8dS++/fv7+JjIw0RUVFxpiy5/RvvPGGsVgspnPnzmbZsmVm7dq1Zu7cuWbYsGH2MevWrTMBAQHm9ttvN++++65JT083AwcOLPX7GyoXjXR4rP/93/81t912m5FkJBl/f3/ToUMHM2XKFHPixAn7uP3795uaNWuW+gX/xIkTJjo62vTv3/+S+zh37pz55ZdfTEhIiMPk8r333ivXF0iJO++801xzzTVOm+0PPPCAsVqtZv/+/Q7re/ToYYKDg82xY8eMMb8W4t69ezuMS01NNZLMyJEjHdb37dvXhIeHO6zr1KmTufHGGx3Wvfbaa0aS+cc//uGwfurUqUaSycjIsK+TZMLCwszRo0cdxh4+fNhIMuPHj79kngDc41KN9LL+3d99990mLi7OYV2jRo1Mz549HdaVp5F+9OhRY7Vazf333++wbVZWlpFUZiP94j/e/eMf/zCSHJrlPXv2LNUcuBRXvgfK+544q3dJSUmmQYMGprCw0GH9E088YQIDA+21syTfO+64o9RrlPd75vz586aoqMjs27fPSDIfffSR/blLNdIlmS1btji8TosWLUxSUpL98ZV+15R8vjNmzHAYd+DAARMUFGSeeuopl2PaunUrE3+gkuXl5RlJ5oEHHnA67v777zeSzKFDh4wxvzZJpk2b5jBu2LBhJjAw0Jw/f/6y+27UqJGxWCwmJyfHYX337t1NaGioOXnypDHGmGeeeabMGvH4448bi8Vidu/eXebrFxcXm6KiIvPCCy+YiIgIh5gaNWpk/Pz8Sm379NNPXzKm8tTkWrVqmdTU1Es+f/LkSRMeHl6qthYXF5ubbrrJtGvXzr6u5D1+/vnnS71Ov379TIMGDUxxcbF93ccff2wkmVWrVtnXXdxI37Bhg5FUqgn/W1fyuxMA9ylPI728c9T/+q//MhaLpdQfzpKSklxqpF9cv0oORLn4u+Pdd981ksz8+fONMcbs2rXLSHJoChtjzJYtW4wk8+yzz9rXlcwjt23bZl935MgR4+fnZ4KCghya5jk5OUaS+dvf/uY0/l69epnf//73TsdUxnz/b3/7m5Hk8F1U8rvT6NGj7esuntOfOHHChIaGmttuu83p922zZs1M69at7Q353+ZXv359h+8QVB4u7QKPFRERoS+//FJbt27Viy++qHvuuUf/7//9P40dO1YtW7a0n9L46aef6ty5c3rooYd07tw5+xIYGKhOnTo5nJb0yy+/6Omnn9bvfvc71axZUzVr1lStWrV08uRJ7dq1q0Jxnjp1SuvXr1f//v2dXtdq3bp16tq1q2JjYx3WDxw4UKdOnVJWVpbD+l69ejk8bt68uaQLN6K4eP3Ro0dLnXJf1v5DQkJ03333ldq/pFKnm955552qU6eO09cE4PksFot69+7tsK5Vq1YOl7S6Eps3b5bNZlP//v0d1t96662lTjcv0adPn1LxSKpwTK58D0hX9p6cOXNGn332me69914FBwc77O/uu+/WmTNntHnzZodt/vCHP7iUT35+vh577DHFxsaqZs2a8vf3V6NGjSSpXN9V0dHRateuncO6S+VX0e+a1atXy2Kx6MEHH3R4D6Kjo3XTTTeVes9diQlA9TP/d2mUiy+jVVa9PnPmjPLz8yVdOD3+tzWguLjYYfyNN96om266yWFdcnKyjh8/rq+//lrShTlqixYtStWIgQMHyhijdevW2detW7dO3bp1U1hYmPz8/OTv76/nn39eR44cscf021hvuOEGh3Wff/75JWMqj3bt2mnx4sWaOHGiNm/erKKiIofnN23apKNHj2rAgAEO78v58+d11113aevWrTp58qTDNmV9Rzz88MM6ePCgwyVjFi1apOjoaPXo0eOS8X3yySeSpOHDh19yjKvfmQC8gytz1PXr1ys+Pl4tWrRweI0//elPLu3z4vpVUq8vvvzrH//4R4WEhNh7Dp9//nmZ49q1a6fmzZuX6k3Ur19fbdq0sT8ODw9XZGSkfv/73ysmJsa+vmQee7n5Zbt27fTtt99q2LBh+vTTT3X8+HGH5ytrvv/nP/9ZVqvV4TLB77zzjmw2mx5++OFLxrdp0yYdP35cw4YNu+TlLX/88Uf98MMP9vviXRxjbm6uw6UzUXlopMPjtW3bVk8//bTee+89/fzzz/rLX/6ivXv32m84eujQIUnSLbfcIn9/f4fl3XffdbimbHJysubMmaNHH31Un376qb766itt3bpV9erV0+nTpysUX0FBgYqLi9WgQQOn444cOVLmXZhLCv+RI0cc1oeHhzs8DggIcLr+cjcDPXLkiKKjo0sV4sjISNWsWbPU/rljNOAbgoODFRgY6LDOarVW2g2ES2pHVFRUqefKWidd+EPpxfFIqnAdduV7QLqy9+TIkSM6d+6cZs+eXWpfd999tySV2p8r9fT8+fNKTEzUBx98oKeeekqfffaZvvrqK/tkvTzv0cXvr3Qhv7K2reh3zaFDh2SMUVRUVKn3YfPmzaXeA1diAlB56tatq+DgYO3Zs8fpuL179yo4OLjUv/3L1etHHnnE4d9/165dHcZHR0eX2lfJupLvj/LOkb/66islJiZKkhYsWKB//etf2rp1q8aNG+cQU4myXrNkPnypmC7n3Xff1YABA/TGG28oISFB4eHheuihh5SXlyfp1++j++67r1RtnDp1qowxOnr06GXj7NGjh+rXr2+/BnBBQYFWrlyphx56SH5+fpeM7/Dhw/Lz83Oaj6vfmQC8gytz1CNHjrg0d7+Ui+vXkSNHVLNmzVIHGFosFkVHRzvU/bK2ly7U/sv1RqQLc9OK9kbGjh2r6dOna/PmzerRo4ciIiLUtWtXbdu2zR5fZcz3w8PD1adPH/3973+3/6F58eLFateunW688cZLxnf48GFJctpjKqnlY8aMKRXjsGHDyowRlaN8t5AFPIS/v7/Gjx+vl19+Wdu3b5d04RcESfrnP/9pP2KvLIWFhVq9erXGjx+vZ555xr7eZrOVmtC6Ijw8XH5+fqVuinGxiIgI5ebmllr/888/S/o1j6oSERGhLVu2yBjj0EzPz8/XuXPnSu2/PDf2A4CSJkvJZO638vLyLnlUemUq7/dAZahTp478/PyUkpJyySP+mjRp4vDYlXq6fft2ffvtt1q8eLEGDBhgX1/WTefcqW7durJYLPryyy/tjbXfKmsdgOrn5+enLl26KD09XQcPHizzl/KDBw8qOztbPXr0cNqkLUtaWpqeeOIJ++PatWs7PF/SYC5rXcn3R3nnyMuXL5e/v79Wr17t8MfQDz/8sMzYyqq9ERERTmO6nLp162rWrFmaNWuW9u/fr5UrV+qZZ55Rfn6+0tPT7bHOnj1bt956a5mvcXGjqqw4S75n/va3v+nYsWNatmzZZY9glKR69eqpuLhYeXl5l/wjbnV+ZwKoPq7MUSMiIi45d3fFxfUrIiJC586d0+HDhx2a6cYY5eXl2W8sX1L/c3NzS30v/fzzz1XeG6lZs6ZGjRqlUaNG6dixY1q7dq2effZZJSUl6cCBA5U633/44Yf13nvvKTMzUw0bNtTWrVs1b948p/GVvHfOekwl79HYsWPVr1+/MsfExcU53Q8qhkY6PFZubm6ZE8CS09pLjlJJSkpSzZo19T//8z9OT5+3WCwyxpT65f6NN94odRqqK0dHBgUFqVOnTnrvvfc0adKkSxb9rl27asWKFfr5558dTj/6+9//ruDg4EtOtitL165d9Y9//EMffvih7r33Xof9lzx/OVd61CgA39O+fXtZrVa9++67DpO4zZs3a9++fRVupLtytHJ5vwdc3b9Uut4FBwerS5cu+uabb9SqVSv7kS+V9folk/CLv6tef/31Cu2nqvTq1Usvvviifvrpp1KX9akovmOAqjF27Fh98sknGjZsmFasWOHQLC8uLtbjjz8uY4zGjh3r8ms3btzYaZ3fsWOHvv32W4dLqSxbtky1a9fWzTffLOnCHHTKlCn6+uuv7eukC3NUi8WiLl26SLpQH2vWrOkQ/+nTp/XWW2+VO94uXbpo2rRpZcbkqoYNG+qJJ57QZ599pn/961+SpI4dO+qaa67Rzp07Hf7AUBEPP/ywpk2bpnfeeUeLFy9WQkKCmjVr5nSbHj16aMqUKZo3b55eeOGFMsdUxXcmAPdzZY7aqVMnTZ8+XTt37nS4vMvy5cuvKIauXbtq2rRpWrp0qf7yl7/Y17///vs6efKkvedw5513SpKWLl1qb65L0tatW7Vr1y77mUbV4ZprrtF9992nn376Sampqdq7d69atGhRKfN9SUpMTNS1116rRYsWqWHDhgoMDLzsJXQ6dOigsLAwvfbaa3rggQfKbNLHxcWpadOm+vbbbzV58uQKxwfX0UiHx0pKSlKDBg3Uu3dvNWvWTOfPn1dOTo5mzJihWrVq6cknn5R0YQL/wgsvaNy4cfrPf/6ju+66S3Xq1NGhQ4f01VdfKSQkRBMmTFBoaKjuuOMOvfTSS6pbt64aN26s9evXa+HChbrmmmsc9h0fHy9Jmj9/vmrXrq3AwEA1adKkzFPTJWnmzJm67bbb1L59ez3zzDP63e9+p0OHDmnlypV6/fXXVbt2bY0fP16rV69Wly5d9Pzzzys8PFxvv/221qxZo2nTpiksLKxK38+HHnpIr776qgYMGKC9e/eqZcuW2rhxoyZPnqy7775b3bp1u+xr1K5dW40aNdJHH32krl27Kjw83P5eArg6hYeHa9SoUZoyZYrq1Kmje++9VwcPHtSECRNUv3591ahRsavItWzZUh988IHmzZunNm3aqEaNGmrbtm2ZY8v7PeAKZ/XulVde0W233abbb79djz/+uBo3bqwTJ07oxx9/1KpVqxyu53spl/qeadasma6//no988wzMsYoPDxcq1atUmZmpkvxV7WOHTtqyJAhevjhh7Vt2zbdcccdCgkJUW5urjZu3KiWLVvq8ccfd+k1r7/+egUFBentt99W8+bNVatWLcXExDj88RmA6zp27KhZs2YpNTVVt912m5544gk1bNhQ+/fv16uvvqotW7Zo1qxZ6tChQ6XvOyYmRn369FFaWprq16+vpUuXKjMzU1OnTlVwcLAk6S9/+Yv+/ve/q2fPnnrhhRfUqFEjrVmzRnPnztXjjz9uv855z549NXPmTCUnJ2vIkCE6cuSIpk+f7tIZMKmpqXrzzTfVs2dPTZw4UVFRUXr77bf1ww8/XHbbwsJCdenSRcnJyWrWrJlq166trVu3Kj093f6H5Fq1amn27NkaMGCAjh49qvvuu0+RkZE6fPiwvv32Wx0+fPiyRyKWaNasmRISEjRlyhQdOHBA8+fPv+w2t99+u1JSUjRx4kQdOnRIvXr1ktVq1TfffKPg4GCNGDGiSr4zAVSfdevWae/evaXW33333eWeo5bUwh49euiFF15QVFSUli1bZq+FFZ2/d+/eXUlJSXr66ad1/PhxdezYUd99953Gjx+v1q1bKyUlRdKFJvCQIUM0e/Zs1ahRQz169NDevXv13HPPKTY21qEJXxV69+6t+Ph4tW3bVvXq1dO+ffs0a9YsNWrUSE2bNpWkSpnvSxfOMHrooYc0c+ZMhYaGql+/fpft/dSqVUszZszQo48+qm7dumnw4MGKiorSjz/+qG+//VZz5syRdOFAmx49eigpKUkDBw7Utddeq6NHj2rXrl36+uuv9d57713ZG4Wyue02p8BlvPvuuyY5Odk0bdrU1KpVy/j7+5uGDRualJQUs3PnzlLjP/zwQ9OlSxcTGhpqrFaradSokbnvvvvM2rVr7WMOHjxo/vCHP5g6deqY2rVrm7vuusts377dNGrUyAwYMMDh9WbNmmWaNGli/Pz8jCSzaNEip/Hu3LnT/PGPfzQREREmICDANGzY0AwcONCcOXPGPub77783vXv3NmFhYSYgIMDcdNNNpV635K7P7733nsP6S92lu+SO2YcPH7av69Spk7nxxhtLxXjkyBHz2GOPmfr165uaNWuaRo0ambFjxzrEaIwxkszw4cPLzHPt2rWmdevWxmq1Gkml3jcA7lFWjRgwYIAJCQkpNbakbvxWo0aNTM+ePR3W7dmzp1T9u/iu8sYYc/78eTNx4kTToEEDExAQYFq1amVWr15tbrrpJnPvvffax12qvpW1n6NHj5r77rvPXHPNNcZisZSKtyzl+R5w5T1xVu/27NljHnnkEXPttdcaf39/U69ePdOhQwczceLEy+Zb4lLfMzt37jTdu3c3tWvXNnXq1DF//OMfzf79+40kM378ePv2ZX0Wl6r/AwYMMI0aNbpsbK581xhjzJtvvmnat29vQkJCTFBQkLn++uvNQw89ZLZt2+ZyTMYY884775hmzZoZf3//UvkCuDJZWVnmvvvuM1FRUaZmzZomMjLS9OvXz2zatKnU2Ev9my+r7lxKyffKP//5T3PjjTeagIAA07hxYzNz5sxSY/ft22eSk5NNRESE8ff3N3Fxceall14yxcXFDuPefPNNExcXZ6xWq7nuuuvMlClTzMKFC0vFVNZ3WomSGhsYGGjCw8PNoEGDzEcffWQkmc8///yS+Zw5c8Y89thjplWrViY0NNQEBQWZuLg4M378eHPy5EmHsevXrzc9e/Y04eHhxt/f31x77bWmZ8+eDjX3Uu/xb82fP99IMkFBQaawsLDU82XV0eLiYvPyyy+b+Ph4ExAQYMLCwkxCQoJZtWqVw7jyfGcC8Bwl9fdSS0kNLM8c1Rhjtm/fbrp16+ZQC5csWWIkmW+//dZpLM7q1+nTp83TTz9tGjVqZPz9/U39+vXN448/bgoKChzGFRcXm6lTp5obbrjB+Pv7m7p165oHH3zQHDhwwGHcpeaRl6rzznoZJWbMmGE6dOhg6tata+/dDBo0yOzdu9dhXGXM940x5v/9v/9n/5wyMzNLPX+p79aPP/7YdOrUyYSEhJjg4GDTokULM3XqVIcx3377renfv7+JjIw0/v7+Jjo62tx5553mtddec/oeoOIsxvzfLdoBAAAqyZ49e9SsWTONHz9ezz77rLvDAQAAAODEkCFD9M477+jIkSNXdDkTwJdxaRcAAHBFvv32W73zzjvq0KGDQkNDtXv3bk2bNk2hoaEaNGiQu8MDAAAA8BsvvPCCYmJidN111+mXX37R6tWr9cYbb+i///u/aaIDTtBIBwAAVyQkJETbtm3TwoULdezYMYWFhalz586aNGmSoqKi3B0eAAAAgN/w9/fXSy+9pIMHD+rcuXNq2rSpZs6cab8XHYCycWkXAAAAAAAAAACcqNiteAEAAAAAAAAAuErQSAcAAAAAAPBQ8+bNU6tWrRQaGqrQ0FAlJCTok08+sT9vjFFaWppiYmIUFBSkzp07a8eOHQ6vYbPZNGLECNWtW1chISHq06ePDh486DCmoKBAKSkpCgsLU1hYmFJSUnTs2DGHMfv371fv3r0VEhKiunXrauTIkTp79myV5Q4AnoRGOgAAAAAAgIdq0KCBXnzxRW3btk3btm3TnXfeqXvuucfeLJ82bZpmzpypOXPmaOvWrYqOjlb37t114sQJ+2ukpqZqxYoVWr58uTZu3KhffvlFvXr1UnFxsX1McnKycnJylJ6ervT0dOXk5CglJcX+fHFxsXr27KmTJ09q48aNWr58ud5//32NHj26+t4MAHAjrpF+GefPn9fPP/+s2rVry2KxuDscAFc5Y4xOnDihmJgY1ajB30LLi1oOwNNQz11HLQfgadxZy8PDw/XSSy/pkUceUUxMjFJTU/X0009LunD0eVRUlKZOnaqhQ4eqsLBQ9erV01tvvaX7779fkvTzzz8rNjZWH3/8sZKSkrRr1y61aNFCmzdvVvv27SVJmzdvVkJCgn744QfFxcXpk08+Ua9evXTgwAHFxMRIkpYvX66BAwcqPz9foaGh5Yqdeg7Ak7hUyw2cOnDggJHEwsLC4lHLgQMHqrT2zZ0717Rs2dLUrl3b1K5d29x6663m448/tj9//vx5M378eFO/fn0TGBhoOnXqZLZv3+7wGmfOnDFPPPGEiYiIMMHBwaZ3796l4j569Kh58MEHTWhoqAkNDTUPPvigKSgocBizb98+06tXLxMcHGwiIiLMiBEjjM1mcykfajkLC4unLlVdz30JtZyFhcVTl+qs5efOnTPvvPOOCQgIMDt27DD/8z//YySZr7/+2mFcnz59zEMPPWSMMeazzz4zkszRo0cdxrRq1co8//zzxhhjFi5caMLCwkrtLywszLz55pvGGGOee+4506pVK4fnjx49aiSZdevWXTLmM2fOmMLCQvuyc+dOt39mLCwsLBcv5anlNQWnateuLUk6cOBAuf+6WlRUpIyMDCUmJsrf378qw6tWvpgXOXkPX8yrIjkdP35csbGx9tpUVUpOH/3d734nSVqyZInuueceffPNN7rxxhvtp48uXrxYN9xwgyZOnKju3btr9+7d9thSU1O1atUqLV++XBERERo9erR69eql7Oxs+fn5Sbpw+ujBgweVnp4uSRoyZIhSUlK0atUqSb+ePlqvXj1t3LhRR44c0YABA2SM0ezZs8udT0VqucTPnbfwxZwk38yLnH5VXfXcl1DLf0VO3sMX8yKnX1VnLf/++++VkJCgM2fOqFatWlqxYoVatGihTZs2SZKioqIcxkdFRWnfvn2SpLy8PAUEBKhOnTqlxuTl5dnHREZGltpvZGSkw5iL91OnTh0FBATYx5RlypQpmjBhQqn1b7zxhoKDgy+XOgBUqVOnTunRRx8tVy2nkX4ZJacZldzUozyKiooUHBys0NBQn5lYSL6ZFzl5D1/M60pyqupTIHv37u3weNKkSZo3b542b96sFi1aaNasWRo3bpz69esn6UKjPSoqSsuWLbOfPrpw4UK99dZb6tatmyRp6dKlio2N1dq1a+2nj6anpzucPrpgwQIlJCRo9+7diouLU0ZGhnbu3Olw+uiMGTM0cOBATZo0qdx1uSK1XOLnzlv4Yk6Sb+ZFTqVxSnv5Uct/RU7ewxfzIqfSqqOWx8XFKScnR8eOHdP777+vAQMGaP369ZeMwRhz2bguHlPW+IqMudjYsWM1atQo++OSP0D07dvXpT5LZmamunfv7lM/d76Wk+SbeZGT96hIXsePH9ejjz5arlpOIx0A4FRxcbHee+89nTx5UgkJCdqzZ4/y8vKUmJhoH2O1WtWpUydt2rRJQ4cOVXZ2toqKihzGxMTEKD4+Xps2bVJSUpKysrIUFhZmb6JL0q233qqwsDBt2rRJcXFxysrKUnx8vL2JLklJSUmy2WzKzs5Wly5dyozZZrPJZrPZHx8/flzShS/VoqKicudeMtaVbTwdOXkPX8yLnEpvBwBAeQQEBNjPFm3btq22bt2qV155xX5d9Ly8PNWvX98+Pj8/3370eHR0tM6ePauCggKHo9Lz8/PVoUMH+5hDhw6V2u/hw4cdXmfLli0OzxcUFKioqKjUkeq/ZbVaZbVaS6339/d3uYFXkW08nS/mJPlmXuTkPVzJy5X8aaQDAMrki6ePZmRkVOj00czMTJe38XTk5D18MS9yunAKKQAAFWWMkc1mU5MmTRQdHa3MzEy1bt1aknT27FmtX79eU6dOlSS1adNG/v7+yszMVP/+/SVJubm52r59u6ZNmyZJSkhIUGFhob766iu1a9dOkrRlyxYVFhbam+0JCQmaNGmScnNz7U37jIwMWa1WtWnTplrzBwB3oJEOACiTL54+mpiY6PLlAHztdDdy8h6+mBc5/arkTBkAAC7n2WefVY8ePRQbG6sTJ05o+fLl+uKLL5Seni6LxaLU1FRNnjxZTZs2VdOmTTV58mQFBwcrOTlZkhQWFqZBgwZp9OjRioiIUHh4uMaMGaOWLVvaL8PYvHlz3XXXXRo8eLBef/11SRfuX9SrVy/FxcVJkhITE9WiRQulpKTopZde0tGjRzVmzBgNHjzYpTk2AHgrGukAgDJx+uiVb+fJyMl7+GJe5OTaKaQVNW/ePM2bN0979+6VJN144416/vnn1aNHD0kX/ig5YcIEzZ8/XwUFBWrfvr1effVV3XjjjfbXsNlsGjNmjN555x2dPn1aXbt21dy5c9WgQQP7mIKCAo0cOVIrV66UJPXp00ezZ8/WNddcYx+zf/9+DR8+XOvWrVNQUJCSk5M1ffp0BQQEVPn7AADe7tChQ0pJSVFubq7CwsLUqlUrpaenq3v37pKkp556SqdPn9awYcPs9TwjI8Phxnkvv/yyatasqf79+9vr+eLFi+Xn52cf8/bbb2vkyJH2yzP26dNHc+bMsT/v5+enNWvWaNiwYerYsaNDPQeAqwGNdABeJT7tU9mKy38zn70v9qzCaK4unD4KoLJQy6tHgwYN9OKLL9r/KLpkyRLdc889+uabb3TjjTdq2rRpmjlzphYvXqwbbrhBEydOVPfu3bV792578yU1NVWrVq3S8uXLFRERodGjR6tXr17Kzs62N1+Sk5N18OBBpaenS7pwBGNKSopWrVol6cK9Nnr27Kl69epp48aNOnLkiAYMGCBjjGbPnu2GdwZAZaCWV5+FCxc6fd5isSgtLU1paWmXHBMYGKjZs2c7rbvh4eFaunSp0301bNhQq1evdjoGgPdwtZZLV3c9p5EOACiF00cBwPv17t3b4fGkSZM0b948bd68WS1atNCsWbM0btw49evXT9KFRntUVJSWLVumoUOHqrCwUAsXLtRbb71lr91Lly5VbGys1q5dq6SkJO3atUvp6enavHmz/ebRCxYsUEJCgnbv3q24uDhlZGRo586dOnDggP3m0TNmzNDAgQM1adIk6jkAAAC8Qg13BwAA8Dwlp4/GxcWpa9eu2rJlS6nTR1NTUzVs2DC1bdtWP/30U5mnj/bt21f9+/dXx44dFRwcrFWrVpU6fbRly5ZKTExUYmKiWrVqpbfeesv+fMnpo4GBgerYsaP69++vvn37cvooALiouLhYy5cv18mTJ5WQkKA9e/YoLy/Pfvq+dOGyWJ06dbLfVDo7O1tFRUUOY2JiYhQfH28fk5WVpbCwMHsTXZJuvfVWhYWFOYyJj4+3N9ElKSkpSTabTdnZ2VWaNwAAAFBZKv2IdK7FCADej9NHAcA3fP/990pISNCZM2dUq1YtrVixQi1atLA3uS++30RUVJT27dsn6cK9MAICAhzudVEyJi8vzz4mMjKy1H4jIyMdxly8nzp16iggIMA+piw2m002m83+uOQGrUVFRSoqKipX/iXjf/tfX0BO3sMX8yrJxVrDVGg7T1TRz8mTcwIAVL5Kb6RzLUYAAADAM8TFxSknJ0fHjh3T+++/rwEDBmj9+vX25y0Wx2tiGmNKrbvYxWPKGl+RMRebMmWKJkyYUGp9RkaGgoODncZYlszMTJe38XTk5D18Ma+/tj3v0viPP/64iiKpPK5+TqdOnaqiSAAAnqjSG+lcixEAAADwDAEBAfYDXNq2bautW7fqlVde0dNPPy3pwtHiJTdzlqT8/Hz70ePR0dE6e/asCgoKHI5Kz8/Pt98UOjo6WocOHSq138OHDzu8zpYtWxyeLygoUFFRUakj1X9r7NixGjVqlP3x8ePHFRsbq8TERJfm8kVFRcrMzFT37t3l7+9f7u08GTl5D1/MqySn57bVkO18+W9Qtz0tqQqjujIV/ZxKzpQBAFwdqvRmo8XFxXrvvffKfS3GoUOHXvZajElJSZe9FmNcXNxlr8XYpUuXMmOujFNIffH0Pck38yIn78EppI7bAABQEcYY2Ww2NWnSRNHR0crMzFTr1q0lSWfPntX69es1depUSVKbNm3k7++vzMxM9e/fX5KUm5ur7du3a9q0aZKkhIQEFRYW6quvvlK7du0kSVu2bFFhYaG92Z6QkKBJkyYpNzfX3rTPyMiQ1WpVmzZtLhmr1WqV1Wottd7f379CDcmKbufJyMl7+GJetvMW2YrL30j3hvxd/Zy8IScAQOWpkka6N1+LsTJPIfXF0/ck38yLnLzH1X4KKaePAgDK69lnn1WPHj0UGxurEydOaPny5friiy+Unp4ui8Wi1NRUTZ48WU2bNlXTpk01efJkBQcHKzk5WZIUFhamQYMGafTo0YqIiFB4eLjGjBmjli1b2s8cbd68ue666y4NHjxYr7/+uqQLl1zs1auX4uLiJEmJiYlq0aKFUlJS9NJLL+no0aMaM2aMBg8ezFmiAAAA8BpV0kj35msxVsYppL54+p7km3mRk/fgFNILOH0UAFBehw4dUkpKinJzcxUWFqZWrVopPT1d3bt3lyQ99dRTOn36tIYNG6aCggK1b99eGRkZ9vsWSdLLL7+smjVrqn///jp9+rS6du2qxYsX2+9bJElvv/22Ro4caT+jtE+fPpozZ479eT8/P61Zs0bDhg1Tx44dFRQUpOTkZE2fPr2a3gkAAADgylVJI92br8VYmaeQ+uLpe5Jv5kVO3uNqP4XUG/IBAHiGhQsXOn3eYrEoLS1NaWlplxwTGBio2bNna/bs2ZccEx4erqVLlzrdV8OGDbV69WqnYwAAAABPVqM6dlLWtRhLlFyLsaRJ/ttrMZYouRbjb6+zWHItxhJlXYtx+/btys3NtY8pz7UYAQAAAAAAAAD4rUo/Ip1rMQIAAAAAAAAAfEmlN9K5FiMAAAAAAAAAwJdUeiOdazECAAAAAAAAAHxJtVwjHQAAAAAAAAAAb0UjHQAAAAAAAAAAJ2ikAwAAAAAAAADgBI10AAAAAAAAAACcoJEOAAAAAAAAAIATNd0dAAAAAOApGj+zxqXxVj+jae2qKBgAAADgKuXqvFyq+rk5R6QDAAAAAAAAAOAEjXQAAAAAAAAAAJzg0i4AUEm4HAAAAAAAAIBv4oh0AAAAAAAAAACcoJEOAAAAAAAAAIATNNIBAAAAAAAAAHCCRjoAAAAAAAAAAE7QSAcAAAAAAAAAwAka6QAAAAAAAAAAOEEjHQAAAAAAAAAAJ2ikAwAAAAAAAADgRE13BwAAAAAAAFBZGj+zxqXxVj+jae2qKBgAgM/giHQAAAAAAAAAAJygkQ4AAAAAAAAAgBNc2gUAAAAAgCoUn/apbMWWco/f+2LPKowGAABUBEekAwAAAAAAAADgBI10AAAAAAAADzVlyhTdcsstql27tiIjI9W3b1/t3r3bYYwxRmlpaYqJiVFQUJA6d+6sHTt2OIyx2WwaMWKE6tatq5CQEPXp00cHDx50GFNQUKCUlBSFhYUpLCxMKSkpOnbsmMOY/fv3q3fv3goJCVHdunU1cuRInT17tkpyBwBPQiMdAFAKk3UAAADAM6xfv17Dhw/X5s2blZmZqXPnzikxMVEnT560j5k2bZpmzpypOXPmaOvWrYqOjlb37t114sQJ+5jU1FStWLFCy5cv18aNG/XLL7+oV69eKi4uto9JTk5WTk6O0tPTlZ6erpycHKWkpNifLy4uVs+ePXXy5Elt3LhRy5cv1/vvv6/Ro0dXz5sBAG5EIx0AUAqTdQAAAMAzpKena+DAgbrxxht10003adGiRdq/f7+ys7MlXTjAZdasWRo3bpz69eun+Ph4LVmyRKdOndKyZcskSYWFhVq4cKFmzJihbt26qXXr1lq6dKm+//57rV27VpK0a9cupaen64033lBCQoISEhK0YMECrV692n5QTUZGhnbu3KmlS5eqdevW6tatm2bMmKEFCxbo+PHj7nmDAKCacLNRAEAp6enpDo8XLVqkyMhIZWdn64477ig1WZekJUuWKCoqSsuWLdPQoUPtk/W33npL3bp1kyQtXbpUsbGxWrt2rZKSkuyT9c2bN6t9+/aSpAULFighIUG7d+9WXFycfbJ+4MABxcTESJJmzJihgQMHatKkSQoNDa3GdwYAAABwr8LCQklSeHi4JGnPnj3Ky8tTYmKifYzValWnTp20adMmDR06VNnZ2SoqKnIYExMTo/j4eG3atElJSUnKyspSWFiYfV4uSbfeeqvCwsK0adMmxcXFKSsrS/Hx8fZ5uSQlJSXJZrMpOztbXbp0KRWvzWaTzWazPy5puBcVFamoqKhcOZeMK+94b+CLOUm+mZcv52StYSq8bVWz+rkeW0k+rsToylga6QCAy/K2yToAAADgi4wxGjVqlG677TbFx8dLkvLy8iRJUVFRDmOjoqK0b98++5iAgADVqVOn1JiS7fPy8hQZGVlqn5GRkQ5jLt5PnTp1FBAQYB9zsSlTpmjChAml1mdkZCg4OPiyOf9WZmamS+O9gS/mJPlmXr6Y01/bnnd5m48//rgKIiltWruKb+vKZ3Xq1Klyj6WRDgBwyhsn65Vx1EvJ+N/+1xeQk/fwxbwqeuRLdb4Hrh75UpGjXioyHgAASXriiSf03XffaePGjaWes1gsDo+NMaXWXeziMWWNr8iY3xo7dqxGjRplf3z8+HHFxsYqMTGx3GeXFhUVKTMzU927d5e/v3+5tvF0vpiT5Jt5leT03LYasp13/m/qt7anJVVhVFemojlJ1ZdXfNqnLm9jrWH017bnXfr5c+WyVDTSAQBOeeNkvTKPepF888gDcvIevpiXq0e+VNdRL1LFj3xx9XNy5ciXipoyZYo++OAD/fDDDwoKClKHDh00depUxcXF2ccYYzRhwgTNnz9fBQUFat++vV599VXdeOON9jE2m01jxozRO++8o9OnT6tr166aO3euGjRoYB9TUFCgkSNHauXKlZKkPn36aPbs2brmmmvsY/bv36/hw4dr3bp1CgoKUnJysqZPn66AgIAqfy8AwBeMGDFCK1eu1IYNGxxqcHR0tKQLB6DUr1/fvj4/P99+QEp0dLTOnj2rgoIChwNd8vPz1aFDB/uYQ4cOldrv4cOHHV5ny5YtDs8XFBSoqKio1MEvJaxWq6xWa6n1/v7+LjdaK7KNp/PFnCSp9aR1shWXv0G798WeVRhN5bCdt7iUkzd8rq7mJFVfXq7G9Vuu/LtyJR8a6QCAS/LWyXplHPUi+fbRFOTk+XwxL284msfVI18qctSL5NqRLxVVcuPoW265RefOndO4ceOUmJionTt3KiQkRNKvN45evHixbrjhBk2cOFHdu3fX7t27Vbt2bUkXbhy9atUqLV++XBERERo9erR69eql7Oxs+fn5Sbpw4+iDBw/a77ExZMgQpaSkaNWqVZJ+vXF0vXr1tHHjRh05ckQDBgyQMUazZ8+u8vcCALyZMUYjRozQihUr9MUXX6hJkyYOzzdp0kTR0dHKzMxU69atJUlnz57V+vXrNXXqVElSmzZt5O/vr8zMTPXv31+SlJubq+3bt2vatGmSpISEBBUWFuqrr75Su3YX/rK8ZcsWFRYW2ufvCQkJmjRpknJzc+2/B2RkZMhqtapNmzZV/2YAgBtVeiOdI18AwPt5+2S9Mo96uZLtPBk5eQ9fzMuTj+ap6JEvrn5O1ZETN44GAN8wfPhwLVu2TB999JFq165tv7xhWFiYgoKCZLFYlJqaqsmTJ6tp06Zq2rSpJk+erODgYCUnJ9vHDho0SKNHj1ZERITCw8M1ZswYtWzZ0l7fmzdvrrvuukuDBw/W66+/LunCH0Z79epl7+kkJiaqRYsWSklJ0UsvvaSjR49qzJgxGjx4MLUcgM+r9EY6R74AgPdjsg4AvsfbbhzN/S4ujZy8hzfcG8JV3pCTr93vYt68eZKkzp07O6xftGiRBg4cKEl66qmndPr0aQ0bNsx+wGJGRoa9xyJJL7/8smrWrKn+/fvbD1hcvHixvcciSW+//bZGjhxpr/t9+vTRnDlz7M/7+flpzZo1GjZsmDp27OhwwCIA+LpKb6Rz5AsAeD8m64DniE/71OeuL4nq5403juZ+F5dHTt7Dk+8NUVGenJMv3e9CulDDL8disSgtLU1paWmXHBMYGKjZs2c7PbAwPDxcS5cudbqvhg0bavXq1ZeNCQB8TZVfI93bjnwBADBZBwBf4403juZ+F5dGTt7DG+4N4SpvyMmX7ncBAPAcVdpI98YjXyrjFFJfPy3Rl/IiJ+/BKaRyeSwAAJL33jia+11cHjl5D0++N0RFeXJOvnS/CwCA56jSRro3HvlSmaeQ+uppib6YFzl5j6v9FNLqOn0UAOD9vP3G0QAAAIAnqbJGurce+VIZp5D6+mmJvpQXOXkPTiG9gNNHAQDlxY2jAQAAgMpT6Y10bz/ypTJPIfXV0xJ9MS9y8h5X+ymkvviZAgCqBjeOBgAAACpPpTfSOfIFAAAAcD9uHA0AAABUnkpvpHPkCwAAcIf4tE9dPjNk74s9qygaAAAAAIAvqZJLu1wOR74AVY+GEgAAAAAAAFA5arg7AAAAAAAAAAAAPBmNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMCJmu4OAAAAAAAASYpP+1S2YotL2+x9sWcVRQMAAPArGumAXJ+wM1kHAAAAAAAArh5c2gUAAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwoqa7AwAAANUvPu1T2Yot5R6/98WeVRgNAAAAAACejSPSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADjBzUbhMm5QBwAAALgf83Lg6rBhwwa99NJLys7OVm5urlasWKG+ffvanzfGaMKECZo/f74KCgrUvn17vfrqq7rxxhvtY2w2m8aMGaN33nlHp0+fVteuXTV37lw1aNDAPqagoEAjR47UypUrJUl9+vTR7Nmzdc0119jH7N+/X8OHD9e6desUFBSk5ORkTZ8+XQEBAVX+PgCAu3FEOgCgTBs2bFDv3r0VExMji8WiDz/80OF5Y4zS0tIUExOjoKAgde7cWTt27HAYY7PZNGLECNWtW1chISHq06ePDh486DCmoKBAKSkpCgsLU1hYmFJSUnTs2DGHMfv371fv3r0VEhKiunXrauTIkTp79mxVpA0AAAB4lJMnT+qmm27SnDlzynx+2rRpmjlzpubMmaOtW7cqOjpa3bt314kTJ+xjUlNTtWLFCi1fvlwbN27UL7/8ol69eqm4uNg+Jjk5WTk5OUpPT1d6erpycnKUkpJif764uFg9e/bUyZMntXHjRi1fvlzvv/++Ro8eXXXJA4AHoZEOACgTE3YAAADA/Xr06KGJEyeqX79+pZ4zxmjWrFkaN26c+vXrp/j4eC1ZskSnTp3SsmXLJEmFhYVauHChZsyYoW7duql169ZaunSpvv/+e61du1aStGvXLqWnp+uNN95QQkKCEhIStGDBAq1evVq7d++WJGVkZGjnzp1aunSpWrdurW7dumnGjBlasGCBjh8/Xn1vCAC4CY10AECZmLADgPfj7CIA8G179uxRXl6eEhMT7eusVqs6deqkTZs2SZKys7NVVFTkMCYmJkbx8fH2MVlZWQoLC1P79u3tY2699VaFhYU5jImPj1dMTIx9TFJSkmw2m7Kzs6s0T18Wn/apGj+zxqUFgHtUeiOdyToA+D4m7ADgHTi7CAB8W15eniQpKirKYX1UVJT9uby8PAUEBKhOnTpOx0RGRpZ6/cjISIcxF++nTp06CggIsI8pi81m0/Hjxx0WSSoqKnJpqcg2nr5IkrWGkdXPtcXdcVdFXu6OmZw8Ly9X47L6GVlrmArXl/Ko9JuNlkzWH374Yf3hD38o9XzJZH3x4sW64YYbNHHiRHXv3l27d+9W7dq1JV2YrK9atUrLly9XRESERo8erV69eik7O1t+fn6SLkzWDx48qPT0dEnSkCFDlJKSolWrVkn6dbJer149bdy4UUeOHNGAAQNkjNHs2bMrO20AuKo4m7Dv27fPPsZdE3abzSabzWZ/fPFkvbxKxrqyjaf77YSpItt5oorm9NttPRGfVentqoPVz7XYfjtZd0V15dSjRw/16NGjzOcuPrtIkpYsWaKoqCgtW7ZMQ4cOtZ9d9NZbb6lbt26SpKVLlyo2NlZr165VUlKS/eyizZs32/8wumDBAiUkJGj37t2Ki4uzn1104MAB+x9GZ8yYoYEDB2rSpEkKDQ2thncDAHyXxeJ442FjTKl1F7t4TFnjKzLmYlOmTNGECRNKrc/IyFBwcLDTGC+WmZnp0nhv8Ne2513e5uOPP66CSCqXq3mRk3t48s/ftHYV39aVWnHq1Klyj630RjqTdQC4enjqhL0yJ+sSE3aJSaA78VlVb04VnbC7WidcmbBXlcudXTR06NDLnl2UlJR02bOL4uLiLnt2UZcuXaonaQDwMdHR0ZIuHHxSv359+/r8/Hz7wSjR0dE6e/asCgoKHA5yyc/PV4cOHexjDh06VOr1Dx8+7PA6W7ZscXi+oKBARUVFpQ58+a2xY8dq1KhR9sfHjx9XbGysEhMTy92bKSoqUmZmprp37y5/f/9ybePpSnJ6blsN2c47/x3qYtvTkqooqitX0bzIqXp5w89ffNqnLm9jrWH017bnXaoVrlwyttIb6c4wWQcA3+DpE/bKmKxLTNh/i0lg9eOz+lV15uTqhL0ik3XJtQl7VeHsIu/lDWd3uIqzi8rezhN5Q06+dnaRM02aNFF0dLQyMzPVunVrSdLZs2e1fv16TZ06VZLUpk0b+fv7KzMzU/3795ck5ebmavv27Zo2bZokKSEhQYWFhfrqq6/Urt2Fvypv2bJFhYWF9rl7QkKCJk2apNzcXPvvABkZGbJarWrTps0lY7RarbJaraXW+/v7uzzHrsg2ns523iJbsWtzWG94D1zNi5zcw5N//lyN67dcqRWu5FOtjXRPn6xLlTNh98XJuuQdEyZXkVPZ23oib/isqmPC7imfkadP2Ctzsn4l23kyJoEX+GJe5HRlKjphd7VOeNLnxNlF3suTz+6oKM4uuoCcroyvnV30yy+/6Mcff7Q/3rNnj3JychQeHq6GDRsqNTVVkydPVtOmTdW0aVNNnjxZwcHBSk5OliSFhYVp0KBBGj16tCIiIhQeHq4xY8aoZcuW9isBNG/eXHfddZcGDx6s119/XdKFS+j26tVLcXFxkqTExES1aNFCKSkpeumll3T06FGNGTNGgwcP5qx/AFeFam2kl/DUybrEtbvKw5MnTBVFThf4Yl6+NmGvzksBMGEHAN/G2UXeyxvO7nAVZxc5Iqcr42tnF23bts3hrPqS2jhgwAAtXrxYTz31lE6fPq1hw4apoKBA7du3V0ZGhv0+dJL08ssvq2bNmurfv79Onz6trl27avHixfb70EnS22+/rZEjR9qvENCnTx+Hm1X7+flpzZo1GjZsmDp27KigoCAlJydr+vTpVf0WAIBHqNZGuqdP1iWu3eWMN0yYXEVOjnwxL1+bsFfnpQCYsAOAb+PsIu/nyWd3VBRnF11ATlfG184u6ty5s4y59NmvFotFaWlpSktLu+SYwMBAzZ49W7Nnz77kmPDwcC1dutRpLA0bNtTq1asvGzMA+KJqbaR7+mRd4tpd5eHJE6aKIqcLfDEvX5uwV2c+TNgBwPtxdhEAAABQOSq9kc5kHQAAAPAMnF0EAAAAVI5Kb6QzWQcAAAA8A2cXAQAAAJWj0hvpTNYBAAAAAAAAAL6khrsDAAAAAAAAAADAk9FIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBM00gEAAAAAAAAAcIJGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSMdAAAAAAAAAAAnaKQDAAAAAAAAAOAEjXQAAAAAAAAAAJygkQ4AAAAAAAAAgBNXRSN97ty5atKkiQIDA9WmTRt9+eWX7g4JAFAB1HMA8H7UcgDwftRyAFcjn2+kv/vuu0pNTdW4ceP0zTff6Pbbb1ePHj20f/9+d4cGAHAB9RwAvB+1HAC8H7UcwNWqprsDqGozZ87UoEGD9Oijj0qSZs2apU8//VTz5s3TlClT3BwdAKC8qOcA4P2o5QDg/dxZy+PTPpWt2FLu8Xtf7FmF0QC42vh0I/3s2bPKzs7WM88847A+MTFRmzZtKnMbm80mm81mf1xYWChJOnr0qIqKisq136KiIp06dUpHjhyRv79/BaP3PCV51SyqoeLz5f/iOnLkSBVGdWXIyZEv5lWdOdU8d9K18eeNTp0671KtOHHihCTJGONyfN7M1XpeGbVc8s167g3/llxF3XNETlemOmq5dHXWc2p55fGGf0uuopY7IqcrQy2vOu7us3jyz52rqHuOyKl6ecPPn6u1XKqGPovxYT/99JORZP71r385rJ80aZK54YYbytxm/PjxRhILCwuLRy8HDhyojjLqMVyt59RyFhYWb1mupnpOLWdhYfHVhVpOn4WFhcX7l/LUcp8+Ir2ExeL4lxVjTKl1JcaOHatRo0bZH58/f15Hjx5VRETEJbe52PHjxxUbG6sDBw4oNDS04oF7GF/Mi5y8hy/mVZGcjDE6ceKEYmJiqjg6z1Teel4ZtVzi585b+GJOkm/mRU6/uprrObX8ypGT9/DFvMjpV9TyX9FncZ0v5iT5Zl7k5D2qus/i0430unXrys/PT3l5eQ7r8/PzFRUVVeY2VqtVVqvVYd0111xTof2Hhob61A9jCV/Mi5y8hy/m5WpOYWFhVRiNZ3K1nldmLZf4ufMWvpiT5Jt5kdMFV1s9p5ZXPnLyHr6YFzldQC2/gD5LxfliTpJv5kVO3qOq+iw1KhqQNwgICFCbNm2UmZnpsD4zM1MdOnRwU1QAAFdRzwHA+1HLAcD7UcsBXM18+oh0SRo1apRSUlLUtm1bJSQkaP78+dq/f78ee+wxd4cGAHAB9RwAvB+1HAC8H7UcwNXK5xvp999/v44cOaIXXnhBubm5io+P18cff6xGjRpV2T6tVqvGjx9f6tQlb+eLeZGT9/DFvHwxp6pEPa8c5OQ9fDEvcgK1vHKQk/fwxbzICdTyyuGLOUm+mRc5eY+qzstijDFV8soAAAAAAAAAAPgAn75GOgAAAAAAAAAAV4pGOgAAAAAAAAAATtBIBwAAAAAAAADACRrpAAAAAAAAAAA4QSO9CsydO1dNmjRRYGCg2rRpoy+//NLdIV2RDRs2qHfv3oqJiZHFYtGHH37o7pCu2JQpU3TLLbeodu3aioyMVN++fbV79253h3VF5s2bp1atWik0NFShoaFKSEjQJ5984u6wKtWUKVNksViUmprq7lCuSFpamiwWi8MSHR3t7rBwEWq556OWeydqOaoTtdzzUcu9E7Uc1cnXarnke/XcF2u5RD33FtVZy2mkV7J3331XqampGjdunL755hvdfvvt6tGjh/bv3+/u0Crs5MmTuummmzRnzhx3h1Jp1q9fr+HDh2vz5s3KzMzUuXPnlJiYqJMnT7o7tApr0KCBXnzxRW3btk3btm3TnXfeqXvuuUc7duxwd2iVYuvWrZo/f75atWrl7lAqxY033qjc3Fz78v3337s7JPwGtdw7UMu9D7Uc1Yla7h2o5d6HWo7q5Iu1XPK9eu6LtVyinnuTaqvlBpWqXbt25rHHHnNY16xZM/PMM8+4KaLKJcmsWLHC3WFUuvz8fCPJrF+/3t2hVKo6deqYN954w91hXLETJ06Ypk2bmszMTNOpUyfz5JNPujukKzJ+/Hhz0003uTsMOEEt907Ucs9GLUd1o5Z7J2q5Z6OWo7r5ei03xjfrua/WcmOo556oOms5R6RXorNnzyo7O1uJiYkO6xMTE7Vp0yY3RYXyKCwslCSFh4e7OZLKUVxcrOXLl+vkyZNKSEhwdzhXbPjw4erZs6e6devm7lAqzb///W/FxMSoSZMmeuCBB/Sf//zH3SHh/1DLvRe13LNRy1GdqOXei1ru2ajlqE7Ucu/la7Vcop57uuqq5TWr5FWvUv/7v/+r4uJiRUVFOayPiopSXl6em6LC5RhjNGrUKN12222Kj493dzhX5Pvvv1dCQoLOnDmjWrVqacWKFWrRooW7w7oiy5cv19dff62tW7e6O5RK0759e/3973/XDTfcoEOHDmnixInq0KGDduzYoYiICHeHd9Wjlnsnarlno5ajulHLvRO13LNRy1HdqOXeyZdquUQ99wbVWctppFcBi8Xi8NgYU2odPMcTTzyh7777Ths3bnR3KFcsLi5OOTk5OnbsmN5//30NGDBA69ev99oif+DAAT355JPKyMhQYGCgu8OpND169LD/f8uWLZWQkKDrr79eS5Ys0ahRo9wYGX6LWu5dqOWei1oOd6KWexdqueeilsOdqOXexZdquUQ99wbVWctppFeiunXrys/Pr9RfRvPz80v9BRWeYcSIEVq5cqU2bNigBg0auDucKxYQEKDf/e53kqS2bdtq69ateuWVV/T666+7ObKKyc7OVn5+vtq0aWNfV1xcrA0bNmjOnDmy2Wzy8/NzY4SVIyQkRC1bttS///1vd4cCUcu9EbXcs1HL4Q7Ucu9DLfds1HK4A7Xc+/haLZeo596oKms510ivRAEBAWrTpo0yMzMd1mdmZqpDhw5uigplMcboiSee0AcffKB169apSZMm7g6pShhjZLPZ3B1GhXXt2lXff/+9cnJy7Evbtm315z//WTk5OV5f3EvYbDbt2rVL9evXd3coELXcm1DLvQO1HO5ALfce1HLvQC2HO1DLvcfVUssl6rk3qMpazhHplWzUqFFKSUlR27ZtlZCQoPnz52v//v167LHH3B1ahf3yyy/68ccf7Y/37NmjnJwchYeHq2HDhm6MrOKGDx+uZcuW6aOPPlLt2rXtf+EOCwtTUFCQm6OrmGeffVY9evRQbGysTpw4oeXLl+uLL75Qenq6u0OrsNq1a5e6plpISIgiIiK8+lprY8aMUe/evdWwYUPl5+dr4sSJOn78uAYMGODu0PB/qOXegVruHajlcBdquXeglnsHajncxRdrueR79dwXa7lEPfcW1VrLDSrdq6++aho1amQCAgLMzTffbNavX+/ukK7I559/biSVWgYMGODu0CqsrHwkmUWLFrk7tAp75JFH7D939erVM127djUZGRnuDqvSderUyTz55JPuDuOK3H///aZ+/frG39/fxMTEmH79+pkdO3a4OyxchFru+ajl3otajupCLfd81HLvRS1HdfG1Wm6M79VzX6zlxlDPvUV11nKLMcZUfnseAAAAAAAAAADfwDXSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6AAAAAAAAAABO0EgHAAAAAAAAAMAJGukAAAAAAAAAADhBIx0AAAAAAAAAACdopAMAAAAAAAAA4ASNdAAAAAAAAAAAnKCRDgAAAAAAAACAEzTSAQAAAAAAAABwgkY6rtjixYtlsVgclnr16qlz585avXq1u8PzaAMHDlStWrXcHYaDks9z79699nWdO3dW586dHcZZLBalpaVVa2wAPMd3332nhx9+WE2aNFFgYKBq1aqlm2++WdOmTdPRo0ft4xo3bqxevXpVe3wWi0VPPPGE0zF79+6VxWLR4sWLqycoN2jcuLEGDhzo7jAAeLiS+d+2bdsqtP3evXvVs2dPhYeHy2KxKDU1tcwaW9Y8s7y++OILWSwW/fOf/7zs2GXLlmnWrFku78NTMM8G4E7lmeeX1SNwp4vrZsl3xhdffOG2mOCbaro7APiORYsWqVmzZjLGKC8vT3PmzFHv3r21cuVK9e7d293hoZJlZWWpQYMG7g4DgBssWLBAw4YNU1xcnP7rv/5LLVq0UFFRkbZt26bXXntNWVlZWrFihbvD3MHJdQAAkUhJREFUvKz69esrKytL119/vbtDqTIrVqxQaGiou8MA4OP+8pe/aMuWLXrzzTcVHR2t+vXryxhTalzPnj2VlZWl+vXrV2k8y5Yt0/bt25Wamlql+6kqzLMBuIuvzPNvvvlmZWVlqUWLFu4OBT6GRjoqTXx8vNq2bWt/fNddd6lOnTp65513aKT7oFtvvdXdIQBwg6ysLD3++OPq3r27PvzwQ1mtVvtz3bt31+jRo5Wenu7GCMvParV6XS07deqUgoODyz2+devWVRgNAFywfft2tWvXTn379rWvK+uo83r16qlevXrVF5iHOH36tIKCgso93tu+mwD4Bl+a54eGhlJLUSW4tAuqTGBgoAICAuTv7++wfsKECWrfvr3Cw8MVGhqqm2++WQsXLix11IrNZtPo0aMVHR2t4OBg3XHHHcrOzi7zNPWNGzcqISFBgYGBuvbaa/Xcc8/pjTfeKHXq6LvvvqvExETVr19fQUFBat68uZ555hmdPHmyVPwLFizQDTfcIKvVqhYtWmjZsmUaOHCgGjdu7DDu7Nmzmjhxopo1ayar1ap69erp4Ycf1uHDh8v9Xv3444+6++67VatWLcXGxmr06NGy2WwVet9KLqOQnp6um2++WUFBQWrWrJnefPPNUvvdvHmzOnbsqMDAQMXExGjs2LEqKioqV8wXnzpVcqru559/rscff1x169ZVRESE+vXrp59//tlhW1c+WwCeZfLkybJYLJo/f77D5LpEQECA+vTpU2p9eWpSXl6ehg4dqgYNGiggIEBNmjTRhAkTdO7cOYdxNptNL7zwgpo3b67AwEBFRESoS5cu2rRp0yXjNsbo2Weflb+/vxYsWCCp7Eu7pKWlyWKxaMeOHfrTn/6ksLAwRUVF6ZFHHlFhYeFl359vvvlGvXr1UmRkpKxWq2JiYtSzZ08dPHjQIZa5c+fq97//vYKCglSnTh3dd999+s9//uPwWp07d1Z8fLw2bNigDh06KDg4WI888oj69u2rRo0a6fz586X23759e9188832x2XV1WPHjmn06NG67rrrZLVaFRkZqbvvvls//PCDfUxlfLcB8G4llyB0Nk8tOXX+xx9/1CeffGK/zOOlLt1S1qVdjDGaPHmyGjVqpMDAQLVt21aZmZmXvGxAUVGRxo0bp5iYGIWGhqpbt27avXu3/fnOnTtrzZo12rdvn8OlJ51Zt26dOnfurIiICAUFBalhw4b6wx/+oFOnTtnHlLculszFP/jgA7Vu3VqBgYGaMGGCWrdurdtvv73UvouLi3XttdeqX79+9nVlXdrlp59+0pAhQxQbG6uAgADFxMTovvvu06FDh+xjjh8/rjFjxqhJkyYKCAjQtddeq9TU1DJ/1wGAi1V0nl+ivHWyvH2Z8nwPXUpZl3Zx5fXKm0t5vj/mzZunm266SbVq1VLt2rXVrFkzPfvss07jh+fiiHRUmuLiYp07d07GGB06dEgvvfSSTp48qeTkZIdxe/fu1dChQ9WwYUNJF5q5I0aM0E8//aTnn3/ePu7hhx/Wu+++q6eeekp33nmndu7cqXvvvVfHjx93eL3vvvtO3bt31w033KAlS5YoODhYr732mpYuXVoqxn//+9+6++67lZqaqpCQEP3www+aOnWqvvrqK61bt84+bv78+Ro6dKj+8Ic/6OWXX1ZhYaEmTJhQqrieP39e99xzj7788ks99dRT6tChg/bt26fx48erc+fO2rZt22WPPikqKlKfPn00aNAgjR49Whs2bNBf//pXhYWFObwf5X3fJOnbb7/V6NGj9cwzzygqKkpvvPGGBg0apN/97ne64447JEk7d+5U165d1bhxYy1evFjBwcGaO3euli1b5jTey3n00UfVs2dPLVu2TAcOHNB//dd/6cEHH3R4f8v72QLwLMXFxVq3bp3atGmj2NjYcm9XnpqUl5endu3aqUaNGnr++ed1/fXXKysrSxMnTtTevXu1aNEiSdK5c+fUo0cPffnll0pNTdWdd96pc+fOafPmzdq/f786dOhQav82m00DBw7UmjVrtGrVKt11112XjfkPf/iD7r//fg0aNEjff/+9xo4dK0ll/gGgxMmTJ9W9e3c1adJEr776qqKiopSXl6fPP/9cJ06csI8bOnSoFi9erJEjR2rq1Kk6evSoXnjhBXXo0EHffvutoqKi7GNzc3P14IMP6qmnntLkyZNVo0YNHTt2TPfcc4/WrVunbt262cf+8MMP+uqrr/S3v/3tkjGeOHFCt912m/bu3aunn35a7du31y+//KINGzYoNzdXzZo1q5TvNgC+4XLz1JJT5++9915df/31mj59uqQLl87Kzc0t1z7GjRunKVOmaMiQIerXr58OHDigRx99VEVFRbrhhhtKjX/22WfVsWNHvfHGGzp+/Liefvpp9e7dW7t27ZKfn5/mzp2rIUOG6H/+53/KdfmBkuu733777XrzzTd1zTXX6KefflJ6errOnj2r4OBgl+vi119/rV27dum///u/1aRJE4WEhCgmJkZPPvmk/v3vf6tp06b2sRkZGfr555/18MMPXzLGn376SbfccouKior07LPPqlWrVjpy5Ig+/fRTFRQUKCoqSqdOnVKnTp108OBB+5gdO3bo+ef/P3t3Hh9Vdf9//D2E7MKQBEiIslUhAmErCARUQCARCYjWoqamIAhYEEyBB4q0EiyLBBD8giAiEmQxahWVxZhQFaTsqaiAxdoiiyagEMI+GZL7+4PfXBkShkyYbMPr+XjMo507n3vvOWeGz4yfnHvu8/rmm2+0YcOGa/5BAcCNq7S/8x3cyZMlrctIJa+XlFRJjlfSvpTk+yMtLU0jRozQqFGjNGvWLFWrVk3ff/+99u3b53bbUUkYwHVaunSpIanIw9/f31iwYIHLfQsKCgy73W688MILRlhYmFFYWGgYhmHs3bvXkGQ888wzTvFvvfWWIckYOHCgue33v/+9ERwcbPz8889Ox23evLkhyThw4ECx5y4sLDTsdruxceNGQ5Lx1VdfmftGREQYHTt2dIo/ePCg4evrazRs2LBIe9577z2n2J07dxqSrtn/gQMHGpKMd955x2n7fffdZ0RFRV11v6uNm2EYRsOGDY2AgADj4MGD5rbz588boaGhxvDhw81tDz/8sBEYGGjk5OSY2y5evGjcfvvtRcata9euRteuXZ3aIMmYNGmS+dzxORgxYoRTXEpKiiHJyM7ONgzDvfcWQOWSk5NjSDIeeeSREu9T0pw0fPhw46abbnKKMwzDmDVrliHJ2Lt3r2EYhvHmm28akozFixe7PK8kY+TIkcbx48eNO++807j55puN3bt3O8UcOHDAkGQsXbrU3DZp0iRDkpGSkuIUO2LECCMgIMAp315p165dhiTjgw8+uGrM1q1bDUnG7NmznbYfPnzYCAwMNMaPH29u69q1qyHJ+Mc//uEUa7fbjfDwcCMhIcFp+/jx4w0/Pz/jl19+Mbc1bNjQKa++8MILhiQjMzPzqm283u82AFWP43fczp07zW3u/E5t2LCh0adPH6dtxeVYx3kcvzNPnDhh+Pv7Gw8//LDTvo5cefnvz88++8yQZNx3331Ose+8844hydi6dau5rU+fPk6/2V35+9//bkgq8h1xOXfyYsOGDQ0fHx9j//79TrG//PKL4efnZzz33HNO2wcMGGCEh4cbdrvd3Hbl7+zBgwcbvr6+xr59+67axunTpxvVqlVzeg8v79/69euvui8AuPs7/8oaQWl/P16tLmMY7n0PXZk3Hd8Zn332mdvHK2lfSvL98dRTTxm1atW66uuoeljaBR7z5ptvaufOndq5c6c+/vhjDRw4UCNHjtT8+fOd4hwz6KxWq3x8fOTr66vnn39ex48f17FjxyRJGzdulCQNGDDAad+HHnpI1as7X0ixceNG3XPPPapdu7a5rVq1akX2laT//e9/SkhIUEREhHnurl27SpK+/fZbSdL+/fuVk5NTZP8GDRqoS5cuTtvWrl2rWrVqqW/fvrp48aL5aNOmjSIiIkp0h2iLxVJkDflWrVrp4MGDTttKMm4Obdq0MWeuS5eW2WnatKnTMT/77DP16NHDaeajj4+PHn744Wu22ZUrL/Vq1aqVJJnndue9BeAdSpKT1q5dq+7duysyMtIpn/bu3VvSr7nj448/VkBAgAYPHnzN8x44cEAxMTE6deqUtm3bptatW5e4zcXlsgsXLhTJt5e77bbbFBISomeeeUavvvpqsTNN1q5dK4vFoscee8ypnxEREWrdunWR742QkBDdc889TtuqV6+uxx57TO+//7653ExBQYGWL1+u+++/X2FhYVdt48cff6ymTZs6zWQvro3X+90GwDuU9HdqaW3btk02m63I78JOnToVWU7R4Vq/Nd3Vpk0b+fn5adiwYVq2bFmRZbYk9/Niq1atisymDwsLU9++fbVs2TJzaa7c3Fx9+OGH+uMf/+jyd/DHH3+s7t27q1mzZleNWbt2raKjo9WmTRunNsbFxRVZ3gAAPM2dPFmSuoyDp7+HSnK8kvalJN8fHTp00MmTJ/Xoo4/qww8/1C+//FKqdqPyoJAOj2nWrJnat2+v9u3b695779WiRYsUGxur8ePH6+TJk5KkHTt2KDY2VtKlNcj/+c9/aufOnZo4caKkSzfikaTjx49LklORV7pUPLiyQHD8+PEiccXte+bMGd11113avn27pkyZos8//1w7d+7U+++/X6JzF7ft6NGjOnnypLkW/OWPnJycEiXJoKAgBQQEOG3z9/fXhQsXzOclHTeH4ooo/v7+TnHHjx9XREREkbjitrnjynM71lYrzXsLoHKpXbu2goKCdODAAbf2K0lOOnr0qNasWVMkl7Zo0UKSzHz6888/KzIyUtWqXfsnzI4dO/Tdd9/p4Ycf1i233HJdbb4ylxXHarVq48aNatOmjZ577jm1aNFCkZGRmjRpknn/iaNHj8owDIWHhxfp67Zt24p8b9SrV6/Ycw0ePFgXLlxQWlqaJOmTTz5Rdna2y6UBpEvjd62x8MR3GwDvUJLfqdfDnd/dDqXJz67ceuut2rBhg+rWrauRI0fq1ltv1a233qqXX37ZjHE3L7rK3T/++KMyMzMlSW+99Za5/JgrJc3dX3/9dZH21ahRQ4ZhkLsBuFTa3/kOJc2TJa3LOHj6e6gkxytpX0ry/ZGYmKg33nhDBw8e1O9+9zvVrVtXHTt2NL8HUPUw/RNlqlWrVvrkk0/03XffqUOHDkpLS5Ovr6/Wrl3rlLw++OADp/0cP5CPHj2qm2++2dx+8eJF8wf35bGX32THIScnx+n5p59+qp9++kmff/65+ddOSWaRv7hzX+uYjhtqXu3O1TVq1Ch2u7tKOm7uCAsLK9IfqWgfPc2d9xZA5eLj46MePXro448/1pEjR9wuTrtSu3ZttWrVSlOnTi329cjISElSnTp1tHnzZhUWFl6zmP7www8rIiJCEydOVGFhof7yl794rL1X07JlS6WlpckwDH399ddKTU3VCy+8oMDAQD377LOqXbu2LBaLvvjii2Jv4nTltqutZ9u8eXN16NBBS5cu1fDhw7V06VJFRkaaf3S9mjp16jjd+LQ45fXdBgDX+t19tVnpnnbXXXfprrvuUkFBgXbt2qV58+YpKSlJ4eHheuSRR9zOi1fL3XFxcYqMjNTSpUsVFxenpUuXqmPHjmrevLnL9pU0dwcGBl71Xh6XX70LAFe63t/5Jc2TJa3LVCR3cv61vj+kS/eIe/zxx3X27Flt2rRJkyZNUnx8vL777js1bNiwXPoEz2FGOsrU7t27JV368Sdd+lFZvXp1+fj4mDHnz5/X8uXLnfZz3Hzu7bffdtr+97//XRcvXnTa1rVrV3366adOsywKCwv17rvvOsU5ftBeWaRYtGiR0/OoqChFRETonXfecdp+6NAhbdmyxWlbfHy8jh8/roKCAnM2/uWPqKgoeUJJx80d3bt31z/+8Q+n/3ApKCgoMuae5s57C6DymTBhggzD0NChQ5Wfn1/kdbvdrjVr1rh93Pj4eO3Zs0e33nprsfnUUUjv3bu3Lly4oNTU1BId9y9/+Yvmzp2r559/3rxhaHmwWCxq3bq15syZo1q1aulf//qXpEv9NAxDP/74Y7H9bNmyZYnP8fjjj2v79u3avHmz1qxZo4EDBzp9TxSnd+/e+u6774rcyOly5fXdBgAdO3aUv79/kd+F27Ztu67lY6686qmkfHx81LFjR73yyiuS5JS7PZEXfXx8lJiYqA8++EBffPGFdu3aVaKlynr37q3PPvtM+/fvv2pMfHy8/vvf/yosLKzYNpbXHyUAVF3X8zu/pHmypHWZilSanH+174/LBQcHq3fv3po4caLy8/O1d+/eMu8LPI8Z6fCYPXv2mIXQ48eP6/3331dmZqYeeOABNW7cWJLUp08fvfTSS0pISNCwYcN0/PhxzZo1q0gSbdGihR599FHNnj1bPj4+uueee7R3717Nnj1bVqvVaRbixIkTtWbNGvXo0UMTJ05UYGCgXn31VZ09e1aSzNjOnTsrJCRETz75pCZNmiRfX1+tXLlSX331ldO5q1WrpsmTJ2v48OF66KGHNHjwYJ08eVKTJ09WvXr1nM79yCOPaOXKlbrvvvv09NNPq0OHDvL19dWRI0f02Wef6f7779cDDzxw3WNb0nFzx1/+8hd99NFHuueee/T8888rKChIr7zyijluZcWd9xZA5RMTE6OFCxdqxIgRateunf70pz+pRYsWstvt+vLLL/Xaa68pOjq6yNqD1/LCCy8oMzNTnTt31ujRoxUVFaULFy7ohx9+0Pr16/Xqq6/qlltu0aOPPqqlS5fqySef1P79+9W9e3cVFhZq+/btatasmTnz43JPP/20brrpJg0bNkxnzpzR//3f/111tuD1WLt2rRYsWKD+/fvrN7/5jQzD0Pvvv6+TJ0+qV69ekqQuXbpo2LBhevzxx7Vr1y7dfffdCg4OVnZ2tjZv3qyWLVvqT3/6U4nO9+ijj2rMmDF69NFHS7Q0gCQlJSXp7bff1v33369nn31WHTp00Pnz57Vx40bFx8ere/fu5fbdBgChoaEaM2aMpk+frpCQED3wwAM6cuRIsb+73dGyZUu9//77Wrhwodq1a6dq1aqpffv2xca++uqr+vTTT9WnTx81aNBAFy5cMGd1O+4n4cm8OHjwYM2YMUMJCQkKDAws0f2JXnjhBX388ce6++679dxzz6lly5Y6efKk0tPTNWbMGN1+++1KSkrSe++9p7vvvlt//vOf1apVKxUWFurQoUPKyMjQ2LFj1bFjxxKOIIAb0fX8zi9pnixpXaYilbQvJfn+GDp0qAIDA9WlSxfVq1dPOTk5mj59uqxWq+64446K7CZKiUI6PObydVmtVqsaN26sl156SSNGjDC333PPPXrjjTc0Y8YM9e3bVzfffLOGDh2qunXrasiQIU7HW7p0qerVq6clS5Zozpw5atOmjd555x3de++9qlWrlhnXunVrZWZmaty4cfrjH/+okJAQJSYmqmvXrnrmmWdktVolXbp0dN26dRo7dqwee+wxBQcH6/7779fbb7+t3/72t07nHjZsmCwWi1JSUvTAAw+oUaNGevbZZ/Xhhx/q0KFDZpyPj48++ugjvfzyy1q+fLmmT5+u6tWr65ZbblHXrl3dmlnoijvjVlLR0dHasGGDxo4dq4EDB5rj9rvf/U7Dhg3zSLuvpqTvLYDKaejQoerQoYPmzJmjGTNmKCcnR76+vmratKkSEhL01FNPuX3MevXqadeuXfrb3/6mmTNn6siRI6pRo4YaN26se++9VyEhIZIu3U9h/fr1mj59ut566y3NnTtXNWrUUOvWrXXvvfde9fhDhgxRcHCwEhMTdfbsWb3++uul7v/VNGnSRLVq1VJKSop++ukn+fn5KSoqSqmpqRo4cKAZt2jRInXq1EmLFi3SggULVFhYqMjISHXp0kUdOnQo8fmsVqseeOABrVq1Sl26dClyY7vi1KhRQ5s3b1ZycrJee+01TZ48WSEhIbrjjjvM3F9e320AIElTp05VcHCwXn31VS1dulS33367Fi5cqIkTJ5b6d+HTTz+tvXv36rnnnlNeXp4Mw5BhGMXGtmnTRhkZGZo0aZJycnJ00003KTo6Wh999JG5XJYn82LTpk3VuXNnbdmyRX/4wx/M/1Zx5eabb9aOHTs0adIkvfjiizp+/Ljq1KmjO++8U6GhoZIuzXT84osv9OKLL+q1117TgQMHFBgYqAYNGqhnz57MSAdQIqX9nV/SPOlOXaailLQvJfn+uOuuu5Samqp33nlHubm5ql27tu688069+eab5soNqFosxtV+UQCV0JYtW9SlSxetXLlSCQkJLmNjY2P1ww8/6LvvvvPIuU+ePKmmTZuqf//+eu211zxyTPzKnfcWAAAA3uvAgQO6/fbbNWnSJD333HMV3RwAAABJFNJRiWVmZmrr1q1q166dAgMD9dVXX+nFF1+U1WrV119/7XTTzTFjxqht27aqX7++Tpw4oZUrV+r999/XkiVLSrTu4JVycnI0depUde/eXWFhYTp48KDmzJmjf//739q1a5datGjhya7ecNx5bwEAAOC9vvrqK7311lvq3Lmzatasqf379yslJUWnTp3Snj17FB4eXtFNBAAAkMTSLqjEatasqYyMDM2dO1enT59W7dq11bt3b02fPr1IobWgoEDPP/+8cnJyZLFY1Lx5cy1fvlyPPfZYqc7t7++vH374QSNGjNCJEycUFBSkTp066dVXX6WI7gHuvLcAAADwXsHBwdq1a5eWLFmikydPymq1qlu3bpo6dSpFdAAAUKkwIx0AAAAAAAAAABdKdxt0AAAAAAAAAABuEBTSAQAAAAAAAABwgUI6AKCIhQsXqlWrVqpZs6Zq1qypmJgYffzxx+brhmEoOTlZkZGRCgwMVLdu3bR3716nY9hsNo0aNUq1a9dWcHCw+vXrpyNHjjjF5ObmKjExUVarVVarVYmJiTp58qRTzKFDh9S3b18FBwerdu3aGj16tPLz88us7wAAAAAAAFdijfRrKCws1E8//aQaNWrIYrFUdHMA3OAMw9Dp06cVGRmpatXK7m+ha9askY+Pj2677TZJ0rJlyzRz5kx9+eWXatGihWbMmKGpU6cqNTVVTZs21ZQpU7Rp0ybt379fNWrUkCT96U9/0po1a5SamqqwsDCNHTtWJ06cUFZWlnx8fCRJvXv31pEjR/Taa69JkoYNG6ZGjRppzZo1ki7dSLhNmzaqU6eOZs+erePHj2vgwIF68MEHNW/evBL3h1wOoLIpr3zuTcjlACobcnnpkM8BVCZu5XIDLh0+fNiQxIMHDx6V6nH48OFyz4chISHG66+/bhQWFhoRERHGiy++aL524cIFw2q1Gq+++qphGIZx8uRJw9fX10hLSzNjfvzxR6NatWpGenq6YRiGsW/fPkOSsW3bNjNm69athiTj3//+t2EYhrF+/XqjWrVqxo8//mjGvPXWW4a/v7+Rl5dX4raTy3nw4FFZHxWRz6sqcjkPHjwq64Nc7h7yOQ8ePCrjoyS5vLrgkmNm5eHDh1WzZs0S7WO325WRkaHY2Fj5+vqWZfMqPcbiV4zFJYzDr0ozFqdOnVL9+vXN3FQeCgoK9O677+rs2bOKiYnRgQMHlJOTo9jYWDPG399fXbt21ZYtWzR8+HBlZWXJbrc7xURGRio6OlpbtmxRXFyctm7dKqvVqo4dO5oxnTp1ktVq1ZYtWxQVFaWtW7cqOjpakZGRZkxcXJxsNpuysrLUvXv3EvWhNLlc8s7PK32qOryxX/TpVxWRz6s6cvmv6FPV4Y39ok+/IpeXDnWWS7yxT5J39os+VR1lXWehkH4NjsuMHOsEl4TdbldQUJBq1qzpVR/G0mAsfsVYXMI4/Op6xqI8LoH85ptvFBMTowsXLuimm27S6tWr1bx5c23ZskWSFB4e7hQfHh6ugwcPSpJycnLk5+enkJCQIjE5OTlmTN26dYuct27duk4xV54nJCREfn5+ZkxxbDabbDab+fz06dOSpMDAQAUGBpao/5JUvXp1BQUFKTAw0Gs+r/Sp6vDGftGnX9ntdknlk8+9RWl+l0ve+duDPlUd3tgv+lQUudw91Fku8cY+Sd7ZL/pUdZR1nYVCOgCgWFFRUdq9e7dOnjyp9957TwMHDtTGjRvN16/8kjEM45pfPFfGFBdfmpgrTZ8+XZMnTy6yPSMjQ0FBQS7bWJzMzEy396ns6FPV4Y39ok/SuXPnyqglAAAAAMoChXQAQLH8/PzMm422b99eO3fu1Msvv6xnnnlG0qXZ4vXq1TPjjx07Zs4ej4iIUH5+vnJzc51mpR87dkydO3c2Y44ePVrkvD///LPTcbZv3+70em5urux2e5GZ6pebMGGCxowZYz53XKoVGxvr9izGzMxM9erVy2v+Sk+fqg5v7Bd9+tWpU6fKsFUAAAAAPI1COgCgRAzDkM1mU+PGjRUREaHMzEy1bdtWkpSfn6+NGzdqxowZkqR27drJ19dXmZmZGjBggCQpOztbe/bsUUpKiiQpJiZGeXl52rFjhzp06CBJ2r59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9fuqm319/eXv79/ke2+vr6lKt6Vdr/KjD5VHd7YL/okr+s/AAAA4O0opAMAinjuuefUu3dv1a9fX6dPn1ZaWpo+//xzpaeny2KxKCkpSdOmTVOTJk3UpEkTTZs2TUFBQUpISJAkWa1WDRkyRGPHjlVYWJhCQ0M1btw4tWzZUj179pQkNWvWTPfee6+GDh2qRYsWSZKGDRum+Ph4RUVFSZJiY2PVvHlzJSYmaubMmTpx4oTGjRunoUOHujWzHAAAAAAA4HpQSAdQIaKTP5GtwL2b8vzwYp8yag2udPToUSUmJio7O1tWq1WtWrVSenq6evXqJUkaP368zp8/rxEjRig3N1cdO3ZURkaG012u58yZo+rVq2vAgAE6f/68evToodTUVPn4+JgxK1eu1OjRoxUbGytJ6tevn+bPn2++7uPjo3Xr1mnEiBHq0qWLAgMDlZCQoFmzZpXTSAAoC+5+B5D/AaDyIZcDQNVHbcY9FNIBAEUsWbLE5esWi0XJyclKTk6+akxAQIDmzZunefPmXTUmNDRUK1ascHmuBg0aaO3atS5jAAAAAAAAylK1im4AAAAAAAAAAACVGTPSAQAAKjEunQcAAACAiseMdAAAAAAAAAAAXKCQDgAAAAAAAACACxTSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALhAIR0AAAAAAAAAABcopAMAAAAAAAAA4EL1im4AAAAAAAAAAFRm0cmfyFZgKXH8Dy/2KcPWoCIwIx0AAAAAAAAAABcopAMAAAAAAAAA4AKFdAAAAAAAAAAAXKCQDgAAAAAAAACACxTSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALjg8UL6woUL1apVK9WsWVM1a9ZUTEyMPv74Y/N1wzCUnJysyMhIBQYGqlu3btq7d6/TMWw2m0aNGqXatWsrODhY/fr105EjR5xicnNzlZiYKKvVKqvVqsTERJ08edIp5tChQ+rbt6+Cg4NVu3ZtjR49Wvn5+Z7uMgAAAAAAAADAi1X39AFvueUWvfjii7rtttskScuWLdP999+vL7/8Ui1atFBKSopeeuklpaamqmnTppoyZYp69eql/fv3q0aNGpKkpKQkrVmzRmlpaQoLC9PYsWMVHx+vrKws+fj4SJISEhJ05MgRpaenS5KGDRumxMRErVmzRpJUUFCgPn36qE6dOtq8ebOOHz+ugQMHyjAMzZs3z9PdBgAAAAAAAAB4QKNn17m9j7+PoZQOZdCY/8/jM9L79u2r++67T02bNlXTpk01depU3XTTTdq2bZsMw9DcuXM1ceJEPfjgg4qOjtayZct07tw5rVq1SpKUl5enJUuWaPbs2erZs6fatm2rFStW6JtvvtGGDRskSd9++63S09P1+uuvKyYmRjExMVq8eLHWrl2r/fv3S5IyMjK0b98+rVixQm3btlXPnj01e/ZsLV68WKdOnfJ0twEAAIBKhStFAQAAAM8p0zXSCwoKlJaWprNnzyomJkYHDhxQTk6OYmNjzRh/f3917dpVW7ZskSRlZWXJbrc7xURGRio6OtqM2bp1q6xWqzp27GjGdOrUSVar1SkmOjpakZGRZkxcXJxsNpuysrLKstsAAABAhXNcKbpr1y7t2rVL99xzj+6//36zWO64UnT+/PnauXOnIiIi1KtXL50+fdo8RlJSklavXq20tDRt3rxZZ86cUXx8vAoKCsyYhIQE7d69W+np6UpPT9fu3buVmJhovu64UvTs2bPavHmz0tLS9N5772ns2LHlNxgAAADAdfL40i6S9M033ygmJkYXLlzQTTfdpNWrV6t58+ZmkTs8PNwpPjw8XAcPHpQk5eTkyM/PTyEhIUVicnJyzJi6desWOW/dunWdYq48T0hIiPz8/MyY4thsNtlsNvO5Y/a63W6X3W4vUf8dcSWN92aMxa8Yi0sc/fevZpR6X29Rms+Et40BAKDs9O3b1+n51KlTtXDhQm3btk3Nmzd3ulJUurQkY3h4uFatWqXhw4ebV4ouX75cPXv2lCStWLFC9evX14YNGxQXF2deKbpt2zZzksvixYsVExOj/fv3KyoqyrxS9PDhw+Ykl9mzZ2vQoEGaOnWqatasWY6jAgAAAJROmRTSo6KitHv3bp08eVLvvfeeBg4cqI0bN5qvWywWp3jDMIpsu9KVMcXFlybmStOnT9fkyZOLbM/IyFBQUJDLNl4pMzPTrXhvxlj8irG45G/tC93eZ/369WXQkornzmfi3LlzZdgSAIC3Kigo0LvvvlviK0WHDx9+zStF4+LirnmlaFRU1DWvFO3evXuxbfbEBBdH/OX/6w3oU9Xhjf0q7cSYyjwGpX2fKnOfAACeVyaFdD8/P/Nmo+3bt9fOnTv18ssv65lnnpF0abZ4vXr1zPhjx46Zs8cjIiKUn5+v3Nxcp1npx44dU+fOnc2Yo0ePFjnvzz//7HSc7du3O72em5sru91eZKb65SZMmKAxY8aYz0+dOqX69esrNja2xLNl7Ha7MjMz1atXL/n6+pZoH2/FWPyKsbjEMQ5/3VVNtkLXf0C70p7kuDJqVcUozWeCezwAANxRla8U9eQEF8k7JzPQp6rDG/vl7sSYqjApxt33iUkuAHBjKZNC+pUMw5DNZlPjxo0VERGhzMxMtW3bVpKUn5+vjRs3asaMGZKkdu3aydfXV5mZmRowYIAkKTs7W3v27FFKSookKSYmRnl5edqxY4c6dLh0K9bt27crLy/PLLbHxMRo6tSpys7ONov2GRkZ8vf3V7t27a7aVn9/f/n7+xfZ7uvr63bxszT7eCvG4leMxSW2QotsBe4V0r113Nz5THjrGAAAykZVvlLUExNcJO+czECfqg5v7FdpJ8ZU5kkxpX2fmOQCADcWjxfSn3vuOfXu3Vv169fX6dOnlZaWps8//1zp6emyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISJElWq1VDhgzR2LFjFRYWptDQUI0bN04tW7Y012Zs1qyZ7r33Xg0dOlSLFi2SJA0bNkzx8fGKioqSJMXGxqp58+ZKTEzUzJkzdeLECY0bN05Dhw5lHUYAAADcEKrylaKenOByPftVZvSp6vDGfrk7MaYq9N/d96kq9AkA4DnVPH3Ao0ePKjExUVFRUerRo4e2b9+u9PR09erVS5I0fvx4JSUlacSIEWrfvr1+/PFHZWRkqEaNGuYx5syZo/79+2vAgAHq0qWLgoKCtGbNGvn4+JgxK1euVMuWLRUbG6vY2Fi1atVKy5cvN1/38fHRunXrFBAQoC5dumjAgAHq37+/Zs2a5ekuAwAAAFVCcVeKOjiuFHUUyS+/UtTBcaXo5VeBOq4UdSjuStE9e/YoOzvbjCnJlaIAgEumT5+uO+64QzVq1FDdunXVv39/7d+/3ynGMAwlJycrMjJSgYGB6tatm/bu3esUY7PZNGrUKNWuXVvBwcHq16+fjhw54hSTm5urxMREWa1WWa1WJSYm6uTJk04xhw4dUt++fRUcHKzatWtr9OjRys/PL5O+A0Bl4vEZ6UuWLHH5usViUXJyspKTk68aExAQoHnz5mnevHlXjQkNDdWKFStcnqtBgwZau3atyxgAAADAG3GlKAB4h40bN2rkyJG64447dPHiRU2cOFGxsbHat2+fgoODJUkpKSl66aWXlJqaqqZNm2rKlCnq1auX9u/fb05cTEpK0po1a5SWlqawsDCNHTtW8fHxysrKMicuJiQk6MiRI0pPT5d0KacnJiZqzZo1ki7dvLpPnz6qU6eONm/erOPHj2vgwIEyDMNlDQcAvEG5rJEOAAAAoHw5rhTNzs6W1WpVq1atilwpev78eY0YMUK5ubnq2LFjsVeKVq9eXQMGDND58+fVo0cPpaamFrlSdPTo0YqNjZUk9evXT/Pnzzdfd1wpOmLECHXp0kWBgYFKSEjgSlEAKCFHUdth6dKlqlu3rrKysnT33XfLMAzNnTtXEydO1IMPPihJWrZsmcLDw7Vq1SoNHz5ceXl5WrJkiZYvX27+MXTFihWqX7++NmzYoLi4OH377bdKT0/Xtm3b1LFjR0nS4sWLFRMTo/379ysqKkoZGRnat2+fDh8+rMjISEnS7NmzNWjQIE2dOpU/kALwahTSAQAAAC/ElaIA4J3y8vIkXcq/knTgwAHl5OSYf9CULt1nomvXrtqyZYuGDx+urKws2e12p5jIyEhFR0dry5YtiouL09atW2W1Ws0iuiR16tRJVqtVW7ZsUVRUlLZu3aro6GiziC5JcXFxstlsysrKUvfu3cu6+wBQYSikAwAAAAAAVAGGYWjMmDG68847FR0dLenSjaMlFbmBc3h4uA4ePGjG+Pn5Od082hHj2D8nJ0d169Ytcs66des6xVx5npCQEPn5+ZkxV7LZbLLZbObzU6dOSZLsdrvsdnuJ+u2IK2l8VeCNfZK8s1+OvvhXM0q1X2VU2j5dvm9Z8/dxv22O/rjTRndiKaQDAAAAAABUAU899ZS+/vprbd68uchrFovF6blhGEW2XenKmOLiSxNzuenTp2vy5MlFtmdkZCgoKMhl+650+Q2wvYU39knyzn79rX2hW/Hr168vo5Z4jrt9ksqvXykdSr+vO5+/c+fOlTiWQjoAeEijZ9e5Fe/vY1zXF0NZmj59ut5//339+9//VmBgoDp37qwZM2aYN46TLv1Ynjx5sl577TVzbd1XXnlFLVq0MGNsNpvGjRunt956y1xbd8GCBbrlllvMmNzcXI0ePVofffSRpEtr686bN0+1atUyYw4dOqSRI0fq008/dVpb18/Pr+wHAwAAAKgERo0apY8++kibNm1y+j0dEREh6dJs8Xr16pnbjx07Zs4ej4iIUH5+vnJzc51mpR87dkydO3c2Y44ePVrkvD///LPTcbZv3+70em5urux2e5GZ6g4TJkzQmDFjzOenTp1S/fr1FRsbW+I11e12uzIzM9WrVy/5+vqWaJ/Kzhv7JHlnvxx9+uuuarIVuv7j1OX2JMeVYauuT2n7JJVfv6KTP3F7H/9qhv7WvtCtz5/jKpmSoJAOAChi48aNGjlypO644w5dvHhREydOVGxsrPbt26fg4GBJUkpKil566SWlpqaqadOmmjJlinr16qX9+/ebN6pLSkrSmjVrlJaWprCwMI0dO1bx8fHKysoyb1SXkJCgI0eOmDdRGjZsmBITE7VmzRpJUkFBgfr06aM6depo8+bNOn78uAYOHCjDMFyu2QsAAIAbkzdNcJEuTWAZNWqUVq9erc8//1yNGzd2er1x48aKiIhQZmam2rZtK0nKz8/Xxo0bNWPGDElSu3bt5Ovrq8zMTA0YMECSlJ2drT179iglJUWSFBMTo7y8PO3YsUMdOlwakO3btysvL88stsfExGjq1KnKzs42i/YZGRny9/dXu3btim2/v7+//P39i2z39fV1u9Bamn0qO2/sk+Sd/bIVWmQrKHnRuSr0390+SeXXL3fbdTl3Pn/u9IdCOgCgCEdR22Hp0qWqW7eusrKydPfdd8swDM2dO1cTJ07Ugw8+KElatmyZwsPDtWrVKg0fPlx5eXlasmSJli9frp49e0qSVqxYofr162vDhg2Ki4vTt99+q/T0dG3bts28qdHixYsVExOj/fv3KyoqShkZGdq3b58OHz5s3tRo9uzZGjRokKZOnVriWSwAUBLeVnwBAFR9I0eO1KpVq/Thhx+qRo0a5lrkVqtVgYGBslgsSkpK0rRp09SkSRM1adJE06ZNU1BQkBISEszYIUOGaOzYsQoLC1NoaKjGjRunli1bmr/VmzVrpnvvvVdDhw7VokWLJF2a5BIfH29emRobG6vmzZsrMTFRM2fO1IkTJzRu3DgNHTqU3+UAvF61im4AAKDyy8vLkySFhoZKkg4cOKCcnBzFxsaaMf7+/uratau2bNkiScrKypLdbneKiYyMVHR0tBmzdetWWa1Ws4guSZ06dZLVanWKiY6ONovokhQXFyebzaasrKwy6jEAAABQOSxcuFB5eXnq1q2b6tWrZz7efvttM2b8+PFKSkrSiBEj1L59e/3444/KyMgwrxSVpDlz5qh///4aMGCAunTpoqCgIK1Zs8a8UlSSVq5cqZYtWyo2NlaxsbFq1aqVli9fbr7u4+OjdevWKSAgQF26dNGAAQPUv39/zZo1q3wGAwAqEDPSAQAuGYahMWPG6M4771R0dLQkmbNgrlwHMTw8XAcPHjRj/Pz8nNZgdMQ49s/JyVHdunWLnLNu3bpOMVeeJyQkRH5+fmbMlWw2m2w2m/ncseaZ3W4v1d27K/Pd1t1Fn6oOR38cd553d7/KqCr0yd/HvbY5+uJuGyvz+wQAqFwM49rfTRaLRcnJyUpOTr5qTEBAgObNm+dyecTQ0FCtWLHC5bkaNGigtWvXXrNNAOBtKKQDAFx66qmn9PXXX2vz5s1FXrNYnNcsMwyjyLYrXRlTXHxpYi43ffp0TZ48ucj2jIwMBQUFuWxfcbzxjvP0qer4W/tCt+LXr19fRi3xnMrcp9Iu0+Lu5+/cuXOlOxEAAACACkEhHQBwVaNGjdJHH32kTZs26ZZbbjG3R0RESLo0W9xxkyFJOnbsmDl7PCIiQvn5+crNzXWalX7s2DHzZkURERE6evRokfP+/PPPTsfZvn270+u5ubmy2+1FZqo7TJgwQWPGjDGfnzp1SvXr11dsbKxbazd68x3n6VPl5+jXX3dVk62w5Dfa2ZMcV4atuj5VoU/RyZ+4Fe9fzdDf2he6/flzXCkDAAAAoGqgkA4AKMIwDI0aNUqrV6/W559/rsaNGzu93rhxY0VERCgzM1Nt27aVJOXn52vjxo2aMWOGJKldu3by9fVVZmamBgwYIEnKzs7Wnj17lJKSIkmKiYlRXl6eduzYoQ4dLk0D3b59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9eu2Pb7+/vL39+/yPbS3jneG+84T5+qDluhxa071leFMajMfXKnXZdz9/NXFd4nAAAAAL+ikA4AKGLkyJFatWqVPvzwQ9WoUcNci9xqtSowMFAWi0VJSUmaNm2amjRpoiZNmmjatGkKCgpSQkKCGTtkyBCNHTtWYWFhCg0N1bhx49SyZUv17NlTktSsWTPde++9Gjp0qBYtWiRJGjZsmOLj4xUVFSVJio2NVfPmzZWYmKiZM2fqxIkTGjdunIYOHerW7HIAAAAAAIDSopAOAChi4cKFkqRu3bo5bV+6dKkGDRokSRo/frzOnz+vESNGKDc3Vx07dlRGRoZq1Khhxs+ZM0fVq1fXgAEDdP78efXo0UOpqany8fExY1auXKnRo0crNjZWktSvXz/Nnz/ffN3Hx0fr1q3TiBEj1KVLFwUGBiohIUGzZs0qo94DAAAAAAA4o5AOACjCMIxrxlgsFiUnJys5OfmqMQEBAZo3b57mzZt31ZjQ0FCtWLHC5bkaNGigtWvXXrNNAAAAAAAAZaFaRTcAAAAAAAAAAIDKjEI6AAAAAAAAAAAuUEgHAAAAAAAAAMAFCukAAAAAAAAAALhAIR0AAAAAAAAAABcopAMAAAAAAAAA4EL1im4AAAAAAAAAAO8RnfyJbAWWEsf/8GKfMmwN4BnMSAcAAAAAAAAAwAUK6QAAAAAAAAAAuODxQvr06dN1xx13qEaNGqpbt6769++v/fv3O8UYhqHk5GRFRkYqMDBQ3bp10969e51ibDabRo0apdq1ays4OFj9+vXTkSNHnGJyc3OVmJgoq9Uqq9WqxMREnTx50inm0KFD6tu3r4KDg1W7dm2NHj1a+fn5nu42AAAAAAAAAMBLebyQvnHjRo0cOVLbtm1TZmamLl68qNjYWJ09e9aMSUlJ0UsvvaT58+dr586dioiIUK9evXT69GkzJikpSatXr1ZaWpo2b96sM2fOKD4+XgUFBWZMQkKCdu/erfT0dKWnp2v37t1KTEw0Xy8oKFCfPn109uxZbd68WWlpaXrvvfc0duxYT3cbAAAAAAAAAOClPF5IT09P16BBg9SiRQu1bt1aS5cu1aFDh5SVlSXp0mz0uXPnauLEiXrwwQcVHR2tZcuW6dy5c1q1apUkKS8vT0uWLNHs2bPVs2dPtW3bVitWrNA333yjDRs2SJK+/fZbpaen6/XXX1dMTIxiYmK0ePFirV271pwBn5GRoX379mnFihVq27atevbsqdmzZ2vx4sU6deqUp7sOAAAAVBpcKQoAAAB4TvWyPkFeXp4kKTQ0VJJ04MAB5eTkKDY21ozx9/dX165dtWXLFg0fPlxZWVmy2+1OMZGRkYqOjtaWLVsUFxenrVu3ymq1qmPHjmZMp06dZLVatWXLFkVFRWnr1q2Kjo5WZGSkGRMXFyebzaasrCx17969rLsPFMGdqwEAQHlwXCl6xx136OLFi5o4caJiY2O1b98+BQcHS/r1StHU1FQ1bdpUU6ZMUa9evbR//37VqFFD0qUrRdesWaO0tDSFhYVp7Nixio+PV1ZWlnx8fCRdulL0yJEjSk9PlyQNGzZMiYmJWrNmjaRfrxStU6eONm/erOPHj2vgwIEyDEPz5s2rgNEBAAAA3FOmhXTDMDRmzBjdeeedio6OliTl5ORIksLDw51iw8PDdfDgQTPGz89PISEhRWIc++fk5Khu3bpFzlm3bl2nmCvPExISIj8/PzPmSjabTTabzXzumLlut9tlt9tL1G9HXEnjvRlj8SvHGPhXM0q1n7co7Thcvm9l5e/jXp8cY+BOvyr7GAAAKg9HUdth6dKlqlu3rrKysnT33XcXuVJUkpYtW6bw8HCtWrVKw4cPN68UXb58uXr27ClJWrFiherXr68NGzYoLi7OvFJ027Zt5iSXxYsXKyYmRvv371dUVJR5pejhw4fNSS6zZ8/WoEGDNHXqVNWsWbMcRwYAAABwX5kW0p966il9/fXX2rx5c5HXLBbnGbmGYRTZdqUrY4qLL03M5aZPn67JkycX2Z6RkaGgoCCX7btSZmamW/HejLH41d/aF7oVv379+jJqScVydxykyj8WKR1Kt587/z7OnTtXupMAAG54Ve1KUU9McHHEX/6/3oA+VR2O/rR7IV22wpJflbonOa6smnTdqsIEofKY4FKaeABA1VZmhfRRo0bpo48+0qZNm3TLLbeY2yMiIiRdmi1er149c/uxY8fM2eMRERHKz89Xbm6u06z0Y8eOqXPnzmbM0aNHi5z3559/djrO9u3bnV7Pzc2V3W4vMlPdYcKECRozZoz5/NSpU6pfv75iY2NLPFPGbrcrMzNTvXr1kq+vb4n28VaMxa8cY/HXXdW85kd0aZR2HKTKPxbRyZ+4Fe9fzdDf2he69e+D+zsAAEqjKl4p6skJLpJ3TuygT1WHN06mqcx9Ko8JLhKTXADgRuPxQrphGBo1apRWr16tzz//XI0bN3Z6vXHjxoqIiFBmZqbatm0rScrPz9fGjRs1Y8YMSVK7du3k6+urzMxMDRgwQJKUnZ2tPXv2KCUlRZIUExOjvLw87dixQx06XPqW3L59u/Ly8sxie0xMjKZOnars7GyzaJ+RkSF/f3+1a9eu2Pb7+/vL39+/yHZfX1+3C8Gl2cdbMRa/shVa3Foj3VvHzd1xkCr/WLjbHwd3/n1U9jEAAFROVfFKUU9McJG8c2IHfao6vHEyTVXoU3lMcJGY5AIANxqPF9JHjhypVatW6cMPP1SNGjXMGSZWq1WBgYGyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISzNghQ4Zo7NixCgsLU2hoqMaNG6eWLVuaazM2a9ZM9957r4YOHapFixZJunRTo/j4eEVFRUmSYmNj1bx5cyUmJmrmzJk6ceKExo0bp6FDh7IOIwAAAG4IVfVKUU9OcLme/Soz+lR1eONkmsrcp/KY4OKIBwDcOKp5+oALFy5UXl6eunXrpnr16pmPt99+24wZP368kpKSNGLECLVv314//vijMjIyVKNGDTNmzpw56t+/vwYMGKAuXbooKChIa9askY+PjxmzcuVKtWzZUrGxsYqNjVWrVq20fPly83UfHx+tW7dOAQEB6tKliwYMGKD+/ftr1qxZnu42AAAAUKkYhqGnnnpK77//vj799FOXV4o6OK4UdRTJL79S1MFxpejlV4E6rhR1KO5K0T179ig7O9uMudaVogAAAEBlUiZLu1yLxWJRcnKykpOTrxoTEBCgefPmad68eVeNCQ0N1YoVK1yeq0GDBlq7du012wQAAAB4E64UBQAAADynzG42CgAAAKDiLFy4UJLUrVs3p+1Lly7VoEGDJF26UvT8+fMaMWKEcnNz1bFjx2KvFK1evboGDBig8+fPq0ePHkpNTS1ypejo0aMVGxsrSerXr5/mz59vvu64UnTEiBHq0qWLAgMDlZCQwJWiAIAbXnTyJ24vR/TDi33KqDUAXKGQDgAAAHghrhQFAAAAPMfja6QDAAAAAAAAAOBNKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkA4AAAAAAAAAgAvcbBQAgBtQdPInshVYShz/w4t9yrA1nuFun6Sq0S8AAAAAQMVjRjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAVFKbNm1S3759FRkZKYvFog8++MDpdcMwlJycrMjISAUGBqpbt27au3evU4zNZtOoUaNUu3ZtBQcHq1+/fjpy5IhTTG5urhITE2W1WmW1WpWYmKiTJ086xRw6dEh9+/ZVcHCwateurdGjRys/P78sug0AlQ6FdAAAAAAAgErq7Nmzat26tebPn1/s6ykpKXrppZc0f/587dy5UxEREerVq5dOnz5txiQlJWn16tVKS0vT5s2bdebMGcXHx6ugoMCMSUhI0O7du5Wenq709HTt3r1biYmJ5usFBQXq06ePzp49q82bNystLU3vvfeexo4dW3adB4BKpHpFNwAAAAAAAADF6927t3r37l3sa4ZhaO7cuZo4caIefPBBSdKyZcsUHh6uVatWafjw4crLy9OSJUu0fPly9ezZU5K0YsUK1a9fXxs2bFBcXJy+/fZbpaena9u2berYsaMkafHixYqJidH+/fsVFRWljIwM7du3T4cPH1ZkZKQkafbs2Ro0aJCmTp2qmjVrlsNoAEDFYUY6AAAAAABAFXTgwAHl5OQoNjbW3Obv76+uXbtqy5YtkqSsrCzZ7XanmMjISEVHR5sxW7duldVqNYvoktSpUydZrVanmOjoaLOILklxcXGy2WzKysoq034CQGXAjHQAQLE2bdqkmTNnKisrS9nZ2Vq9erX69+9vvm4YhiZPnqzXXntNubm56tixo1555RW1aNHCjLHZbBo3bpzeeustnT9/Xj169NCCBQt0yy23mDG5ubkaPXq0PvroI0lSv379NG/ePNWqVcuMOXTokEaOHKlPP/1UgYGBSkhI0KxZs+Tn51fm4wAAAABUVjk5OZKk8PBwp+3h4eE6ePCgGePn56eQkJAiMY79c3JyVLdu3SLHr1u3rlPMlecJCQmRn5+fGVMcm80mm81mPj916pQkyW63y263l6ifjriSxlcFjr74VzNKvW9lVNp+0afyVRU+f/4+7rfN0R932uhOLIV0AECxHGsxPv744/rd735X5HXHWoypqalq2rSppkyZol69emn//v2qUaOGpEtrMa5Zs0ZpaWkKCwvT2LFjFR8fr6ysLPn4+Ei6tBbjkSNHlJ6eLkkaNmyYEhMTtWbNGkm/rsVYp04dbd68WcePH9fAgQNlGIbmzZtXTqMBAAAAVF4Wi8XpuWEYRbZd6cqY4uJLE3Ol6dOna/LkyUW2Z2RkKCgoyGUbr5SZmelWfFXwt/aFbu+zfv36MmiJZ7nbL/pUMSrz5y+lQ+n3dSdXnDt3rsSxFNIBAMViLUYAAACgcouIiJB0abZ4vXr1zO3Hjh0zZ49HREQoPz9fubm5TrPSjx07ps6dO5sxR48eLXL8n3/+2ek427dvd3o9NzdXdru9yEz1y02YMEFjxowxn586dUr169dXbGxsiX/L2+12ZWZmqlevXvL19S3RPpWdo09/3VVNtkLXf/S40p7kuDJq1fUrbb/oU/mqCp+/6ORP3N7Hv5qhv7UvdCtXOK6SKQkK6QAAt11rLcbhw4dfcy3GuLi4a67FGBUVdc21GLt3716kfZ64fNQRf/n/egMuSyx+38qI96rofuXB3UtIS3P5aGniAQAoTuPGjRUREaHMzEy1bdtWkpSfn6+NGzdqxowZkqR27drJ19dXmZmZGjBggCQpOztbe/bsUUpKiiQpJiZGeXl52rFjhzp0uDQNdPv27crLyzOL7TExMZo6daqys7PNon1GRob8/f3Vrl27q7bR399f/v7+Rbb7+vq6XRQvzT6Vna3QIluBe4XMqjAG7vaLPlWMyvz5c7ddl3MnV7jTHwrpAAC3Vfa1GD15+ajEJaQSlyVWJN6r8u1TaS8hdTdPuHMJKQDgxnbmzBl9//335vMDBw5o9+7dCg0NVYMGDZSUlKRp06apSZMmatKkiaZNm6agoCAlJCRIkqxWq4YMGaKxY8cqLCxMoaGhGjdunFq2bGleOdqsWTPde++9Gjp0qBYtWiTp0pKL8fHxioqKkiTFxsaqefPmSkxM1MyZM3XixAmNGzdOQ4cO5SpRADcECukAgFKrrGsxeuLyUYlLSC/HZYnlj/fqV+XZJ3cvIS3N5aOSe5eQAgBubLt27XK6CtPxO3fgwIFKTU3V+PHjdf78eY0YMUK5ubnq2LGjMjIyzPsWSdKcOXNUvXp1DRgwQOfPn1ePHj2Umppq3rdIklauXKnRo0ebV5T269dP8+fPN1/38fHRunXrNGLECHXp0kWBgYFKSEjQrFmzynoIAKBSoJAOAHBbZV+L0ZOXj17PfpUZlyVe4o39ok/Xp7SXkLqbJ6rC+wQAqBy6desmw7j60mMWi0XJyclKTk6+akxAQIDmzZunefPmXTUmNDRUK1ascNmWBg0aaO3atddsMwB4o2oV3QAAQNVz+VqMDo61GB1F8svXYnRwrMV4+TqLjrUYHYpbi3HPnj3Kzs42Y0qyFiMAAAAAAICnMCMdAFAs1mIEAAAAAAC4hEI6ykV08iduXSr9w4t9yrA1AEqCtRgBAAAAAAAu8fjSLps2bVLfvn0VGRkpi8WiDz74wOl1wzCUnJysyMhIBQYGqlu3btq7d69TjM1m06hRo1S7dm0FBwerX79+OnLkiFNMbm6uEhMTZbVaZbValZiYqJMnTzrFHDp0SH379lVwcLBq166t0aNHKz8/39NdBgCv5FiL8cpHamqqpF/XYszOztaFCxe0ceNGRUdHOx3DsRbj8ePHde7cOa1Zs0b169d3inGsxXjq1CmdOnVKK1asUK1atZxiHGsxnjt3TsePH9e8efOKXQMdAOCM3+aoaqKTP1GjZ9e59QAAACgPHi+knz17Vq1bt3aaTXi5lJQUvfTSS5o/f7527typiIgI9erVS6dPnzZjkpKStHr1aqWlpWnz5s06c+aM4uPjVVBQYMYkJCRo9+7dSk9PV3p6unbv3q3ExETz9YKCAvXp00dnz57V5s2blZaWpvfee09jx471dJcBAACASonf5gAAAIBneHxpl969e6t3797FvmYYhubOnauJEyfqwQcflCQtW7ZM4eHhWrVqlYYPH668vDwtWbJEy5cvN9fQXbFiherXr68NGzYoLi5O3377rdLT07Vt2zZ17NhRkrR48WLFxMRo//79ioqKUkZGhvbt26fDhw8rMjJSkjR79mwNGjRIU6dOZV1dAAAAeD1+mwMAAACeUa5rpB84cEA5OTnmOriS5O/vr65du2rLli0aPny4srKyZLfbnWIiIyMVHR2tLVu2KC4uTlu3bpXVajV/qEtSp06dZLVatWXLFkVFRWnr1q2Kjo42f6hLUlxcnGw2m7KyspzW/b2czWaTzWYzn586dUqSZLfbZbfbS9RPR1xJ472ZYwz8qxml2s+bMBaXlHYcLt+3svL3ca9PjjFwp1+VfQwAAFVHVfhtDgAAAFQW5VpIz8nJkSSFh4c7bQ8PD9fBgwfNGD8/P4WEhBSJceyfk5OjunXrFjl+3bp1nWKuPE9ISIj8/PzMmOJMnz5dkydPLrI9IyNDQUFB1+qik8zMTLfivdnf2he6Fb9+/foyaknFYywucXccpMo/FikdSrefO7ni3LlzpTsJAABXqOy/zT0xwcURf/n/egNv7pO3Tbbwxsk0VaFP5THBpTTxAICqrVwL6Q4Wi8XpuWEYRbZd6cqY4uJLE3OlCRMmaMyYMebzU6dOqX79+oqNjS3xJad2u12ZmZnq1auXfH19S7SPt3KMxV93VZOt0PV7fLk9yXFl2KqKwVhcUtpxkCr/WEQnf+JWvH81Q39rX+hWrnAUEQAA8JTK+tvckxNcJO+c5OKNffLGyRaSd06mqcx9Ko8JLhKTXADgRlOuhfSIiAhJl2ak1KtXz9x+7Ngxc4ZKRESE8vPzlZub6zTz5dixY+rcubMZc/To0SLH//nnn52Os337dqfXc3NzZbfbi8yGuZy/v7/8/f2LbPf19XW7KF6afbyVrdAiW0HJi6bePG6MxSXujoNU+cfC3f44uJMrKvsYAACqjsr+29wTE1wk75zk4s198rbJFt44maYq9Kk8JrhITHIBgBtNuRbSGzdurIiICGVmZqpt27aSpPz8fG3cuFEzZsyQJLVr106+vr7KzMzUgAEDJEnZ2dnas2ePUlJSJEkxMTHKy8vTjh071KHDpT81b9++XXl5eeYP+piYGE2dOlXZ2dnmfxhkZGTI399f7dq1K89uAwAAAJVOZf9t7skJLtezX2XmjX3yxskWkndOpqnMfSqPCS6OeADAjcPjhfQzZ87o+++/N58fOHBAu3fvVmhoqBo0aKCkpCRNmzZNTZo0UZMmTTRt2jQFBQUpISFBkmS1WjVkyBCNHTtWYWFhCg0N1bhx49SyZUv17NlTktSsWTPde++9Gjp0qBYtWiRJGjZsmOLj4xUVFSVJio2NVfPmzZWYmKiZM2fqxIkTGjdunIYOHerWDBYAAACgquK3OQAAAOAZHi+k79q1S927dzefOy7HHDhwoFJTUzV+/HidP39eI0aMUG5urjp27KiMjAzVqFHD3GfOnDmqXr26BgwYoPPnz6tHjx5KTU2Vj4+PGbNy5UqNHj1asbGxkqR+/fpp/vz55us+Pj5at26dRowYoS5duigwMFAJCQmaNWuWp7sMAAAAVEr8NgcAAAA8w+OF9G7duskwrn6HbIvFouTkZCUnJ181JiAgQPPmzdO8efOuGhMaGqoVK1a4bEuDBg20du3aa7YZAAAA8Eb8NgcAAAA8o1pFNwAAAAAAAAAAgMqMQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAWPr5GOX0UnfyJbgcWtfX54sU8ZtQYAAAAAAAAAUBoU0gEAAACgCnJ34g6TdgAAAEqPpV0AAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwIUbopC+YMECNW7cWAEBAWrXrp2++OKLim4SAKAUyOcAUPWRywGg6iOXA7gReX0h/e2331ZSUpImTpyoL7/8UnfddZd69+6tQ4cOVXTTAABuIJ8DQNVHLgeAqo9cDuBG5fWF9JdeeklDhgzRE088oWbNmmnu3LmqX7++Fi5cWNFNAwC4gXwOAFUfuRwAqj5yOYAbVfWKbkBZys/PV1ZWlp599lmn7bGxsdqyZUux+9hsNtlsNvN5Xl6eJOnEiROy2+0lOq/dbte5c+dU3V5NBYUWt9p8/Phxt+Iru9KOhbeNg8RYOHjzv4/qF8+6F19o6Ny5Qh0/fly+vr4l2uf06dOSJMMw3G5fVeZuPvdELpd+/by68x5Vdt6Yi7w1r/Be/ao8+1QeuVy6MfM5udxzqsK/JXeRy53Rp+tDLi87FV1nIZdfQo4oX/TJWXn1y91cLpVDncXwYj/++KMhyfjnP//ptH3q1KlG06ZNi91n0qRJhiQePHjwqNSPw4cPl0carTTczefkch48eFSVx42Uz8nlPHjw8NYHuZw6Cw8ePKr+oyS53KtnpDtYLM5/WTEMo8g2hwkTJmjMmDHm88LCQp04cUJhYWFX3edKp06dUv369XX48GHVrFmz9A33AozFrxiLSxiHX5VmLAzD0OnTpxUZGVnGraucSprPPZHLJe/8vNKnqsMb+0WffnUj53Ny+fWjT1WHN/aLPv2KXP4r6izu88Y+Sd7ZL/pUdZR1ncWrC+m1a9eWj4+PcnJynLYfO3ZM4eHhxe7j7+8vf39/p221atUq1flr1qzpVR/G68FY/IqxuIRx+JW7Y2G1WsuwNZWTu/nck7lc8s7PK32qOryxX/Tpkhstn5PLPY8+VR3e2C/6dAm5/BLqLKXnjX2SvLNf9KnqKKs6i1ffbNTPz0/t2rVTZmam0/bMzEx17ty5gloFAHAX+RwAqj5yOQBUfeRyADcyr56RLkljxoxRYmKi2rdvr5iYGL322ms6dOiQnnzyyYpuGgDADeRzAKj6yOUAUPWRywHcqLy+kP7www/r+PHjeuGFF5Sdna3o6GitX79eDRs2LLNz+vv7a9KkSUUuXboRMRa/YiwuYRx+xVi4h3zuGfSp6vDGftEnkMs9gz5VHd7YL/oEcrlneGOfJO/sF32qOsq6XxbDMIwyOTIAAAAAAAAAAF7Aq9dIBwAAAAAAAADgelFIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKR70KZNm9S3b19FRkbKYrHogw8+qOgmVZjp06frjjvuUI0aNVS3bl31799f+/fvr+hmlbuFCxeqVatWqlmzpmrWrKmYmBh9/PHHFd2sSmH69OmyWCxKSkqq6KaUu+TkZFksFqdHRERERTcLV1iwYIEaN26sgIAAtWvXTl988UVFN+m6eON3lDd+19wI3xvekv/J5VUDubzyI5dXTeRylCdvy+WS9+Vzb8zlEvm8qijPXE4h3YPOnj2r1q1ba/78+RXdlAq3ceNGjRw5Utu2bVNmZqYuXryo2NhYnT17tqKbVq5uueUWvfjii9q1a5d27dqle+65R/fff7/27t1b0U2rUDt37tRrr72mVq1aVXRTKkyLFi2UnZ1tPr755puKbhIu8/bbbyspKUkTJ07Ul19+qbvuuku9e/fWoUOHKrpppeaN31He+F3j7d8b3pb/yeWVG7m8aiCXVz3kcpQnb8zlkvflc2/M5RL5vCopt1xuoExIMlavXl3Rzag0jh07ZkgyNm7cWNFNqXAhISHG66+/XtHNqDCnT582mjRpYmRmZhpdu3Y1nn766YpuUrmbNGmS0bp164puBlzo0KGD8eSTTzptu/32241nn322glrkWd76HeWt3zXe8r3hbfmfXF75kcurJnJ55UYuR3nz9lxuGN6Zz701lxsG+bwyKs9czox0lIu8vDxJUmhoaAW3pOIUFBQoLS1NZ8+eVUxMTEU3p8KMHDlSffr0Uc+ePSu6KRXqP//5jyIjI9W4cWM98sgj+t///lfRTcL/l5+fr6ysLMXGxjptj42N1ZYtWyqoVSgJb/uu8bbvDW/M/+TyyotcXnWRyys3cjnKE7m86vK2XC6Rzyu78srl1cvkqMBlDMPQmDFjdOeddyo6Orqim1PuvvnmG8XExOjChQu66aabtHr1ajVv3ryim1Uh0tLS9K9//Us7d+6s6KZUqI4dO+rNN99U06ZNdfToUU2ZMkWdO3fW3r17FRYWVtHNu+H98ssvKigoUHh4uNP28PBw5eTkVFCrcC3e9F3jjd8b3pj/yeWVG7m8aiKXV27kcpQ3cnnV5E25XCKfVwXlmcsppKPMPfXUU/r666+1efPmim5KhYiKitLu3bt18uRJvffeexo4cKA2btxY5ROvuw4fPqynn35aGRkZCggIqOjmVKjevXub/79ly5aKiYnRrbfeqmXLlmnMmDEV2DJczmKxOD03DKPINlQe3vRd423fG96a/8nlVQO5vGohl1de5HJUJHJ51eJNuVwin1cF5ZnLKaSjTI0aNUofffSRNm3apFtuuaWim1Mh/Pz8dNttt0mS2rdvr507d+rll1/WokWLKrhl5SsrK0vHjh1Tu3btzG0FBQXatGmT5s+fL5vNJh8fnwpsYcUJDg5Wy5Yt9Z///KeimwJJtWvXlo+PT5FZLseOHSsyGwaVg7d913jb98aNkv/J5ZULubzqIZdXbuRyVARyedXjbblcIp9XRWWZy1kjHWXCMAw99dRTev/99/Xpp5+qcePGFd2kSsMwDNlstopuRrnr0aOHvvnmG+3evdt8tG/fXn/4wx+0e/fuKp+or4fNZtO3336revXqVXRToEs/lNq1a6fMzEyn7ZmZmercuXMFtQrFuVG+a6r698aNkv/J5ZULubzqIJdXDeRyVARyedVxo+RyiXxeFZRlLmdGugedOXNG33//vfn8wIED2r17t0JDQ9WgQYMKbFn5GzlypFatWqUPP/xQNWrUMP+CbLVaFRgYWMGtKz/PPfecevfurfr16+v06dNKS0vT559/rvT09IpuWrmrUaNGkfXRgoODFRYW5hXrprlj3Lhx6tu3rxo0aKBjx45pypQpOnXqlAYOHFjRTcP/N2bMGCUmJqp9+/aKiYnRa6+9pkOHDunJJ5+s6KaVmjd+R3njd403fm94a/4nl1d+5PKqgVxeNZDLUVG8MZdL3pfPvTGXS+TzqqJcc7kBj/nss88MSUUeAwcOrOimlbvixkGSsXTp0opuWrkaPHiw0bBhQ8PPz8+oU6eO0aNHDyMjI6Oim1VpdO3a1Xj66acruhnl7uGHHzbq1atn+Pr6GpGRkcaDDz5o7N27t6KbhSu88sor5r/f3/72t8bGjRsruknXxRu/o7zxu+ZG+d7whvxPLq8ayOWVH7m86iKXo7x4Wy43DO/L596Yyw2DfF5VlGcutxiGYXi+PA8AAAAAAAAAgHdgjXQAAAAAAAAAAFygkA4AAAAAAAAAgAsU0gEAAAAAAAAAcIFCOgAAAAAAAAAALlBIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkA4AAAAAAAAAgAsU0gEAAAAAAAAAcIFCOgAAAAAAAAAALlBIBwAAAAAAAADABQrpAAAAAAAAAAC4QCEdAAAAAAAAAAAXKKQDAAAAAAAAAOAChXQAAAAAAAAAAFygkF5FpKamymKxmI+AgABFRESoe/fumj59uo4dO1bRTSyx9evXKzk5uaKbUayyHOfPP/9cFotFn3/+uecaXAI//PCDLBaLUlNTPXbMQYMGyWKxqEaNGjpz5kyR1w8ePKhq1arJYrE4vdflNQaV+TMGeML//d//yWKxKDo62qPHTU5OlsVi8egxrzRo0CA1atSoRHGX5+Pg4GA1atRI/fr109KlS2Wz2UrdhvLoZ3Ec3zE//PCDx47ZqFEjWSwWdevWrdjX33zzTXMML8+95TUGCxYs8Oj3DwAAAABUFArpVczSpUu1detWZWZm6pVXXlGbNm00Y8YMNWvWTBs2bKjo5pXI+vXrNXny5IpuhkveMM4O9erV09atW9WnTx+PHtfX11cXL17U22+/XeS1pUuXqkaNGkW2//a3v9XWrVv129/+1qNtuVJV+IwB1+ONN96QJO3du1fbt2/32HGfeOIJbd261WPHu16BgYHaunWrtm7dqrVr1+qFF15QcHCwhg4dqnbt2unIkSMV3US39OnTR1u3blW9evU8etwaNWpo06ZN+u9//1vktTfeeEM1a9Yssr283msK6QAAAAC8BYX0KiY6OlqdOnXSXXfdpd/97neaM2eOvv76awUHB+vBBx/U0aNHK7qJV3Xu3Lkqc/yqPM5X8vf3V6dOnVSnTh2PHtfPz0/9+/c3C3oOhmEoNTVVDz/8cJF9atasqU6dOhVb1AFQMrt27dJXX31l/nFsyZIlJdqvoKDgqrO4HfnzlltuUadOnTzTUA+oVq2aOnXqpE6dOql79+764x//qLfeekvr16/Xd999p4ceeqiim+iWOnXqqFOnTvL39/foce+8807dfPPNRfLxf//7X23atKnYfFzZ3msAAAAAqOwopHuBBg0aaPbs2Tp9+rQWLVrk9NquXbvUr18/hYaGKiAgQG3bttU777zjFOO41DwzM1OPP/64QkNDFRwcrL59++p///ufU2xmZqbuv/9+3XLLLQoICNBtt92m4cOH65dffnGKc1wy/q9//UsPPfSQQkJCdOutt2rQoEF65ZVXJMnpkv0ffvjB5RIkVy4RcrXjS5cKuQsWLFCbNm0UGBiokJAQPfTQQ0X64q7rHefi7Nq1S4888ogaNWqkwMBANWrUSI8++qgOHjxoxvzwww+qXr26pk+fXmT/TZs2yWKx6N13373qOYobV8f47d27V48++qisVqvCw8M1ePBg5eXllWA0Lhk8eLC2bNmi/fv3m9s2bNiggwcP6vHHHy8SX9zSLoMGDdJNN92k77//Xvfdd59uuukm1a9fX2PHjnUq+l1tWZgr++fqMyaV/PPx5ZdfKj4+XnXr1pW/v78iIyPVp0+fKjcDFt7HUTh/8cUX1blzZ6WlpRX5Q6Lj30VKSoqmTJmixo0by9/fX5999pnL/Hnlch/9+/dXw4YNVVhYWKQdHTt2dLq65JVXXtHdd9+tunXrKjg4WC1btlRKSorsdrvHxyA2NlZDhw7V9u3btWnTJqfX3n77bcXExCg4OFg33XST4uLi9OWXX17zmG+//bZiY2NVr149BQYGqlmzZnr22Wd19uxZM2b58uWyWCzFzuR+4YUX5Ovrq59++umq5yhuaZdu3bopOjpaO3fu1F133aWgoCD95je/0YsvvljsuBenWrVq+uMf/6hly5Y57fPGG2+ofv366tmzZ5F9ilvapVGjRoqPj1d6erp++9vfKjAwULfffnuRAv3VloW5sn+NGjXS3r17tXHjRjMXX76sz6lTpzRu3Dg1btxYfn5+uvnmm5WUlOQ05pL07rvvqmPHjrJareb4DB48uERjAwAAAACeQiHdS9x3333y8fFxKih89tln6tKli06ePKlXX31VH374odq0aaOHH3642GL1kCFDVK1aNa1atUpz587Vjh071K1bN508edKM+e9//6uYmBgtXLhQGRkZev7557V9+3bdeeedxRZLHnzwQd12221699139eqrr+qvf/2rOYPQcbn+9VzmfuXxJWn48OFKSkpSz5499cEHH2jBggXau3evOnfufN0zyT0xzpf74YcfFBUVpblz5+qTTz7RjBkzlJ2drTvuuMP844RjTeBXX31VBQUFTvvPnz9fkZGReuCBB0rVn9/97ndq2rSp3nvvPT377LNatWqV/vznP5d4/549e6phw4ZORZYlS5bo7rvvVpMmTUp8HLvdrn79+qlHjx768MMPNXjwYM2ZM0czZsxwqz+SrvkZK8nn4+zZs+rVq5eOHj2qV155RZmZmZo7d64aNGig06dPu90mwFPOnz+vt956S3fccYeio6M1ePBgnT59+qp/TPu///s/ffrpp5o1a5Y+/vhj3X777eZrxeXPKw0ePFiHDh3Sp59+6rT93//+t3bs2OH0B7P//ve/SkhI0PLly7V27VoNGTJEM2fO1PDhwz3Q86L69esnSU75eNq0aXr00UfVvHlzvfPOO1q+fLlOnz6tu+66S/v27XN5vP/85z+67777tGTJEqWnpyspKUnvvPOO+vbta8Y8/PDDioiIMP9Y53Dx4kUtWrRIDzzwgCIjI93uS05Ojv7whz/oscce00cffaTevXtrwoQJWrFiRYmPMXjwYP3000/65JNPJF26AmHZsmUaNGiQqlUr+c+9r776SmPHjtWf//xnffjhh2rVqpWGDBlS5A8WJbF69Wr95je/Udu2bc1cvHr1akmXroLo2rWrli1bptGjR+vjjz/WM888o9TUVPXr10+GYUi6lMcffvhh/eY3v1FaWprWrVun559/XhcvXnS7PQAAAABwXQxUCUuXLjUkGTt37rxqTHh4uNGsWTPz+e233260bdvWsNvtTnHx8fFGvXr1jIKCAqdjP/DAA05x//znPw1JxpQpU4o9X2FhoWG3242DBw8akowPP/zQfG3SpEmGJOP5558vst/IkSON4j56Bw4cMCQZS5cuLfKaJGPSpEnXPP7WrVsNScbs2bOdth8+fNgIDAw0xo8fX2xfHMpynD/77DNDkvHZZ59d9dgXL140zpw5YwQHBxsvv/yyud2x7+rVq81tP/74o1G9enVj8uTJLvtU3Lg6xi8lJcUpdsSIEUZAQIBRWFjo8pgDBw40goODzWNFREQYdrvdOH78uOHv72+kpqYaP//8c5H3rbgxGDhwoCHJeOedd5zOcd999xlRUVEu971a/672GSvp52PXrl2GJOODDz5wOQ5AeXvzzTcNScarr75qGIZhnD592rjpppuMu+66yynO8e/i1ltvNfLz851ec5WfHa852O12Izw83EhISHCKGz9+vOHn52f88ssvxbazoKDAsNvtxptvvmn4+PgYJ06cMF8bOHCg0bBhw2v29fI8U5xvv/3WkGT86U9/MgzDMA4dOmRUr17dGDVqlFPc6dOnjYiICGPAgAFX7eeVHN9vGzduNCQZX331ldO+fn5+xtGjR81tb7/9tiHJ2Lhxo8s+Ob5jDhw4YG7r2rWrIcnYvn27U2zz5s2NuLg4l8czDMNo2LCh0adPH/NYDz30kGEYhrFu3TrDYrEYBw4cMN59990i+bO4MWjYsKEREBBgHDx40Nx2/vx5IzQ01Bg+fLjLfa/WvxYtWhhdu3YtEjt9+nSjWrVqRb5v//73vxuSjPXr1xuGYRizZs0yJBknT5685lgAAAAAQFliRroXMf7/7C1J+v777/Xvf/9bf/jDHyRdmi3neNx3333Kzs52Wo5Dkhnr0LlzZzVs2FCfffaZue3YsWN68sknVb9+fVWvXl2+vr5q2LChJOnbb78t0qbf/e53Hutfca48/tq1a2WxWPTYY4859TkiIkKtW7cusixIaVzvOF/uzJkzeuaZZ3TbbbepevXqql69um666SadPXvWaTy7deum1q1bO82CfPXVV2WxWDRs2LBS98Uxo9OhVatWunDhgo4dO1biYzz++OM6evSoPv74Y61cuVJ+fn76/e9/71Y7LBaL06xPR1suX+LGE0r6+bjtttsUEhKiZ555Rq+++uo1Z7IC5WXJkiUKDAzUI488Ikm66aab9Pvf/15ffPGF/vOf/xSJ79evn3x9fYs9Vknyc/Xq1fXYY4/p/fffN5d9Kigo0PLly3X//fcrLCzMjP3yyy/Vr18/hYWFycfHR76+vvrjH/+ogoICfffdd6XprkuX52JJ+uSTT3Tx4kX98Y9/dPr3HRAQoK5du14z///vf/9TQkKCIiIizPZ37dpVkvP325/+9CdJ0uLFi81t8+fPV8uWLXX33XeXqi8RERHq0KGD07bS5MDBgwfro48+0vHjx7VkyRJ1797daSmVkmjTpo0aNGhgPg8ICFDTpk3LJB9HR0erTZs2Tu9XXFyc0zJed9xxhyRpwIABeuedd/Tjjz96tB0AAAAAUFIU0r3E2bNndfz4cfOScscSFePGjZOvr6/TY8SIEZJUZF3ziIiIIseNiIjQ8ePHJUmFhYWKjY3V+++/r/Hjx+sf//iHduzYoW3btkm6tOTAlUq7ZEtJXXn8o0ePyjAMhYeHF+n3tm3bivTZXZ4Y58slJCRo/vz5euKJJ/TJJ59ox44d2rlzp+rUqVNkPEePHq1//OMf2r9/v+x2uxYvXqyHHnqo2PetpC4vgkkyb4BX3Ht5NQ0bNlSPHj30xhtv6I033tAjjzyioKAgt9oRFBSkgICAIm25cOGCW8e5lpJ+PqxWqzZu3Kg2bdroueeeU4sWLRQZGalJkyaVyXrPQEl8//332rRpk/r06SPDMHTy5EmdPHnSXMroynWsJdc5uKT5efDgwbpw4YLS0tIkXSpYZ2dnOy3rcujQId1111368ccf9fLLL+uLL77Qzp07zT/+uZNTSspR2L0yH99xxx1F/n2//fbbLnPxmTNndNddd2n79u2aMmWKPv/8c+3cuVPvv/9+kfaHh4fr4Ycf1qJFi1RQUKCvv/5aX3zxhZ566qlS9+XKXCxdyoHujttDDz2kgIAAzZkzR2vWrNGQIUMqrC3XcvToUX399ddF3qsaNWrIMAzz/br77rv1wQcfmH8kueWWWxQdHa233nrLo+0BAAAAgGupXtENgGesW7dOBQUF6tatmySpdu3akqQJEybowQcfLHafqKgop+c5OTlFYnJycnTbbbdJkvbs2aOvvvpKqampGjhwoBnz/fffX7Vdxd2M7GochdTLbzApySzkl+T4tWvXlsVi0RdffGEWhS9X3DZ3eGKcHfLy8rR27VpNmjRJzz77rLndZrPpxIkTReITEhL0zDPP6JVXXlGnTp2Uk5OjkSNHXld/PGXw4MF67LHHVFhYqIULF5bJOa72+XDnjyPufD5atmyptLQ0GYahr7/+WqmpqXrhhRcUGBjo9H4B5eWNN96QYRj6+9//rr///e9FXl+2bJmmTJkiHx8fc5urHFzS/Ny8eXN16NBBS5cu1fDhw7V06VJFRkYqNjbWjPnggw909uxZvf/+++ZVSpK0e/fuEp2jND766CNJKpKP//73vzu1oSQ+/fRT/fTTT/r888/NWeiSnO4Rcrmnn35ay5cv14cffqj09HTVqlWryFVdFSEoKEiPPPKIpk+frpo1a171e+l6XZ6PL8+b7ubjwMDAYv8A5Hjd4f7779f9998vm82mbdu2afr06UpISFCjRo0UExNTyl4AAAAAgHsopHuBQ4cOady4cbJareZN3aKiotSkSRN99dVXmjZtWomOs3LlSqdL/bds2aKDBw/qiSeekPRr0eXKAuSiRYvcau/ls54DAwPN7eHh4QoICNDXX3/tFP/hhx+W+Njx8fF68cUX9eOPP2rAgAFutetaPDXODhaLRYZhFBnP119/vchNRaVLhYthw4Zp/vz52rJli9q0aaMuXbqUvkMe9MADD+iBBx6Q1WpVp06dyuQcjuUJvv76a8XFxZnbHcW0y13tM1aaz4fFYlHr1q01Z84cpaam6l//+td19AIoHceNI2+99Va9/vrrRV5fu3atZs+erY8//ljx8fEeP//jjz+uP/3pT9q8ebPWrFmjMWPGFFuwvzyfGYbhtPyJJ2VmZur1119X586ddeedd0qS4uLiVL16df33v/91e1kxd7/f2rVrp86dO2vGjBnas2ePhg0bpuDg4FL0xPP+9Kc/6ejRo+ratWuRK3085fJ87Fh6RZLWrFlTJPZqs9nj4+M1bdo0hYWFqXHjxiU6r7+/v7p27apatWrpk08+0ZdffkkhHQAAAEC5oZBexezZs8dcR/TYsWP64osvtHTpUvn4+Gj16tWqU6eOGbto0SL17t1bcXFxGjRokG6++WadOHFC3377rf71r3/p3XffdTr2rl279MQTT+j3v/+9Dh8+rIkTJ+rmm282lyi5/fbbdeutt+rZZ5+VYRgKDQ3VmjVrlJmZ6VYfWrZsKUmaMWOGevfuLR8fH7Vq1Up+fn567LHH9MYbb+jWW29V69attWPHDq1atarEx+7SpYuGDRumxx9/XLt27dLdd9+t4OBgZWdna/PmzWrZsqW5vq0rZTnODjVr1tTdd9+tmTNnqnbt2mrUqJE2btyoJUuWqFatWsXuM2LECKWkpCgrK6vYYlpFCQgIKHaGrCdFRESoZ8+emj59ukJCQtSwYUP94x//MJdeuNzVPmMl/XysXbtWCxYsUP/+/fWb3/xGhmHo/fff18mTJ9WrV68y7SdQnI8//lg//fSTZsyYYc7Avlx0dLTmz5+vJUuWlEkh/dFHH9WYMWP06KOPymazadCgQU6v9+rVS35+fnr00Uc1fvx4XbhwQQsXLlRubu51nbewsNBcPsxms+nQoUP6+OOP9c4776hZs2Z65513zNhGjRrphRde0MSJE/W///1P9957r0JCQnT06FHt2LFDwcHBmjx5crHn6dy5s0JCQvTkk09q0qRJ8vX11cqVK/XVV19dtW1PP/20Hn74YVksFvN7sjJo06aNPvjggzI9x3333afQ0FANGTJEL7zwgqpXr67U1FQdPny4SKzj6p63335bv/nNbxQQEKCWLVsqKSlJ7733nu6++279+c9/VqtWrVRYWKhDhw4pIyNDY8eOVceOHfX888/ryJEj6tGjh2655RadPHlSL7/8stMa9gAAAABQHiikVzGONWn9/PxUq1YtNWvWTM8884yeeOIJp+KuJHXv3l07duzQ1KlTlZSUpNzcXIWFhal58+bFzsZdsmSJli9frkceeUQ2m03du3fXyy+/rNDQUEmSr6+v1qxZo6efflrDhw9X9erV1bNnT23YsMHpxmTXkpCQoH/+859asGCBXnjhBRmGoQMHDqhRo0aaPXu2JCklJUVnzpzRPffco7Vr17p1s7RFixapU6dOWrRokRYsWKDCwkJFRkaqS5cuRW7mdjVlOc6XW7VqlZ5++mmNHz9eFy9eVJcuXZSZmak+ffoUG3/zzTfrzjvv1Ndff62EhIQS9cWbLF++XKNGjdIzzzyjgoIC9e3bV2+99Zbat2/vFOfqM1aSz0eTJk1Uq1YtpaSk6KeffpKfn5+ioqKKLGsElJclS5bIz8/PaV3yy9WuXVsPPPCA/v73v5trhXuS1WrVAw88oFWrVqlLly5q2rSp0+u333673nvvPf3lL3/Rgw8+qLCwMCUkJGjMmDHq3bt3qc97/vx5c8ZxYGCg6tSpo9atW2vx4sX6wx/+ID8/P6f4CRMmqHnz5nr55Zf11ltvyWazKSIiQnfccYeefPLJq54nLCxM69at09ixY/XYY48pODhY999/v95++2399re/LXaf/v37y9/fX927d1eTJk1K3ceqqGbNmkpPT1dSUpIee+wx1apVS0888YR69+5tXsXmMHnyZGVnZ2vo0KE6ffq0GjZsqB9++EHBwcH64osv9OKLL+q1117TgQMHFBgYqAYNGqhnz57m937Hjh21a9cuPfPMM/r5559Vq1YttW/fXp9++qlatGhRAb0HAAAAcKOyGIZhVHQjULFSU1P1+OOPa+fOnUUKkqhcjh07poYNG2rUqFFKSUmp6OYAwA1rzZo16tevn9atW6f77ruvopsDAAAAAChjzEgHqoAjR47of//7n2bOnKlq1arp6aefrugmAcANad++fTp48KDGjh2rNm3aXNeMewAAAABA1VGtohsA4Npef/11devWTXv37tXKlSt18803V3STAOCGNGLECPXr108hISF66623zBuVAgAAAAC8G0u7AAAAAAAAAADgAjPSAQAAAAAAAABwgUI6AAAAAAAAAAAuUEgHAAAAAAAAAMCF6hXdgMqusLBQP/30k2rUqMENxQBUOMMwdPr0aUVGRqpaNf4WWlLkcgCVDfkcAAAAqFoopF/DTz/9pPr161d0MwDAyeHDh3XLLbeUev9NmzZp5syZysrKUnZ2tlavXq3+/fubrxuGocmTJ+u1115Tbm6uOnbsqFdeeUUtWrQwY2w2m8aNG6e33npL58+fV48ePbRgwQKnduXm5mr06NH66KOPJEn9+vXTvHnzVKtWLTPm0KFDGjlypD799FMFBgYqISFBs2bNkp+fnxnzzTff6KmnntKOHTsUGhqq4cOH669//WuJi+LkcgCV1fXmcwAAAADlw+1C+o1WfKlRo4akS/+RU7NmzRLtY7fblZGRodjYWPn6+pZoH1wd4+lZjKdnlfd4njp1SvXr1zdzU2mdPXtWrVu31uOPP67f/e53RV5PSUnRSy+9pNTUVDVt2lRTpkxRr169tH//fvPcSUlJWrNmjdLS0hQWFqaxY8cqPj5eWVlZ8vHxkSQlJCToyJEjSk9PlyQNGzZMiYmJWrNmjSSpoKBAffr0UZ06dbR582YdP35cAwcOlGEYmjdvntnnXr16qXv37tq5c6e+++47DRo0SMHBwRo7dmyJ+luaXC5VnX8vtNOzaKdn0c7ieSqfAwAAACgfbhfSb7Tii6PgXrNmTbcK6UFBQapZs2al/g/GqoLx9CzG07Mqajyvd3mS3r17q3fv3sW+ZhiG5s6dq4kTJ+rBBx+UJC1btkzh4eFatWqVhg8frry8PC1ZskTLly9Xz549JUkrVqxQ/fr1tWHDBsXFxenbb79Venq6tm3bpo4dO0qSFi9erJiYGO3fv19RUVHKyMjQvn37dPjwYUVGRkqSZs+erUGDBmnq1KmqWbOmVq5cqQsXLig1NVX+/v6Kjo7Wd999p5deekljxowp0ViUJpdLVeffC+30LNrpWbTTNZabAgAAAKoGtxdk7N27t6ZMmWIWVy53ZfElOjpay5Yt07lz57Rq1SpJMosvs2fPVs+ePdW2bVutWLFC33zzjTZs2CBJZvHl9ddfV0xMjGJiYrR48WKtXbtW+/fvlySz+LJixQq1bdtWPXv21OzZs7V48WKdOnVKkpyKL9HR0XrwwQf13HPP6aWXXpJhGKUeNADwZgcOHFBOTo5iY2PNbf7+/uratau2bNkiScrKypLdbneKiYyMVHR0tBmzdetWWa1Ws4guSZ06dZLVanWKiY6ONovokhQXFyebzaasrCwzpmvXrvL393eK+emnn/TDDz94fgAAAAAAAACu4NE10q9VfBk+fPg1iy9xcXHXLL5ERUVds/jSvXv3qxZfJkyYoB9++EGNGzcu0gebzSabzWY+dxTl7Xa77HZ7icbBEVfSeLjGeHoW4+lZ5T2e5XGenJwcSVJ4eLjT9vDwcB08eNCM8fPzU0hISJEYx/45OTmqW7dukePXrVvXKebK84SEhMjPz88pplGjRkXO43itrHK5I/7y/62saKdn0U7Pop2uzwcAAACgavBoId0bii/Tp0/X5MmTi2zPyMhQUFBQ8R2/iszMTLfi4Rrj6VmMp2eV13ieO3euXM4jFV1uwDCMay5BcGVMcfGeiHFcVXS19ngyl0tV598L7fQs2ulZtNNZeeZzAAAAANfPo4V0h6pcfJkwYYLGjBljPnfcCCo2NtatNdIzMzPVq1evSr0WaFXBeHoW4+lZ5T2ejpnVZSkiIkLSpT841qtXz9x+7Ngx84+RERERys/PV25urtMfRo8dO6bOnTubMUePHi1y/J9//tnpONu3b3d6PTc3V3a73SnG8QfSy88jFf3DrYMncrlUdf690E7Pop2eRTuLVx75HAAAAIDneLSQ7g3FF39/f6elYBx8fX3d/o+qtlM/la3AvRtI/fBiH7fibySleQ9wdYynZ5XXeJbHORo3bqyIiAhlZmaqbdu2kqT8/Hxt3LhRM2bMkCS1a9dOvr6+yszM1IABAyRJ2dnZ2rNnj1JSUiRJMTExysvL044dO9ShQwdJ0vbt25WXl2fm+5iYGE2dOlXZ2dnm90ZGRob8/f3Vrl07M+a5555Tfn6+/Pz8zJjIyMgiVx05eDKXS+7n84rK5VXl3zXt9Cza6VnelM8BAAAAeI7bNxt15fLii4Oj+OIomlxefHFwFF8uL6w4ii8OxRVf9uzZo+zsbDOmuOLLpk2blJ+f7xTjqvgCADeCM2fOaPfu3dq9e7ekS/e42L17tw4dOiSLxaKkpCRNmzZNq1ev1p49ezRo0CAFBQUpISFBkmS1WjVkyBCNHTtW//jHP/Tll1/qscceU8uWLdWzZ09JUrNmzXTvvfdq6NCh2rZtm7Zt26ahQ4cqPj5eUVFRkqTY2Fg1b95ciYmJ+vLLL/WPf/xD48aN09ChQ82Z4wkJCfL399egQYO0Z88erV69WtOmTdOYMWOuebUTAAAAAACAJ7g9I/3MmTP6/vvvzeeO4ktoaKgaNGhgFl+aNGmiJk2aaNq0aVctvoSFhSk0NFTjxo27avFl0aJFkqRhw4Zdtfgyc+ZMnThxotjiy+TJkzVo0CA999xz+s9//qNp06bp+eefp/gC4Ia2a9cude/e3XzuWAZl4MCBSk1N1fjx43X+/HmNGDFCubm56tixozIyMlSjRg1znzlz5qh69eoaMGCAzp8/rx49eig1NVU+Pj5mzMqVKzV69GjzBtP9+vXT/Pnzzdd9fHy0bt06jRgxQl26dFFgYKASEhI0a9YsM8ZqtSozM1MjR45U+/btFRISojFjxjgt3QIAAAAAAFCW3C6kU3wBgKqvW7du5j0jimOxWJScnKzk5OSrxgQEBGjevHmaN2/eVWNCQ0O1YsUKl21p0KCB1q5d6zKmZcuW2rRpk8sYAAAAAACAsuJ2IZ3iCwAAAAAAAADgRuLRNdIBAAAAAAAAAPA2FNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADggscL6cnJybJYLE6PiIgI83XDMJScnKzIyEgFBgaqW7du2rt3r9MxbDabRo0apdq1ays4OFj9+vXTkSNHnGJyc3OVmJgoq9Uqq9WqxMREnTx50inm0KFD6tu3r4KDg1W7dm2NHj1a+fn5nu4yAHgdcjkAAAAAAMCvymRGeosWLZSdnW0+vvnmG/O1lJQUvfTSS5o/f7527typiIgI9erVS6dPnzZjkpKStHr1aqWlpWnz5s06c+aM4uPjVVBQYMYkJCRo9+7dSk9PV3p6unbv3q3ExETz9YKCAvXp00dnz57V5s2blZaWpvfee09jx44tiy4DgNchlwMAAAAAAFxSvUwOWr2608xFB8MwNHfuXE2cOFEPPvigJGnZsmUKDw/XqlWrNHz4cOXl5WnJkiVavny5evbsKUlasWKF6tevrw0bNiguLk7ffvut0tPTtW3bNnXs2FGStHjxYsXExGj//v2KiopSRkaG9u3bp8OHDysyMlKSNHv2bA0aNEhTp05VzZo1y6LrAOA1yOUAAAAAAACXlMmM9P/85z+KjIxU48aN9cgjj+h///ufJOnAgQPKyclRbGysGevv76+uXbtqy5YtkqSsrCzZ7XanmMjISEVHR5sxW7duldVqNQsvktSpUydZrVanmOjoaLPwIklxcXGy2WzKysoqi24DgFchlwMAAAAAAFzi8RnpHTt21JtvvqmmTZvq6NGjmjJlijp37qy9e/cqJydHkhQeHu60T3h4uA4ePChJysnJkZ+fn0JCQorEOPbPyclR3bp1i5y7bt26TjFXnickJER+fn5mTHFsNptsNpv5/NSpU5Iku90uu91eojFwxPlXM0oUX9y++JVjTBgbz2A8Pau8x7O8zkMulxkvuZ/Py/vfV1X5d007PYt2epa35nMAAAAAnuHxQnrv3r3N/9+yZUvFxMTo1ltv1bJly9SpUydJksVicdrHMIwi2650ZUxx8aWJudL06dM1efLkItszMjIUFBTkso1X+lv7QrfiJWn9+vVu73OjyMzMrOgmeBXG07PKazzPnTtXLuchlztzN59XVC6vKv+uaadn0U7P8rZ8DgAAAMAzymSN9MsFBwerZcuW+s9//qP+/ftLujTDsF69embMsWPHzBmHERERys/PV25urtNMxmPHjqlz585mzNGjR4uc6+eff3Y6zvbt251ez83Nld1uLzK78XITJkzQmDFjzOenTp1S/fr1FRsbW+K1eO12uzIzM/XXXdVkK3RdVLrSnuQ4t+JvBI7x7NWrl3x9fSu6OVUe4+lZ5T2ejpnV5e1GzOVS6fN5eefyqvLvmnZ6Fu30rBslnwMAAAAonTIvpNtsNn377be666671LhxY0VERCgzM1Nt27aVJOXn52vjxo2aMWOGJKldu3by9fVVZmamBgwYIEnKzs7Wnj17lJKSIkmKiYlRXl6eduzYoQ4dOkiStm/frry8PLNAExMTo6lTpyo7O9ss9GRkZMjf31/t2rW7anv9/f3l7+9fZLuvr6/b/1FlK7TIVuBeIb0y/wdmRSvNe4CrYzw9q7zGs6Lesxs5l0vu5/OKep+qyr9r2ulZtNOzvD2fAwAAACgdjxfSx40bp759+6pBgwY6duyYpkyZolOnTmngwIGyWCxKSkrStGnT1KRJEzVp0kTTpk1TUFCQEhISJElWq1VDhgzR2LFjFRYWptDQUI0bN04tW7ZUz549JUnNmjXTvffeq6FDh2rRokWSpGHDhik+Pl5RUVGSpNjYWDVv3lyJiYmaOXOmTpw4oXHjxmno0KFuzUYEgBsRuRwAAAAAAOBXHi+kHzlyRI8++qh++eUX1alTR506ddK2bdvUsGFDSdL48eN1/vx5jRgxQrm5uerYsaMyMjJUo0YN8xhz5sxR9erVNWDAAJ0/f149evRQamqqfHx8zJiVK1dq9OjRio2NlST169dP8+fPN1/38fHRunXrNGLECHXp0kWBgYFKSEjQrFmzPN1lAPA65HIAAAAAAIBfebyQnpaW5vJ1i8Wi5ORkJScnXzUmICBA8+bN07x5864aExoaqhUrVrg8V4MGDbR27VqXMQCAosjlAAAAAAAAv6pW0Q0AAAAAAAAAAKAyo5AOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAFyikAwAAAAAAAADgAoV0AAAAAAAAAABcoJAOAAAAAAAAAIALFNIBAAAAAAAAAHCBQjoAAAAAAAAAAC5QSAcAAAAAAAAAwAUK6QAAAAAAAAAAuEAhHQAAAAAAAAAAF6pXdAPgrNGz69ze54cX+5RBSwAApUUuBwAAAADAu9wQM9IXLFigxo0bKyAgQO3atdMXX3xR0U0CAJQC+RwAAAAAAFQEry+kv/3220pKStLEiRP15Zdf6q677lLv3r116NChim4aAMAN5HMAAAAAAFBRvL6Q/tJLL2nIkCF64okn1KxZM82dO1f169fXwoULK7ppAAA3kM8BAAAAAEBF8eo10vPz85WVlaVnn33WaXtsbKy2bNlS7D42m002m818npeXJ0k6ceKE7HZ7ic5rt9t17tw5VbdXU0GhpZStL7nbxr3j9j7bJ/Qog5aUDcd4Hj9+XL6+vhXdnCqP8fSs8h7P06dPS5IMwyjzc1Um7uZzT+RyqXzzeWlyuXQpn1eVf9e007Nop2eRzwEAAAC44tWF9F9++UUFBQUKDw932h4eHq6cnJxi95k+fbomT55cZHvjxo3LpI0Vpfbsim4BgOtx+vRpWa3Wim5GuXE3n98ouVwinwNV3Y2WzwEAAICqyqsL6Q4Wi/MsQsMwimxzmDBhgsaMGWM+Lyws1IkTJxQWFnbVfa506tQp1a9fX4cPH1bNmjVL33BIYjw9jfH0rPIeT8MwdPr0aUVGRpb5uSqjkuZzT+Ryqer8e6GdnkU7PYt2Fu9Gz+cAAOD/tXe/IXXW/x/HX7af2hB3lpk7nmQm0hhMk9TalNrGIJlkFoOlTcwRCcZcky3YIoYrgkY3dmuNCsYoCuyOG8GGoaTWmDbxTzlXy5hpf3SWqNlseqbv340vnW8nt9M3PZ4/+nzAgbPP9bku39eLz97gh8tzAISbJb2RHh8frxUrVsx5WnF4eHjOU41/io6OVnR0tNfY6tWr5/XzV61aFdK/MIYb8vQv8vSvQOa5HJ9c/Lf93J+9XAqf/y/U6V/U6V/UOddy7OcAAABAuFrSXzYaFRWlrKws1dfXe43X19crNzc3SFUBAP4t+jkAAAAAAAimJf1EuiTt379fpaWlys7OVk5Ojt59910NDAyooqIi2KUBAP4F+jkAAAAAAAiWJb+RXlRUpJGREb322msaHBxUWlqazp07p+Tk5EX7mdHR0aqurp7zsQKYH/L0L/L0L/IMHPr57VGnf1Gnf1EnAAAAgKUgwsws2EUAAAAAAAAAABCqlvRnpAMAAAAAAAAAsFBspAMAAAAAAAAA4AMb6QAAAAAAAAAA+MBGOgAAAAAAAAAAPrCRvghOnDihlJQU3XnnncrKytLnn38e7JJCzpEjRxQREeH1cjqdnuNmpiNHjsjlcmnlypXaunWrenp6vK4xNTWlvXv3Kj4+XjExMSosLNSPP/4Y6FsJis8++0xPPPGEXC6XIiIidObMGa/j/spvdHRUpaWlcjgccjgcKi0t1djY2CLfXWD9U5a7d++es1Y3bdrkNYcsl6Zg9vI33nhDDz30kGJjY5WQkKCnnnpKV65c8Zrjr7W5EOHUy++77745tUZERGjPnj2SgpdnuPRzX3W63W4dPHhQ6enpiomJkcvl0rPPPquff/7Z6xpbt26dk3FxcXHA6pTo6QAAAADmj410P/voo49UVVWlV155RZ2dnXr00UeVn5+vgYGBYJcWcjZs2KDBwUHPq7u723PszTff1LFjx3T8+HG1tbXJ6XTqscce08TEhGdOVVWVTp8+rZqaGp0/f16///67CgoKNDMzE4zbCajr168rIyNDx48fv+Vxf+W3a9cudXV1qa6uTnV1derq6lJpaemi318g/VOWkrR9+3avtXru3Dmv42S59AS7lzc3N2vPnj1qbW1VfX29bt68qby8PF2/ft1rnj/W5kKFSy9va2vzqrO+vl6StHPnTs+cYOQZLv3cV52Tk5Pq6OjQ4cOH1dHRodraWn377bcqLCycM7e8vNwr43feecfr+GLW+Sd6OgAAAIB5MfjVww8/bBUVFV5j69evt0OHDgWpotBUXV1tGRkZtzw2OztrTqfTjh496hm7ceOGORwOe/vtt83MbGxszCIjI62mpsYz56effrI77rjD6urqFrX2UCPJTp8+7fm3v/K7fPmySbLW1lbPnJaWFpNk33zzzSLfVXD8PUszs7KyMnvyySdvew5ZLk2h1suHh4dNkjU3N3vG/LE2Fyqce/m+ffssNTXVZmdnzSw08gyXfn6rXvl3Fy9eNEnW39/vGduyZYvt27fvtucEok56OgAAAID54ol0P5qenlZ7e7vy8vK8xvPy8nThwoUgVRW6ent75XK5lJKSouLiYl29elWS1NfXp6GhIa8co6OjtWXLFk+O7e3tcrvdXnNcLpfS0tKWfdb+yq+lpUUOh0MbN270zNm0aZMcDseyy7ipqUkJCQlat26dysvLNTw87DlGlktPKPby8fFxSVJcXJzX+ELXpj+EYy+fnp7WBx98oOeee04RERGe8VDI86/CuZ+Pj48rIiJCq1ev9hr/8MMPFR8frw0bNuill17yerI+UHXS0wEAAADMx/8Fu4Cl5Ndff9XMzIzWrFnjNb5mzRoNDQ0FqarQtHHjRr3//vtat26drl27ptdff125ubnq6enxZHWrHPv7+yVJQ0NDioqK0l133TVnznLP2l/5DQ0NKSEhYc71ExISllXG+fn52rlzp5KTk9XX16fDhw9r27Ztam9vV3R0NFkuQaHWy81M+/fv1yOPPKK0tDTPuD/W5kKFay8/c+aMxsbGtHv3bs9YKOT5d+Haz2/cuKFDhw5p165dWrVqlWe8pKREKSkpcjqdunTpkl5++WV9+eWXno/ZCUSd9HQAAAAA88VG+iL469Nt0n82Qf4+ttzl5+d73qenpysnJ0epqal67733PF/6NZ8cyfq//JHfreYvt4yLioo879PS0pSdna3k5GSdPXtWO3bsuO15ZBn+QqWXV1ZW6quvvtL58+e9xv21NhciXHv5yZMnlZ+fL5fL5RkLhTxvJ5z6udvtVnFxsWZnZ3XixAmvY+Xl5Z73aWlpuv/++5Wdna2Ojg5lZmYGpE56OgAAAID54qNd/Cg+Pl4rVqyY8zTS8PDwnKfJ4C0mJkbp6enq7e2V0+mUJJ85Op1OTU9Pa3R09LZzlit/5ed0OnXt2rU51//ll1+WdcaJiYlKTk5Wb2+vJLJcikKpl+/du1cff/yxGhsblZSU5HPufNamv4VDL+/v71dDQ4Oef/55n/NCIc9w6+dut1tPP/20+vr6VF9f7/U0+q1kZmYqMjLSK+NA90p6OgAAAID/FRvpfhQVFaWsrCzPnyj/qb6+Xrm5uUGqKjxMTU3p66+/VmJioufPvv+a4/T0tJqbmz05ZmVlKTIy0mvO4OCgLl26tOyz9ld+OTk5Gh8f18WLFz1zvvjiC42Pjy/rjEdGRvTDDz8oMTFRElkuRaHQy81MlZWVqq2t1aeffqqUlJR/PGc+a9PfwqGXnzp1SgkJCXr88cd9zguFPMOpn/+5id7b26uGhgbdfffd/3hOT0+P3G63J+Ng9Ep6OgAAAID/WUC/2nQZqKmpscjISDt58qRdvnzZqqqqLCYmxr7//vtglxZSDhw4YE1NTXb16lVrbW21goICi42N9eR09OhRczgcVltba93d3fbMM89YYmKi/fbbb55rVFRUWFJSkjU0NFhHR4dt27bNMjIy7ObNm8G6rYCZmJiwzs5O6+zsNEl27Ngx6+zstP7+fjPzX37bt2+3Bx54wFpaWqylpcXS09OtoKAg4Pe7mHxlOTExYQcOHLALFy5YX1+fNTY2Wk5Ojt17771kucQFu5e/8MIL5nA4rKmpyQYHBz2vyclJMzO/rs2FCLdePjMzY2vXrrWDBw96jQczz3Dp577qdLvdVlhYaElJSdbV1eW1ZqempszM7LvvvrNXX33V2trarK+vz86ePWvr16+3Bx98MGB10tMBAAAALAQb6YvgrbfesuTkZIuKirLMzExrbm4Odkkhp6ioyBITEy0yMtJcLpft2LHDenp6PMdnZ2eturranE6nRUdH2+bNm627u9vrGn/88YdVVlZaXFycrVy50goKCmxgYCDQtxIUjY2NJmnOq6yszMz8l9/IyIiVlJRYbGysxcbGWklJiY2OjgboLgPDV5aTk5OWl5dn99xzj0VGRtratWutrKxsTk5kuTQFs5ffak1KslOnTpmZ+XVtLkS49fJPPvnEJNmVK1e8xoOZZ7j0c1919vX13XbNNjY2mpnZwMCAbd682eLi4iwqKspSU1PtxRdftJGRkYDVSU8HAAAAsBARZmaL9LA7AAAAAAAAAABhj89IBwAAAAAAAADABzbSAQAAAAAAAADwgY10AAAAAAAAAAB8YCMdAAAAAAAAAAAf2EgHAAAAAAAAAMAHNtIBAAAAAAAAAPCBjXQAAAAAAAAAAHxgIx0AAAAAAAAAAB/YSAcAAAAAAAAAwAc20gEAAAAAAAAA8IGNdAAAAAAAAAAAfGAjHQAAAAAAAAAAH/4fKZD+li6sh4QAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -442,7 +442,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGAAAAOHCAYAAABo6DUdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1d7A8e+WZFO2pBdIIJSQUJSO9N57VWmCYgUrIoheBLyWK1ZscFEQUFRAOgrSe+8lIZBASCA92fS27f1jyYZNdkOyQSP3PZ/n2edJZs/M/PbszDkzZ845KzGZTCYEQRAEQRAEQRAEQRCEv4y0pgMQBEEQBEEQBEEQBEH4XycaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBqDEXLlzgySefpF69eri4uKBUKmnVqhULFiwgIyOjpsOzsm/fPiQSCfv27avyuhEREcybN4/Y2Nhy702ePJmQkJBqx+cIiUTCiy++aPO93377zeHPW1n5+fnMmzfvL92HIAiCIPxTiAYYQRAEQRBqxHfffUfr1q05efIkb7zxBtu3b2fDhg2MGTOGxYsXM2XKlJoO8b6JiIhg/vz5Nhtg5syZw4YNG/7+oP4B8vPzmT9/vmiAEQRBEP5fkNd0AIIgCIIg/P9z9OhRXnjhBfr06cPGjRtRKBSW9/r06cPrr7/O9u3b78u+8vPzcXNzK7fcYDCg1+ut9l0TGjRoUKP7FwRBEATh7yF6wAiCIAiC8Lf74IMPkEgkLFmyxGYDiLOzM0OHDrX8bzQaWbBgAeHh4SgUCvz8/HjiiSe4deuW1Xrdu3enWbNmHDhwgI4dO+Lm5sZTTz1FbGwsEomEBQsW8N5771GvXj0UCgV79+4F4NSpUwwdOhQvLy9cXFxo2bIla9asuefnOHXqFI8//jghISG4uroSEhLC2LFjuXnzpiXN8uXLGTNmDAA9evRAIpEgkUhYvnw5YHsIUmFhIbNnz6ZevXo4OztTu3Ztpk2bRmZmplW6kJAQBg8ezPbt22nVqhWurq6Eh4ezbNmye8buqMrkVWpqKlOnTqVJkyYolUr8/Pzo2bMnBw8etKSJjY3F19cXgPnz51vyZfLkyQDMmzcPiUTChQsXGDNmDBqNBi8vL6ZPn45erycqKor+/fujUqkICQlhwYIFVjEUFhby+uuv06JFC8u6HTp0YNOmTeU+U8lQrP/+9780atQIhUJBkyZN+PXXX+9z7gmCIAj/n4keMIIgCIIg/K0MBgN79uyhdevWBAcHV2qdF154gSVLlvDiiy8yePBgYmNjmTNnDvv27ePMmTP4+PhY0iYmJjJhwgRmzpzJBx98gFRa+rzpyy+/pFGjRnzyySeo1WpCQ0PZu3cv/fv355FHHmHx4sVoNBp+/fVXHnvsMfLz8y0NArbExsYSFhbG448/jpeXF4mJiSxatIi2bdsSERGBj48PgwYN4oMPPuCtt97im2++oVWrVoD9ni8mk4nhw4eze/duZs+eTZcuXbhw4QJz587l6NGjHD161KrR6vz587z++uu8+eab+Pv78/333zNlyhQaNmxI165d75m3JpMJvV5fbrnRaCy3rLJ5VTJ/z9y5cwkICCA3N5cNGzbQvXt3du/eTffu3QkMDGT79u3079+fKVOm8PTTTwNYGmVKPProo0yYMIHnnnuOnTt3smDBAnQ6Hbt27WLq1KnMmDGDn3/+mVmzZtGwYUNGjhwJQFFRERkZGcyYMYPatWtTXFzMrl27GDlyJD/88ANPPPGE1X42b97M3r17effdd3F3d+fbb79l7NixyOVyRo8efc98FARBEIR7MgmCIAiCIPyNkpKSTIDp8ccfr1T6yMhIE2CaOnWq1fLjx4+bANNbb71lWdatWzcTYNq9e7dV2hs3bpgAU4MGDUzFxcVW74WHh5tatmxp0ul0VssHDx5sCgwMNBkMBpPJZDLt3bvXBJj27t1rN1a9Xm/Kzc01ubu7mxYuXGhZvnbtWrvrTpo0yVS3bl3L/9u3bzcBpgULFlilW716tQkwLVmyxLKsbt26JhcXF9PNmzctywoKCkxeXl6m5557zm6cJYB7vu6OubJ5ZStfdDqdqVevXqYRI0ZYlqemppoA09y5c8utM3fuXBNg+vTTT62Wt2jRwgSY1q9fb1mm0+lMvr6+ppEjR9r9rCUxTJkyxdSyZcty+eDq6mpKSkqySh8eHm5q2LCh3W0KgiAIQlWIIUiCIAiCIPyjlQwTKtsTpV27djRu3Jjdu3dbLff09KRnz542tzV06FCcnJws/0dHR3PlyhXGjx8PgF6vt7wGDhxIYmIiUVFRdmPLzc219LyQy+XI5XKUSiV5eXlERkY68nHZs2cPUP7zjhkzBnd393Kft0WLFtSpU8fyv4uLC40aNbIaBlWRRx99lJMnT5Z7ffTRR1bpqppXixcvplWrVri4uCCXy3FycmL37t1VzpfBgwdb/d+4cWMkEgkDBgywLJPL5TRs2LDcZ167di2dOnVCqVRaYli6dKnNGHr16oW/v7/lf5lMxmOPPUZ0dHS5oW6CIAiC4AgxBEkQBEEQhL+Vj48Pbm5u3Lhxo1Lp09PTAQgMDCz3Xq1atcrddNtKZ++95ORkAGbMmMGMGTNsrpOWlmZ3e+PGjWP37t3MmTOHtm3bolarkUgkDBw4kIKCArvrVSQ9PR25XF5uKI5EIiEgIMCSHyW8vb3LbUOhUFR6/76+vrRp06bc8rK/2FSVvPrss894/fXXef755/n3v/+Nj48PMpmMOXPmVLkBxsvLy+p/Z2dn3NzccHFxKbc8Ozvb8v/69et59NFHGTNmDG+88QYBAQHI5XIWLVpkc46cgIAAu8vS09MJCgqqUtyCIAiCUJZogBEEQRAE4W8lk8no1asX27Zt49atW/e8sS1pYEhMTCyXNiEhwWr+FzA3VNhT9r2SdWfPnm2ZO6SssLAwm8uzsrLYunUrc+fO5c0337QsL5l7xFHe3t7o9XpSU1OtGmFMJhNJSUm0bdvW4W1XR1Xy6qeffqJ79+4sWrTI6v2cnJy/Nsi7/PTTT9SrV4/Vq1dbfe9FRUU20yclJdldZquRSxAEQRCqSgxBEgRBEAThbzd79mxMJhPPPPMMxcXF5d7X6XRs2bIFwDKc6KeffrJKc/LkSSIjI+nVq5fDcYSFhREaGsr58+dp06aNzZdKpbK5rkQiwWQylfsVp++//x6DwWC1rCRNZXqllHyesp933bp15OXlVevzVkdV8koikZTLlwsXLnD06FGrZVXJl6qSSCQ4OztbNb4kJSXZ/BUkgN27d1t6+YB5sujVq1fToEED0ftFEARBuC9EDxhBEARBEP52HTp0YNGiRUydOpXWrVvzwgsv0LRpU3Q6HWfPnmXJkiU0a9aMIUOGEBYWxrPPPstXX32FVCplwIABll9BCg4O5rXXXqtWLP/9738ZMGAA/fr1Y/LkydSuXZuMjAwiIyM5c+YMa9eutbmeWq2ma9eufPzxx/j4+BASEsL+/ftZunQpHh4eVmmbNWsGwJIlS1CpVLi4uFCvXj2bPSv69OlDv379mDVrFtnZ2XTq1MnyK0gtW7Zk4sSJ1fq81VHZvBo8eDD//ve/mTt3Lt26dSMqKop3332XevXqWf3ikkqlom7dumzatIlevXrh5eVlycvqGjx4MOvXr2fq1KmMHj2a+Ph4/v3vfxMYGMi1a9fKpffx8aFnz57MmTPH8itIV65cET9FLQiCINw3ogFGEARBEIQa8cwzz9CuXTs+//xzPvroI5KSknBycqJRo0aMGzeOF1980ZJ20aJFNGjQgKVLl/LNN9+g0Wjo378/H374YbWHh/To0YMTJ07w/vvv8+qrr6LVavH29qZJkyY8+uijFa77888/88orrzBz5kz0ej2dOnVi586dDBo0yCpdvXr1+OKLL1i4cCHdu3fHYDDwww8/2PyJa4lEwsaNG5k3bx4//PAD77//Pj4+PkycOJEPPvigXM+Sv1Nl8+rtt98mPz+fpUuXsmDBApo0acLixYvZsGED+/bts9rm0qVLeeONNxg6dChFRUVMmjSJ5cuXVzvWJ598kpSUFBYvXsyyZcuoX78+b775Jrdu3WL+/Pnl0g8dOpSmTZvyr3/9i7i4OBo0aMCqVat47LHHqh2LIAiCIABITCaTqaaDEARBEARBEISaIpFImDZtGl9//XVNhyIIgiD8DxNzwAiCIAiCIAiCIAiCIPzFRAOMIAiCIAiCIAiCIAjCX0zMASMIgiAIgiD8vyZG5AuCIAh/B9EDRhAEQRAEQRAEQRCE/zcOHDjAkCFDqFWrlmXy+3vZv38/rVu3xsXFhfr167N48eIq71c0wAiCIAiCIAiCIAiC8P9GXl4ezZs3r/Tk6zdu3GDgwIF06dKFs2fP8tZbb/Hyyy+zbt26Ku1X/AqSIAiCIAiCIAiCIAgPtKKiIoqKiqyWKRQKFApFhetJJBI2bNjA8OHD7aaZNWsWmzdvJjIy0rLs+eef5/z58xw9erTSMYo5YARBEARBEARBEARBqLbfncJqbN8n3x7L/PnzrZbNnTuXefPmVXvbR48epW/fvlbL+vXrx9KlS9HpdDg5OVVqO6IBRhAEoGYLy8oYpIti2ieZNR1Ghb6Z4cGIF6/VdBj3tOHrUB6bcbOmw6jQ6k/qMvqV6zUdRoV+W1ifQU9fqukw7un375sx8uXomg6jQuu/bMhnm/7ZHXKnD5Mwd6WupsO4p/lPODHl36k1HUaFls7x5Yk5iTUdRoVW/juQsTPjajqMe/plQR26jjhU02FU6MCGzjz6emxNh1GhNZ+G/OPzEcx5OeHthJoOo0I/vV+LAZMv1HQYFdq2/OF/fIxgjlOomtmzZzN9+nSrZffq/VJZSUlJ+Pv7Wy3z9/dHr9eTlpZGYGBgpbYjGmAEQRAEQRAEQRAEQXigVWa4UXVIJBKr/0tmcym7vCKiAUYQBEEQBEEQBEEQhGqTOFW+MeJBEhAQQFJSktWylJQU5HI53t7eld6O+BUkQRAEQRAEQRAEQRAEOzp06MDOnTutlu3YsYM2bdpUev4XED1gBEEQBEEQBEEQBEG4D6TyB6MHTG5uLtHRpXPk3bhxg3PnzuHl5UWdOnWYPXs2t2/fZuXKlYD5F4++/vprpk+fzjPPPMPRo0dZunQpv/zyS5X2KxpgBEEQBEEQBEEQBEH4f+PUqVP06NHD8n/J5L2TJk1i+fLlJCYmEhdXOhl7vXr1+OOPP3jttdf45ptvqFWrFl9++SWjRo2q0n5FA4wgCIIgCIIgCIIgCP9vdO/e3TKJri3Lly8vt6xbt26cOXOmWvsVDTCCIAiCIAiCIAiCIFSbxElMM1sRkTuCIAiCIAiCIAiCIAh/MdEDRhAEQRAEQRAEQRCEantQJuGtKaIHjCAIgiAIgiAIgiAIwl9M9IARhBp05MgRunTpQp8+fdi+fXtNh1OOV+c21H99CppWzXCp5cepUVNJ3ry74nW6tKXJJ2+ibBJKUUIKMZ9+T9ySX63SBIzoS6N5r+DWoA75MXFEvfM5yZt2VSvWLi2c6d1WgcZdSmKagd/2FhBz22AzrdpdwsjurtTxl+HrKWXfmWLW7S0ol65FqBODO7vgo5GSlmVky8FCzkfrHI6xfxcNw3t54qmREZ9YzNJ1qUTGFNpN37ShK0+O9CE40JmMLAMbd2n581CW5f0+HdV0b6emTi1nAGLiili1JY1rN4scjhGgb0clQ7pr8FDJuJVczIpNWq7csL/NxvUVPDHUkyB/Z7TZejbvy2bX0VybaTu2cOOVCb6cvJTPJ8tTHY6xX2c1Q3tq8FTLiE/SsXx9OpHX7edlkwYuTBrhTXCAE9osA5v2ZLLjcI7l/d4dVHRrqyQ40JyX1+OL+Hmrlui46uUlwLihfvTv6onSTUbUjQIWrUogLqHi7XZspWbicD8CfZ1JTC1m5YZkjp7NsUozqLsXI/v54OUhJy6hiCW/JnL5Wn6V4+vfWc2wXp538rKYZevSKs7Lhi48OcKH4IA7x+VuLTsOZ1ve791BTfd2KurcycuY+CJWbUmvVl5ePvIz5/cvJT8nFU//hnQc+haB9drYTHv94g4ijv1KekIkBn0xnv4NadPnRYLDuljSZCRd49SOL0m9fZlcbQIdhszm4S6THI4PoG2YlE5NpCjdIDUTtp00EJdie3I/pSv0ayOjlpcELzUcjzSy/ZSxXDoXJ+jVUkrjOlJcFJCZA3+eNnDttv1JA++lR2sX+nVww0Ml5Xaqnl//zONavP1yrVEdJx7r605tXzmZOUa2Hcln/xnr46N3O1d6tHHBSy0jN9/Iqcgi1u3JQ2+7CL6nXu3cGNjZHY1Sxu0UPau2ZXH1pv0Yw0KcGddfTW0/OZk5Bn4/lMfek9bngpuLhNG9VbRp4oKbi5S0TAM/b8vmwjXHjss+HZQM7qa+U07qWLlZS1RsxeXkhMGeBPk7oc02sHV/NruO2S4nOzR34+XxPpy8lM9nK9Mciu9uTz5WhyF9/VG5y4m4lsvnS2KIja+4rOjW3psp4+pSK8CFhKRCvlt1k4PH0622+eTjdazWSdcWM+KpE1WOr29HFUO7q/FQy7mVVMzyTRn3rHMmDfUiKOBOnbM3m51Hc2ym7djCnVcnmuucj39IqXJsZf3T87L3I24M7KzEQyXjdoqOn37PJupmsd304SHOjB+oprafE5k5BrYezGXPidLP06WlK8+N9iy33pNzE9Dpqxyexfjh/gzo5oXSXUbU9Xy+WXn7nvVipzZqnhgRQKCfM4kpxaxYl8SRM6V1T7NG7owe6EvDuq54ezrx7pexHL3r/f/lOP9pJE6iB0xFRA8YQahBy5Yt46WXXuLQoUNWP3P2TyFzdyP7QhSXX3m3UuldQ4Jou2UJGYdOc6jtcKI/WkzTz98mYERfSxqP9i1o+fPn3F61iYOth3F71SZa/fIFHu0edjjOVmFOjO7hyp/HivhwZQ7Rtw1MG6XEU2W7ApDLJOTmm9h+rJDbKbbvEOoFynhqiBsnLhfz4cocTlwuZsoQN0ICZA7F2KmVkqdG+fLbnxm8/p84ImIKmDO1Nj6ettvB/bzl/OuFWkTEFPD6f+JY92cGU0b70r6F0pKmaagrB0/nMGfhLd78NJ40rY6502rjpXEsRjBf+E8a6sWGXVm8+XkCV64XMftpP7w9bG/T10vOm0/7ceV6EW9+nsDG3dk8OcyLdg+5lUvr4yljwmDPCm/uK6NjS3cmj/Bm/Y5M3vj4NpExhbz1fAA+nrZj9POS89ZzAUTGFPLGx7dZvzOTJ0f68Ehzd0uapg1dOHQmj3lfJ/LW5wmkaQ3MeSGgWnkJMLq/DyP6eLP450Reey8GbZaO96aH4KqwX/2G13flzeeC2XM0kxfnR7PnaCZvPleHsHquljRd2qp55vEAVv+RysvvxnDpah7zX6mLr5dTleLr1FLJkyN9WbdDy+sL4omMKeRfL9Syf1x6yfnXc7WIjCnk9QXxrN+pZcooX9rflZfNQl05dDqHd766zezPbpGm1TN3ai2H8zL63B8c2fIhLXs+z6hXNhBQrw1/LH2WHG2CzfSJN04RFNqRAU8tYdTL66jV4BG2L59K2u0ISxq9rhCVVzCPDHgdN5WvQ3HdrWmIhP5tpBy4aGDxVj03k41M6CVD4247vVwK+YUmDlw0kKy1nUYmhSf6yPBQSli938BXG/VsPmYgO9/xxpe2TRQ83k/J74fymf+dlmtxOl4dp8FLbft49PGQ8upYDdfidMz/Tsvvh/IZ119J63BnS5pHmikY3cudzQfy+deiDJZvzaFdUwWjetr58PfwSDMXxg9Qs3l/Lu8sSuPqzWJmTPTCW2MvRhkzJnpy9WYx7yxKY8uBXCYOVNOmiYsljUwGMyd54eMh46tftcxamMqyjZlocxxrIWrf3I0nhniycU8WsxcmEnWjkDen+NovJz1lzHzKl6gbhcxemMimvVlMGupJu2au5dL6eMgYP8ij2uVkiXEjavPo0Fp88d11np15ngxtMZ/Na4qri/3zsWmYirkzwvlzXwpPvXaWP/elMH9GGI1DlVbprsflMfzJ45bX5Fer/ssgHVq4MXmYF+t3ZzHrswQibxTx1jP+FdY5s5/2J/JGEbM+S2DD7iyeHO7FI3bqnIlDPImo4EFHVfzT8/KRh1yYMFDD5v25/OubVKJii3ljkhfedspeX08ZMyZ5ERVbzL++SWXz/lyeGKShbVMXq3T5hUamfZhk9apO48uYgb6M7OfDtz/d5pX519Bm6fngjfq4ulRQLzZwY/YLddl9RMvUd66x+4iW2VPrEla/9BxyUUi5HlfAtz/ddjy4BzBO4cEjGmAEoYbk5eWxZs0aXnjhBQYPHlzup842b95MaGgorq6u9OjRgxUrViCRSMjMzLSkOXLkCF27dsXV1ZXg4GBefvll8vLy7luMqX8e4OrcL0jauLNS6es++ziFcYlEvP4BuVeuE7/sN+KXr6f+9Kcsaeq9NIm0XUeIWbCEvKjrxCxYQtqeY4S85PjT515tFBy9WMyRi8UkZxhZt7cAbY6RLi0UNtNnZBv5bW8BJyJ0FNh5MNSjtYIrN/XsOFFEcoaRHSeKiIrT06O17W3ey9Cenuw+msWuo9ncStaxbF0a6Vo9/btobKbv11lDmlbPsnVp3ErWsetoNnuOZTO8l4clzRcrktl+MIvY28XcTtbx7c8pSCTwcFj5C9HKGtRNzZ4Tuew5kcvtFD0rNmtJzzTQt4PKZvo+HZSkaw2s2KzldoqePSdy2XsylyHd1FbpJBJ4aZwPa3dkkZxejSs3YEh3DXuO5bD7WA63k3Us35BOulZP305qm+n7dlKTptWzfEM6t5N17D6Ww97jOQztUZr3C39M5c9D2cTeLiYhRcfiX1ORSCU81Kj8DVJVDOvtzerfUzlyJpubCUV8tuw2Cmcp3R6x/b0DDOvjw9mIXNZuS+NWUjFrt6Vx/kouw3p7W9KM6OPDjkNadhzUEp9YxHerk0jT6hjY3atK8Q3p4cHuY9nsOprN7WQdy9abj8t+ne9xXK5P4/Zdx+WwnqVPSL9Ymcz2O3l5O0XHol9SkEglPNzIsePy4sHlhLcdReNHxuDp34BOQ99C6RFAxLFfbKbvNPQtWnR/Gr/gh9D4hvDIgOlofOpyM2KvJY1f8EN0GDyThi0GIZVXrdHKlo6NpZyNNnIm2kRaFmw/ZSQ7D9o2sn2ZlZkH204aOX/dRGGx7QaVlg2luCok/LLXQHyqiaw8iEsx2W2wqYy+7V05eLaQg+cKSUwz8OuOPDKyDXRvY/s4797alfRsc7rENAMHzxVy6Fwh/TqUfpcNgpyIjtdx/FIR6VlGLl83/x1Sy7F87d/Rnf1n8tl/uoCEVD2rtmWTkW2kZzvbDTo927mRnmVk1bZsElL17D9dwIEz+QzsVJq+ays33N2kLPzZ3OiUnmXgapyO+CTHyqJBXVTsPZnL3hN5JKToWbklk/RMA33aK22m791eRbrWwMotmSSk6Nl7Io99p3IZZKOcnDbWm992ZpGSUb1yssSYwbX58bd4DhxL50ZcPh98eRWFQkafrvYbHscMrsWp81pWrb9F3O0CVq2/xekLWYwZUtsqncFgIiNTZ3llZVc95sFdNew5kcOe47ncTtGxYlMGaZl6+na0Xef07aAiLVPPik0Z3E7Rsed4LntP5DKke/m8fHm8L2v+zPx/k5cDOinZdzqffafySUjV89Mf2aRnGej1iO2yt2c7N9IzDfz0h/nc2Xcqn/1n8hnY2fo4NpkgK9do9aqO4X19+HVLCkdOZ3PzdhGffhePQiGle3uPCtc5czmHNb+nciuxiDW/p3IuMpfhfUvz/tTFHFauT+bI6fvTm+RBiVN48IgGGEGoIatXryYsLIywsDAmTJjADz/8YPkt+tjYWEaPHs3w4cM5d+4czz33HG+//bbV+hcvXqRfv36MHDmSCxcusHr1ag4dOsSLL75YEx8HMPduSd112GpZ6o6DaFo3QyI3P1H3bN+CtF2HrNKk7TyIZ4eWDu1TJoVgfxmRsdYXK5GxeurXcnyUZb1a8nLbjIjVU7921bcpl0GDYAXnIq27KZ+LzCO8novNdcLquXIu0rox7WxEHg3quCCzU3I7O0uQySTk5jt2cSSTQf3azly4aj0c6/zVAhqF2G54alRXwfmy6aMKqB/sbBXn6D4asnON7D1hu8t9ZcllUD9Ywfko67w8H1VAmJ28bBSi4HyUdYznruTToI6i4ryU4nBeAgT4OOHl4cSZy6WfWa83cSkqj8YN7TdGhNd35WyEdT6duZxrWUcuk9CwritnL9tI06DyjRwlx+X5K2WOyyv5do/LRiEunLORvjJ5mZNf9d4GBn0xqbcvE9Sok9XyoNBOJMeerdQ2TEYjuqI8FG72G72qQyaFQG8J0QnWDSkxiUaCfR3vhh0WJCE+1cSgR2S8MUbO1CFyujSTInFwkzIp1A2Uc/m6datzREwxDYNsl2sNasuJiLFOfymmmLqBcsv3HR2vo26gnHp3ylsfDykPhTo7NLRHJoOQWk5cirZe92J0EaHBtht0GgY7cdFG+pDaTpYYW4UriI7X8cRgDV/N8uODF30Y0tXdobyUyaBebWcuXLXuVXHhWqHdcjK0rjMXrlmnPx9VSP0g63JyVG8NOXlG9p28Pw9SAv0VeHs5c/JcpmWZTm/i/OUsmoXbbuAAc6+Nu9cBOHFOS7Mw63WCAl1Zv7Qtqxe3Ye70MAL9q/aAQiaD+kHOnI8qk5dRhYSF2C6DQusquFAm/bmoAuoHW5dBo/t6kJ1rqHadU+JByMt6Ns6dS9FFhNZxtrlOaLBz+XPtWhH17jp3AFycJXwxw48vZ/rz+kQv6gY6fm0V4OtsrhcvlQ4Z0+lNXLySS5MK6sXGDd04c8n6uzx9MafCurQ6HpQ4/6mkckmNvR4EogFGEGrI0qVLmTBhAgD9+/cnNzeX3bvN86ssXryYsLAwPv74Y8LCwnj88ceZPHmy1foff/wx48aN49VXXyU0NJSOHTvy5ZdfsnLlSgoL709326pS+PtQlGw9Xr04JR2pkxPOPuYn5IoAH4qS063SFCWnowhwbBiA0lWCTCohu8yNck6+EbW74wWx2l1CTl6ZbeYZUblVfZsqpQyZTEJmme7umTkGPNS2L2Q81TKb6eUyCWql7e7ETwzzISNLX+6GurLU7uY4s3KsP3dWjgEPle19alQyssrEmZVjRC6ToHI3rxMWoqBHOyVL1qbb2kSVqEpizC67T/sxeqhtxJhtzkuVnbycMMSLjCwDF6LKzw1UWZ4a83ebWeZJZma2Hk8733vJetos63W0WaXrqEuOp3LbNVj2WRkleVn2OKsoLz1t5OW9jsuJQ73JyNI7lJeFeVpMRgOuSm+r5a4qb/JzKjc3xvkDP6ArzqdB8wFV3n9luClAJpWQV6bYzS0wl0+O8lRJaFJXglQCP+3Wc+CigY5NpXR9yLFLN5Wb1FxWlinXsvJMaJS2t6lWSsnKs25Yys4zn99KN/M6Jy4XsWFfHm9O9uC/b/nw0UveRMXq2Hak6t+3yk1qPr/LPGHPzjWgsXd+K2Vk55Y5hnOtY/T1lNO2iQtSKXz6Ywab9ucyoJOSod1s91ipiKWcLLvPnApitFVO5t4pg9zNMTaq60z3tu5891tGlWOyx9vDfOOdkWk9f05Gpg4vD9s35QBeHs5oy6yjzdTh5Vm6TsS1HD5YeJUZ8y+z4NtreHk68+2HzVGrKl8G2c3L3HuU5zbSl61zerZT8t/7UOeU+KfnZem5U/5c8LBTNmtUsnLnWtnjMiFNz5J1mXz2UwbfrNai05t451kf/L0dG1JaUkdpbdWLGvu95jw1cpt1qVcV6ryqeFDiFB5M4mgQhBoQFRXFiRMnWL9+PQByuZzHHnuMZcuW0bt3b6Kiomjbtq3VOu3atbP6//Tp00RHR7Nq1SrLMpPJhNFo5MaNGzRu3NjmvouKiigqsn7ioVA4NqzGJlOZ7vQljxjvXm4rTdllVd7vvUOp7iYdffJsz70+tr3921pneG9POrdWMWfhLXT66n1wU5k9SyQ2s9cuS5yYcFFIeHGcD0t+SyenGr1JysdYxfTlMtP+hob11NCplZJ5XydWKS+7P6LhxYm1LP/P+/Km7V04cBzZ+g7u12lkK28q2ozdrLR1XPbyoHMrFe98dbt6x2XZk88EkkqckNFnt3J659f0m/xNuUac+83m91GN7UkkkFcIm48ZMJkgMcOEytVIp6ZS9l+oxrlU5eOmTHlQsvTOSmF1nRjc2Z2f/sjleoIOP08ZY/spGZzrxtaDjjUGlyOROFRWlpBKzA3oyzZlYTJBbIIeT5WMgZ3d2bTPwR4S1Tz/7j5vXBQSpo314bt1GdUqJ/t09eX15xta/p/1/mWbwVYmVpOp4nWOn7lrLFwcXI66zC+L2tC/hx9rNtuen8n+vmwsq0L6u4tzF4WEl8b58N+16eUeolTF/0xeSsrX6RWmv5ObJctj4nXE3DVJ99W4Yt6b5kvf9u78+Pu9h9D06ODBS5NKh1vN/Ty2gjgrdr/L2Ls9KHE+KMQkvBUTDTCCUAOWLl2KXq+ndu3Swt5kMuHk5IRWq8VkMpW7uShbgRuNRp577jlefvnlctuvU6dOuWUlPvzwQ+bPn2+1bO7cubS1k74qipLTyvVkcfb1wqjTUZyeaU6TlIYiwMcqjcLPq1zPmcrKLTBhMJpQu0uB0ic/KjcpOdWYrDI7r2SbpZQObjMn14DBYCr3RE+jlJGVY3uctzbbgKeN9HqDiZw86ydcw3p5MLqvJ3O/vs3NBPu/dnAv2Xm241Qryz+9LWHrqa9aKUVvMJGbZyQowAk/Lzkzn/SzvF9yaP/8UR1eW5BQpTlhckpiVJfJG1X5HkMlMrMNNtPbysuhPTSM7OPBu98mVjkvj5/LIepGjOV/pztdYT3V1j1aPFTyck/V7qbN0pfryeKhLn2qln3neCqbRqOSlXvyVpGSvPQsmzcVfN/a7PJPpu3l5bCeHozq48m8bxIcPi5d3D2RSGUUlOntUpCbfs8Glehzf7D/t3/Re8IXBIV2dGj/lZFfBAajCWWZaVTcXSCvwPEyKDffhMFkfTGfmmVC5WYe0mWo4r1lTr7RXFaW6e2idivfK6ZEdq4RTZlyUOVuPr9LPtvw7u4cvWCeVwbgdooBhXMeTwxS8fvB/CrdeOTkGzEYyvfIUbtLy/VyKZGZa0BT5gm/+k6MJUMIM3MMGIzWeZmQqsdDJUMmA0MVRseVlJPly73yPXEsMdosJ2WWGIP8zeXkG5NL68+ScvKnD4OZ/nFipeYxOXQig4irpUPznJzM+ejl4Uy6tvQm2lPjhDbL/jmZkVls1UMDwEPjhDbT/jqFRUau38wjKLDy82bZq3MqKoMybZRBlrzMMxAU4IyftxOznipf5/yyoC6vfnS7UnXOg5aXJeeOOW9K49O4S+3O2WLu7Wh9rmmU1udOWSYTXL9VTIBP5W4hj53N5kpMaUNsSb3opSlfL2Zm2f+lM1v1okZVvreoox6UOIX/DWIIkiD8zfR6PStXruTTTz/l3Llzltf58+epW7cuq1atIjw8nJMnT1qtd+rUKav/W7VqxeXLl2nYsGG5l7Oz/e6ws2fPJisry+o1e/bs+/LZMo+dw6eX9Y2Ob5/OZJ2+hElvrny0x87h08t6Pgef3p3RHq3cfA5lGYwQn2wgPMS6wgsPkXM9wfEK70aCnsZ1rbfZOETO9dtV36beYP4p3ubh1mOAm4e7ceWG7eFiUTcKyqVv0diNmLhCqxuv4b08GNPfi3e/TSCmmj+ZbDDA9dvFPFxm4tmHG7lw1c7Pq169WcTDjVzKpHflenwxBiMkpOiY8UkCsz5PtLxORxRwOaaQWZ8nkpZZtfzUG8w/Ef1wWJkYw1yJspOXV2PLp28e5kZMXJFVXg7tqWFUP0/eW5xETHzVGwwKiowkphRbXnEJRWRk6mjZtHSYg1wmoVmYO5HR9nsGXLleQIsm1kMjWjZRWtbRG0xE3yygpa00MZXvcWA5LsMqf1xejS20eRyXzcthPT0Y3c+Tfy9OICbe8eNSJnfGt3ZTbl07YrX81rUj+IfYnzcq+uxW9q2ZTc+xn1C3cXeH918ZBiMkpptoUMu60bx+oJT4VMcbYOJSTXipJFYdpnzUErLzTVVufCmJ82ainqb1reuHJvWdib5l+zyMua2nSZn0Tes7czNRb4nB2an8012j8c5z9Co+BDUYIDZBR7MG1r0ymzVwtvtT2dHxOpo1sI6xWUMFsbd1lhivxunw85JZ9YwJ8JahzTZUqfGlJMYbt4t5ONS63Hso1H45ee1mMQ+Fli0nXbh+6045marjjU8TefOLJMvrdEQBETFFvPlFEumVvHkrKDRwO6nQ8oqNzyc9o5g2zT0saeRyCc2barh0xfbPNgNcjsqh7V3rALRt4cGlKPvrOMkl1A1yI11b+bLTYDDfzJevQ1yIirVdBl2zUec0D3PhenyRpc55/ePbzPwswfIqqXNmfpZQ6TrnQczLGwk6mjUsc+40VHAtzvZ2rsUX20x/465zx5a6gU5k5lSuECootFcvls6BI5dJeChcSUQF9WJkdD6tmlrXea2aKSusS6viQYlT+N8gGmAE4W+2detWtFotU6ZMoVmzZlav0aNHs3TpUp577jmuXLnCrFmzuHr1KmvWrLH8SlJJz5hZs2Zx9OhRpk2bxrlz57h27RqbN2/mpZdeqnD/CoUCtVpt9bI3BEnm7oa6eTjq5uEAuNULQt08HJfgQADC3ptO8x8+sqS/ueRXXOvWovHHb6IMr0/Q5FEEPzmK658ts6SJ/XolPn06UX/GM7iH1af+jGfw6dWB2K9WOJynu08V0fEhZzo0c8bfS8qo7i54qaQcOm++GB7axYUnBljfNAb5ygjylaFwApWrhCBfGQHepUXi3jNFhIfI6dNOgb+XlD7tFITXkbP3tGM3k5v3aOndUUOv9mqC/J14cqQPPl5O/HkwC4AJQ715eaK/Jf2fh7Lw9TKnC/J3old7Nb06aNi4O9OSZnhvT8YN9ubrVSmkpOvwUMnwUMlwcXa86+fv+7Pp2U5J97bu1PaT88RQT3w85Ow8Zr5YHDvAg2mPl/Y82Hk0Fx9POROHeFLbT073tu70bKdky35z12SdHuKTdFavvAIjhUUm4pN0Vb75AdiyL4te7dX0fERFbX8nJo/wxsdTzo7D5hjHDfbkpfGlT5J3HM7G11POpOFe1PZ3oucjKnq2V7F5b5YlzbCeGsYO8uLbX1JJzdDfl7wE2LQrnUcH+tKhpYq6tRS89lRtioqN7D9euu/pT9Vm0sjS737zrjRaNVEyur8PQQHOjO7vQ4vGSjbtKp3PYMPONPp28aRPJw+CAxU881gAvl5O/LGvavNHbNmbSa8Oanq2N+flkyN8zHl5yBzf+CHevDyh9Enyn4ey8PWUM3mEjzkv26vo1V7Npj2lXeiH9/Jg3GBvvvk5hZT06uflQ10mc+XEb1w5uQ5tcgxHNn9IbmYiTdo/DsDxbZ+y59dZlvTRZ7eyd/WbdBg8C/+6zcnPSSU/J5WigtIbHoO+mLSESNISIjHqdeRlJZOWEElW2k2HYjwSaaRVQyktG0rw0UD/NlI07nDyqvkmpXdLKSM6WT+1D/A0v5zl4O4iIcATfO+aJ/hklBE3BQxoJ8VbBaG1JXR5SMrJKMeHVew4VkCXli50bu5CoI+Mx/q446WRsf+0eb6WkT3dmTKs9IZj3+kCvDXmdIE+Mjo3d6FLSxf+PFp6M3H+ajHdW7vQrqkCHw8pTeo5Mby7O+euFjk0JG77kTy6tXajaytXavnKGTdAhbdGxp4T5n2O6aPi2VGlGbXnRD4+HjLG9VdRy1dO11audGvlxh+H8+5Kk4fSTcqEgWoCvGU0b6RgSDclu044dlP0+8EcerRT0r2NO7X85Ewc4oGPh4xdx8zDmR7vr+GFx0rLyV3HcvDxlDFhsAe1/OR0b+NOj7ZKfr+rnLyVrLN65RcaKSgycivZsXKyxNqtt5kwOpguj3hTr44bs18KpajIwM4DqZY0b73ciGcn1LX8/9vWBNq08GTciNrUqe3KuBG1afOwB2u3lP5s7tRJITRvqibQT0HjUCXvzmyMu5uM7XtTqhTf1gNZ9HpERY92Smr7OTFpqCc+nnJ2Hr1T5wz0YNrY0l6zO47m4ONprptq+znRo52Snu1UbNlXkpem+17nlPin5+W2w7l0b+1G19bmc2f8QDXeGhm77xznj/ZV8dxoD0v6PSfy8faQMX6A2nzutHale2s3/jhUOixvRE8lDzVU4Ospo06gnGdGelAn0IndJxyfKHrjjjQeG+JHx1Zq6tZWMP3pIIqKjOw7lmlJ8/ozwUweHWD5f9PONFo1UzFmoC9BgQrGDPSlZRMVG3eU5r2LQkr9Oi7Ur2NuoPP3caZ+HRd8vRz7RbYHJc5/IjEJb8XEECRB+JstXbqU3r17o9GU/0WOUaNG8cEHH6DVavntt994/fXXWbhwIR06dODtt9/mhRdesDSWPPzww+zfv5+3336bLl26YDKZaNCgAY899th9i1XTuhkddv9o+b/JJ28BEL9yPRemzEYR6IvrncYYgILYW5wc8ixNPp1N3RfGU5SQwuXX3idpww5LGu3Rs5wdP52w+a8SNv9l8mPiOTvuNTJPXHA4zjNROtxdCxjQwQW1u4TENAPfrs8lI9t89a9xl+Kptm5vnj2p9CajbgC0beJMepaRd74zX8TdSDDww9Z8BndyYXAnF9IyjSzdmk9skmNXb4fP5KJyT+XRAV54qmXEJRbz3re3SdWan8Z5quX4epUWySnpet5blMCTo3wY0EVDRpaBpb+lcuxc6YXRgC4anJykzHo60Gpfv/6Rzuo/HJvI8ej5fFTuGYzq44GnWkZ8UjH/WZpCmtb8uT3UMrw9S+NMzdDzn+9TmDTUk36dVGizDfywKYMTF/+6pz1Hzuahck9ndD8PPDVy4hKL+eC/SaTdlZc+d8WYkqHng/8mMXmEN/27aMjI0vPD+jSOny+9gOzXWY2TXMIbT/lb7WvNNi1rtjv+u7+/bU/D2VnK1PG1ULrLiLpewJzPYikoKr2J9vV2trpRjYwp4KMl8Uwc7s+E4X4kpRbz0ZJ4om6UTmp68GQ2avckxg7xw0sj52ZCEXMX3iQ1w37XaFsOn81F5S7l0X5ed/KyiPcXJ9x1XMrw8Sy9KEzJ0PPefxN4akTJcaln6bpUjt2Vl/07a3CSS5g5xfq4XL0tg9Xbqn5cNmwxkKL8TE7v+ob87FS8AkIZ8NR/UXmah3DmZ6eSm1k6T0LE8dUYjXoObXyXQxvftSxv1Ho4PR77z511Ulj3xQjLexcOLOPCgWUE1m/L0OdLy7zKuhxrwk1hpNvDMlSukJIJq3YbyLqTLUpXCZoyv6L8wpDSfK3tAw/Xl6LNNfHF+jtDzfJh5U4D/dtKeWGonJx8OBZp5NBlxxtgTkYUoXSVMKSrGxqllNupehb+kkV6lnmbHkopXneVlWmZRr74JYvH+7rTo40rmTlGft6ey+krpU/US+Z5Gd7dHU+VlJx8I+evFrN+r2M3aMcvFaJ0y2ZYdyUeKhm3kvV8+qOW9CyDJUZvTWljVlqmgU9+1DJ+gJpej7iTmWPgxz+yORVR2oMiI9vIxysyGDdAzXvTfNHmGNhxNI+tBx2L8dj5fFRuUkb21uChlhGfpOOjZamkZZaWkz4epTGmag0sWJbKxCGe9O1oLidXbNZy4pLjk3xX1s8bbqNwljH92QYolXIir+Xw+vzLFBSW1mX+vgqrYc6XonKY/+kVnh5Xlylj65KQXMi8T6OIvFZa//h6K5g7PQyNyonMbB0RV3N4ftZ5klOr9pDi6Ll8VG531TmJxXz4fbKlzvFUy/HxsK5zPvw+mUnDvOjXSY02S88PGzM4/hfWOSX+6Xl5/GIhKrcsRvRQ3Tl3dHy8MoP0kuNSJcNHY31cfrIigwmD1PRu744228DK37M4ebn03HFzkTJluAaNSkZ+oZGbiTre+y6N67eqVtfcbe0fqTg7S5n2RG1zvRiTz9ufXKegsLRs8/N2ssrHyOh8/rMojidG+TNxpD+JKcV8uOgmUddLz6HQeq4seLOB5f/nxpnnZNt5KIPPvr/1Pxun8OCRmMpOLCEIwj/S+++/z+LFi4mPj/9Ltv+7U9hfst37ZZAuimmfZNZ0GBX6ZoYHI168VtNh3NOGr0N5bIZjT/r/Lqs/qcvoV67XdBgV+m1hfQY9fammw7in379vxsiXo2s6jAqt/7Ihn236Z1+OTB8mYe5Kx286/i7zn3Biyr9T752wBi2d48sTcxJrOowKrfx3IGNnxtV0GPf0y4I6dB1xqKbDqNCBDZ159PXYmg6jQms+DfnH5yOY83LC21WbmPfv9tP7tRgw2fGHan+Hbcsf/sfHCOY4H0QHmtkfIvxX63rJsSkN/k6iB4wg/EN9++23tG3bFm9vbw4fPszHH3/Miy++WNNhCYIgCIIgCIIgCA4QDTCC8A917do13nvvPTIyMqhTpw6vv/76fZssVxAEQRAEQRAE4X6Tyh6MuVhqimiAEYR/qM8//5zPP/+8psMQBEEQBEEQBEEQ7gPxK0iCIAiCIAiCIAiCIAh/MdEDRhAEQRAEQRAEQRCEapNIxRCkiogeMIIgCIIgCIIgCIIgCH8x0QNGEARBEARBEARBEIRqk8hEH4+KiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SWViEt6KiB4wgiAIgiAIgiAIgiAIfzHRA0YQBEEQBEEQBEEQhGoTP0NdMYnJZDLVdBCCIAiCIAiCIAiCIDzYjnd4pMb2/cjR4zW278oSPWAEQQBg2ieZNR1Chb6Z4cHvTmE1HUaFBumiGPZCVE2HcU+bFoXRd+LZmg6jQjt+bMnkeck1HUaFls/zZ8hzkTUdxj1t+W9jnpiTWNNhVGjlvwNZuOWf/TzolSES3llRXNNh3NO7k5yZsSi/psOo0CcvuPHSF9k1HUaFvnpVzczFBTUdxj0teN6VSe8k1XQYFVrxbgBPzU+p6TAqtGyu3z++nARzWfn8R9qaDqNCi2d5MviZiJoOo0Jbv2vCoKcv1XQY9/T7981qOgSHiDlgKibmgBEEQRAEQRAEQRAEQfiLiQYYQRAEQRAEQRAEQRCEv5gYgiQIgiAIgiAIgiAIQrVJxBCkCokeMIIgCIIgCIIgCIIgCH8x0QNGEARBEARBEARBEIRqk0hFH4+KiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SaRiEt6KiB4wgiAIgiAIgiAIgiAIfzHRACP85bp3786rr75q+T8kJIQvvvii0uvHxsYikUg4d+7cfY+tImXjFgRBEARBEARBEOyTyiQ19noQiCFIQrVNnjyZFStWlFt+7do1GjZsWG75yZMncXd3v68xLF++nFdffZXMzMx7pnvyyScBkEqlqNVqGjVqxKBBg3jllVfQaDSWtOvXr8fJyalS++/evTstWrSoUsPSg6RLC2d6t1WgcZeSmGbgt70FxNw22Eyrdpcwsrsrdfxl+HpK2XemmHV7C8qlaxHqxODOLvhopKRlGdlysJDz0TqH4vPq3Ib6r09B06oZLrX8ODVqKsmbd1e8Tpe2NPnkTZRNQilKSCHm0++JW/KrVZqAEX1pNO8V3BrUIT8mjqh3Pid50y6HYgQY0NWDEX088dTIiUssZunaFCKiy+dNiaahrjw12o86gc5kZOnZsCOD7QezLO8HBzozbogPDeq44O/txPdrU9iyR+twfHebOCKAgT18ULrLuBKTx9crbnHzdmGF63Ruo2HS6EAC/RQkphSxfG0ih0+Xxvv4EH86tdEQHOhCsc5IxLU8vv81gVtJRVWOr2dbVwZ0dMdDJeV2ip6ft+dwNc7+8RNW14mx/VTU9pOjzTGw7XA+e0+V5v2bkz0JD3Eut975q0V8/nNmleMDGNjNk5F9vczfd0IR361JrvD7bhbqxpQxftSppSAjU8+6HelsP2C9744tVYwf6kugrxOJqTp+3JTKsXM5DsVXolc7NwZ2dkejlHE7Rc+qbVlcvVlBXoY4M66/mtp+cjJzDPx+KI+9J/Ot0ri5SBjdW0WbJi64uUhJyzTw87ZsLlyr+ncNcOnwz5zdt5T8nFS8/BvSadhb1KrfxmbamIs7uHzkV9ISIjHoi/EKaEjbvi9SJ6yLJU1G0jVO/Pklqbcuk6NNoNPQ2TTvOsmh2Eq0DZPSuakMpRukZprYdsLAzRSTzbRKV+jfRkYtbyleajgeaWTbyfJlqosT9Golo0kdKS4KyMyB7af0XLtte7uV0bGpnO4t5KjcJCRrTWw6XMyNRKPNtCo3GNLRmSBfKT4aCYcu6tl82PrYaFZPRq9Wcnw0UmRSSM0ysf+8jjNXbdcRldHlYSd6tVagdpeQmG5k/f5CYhLs1DluEkZ0dSHYT4qvp5T954pZv9/6OAvwkjKog4Jgfxneainr9hey72yxw/EBdGgqo1vz0nzcfFhHbJL9fBzcwYkgXyneGgmHLxrYcqRsPkrp2dIJb40EmRTSskwcOK/nzDXH8xHMZWXJ+Z2QqmfVtux7nN9OjOuvppav+fz+41CeVVkJ5vN7VC+l1fn9y/ZsLlxzLE97tHGlf0c3S3n+y5+5XKugPG9U14nH+yrvlEFGth3OY9/p0vpp5iQPu+X5wl+yyi2vjAehnATo1lJBn3YKNEopCWkG1u4uIPqW3m760GA5o3u6UstHRmaukR3HCzl4rvR7lEqhf3sXOjRzxkMlJTnDwPp9BUTcsL/NexnY3ZOR/bzxKqkbVydz+Vq+3fTNGrnx9KP+pXXjn+ls2299rdOxlYoJw/xK68aNKRw9W726EWDcUD/6d/VE6SYj6kYBi1YlEJdQ8ffTsZWaicP9CPR1JjG1mJUbksvFMqi7FyP7+eDlYc6DJb8mVpgHwv8W0QNGuC/69+9PYmKi1atevXo20/r6+uLm5vY3R1hKrVaTmJjIrVu3OHLkCM8++ywrV66kRYsWJCQkWNJ5eXmhUqlqLM5/ilZhTozu4cqfx4r4cGUO0bcNTBulxFNlu5VZLpOQm29i+7FCbqfYvnCsFyjjqSFunLhczIcrczhxuZgpQ9wICZA5FKPM3Y3sC1FcfuXdSqV3DQmi7ZYlZBw6zaG2w4n+aDFNP3+bgBF9LWk82reg5c+fc3vVJg62HsbtVZto9csXeLR72KEYO7dWMWWMH2u3Z/DaBzeJiM7nnWlB+Hjabgf383binWlBRETn89oHN/ltewZPP+pPh5ZKSxqFs5TkNB0/bkwlI8vxi6GyHh3kx8gBfny9Mp6X5kahzdLzn1kNcXWxX2U0bujG2y/WY/dhLS+8fYXdh7W8/WI9whuUnusPhSvZvCuNV+Zf5c2PYpBKJXw4qyEuiqpVRe2aKhjXX8WWg3m8szidq3HFTJ/ggZfG9nZ8PKRMH+/J1bhi3lmcztaD+YwfoKJNY4UlzVerM3nlk1TL661v0jAYTZyMqLjRyZ7ObVQ8/ag/a/5I55X3bnA5uoB5L9XB18737e/txNyXgrkcXcAr791g7bZ0nn0sgI4tS8ugsPquzHymNnuPZ/Hyv2+w93gWs56tTaMQF4diBHikmQvjB6jZvD+XdxalcfVmMTMmeuFtNy9lzJjoydWbxbyzKI0tB3KZOFBNmyalMchkMHOSFz4eMr76Vcushaks25iJNsexG8lr5/7g0OYPad37eca8toHA+m3Y+v2z5GgTbKZPvH6K4EYdGTRlCWNeXUftBo/wx7KppN6OsKTRFRei9gqm/cDXcVP5OhTX3ZqFSBnQVsb+iwYWbdFxM9nEhN5yNHaeNcilkFcI+y8YSM6w3Zgik8KkvnI8lRJW79Pz5QYdm47qya7GNXrzBjKGdnJi1xkdn68t5HqigacHKfBQ2i/P8wpM7D6tIzHNdpwFRSZ2n9Hz1fpCPl1TyMkreh7r4UyjYMcuMVs1kjOymwt/nijio1V5xCToeWG4m/06Rw65BUZ2nCzmdqrtBhBnJ0jLMrL5UCFZebbTVEXzBjKGdHRizxk9C38r4kaikSmDnCvOx0LYfUZPYrrtfMwvgt1ndHyzoYjP1hZxMkrPmB5ONApy/FK93Z3ze8v+PN5ZlEbUzWJen+BZQVkp4/UJnkTdOb+3HshjwkA1bZqUlpUyGbwxyQsfTxlfr87kzS9TWbYpC222Y/natqmCsf2VbD2Yx7z/ZnAtTsdr4zV4qe2X56+N8+BanI55/81g68E8xg1Q0fqu8vyb1Vm8+kma5fWvb9MxGE2cinCsYeNBKCcBWoc7MaaXK9uOFvL+8myib+l5cYz96zVvjZQXRyuJvqXn/eXZbD9ayGO93WjZqPTh47AurnRtoWD1rnzmf5/NgbNFPD9CSbCfY9drXdqoeeaxANb8nsbL717n8rV85r1cB18vO3WjjxPzXq7D5Wv5vPzuddb8kcazjwfQsVVp3Rhe35VZzwax91gmL717nb3HMpn1bBCN6rk6FGOJ0f19GNHHm8U/J/LaezFos3S8Nz0E1wquWcLru/Lmc8HsOZrJi/Oj2XM0kzefq0PYXbF0aavmmccDWP1HKi+/G8Olq3nMf6Uuvl6Ve+grPPhEA4xwXygUCgICAqxeMpntwrnsEKQrV67QuXNnXFxcaNKkCbt27UIikbBx40ar9a5fv06PHj1wc3OjefPmHD16FIB9+/bx5JNPkpWVhUQiQSKRMG/ePLuxSiQSAgICCAwMpHHjxkyZMoUjR46Qm5vLzJkzLenKDkH69ttvCQ0NxcXFBX9/f0aPHg2YewDt37+fhQsXWvYfGxuLwWBgypQp1KtXD1dXV8LCwli4cKFVLJMnT2b48OF88sknBAYG4u3tzbRp09DpSp+qFBUVMXPmTIKDg1EoFISGhrJ06VLL+xEREQwcOBClUom/vz8TJ04kLS3N7uevql5tFBy9WMyRi8UkZxhZt7cAbY6RLi0UNtNnZBv5bW8BJyJ0FNh5GNajtYIrN/XsOFFEcoaRHSeKiIrT06O17W3eS+qfB7g69wuSNu6sVPq6zz5OYVwiEa9/QO6V68Qv+4345eupP/0pS5p6L00ibdcRYhYsIS/qOjELlpC25xghLzn2lHxYL092Hcli5+EsbiUVs3RtKmlaHQO6ethM37+LhtQMHUvXpnIrqZidh7PYfSSL4b29LGmibxayfH0qB0/loNM7/kS8rBH9/fhlUxKHT2URe6uQj/97E4WzhJ4dPO2v08+PM5dy+HVLMvGJRfy6JZmzETmM6OdnSfP2xzHsPJjBzduFXI8r4NPv4vD3cSY0pGoXSf06uHPgTAEHzhSQmGbg5+25ZGQZ6dnGdsNujzZupGeZ0yWmGThwpoCDZwvo37E0fV6Biaxco+XVrIGCYp2JE5cda4AZ3tubnYcz2XE4k1tJxXy/Jtn8fXeznYf9u3mQmqHj+zXJ3EoqZsfhTHYdzmRE39Lve1gvL85F5vHb9nRuJRfz2/Z0zl/JY2gvL5vbrIz+Hd3Zfyaf/acLLE/HM7KN9Gxnu+WgZzs30rOMrNqWTUKqnv2nCzhwJp+BnUrTd23lhrublIU/a7kWpyM9y8DVOB3xSY41Ep7fv5zG7UbR5JExePk3oPOwt1B6BHDp6C8203ce9hYtezyNf52H8PANof3A6Wh86hJ7ea8ljX+dh+g4ZCahLQchk1f/ordjEylnoo2cuWYkLQu2nTSQnQdtw2zXg5l55jTnrxsptPMQvWVDKa4KCT/v0ROXaiIrD+JSTCRrHT/XuzWXc+KKnhORBlIyzb02MnNNdGhq++ZHm2Ni02Edp68aKCy2vd+YBCOXbpi3l55t4tBFcyNDPQcb1Hu0UnD0so6jl3Uka42s31+ENtdI54fL92gAyMg2sW5/EScidXZjjEs2sulQEWeu6tFXr0MJAF0elnPyioETV8yfe8sRcz62b2L7M2tzzHl9poJ8vJ5g5HKskZRMExnZJg5fNJCUbiIk0PFL9f4d3ThwpoD9JWXlthwyso30amu7rOzZ1pX0LCM/b8shMc3A/jMFHDhbwIC7z++WrihdJXz5c+ad89vItTgd8cmOnd/92rtx8GwBB88Wkphm4Jc/zeV5j7a264XubVxJzzKnS0wzcPBsIQfPFtKvw13leaGJ7Dyj5dW0vjPFOscb1B+EchKgd1sXDl8o5vCFYpLSjazdbb5e69bS9rVV1xYKMnLM6ZLSjRy+UMyRC8X0aVfaUPRIU2e2HS3k0nU9aVlGDpwrJuKGjt7tHLteG97Hm52HtOw4ZK4bv1ttrhsHdrNdjw3o5klqho7vVt+pGw9lsuuwlpF9vS1phvb24mxEHmu3pXMrqZi128x147DejteNAMN6e7P691SOnMnmZkIRny27jcJZSrdHNPbX6ePD2Yhc1m5LuxNLGuev5DKsd2m8I/r4sOOQlh0HtcQnFvHd6iRzHnSvXrz/JBKppMZeDwLRACPUKKPRyPDhw3Fzc+P48eMsWbKEt99+22bat99+mxkzZnDu3DkaNWrE2LFj0ev1dOzYkS+++MLSsyUxMZEZM2ZUKQ4/Pz/Gjx/P5s2bMRjKX52dOnWKl19+mXfffZeoqCi2b99O165dAVi4cCEdOnTgmWeesew/ODgYo9FIUFAQa9asISIignfeeYe33nqLNWvWWG177969xMTEsHfvXlasWMHy5ctZvny55f0nnniCX3/9lS+//JLIyEgWL16MUmnuBZGYmEi3bt1o0aIFp06dYvv27SQnJ/Poo49W6fPbI5NCsL+MyFjrC4LIWD31azk+grFeLXm5bUbE6qlf++8ZFenRvgWpuw5bLUvdcRBN62ZI5OYYPNu3IG3XIas0aTsP4tmhZZX3J5dBgzounIvIs1p+LjKf8Pq2LzLD67tyLtL6UffZiDwa1nVB9heW3AG+znh7OHH6Uml3WZ3exIUruTQJtT90sElDd05fyrZadvpidoXruLuaP0hOXuXviGQyCKkl51KMdevepZhiGgbbvpFuGOxULv3F6GJCajnZzcsuLV04fqmQYgdGxcll0LCOC2fLfN9nI/Jo3MDe9+1WLv2ZiDwa1nW1xBhe37X8Ni/n0biBYz0KzXnpxKVo66fCF6OLCK0gLy/aSB9SuzQvW4UriI7X8cRgDV/N8uODF30Y0tUdiQPXRQZ9Mam3LxPcqJPV8uBGnUiOPVupbZiMRnRFebi42b9org6ZFAK9JcQkWPcAiE4wUsfX8YvB8GAp8SlGBreXMfNRJ6YNldP1IalD+VgSZ21fKVfjreO8Gm8gJOD+FSoNa0vx85BwPbHqLR0yKQT7Sbly07p+uHJTT71Axxp07jdzPkq4Gm/9+a7dMt73fPT1kNgdHnYvMhmEBDpxKcb6fL0UXUTDOrYbsxoGO5crDy5FF1mVlS3DXe6c32q+nOnL+9O8Gezg+S2TQt1aci6XKZ8vXy+mYZDtMqhBkBOXr5dJH1NESC15BeW5KycuFTlUnj8I5SSY87JOgIzIG9YfMvKGzu61Vf3a5dNH3NBRN0CG9E6ccjnoDNaNhjo9NAyq+vWaXAYN69qoGy/nEm63bnTl7OVcq2VnLt+pG2Uladw4G1E2Ta7d+rYyAnyc8PJw4sxd+9brTVyKyqNxQ/t1rrmethHLnXXkMgkN69r6TLkO1+XCg0fMASPcF1u3brU0CgAMGDCAtWvX3nO9HTt2EBMTw759+wgICADg/fffp0+fPuXSzpgxg0GDBgEwf/58mjZtSnR0NOHh4Wg0GkvPFkeFh4eTk5NDeno6fn5+Vu/FxcXh7u7O4MGDUalU1K1bl5YtzTfiGo0GZ2dn3NzcrPYvk8mYP3++5f969epx5MgR1qxZY9VA4unpyddff41MJiM8PJxBgwaxe/dunnnmGa5evcqaNWvYuXMnvXv3BqB+/fqWdRctWkSrVq344IMPLMuWLVtGcHAwV69epVGjRuU+Z1FREUVF1hcGCoXtJxlKVwkyqYTsfOsLwJx8I2p3x4sPtbuEnDLdwHPyjKjc/p6Wa4W/D0XJ1r2EilPSkTo54ezjSVFSKooAH4qS063SFCWnowio+nAFtVKGTCYhM8f6piIzR4+nnTEKHmo5mTl55dLLZRLUShna7PvwGNcGLw/zBaU2y/qiLDNbj5+37Yt2AE8POdoyw6C0WXo8NfaPk+fGB3ExKpfYW5V/Kqlyk5qPyTLHT3aeAY3SdnwapZTsMo082XlG5DIJSjcpWbnW26pXW06wvxPLNls3KFWWWik3f9/Z5b9vD7Xt79tTLSt/fGSXfN9ytNl68zFRdpvZejzVjt2YqtykyGSScp8/O9eARmW7TPBQyriYa11+ZOVa56Wvp5zG9WQcvVDApz9m4O8tZ9JgDVKphE37cm1u157CPC0mowFXlbfVcjeVN/E5levpd27/D+iK82nQfECV9l1ZbgqQSSXklpneJ6/QhNLV8RtyT5WEeoESLlw38uMuPd5qCYMfkSGVwL4LVb8pd3cxl+c5+dY3UzkFpmqXvS7OMOcJV+RSMJpg/cFirt1yIEZXOzHmm1D/TfXDvbi72P6+c/JNqBwcdlXCxRnenuhiyccNB3UO5SPYP7+z8oxolLbj1Cil5YZolT+/ZTSu58zRCwV89qMWf285TwxWI5PCpn15NrdbYYxSW2WQEU0D+zFml/1MuRWU57XkBPnL+cHB8vxBKCcBlG62r9ey80yo3W3npdpdSnaedZ2SnW9EJpOgdJWQnWci4oae3m1diI7Xk6o1Eh4ip3mok0MNRSV1o7ZMPabNMdDKzrWCp0ZebliWNluPXH6nbrxznWG7bnT8OrXk2sXWdn297fea9NTYuRa6E4vlerDcdg0VXi89aCRS0cejIv8737RQo3r06MGiRYss/1d2kt2oqCiCg4OtGi7atWtnM+3DD5fOvREYGAhASkoK4eHhjoRcjslkvuCT2KhV+vTpQ926dalfvz79+/enf//+jBgx4p5z2SxevJjvv/+emzdvUlBQQHFxMS1atLBK07RpU6vhWoGBgVy8eBGAc+fOIZPJ6Natm83tnz59mr1791o1fpWIiYmx2QDz4YcfWjUMAcydOxeUr9r/IDZ6TJuqOeKl7OqOPvVxPIAyEZQEcPdyW2mq8cHLbY7S464y6c1r2Pw6HNazoyevPBls+f9fn17H3k7utV+bWWpnpRcnBVEv2IXp/75W6Vgr3BcVH0BV+dq6tnQlPlnHjdvVm1en3DF+r/T2Dsm7tmTrkLifx0PJjivKr3udu1KJuUF12aYsTCaITdDjqZIxsLO7QzcWUP77Ncd370Lj2tmtnNzxNQOe/Aa3Mo04f4fqfDcSIK8ANh81YDJBYoYJtRt0aipzqAGmov1U9yAqKobP1hSicILQIBlDOzqTkV1UrldQZd33Y/ovYOs8qG69WFQMX6wtwtkJQmub55nJyDFx3cF8tBkn94jTTjlUouT8/mFztvn8TtTjoZYysJN7lRtg7JHco1wrn/d36kYbK3Vp5cqtZD03Eu7fPGl3dvqPKyfBfj1S6TjL/L9mVz4T+rsx72k1JiBVa+TIxSI6PuTYECRbO733MWn9psSy2H7deK9jqKzuj2h4cWIty//zvrxpc7uVqHbKsRXLfb68FB4wogFGuC/c3d1t/uLRvZhMJpsNHrbc/YtEJesYjffvIjQyMhK1Wo23d/mLdJVKxZkzZ9i3bx87duzgnXfeYd68eZw8eRIPDw+b21uzZg2vvfYan376KR06dEClUvHxxx9z/Phxu58LzJ+t5HO5ulbcfdJoNDJkyBA++uijcu+VNFKVNXv2bKZPn261TKFQMP2r8r/OkltgwmAseXpS+gRC5SYt94SyKmw9kVFWc5tVUZScVq4ni7OvF0adjuL0THOapDQUAT5WaRR+XuV6zlRGdq4Bg8FU7mmMRiUn005PFltPbzxUMvQGEzm596/3y9EzWVyJLr1odnIyfy+eHk5WE/t6qOVkZtnvv63N1OPlUSZetbzcky6AqROD6NBSw+vvXyNNW7U+4Tn5RgxGU7knuCr38k8+S2TlGtEorXuJqN2l6A0mcss8LXR2Mk+4uGGv4xfA2bn6Cr5v2zcB2myDzfR3f9+2jwn7x9C95OQbMRjK56XaXUq2nWMsM9dwz7zMzDFgMFpfTCak6vFQyZDJwMYoT7tc3D2RSGXkl+ntUpCbfs8GlWvn/mDvmn/Rd+IXBDfqWPmdVlF+ERiMJpRlimt3F/MEto4yl7/W+ZiaZe6tIpOCoYrVX16huTwv29tF6SohpxpxgvnmIj3bvI2EdD1+nuZf9Im5x6+FlIuxpM4pE6PKTUL231Q/3Eteofn7VpX5vpWuEnLvYz4mpuvx85TQo6Wc6wlV/3WhkvPbw9b5bWciYnNZWT691fmda97u3cdlooPnd0XledleLhXHKEFvMJFXUKY8l5snbd9YjYahB6GcBMjNN587mnLXa+V7jJbIzjOicS97rkkxGEyWYzm3wMTiDXnIZeZjPDPXxIhurqRlVf3621I3aspf29itG7Ns1HtqOXq9yTJ82VaaiupbW46fyyHqRozlfye5OV881dY9WjxUtq9rrOIt+/nu6r1quR7UlI3Xfh48iB6UuVhqiugfJNSo8PBw4uLiSE5Otiw7efJklbfj7Oxsc+6WykpJSeHnn39m+PDhSO10m5PL5fTu3ZsFCxZw4cIFYmNj2bNnj939Hzx4kI4dOzJ16lRatmxJw4YNiYmJsbVpux566CGMRiP79++3+X6rVq24fPkyISEhNGzY0OplrxeSQqFArVZbvewNQTIYIT7ZQHiIdUURHiLnejWeJt1I0NO4rvU2G4fIuV7NHgeVlXnsHD69rG/IfPt0Juv0JUx6cwzaY+fw6WU974RP785oj1Zu3om76Q0QE1dI88bWPaZaNHbjynXbP0t85XoBLcqmb+JO9M3CKt94VaSg0EhCSrHldfN2IemZOlo1K/2FAblMwsPhSiKu2b+IjYjOs1oHoHUzdbl1pj0RROc2Gt74MJqk1KrfVBgM5ieFTRtYDzdq2sCZ6HjbjTnR8bpy6Zs1cCY2QVcuL9s1dcFJLuHIBccmawTz9x0dV0jLxtbnYIvG7kTG2Pu+82lRJn3LJu5E3yywxGg+JsqniYxx7GdxzHmpo1kD6/O/WQNnrlWQl83K5mVDBbG3S/PyapwOPy+Z1ZPXAG/zsLmqFtMyuTO+tZsSf/WI1fJbV4/gH2J/PqZrZ7ey59fZ9B7/CSFNuldtp1VkMEJiuokGZSZLbVBLSlyq4zfkcSkmvNTWfX+81eaGCEfKAIMRbqcay/2qTqMgmd2fT64OuQMj4wxGiE8xEl7Hun4IqyPnhgNzyvwVzPloIjTY+gOG1pb+Y/IR7pzfiTqaljm/mzZQEB1nu+yNji8ul75ZA4VVWXktrhg/L7nV+e3vLXfo/DYY4WaCnib1y5Tn9Z2JvmW7DIq5paNp2fQNnIlN0Jc7L9reKc+PVqM8fxDKSTDnZVySgcYhZa+tnOxeW12/baBxiPVDwMb1nLiZZKDs8029ATJzTUil0DLMifMO/OS43mD+8YCy9ViLJkqu2K0bC2jRxLqXt6VuNJSkyadlk7J1o9JufWtLQZGRxJRiyysuoYiMTB0tm5buWy6T0CzMncho+3Wu7XiVlnX0BhPRNwtoaSuNg3W58OARDTBCjerTpw8NGjRg0qRJXLhwgcOHD1sm4a1szxgw/7JSbm4uu3fvJi0tjfx8+4WYyWQiKSmJxMREIiMjWbZsGR07dkSj0fCf//zH5jpbt27lyy+/5Ny5c9y8eZOVK1diNBoJCwuz7P/48ePExsaSlpaG0WikYcOGnDp1ij///JOrV68yZ86cKjcuhYSEMGnSJJ566ik2btzIjRs32Ldvn2Ui32nTppGRkcHYsWM5ceIE169fZ8eOHTz11FPVapC62+5TRXR8yJkOzZzx95IyqrsLXioph86bn2wO7eLCEwOsGwqCfGUE+cpQOIHKVUKQr4wA79LiZu+ZIsJD5PRpp8DfS0qfdgrC68jZe9qxn4iUubuhbh6Ourl5OJpbvSDUzcNxCTb3Agp7bzrNfyjtJXRzya+41q1F44/fRBlen6DJowh+chTXP1tmSRP79Up8+nSi/oxncA+rT/0Zz+DTqwOxX61wKMZNu7X06eRBrw5qggKcmTLaFx9PJ7YfzARg4jAfXp1UOhRv+8EsfL2ceGqUL0EBzvTqoKZ3Rw0bd2VY0shlUC9IQb0gBU4yCd4ecuoFKQjwrd6vumzYnsLYIf50aq0hJMiFGc/WoajYxJ6jWkuaN56ry1OPlvay2rgjldbN1Dw6yI/gQAWPDvKjZVMVG/5MsaR5aVIQvTp68uGimxQUmsc7e2rkODtV7UnJn0fz6NbKlS4tXQj0kTG2nxJvjZS9p8zn/eheSp4Zobak33sqHx+NjMf7KQn0kdGlpQtdW7my/Uj5cqJLS1fOXCmqVs8FgI270unT2YPeHTUEBTjz9Bg/fL2c2HbAnIdPDPfltcml+bd9fyZ+3k5MGeNHUIAzvTtq6NPJgw07Sr/vzbszaNnEnVH9vAnyd2ZUP2+aN3Zn8+6McvuvrO1H8ujW2o2urVyp5Stn3AAV3hoZe06Y82ZMHxXPjiqdvHbPiXx8PGSM66+ilq+crq1c6dbKjT8O592VJg+lm5QJA9UEeMto3kjBkG5Kdp1w7OKyebfJRJ74jcgT68hIjuHQpg/JyUykWfvHATj6x6fs+mWWJf21s1vZ/cubdBoyi4A6zcnPTiU/O5WigtKJpQ36YtJuR5J2OxKDQUdeVjJptyPJSrvpUIxHIoy0CpXSsqEUHw30bytD4w4no8zlcO9WMkZ2tr6TDvCUEOApwVkObi7m/33vmif4RJQBNwUMaCfDWw2Nakvo+pCME1ccL9v3n9fTrrGctuEy/DwkDO3ohIdKwrHL5hu0AY848XhP6xvHWt4SanlLcHYCpYv5b3/P0nO2Z0s5oUFSvFQSfD0kdH1YTptGMk5fc6xBfe+ZIjo0c6J9Eyf8PaWM7Kow1zkXzDd8QzopmNjX+qfXa/tKqe0rReEkQelq/jvAq7TOKZmAuLavFLkUNO4SavtK8dE49pT24AU97cJltAkz5+OQknyMMH83/dvJeayHdTkc6C0h0FuCQi5B6Wr+3++ufOxRJh+7PCyndSMZZ686/n1vP5J/p6x0JdDHfN56a6TsOXnn/O6t5NmRd53fJwvw8ZAytr/qTlnpStdWrmyzOr/zUbpJGD9AhX/J+d3Vnd0Ont9/HsunaytXOrcwl+eP91PipZGy75T55nlUL3eeHl7auL/vVAHeGhmP9TWX551buNClpSt/HrVVnrvcl/L8QSgnAXadLKRTcwUdH3ImwFvKmJ6ueKqlHDhnPneGd3Vh8qDS67UD54rwUksZ3dOVAG8pHR9yptPDzuw8UdpgFRIoo0UjJ3w0UhoGyXl5jBKJBHYcd+x6bePOdPp28aRPJw9z3fioP75eTvyx31w3Thrhx/SnSocCbduvxc/biacf9ScowJk+nTzo09mT9TtK5+gz141KRvX3JijAmVH9vWnR2J1NuxyvGwE27Urn0YG+dGipom4tBa89VZuiYiP7j2dZ0kx/qjaTRvqXxrIrjVZNlIzu70NQgDOj+/vQorGSTbtK492wM82SB8GBCp55LMCcB/uqF6/w4BBDkIQaJZPJ2LhxI08//TRt27alfv36fPzxxwwZMgQXF5d7b+COjh078vzzz/PYY4+Rnp7O3Llz7f4UdXZ2NoGBgUgkEtRqNWFhYUyaNIlXXnkFtVptcx0PDw/Wr1/PvHnzKCwsJDQ0lF9++YWmTZsC5gmCJ02aRJMmTSgoKODGjRs8//zznDt3jsceewyJRMLYsWOZOnUq27Ztq1IeLVq0iLfeeoupU6eSnp5OnTp1eOuttwCoVasWhw8fZtasWfTr14+ioiLq1q1L//797fbkqaozUTrcXQsY0MEFtbuExDQD367PJeNON2mNuxRPtfW+Zk8qvViqGwBtmziTnmXkne/Mk+DdSDDww9Z8BndyYXAnF9IyjSzdmk9skmMXmprWzeiw+0fL/00+MedP/Mr1XJgyG0WgL67BpTe7BbG3ODnkWZp8Opu6L4ynKCGFy6+9T9KGHZY02qNnOTt+OmHzXyVs/svkx8RzdtxrZJ644FCMh07noHKX8dggH7zUMm4mFvPuN7dIzTDfpHhq5Ph4lV6wp6TrePebW0wZ7cfAbh5kZOn5fk0yR8+WDo3x0sj54u0Qy/8j+ngxoo8XF6/m86/P4x2KE2DN7ykonKW8ODkYlZuMK9fzmL0gmoLC0kdift5OVuOvI67l8cE3sUweHcik0YEkJhfz/jc3uHLXE50hvc3Dvj59O9Rqfx8vucnOg5W/8DhxuQilWw7DuinRKKXcTtHz2apM0u90ifZQSfHWlN7spmUa+WyVlrH9VfRq60ZmjpFV23I4FWl9AenvLSOsrjMfr9RSXYdO5aB2T+bxQT54aeTcTChi/tdxlu/bSyPH967vOzldx/yv4nn6UX8GdfMkI0vPktVJHDlb2mhw5XoBC76/zcRhvowf6ktSajELvrvN1VjHn+4ev1SI0i2bYd2VeKhk3ErW8+mPWtKzzOeih7JsXhr45Ect4weo6fWIO5k5Bn78I5tTd/28a0a2kY9XZDBugJr3pvmizTGw42geWw86NgwgtMVAivIyObXzG/KyU/EOCGXwlP+i8qoNQH52KrnaBEv6y0dXYzTqObDhXQ5seNeyPKzNcHo9bm5kz8tOYc3nIyzvndu/jHP7l1GrfluGTy0tSyrrUqwRVwV0by5D5SojJdPET7v1ZN35yCpXynX1nzq09Puv7QPN68vQ5pr4fJ35qXp2Pqzcqad/WxlThzqRkw/HIg0cvOR4L4vzMQbcXXT0ae2E2l1CUoaJpb8Xoc01n8tqNwmeSus4pz9aOtYm2A9aNZKTkW3kg1Xm79zZScLILs54KCXo9JCSaeTn3cWcj3GsPD9zVY+7SyH92ytQu0lITDeyaFM+2pySOkdSrs55c3zp0+Q6/jLahjuRnm1k3jJzealRSqzS9G6joHcbBddu6fnyt6rf8J6PMeDmAr3byFG7mfNx2R/FZJbko7sED5V1Pr42pvSaJshPSstQORk5Rv6zylwOOcthRBcnNO6l+fjrHp3D+Qhw4lIhSlfJnfP7Tln5k9ZSVmpUMrzKnN+f/qRlXH81vdq5kZlj4Kc/sjkVUVpWZmQb+XillnH9Vbw31YfMHAM7juXzu4Pn98nLRShdcxnazd1Snn+xKqs0RqW0TIxGPv85k7H9lPRs60pmjvlns0+XLc+9ZDSq68wnP1a/PH8QykmA01d0KF0LGNTJBbW7lIQ0A1+vzSUj+668vOvcSc8y8vVvuYzp6Uq3lgqyco2s3pXP2aulPXuc5BKGdXHFx0NKUbGJS9d1/PB7HgVFjjVqHTyVjUop4/HBpXXjvC/jSM0w79PTo0zdmKZj3pdx5rqxuyfpWXqW/JrEkTN31Y0xBSxYcosJw/2YMMyPpNRiPlpyi6s3Kt8Dxpbftqfh7Cxl6vhaKN1lRF0vYM5nsRQUlZbBvt7OVsPIImMK+GhJPBOH+zNheEks8UTdFcvBk9mo3ZMYO8TPkgdzF9605MH/AqlMDEGqiMRU0QyQglADDh8+TOfOnYmOjqZBgwY1Hc7/G9M+yazpECr0zQwPfncKq+kwKjRIF8WwF6JqOox72rQojL4Tqz6U6u+048eWTJ6XfO+ENWj5PH+GPBdZ02Hc05b/NuaJOYk1HUaFVv47kIVb/tmXI68MkfDOiqp3u/+7vTvJmRmL/tld2T95wY2XvnDsV2n+Ll+9qmbm4urdwP0dFjzvyqR3kmo6jAqteDeAp+an3DthDVo21+8fX06Cuax8/qPqNyr9lRbP8mTwMxE1HUaFtn7XhEFPX6rpMO7p9++b1XQIDrk8rGeN7bvppj01tu/KEj1ghBq3YcMGlEoloaGhREdH88orr9CpUyfR+CIIgiAIgiAIgvAAEZPwVkw0wAg1Licnh5kzZxIfH4+Pjw+9e/fm008/remwBEEQBEEQBEEQBOG+EQ0wQo174okneOKJJ2o6DEEQBEEQBEEQBEH4y4gGGEEQBEEQBEEQBEEQqk1yn34I5H+VyB1BEARBEARBEARBEIS/mOgBIwiCIAiCIAiCIAhCtYlJeCsmesAIgiAIgiAIgiAIgiD8xUQPGEEQBEEQBEEQBEEQqk30gKmY6AEjCIIgCIIgCIIgCILwFxMNMIIgCIIgCIIgCIIgCH8xMQRJEARBEARBEARBEIRqE0OQKiYxmUymmg5CEARBEARBEARBEIQH29Wx/Wts341+2V5j+64s0QNGEAQARrx4raZDqNCGr0MZ9kJUTYdRoU2LwvjdKaymw7inQboodp4vqukwKtSnuYL8Fe/WdBgVcpv0DtvPFdd0GPfUv4UzMxcX1HQYFVrwvCtXY+JqOowKNWpQh9e+zq3pMO7p8xeVfLbpn/1sbfowyT8+Lz9/UcnclbqaDuOe5j/h9EDk5diZ/+zz+5cFdXhlYU5Nh3FPC19RPRDleb9J52o6jAr9uaIFfSeerekw7mnHjy1rOgSHSKRilpOKiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SWViEt6KiB4wgiAIgiAIgiAIgiAIfzHRA0YQBEEQBEEQBEEQhGoTP0NdMdEDRhAEQRAEQRAEQRAE4S8mesAIgiAIgiAIgiAIglBt4meoKyZyRxAEQRAEQRAEQRAE4S8mGmAEQRAEQRAEQRAEQRD+YqIBRrBISkqiT58+uLu74+HhAYBEImHjxo0AxMbGIpFIOHfuXKW3uXz5csu2/k629rtkyRKCg4ORSqV88cUXzJs3jxYtWvztsd3L5MmTGT58eE2HIQiCIAiCIAiCUCUSqaTGXg8CMQfM/6jJkyeTmZlpaTypjM8//5zExETOnTuHRqMp935wcDCJiYn4+Pjcx0gdi/VeHnvsMQYOHGj5Pzs7mxdffJHPPvuMUaNGodFoMBqNvPTSS/dtn/fLwoULMZlMNR2Glf5dNAzv5YmnRkZ8YjFL16USGVNoN33Thq48OdKH4EBnMrIMbNyl5c9DWZb3+3RU072dmjq1nAGIiSti1ZY0rt0scjjGAV09GNHHE0+NnLjEYpauTSEiusB+jKGuPDXajzqBzmRk6dmwI4PtB0tjDA50ZtwQHxrUccHf24nv16awZY/W4fi8Oreh/utT0LRqhkstP06Nmkry5t0Vr9OlLU0+eRNlk1CKElKI+fR74pb8apUmYERfGs17BbcGdciPiSPqnc9J3rTL4TgBDvz5K7s3LycrM43AoAaMmjyTho1b20wbc+UMm1Z9QdLtG+iKCvHyDaRT7zH0HDzRZvpTh7exfOEsHm7Tg2dnLnQ4xjWnr7LiWARpuQU08PVgRu/WtKrjZzPtO1uOsuXi9XLL6/toWPfsYADWn41m68XrRKeZj4HGAV681L05zWo5Xt4d/PNX9mxZTnZmKgFBDRg5aRYNKsjHLas+JznBnI+evoF07D2GHoOesJn+zOFtrPhyJg+16cHTb3zpcIwAHZrK6NZcjspNQrLWxObDOmKTjDbTqtxgcAcngnyleGskHL5oYMsRnVWaZvWk9GzphLdGgkwKaVkmDpzXc+aaweEYf9+6mfXr1qLNSKdO3RCeefYFmjZ76J7rRVy+xOxZr1M3JIQvv/6v1Xu5ubn8uGIZR48cJjc3B/+AAKY8/Rxt2j7iUIydmsnp0coZtZuEpAwjGw8WcT3Rdj6q3SQM7exMsK8MHw8JB8/r2Hio2CpN+yZy2oY7EeBlflZ2K9XA70eLiUuxvc3KunzkZ87vX0p+Tiqe/g3pOPQtAuu1sZn2+sUdRBz7lfSESAz6Yjz9G9Kmz4sEh3WxpMlIusapHV+SevsyudoEOgyZzcNdJlUrxgchL9uGSenURIrSDVIzYdtJA3EptutupSv0ayOjlpcELzUcjzSy/VT5fbs4Qa+WUhrXkeKigMwc+PO0gWu3Hb8meBDysk8HJYO7qfFQybiVrGPlZi1RsfavBxrXVzBhsCdB/k5osw1s3Z/NrmO5NtN2aO7Gy+N9OHkpn89WpjkcY+eHnejZyhm1u4SkdCPrDxRxPcF2maZ2kzC8q4IgPxm+HhIOnNOx4YD15wnwkjKwgzNBfjK81VLW7y9k/zmdze1VxYNQngNMGB7AwO7eKN1lXInJ55sfb3Hztv3rSoDObTQ8MTKQQD9nElOKWb4ukSOnS6/bHhvsR6fWHgQHKijWGYm4ls/SNQncSnL82nLiiAAG9vC5E2ceX6+oXJyTRgcS6KcgMaWI5WsTOXxXnI8P8adTGw3BgS534szj+1+rF6fwYBE9YASLmJgYWrduTWhoKH5+5W9kZDIZAQEByOX//HY7V1dXq88QFxeHTqdj0KBBBAYG4ubmhlKpxNvb+2+Lqbi4+N6JAI1GUyO9huzp1ErJU6N8+e3PDF7/TxwRMQXMmVobH0/bx4Gft5x/vVCLiJgCXv9PHOv+zGDKaF/at1Ba0jQNdeXg6RzmLLzFm5/Gk6bVMXdabbw0Modi7NxaxZQxfqzdnsFrH9wkIjqfd6YFVRCjE+9MCyIiOp/XPrjJb9szePpRfzq0LI1R4SwlOU3HjxtTycjSOxTX3WTubmRfiOLyK+9WKr1rSBBttywh49BpDrUdTvRHi2n6+dsEjOhrSePRvgUtf/6c26s2cbD1MG6v2kSrX77Ao93DDsd5+sh21i1fQL+Rz/DmR2to0LgV334wlYy0RJvpnRWudO33OK/N/4F/fb6RfiOfZevqrzi067dyaTNSE9j446c0aNzK4fgA/oyI5eOdp5nSqRm/TBlIy2BfXly9l8SsPJvp3+jTmp0vj7S8tr84Ao2rM33C61jSnIpLpn/TEL4b34sVT/QlUO3GC7/sISUn36EYzxzZzoYVH9F3xDO88Z+1NAhvzeIPX7CbjwqFK136j+XlecuZ/dkm+o58lj9Wf82RXWvLpc1ITWDjT5/QILx6+QjQvIGMIR2d2HNGz8LfiriRaGTKIGc8lLafIsllEvIKYfcZPYnptm8K84tg9xkd32wo4rO1RZyM0jOmhxONghy75Di4fx/fL1nEo4+NZeFXi2jatBnz3nmLlJSUCtfLy8vj808X0LxFy3Lv6XQ65rw9i5SUZN58aw6Ll/zAiy9Px9vbsQa3Fg3lDO+iYOepYj5Znc/1BAPPDnG1m48yGeQVmNh5qpiENNs3Rw1ryzhzVcc3GwtY+Fs+2hwTzw9zRePu+BO+6HN/cGTLh7Ts+TyjXtlAQL02/LH0WXK0CTbTJ944RVBoRwY8tYRRL6+jVoNH2L58Kmm3Iyxp9LpCVF7BPDLgddxUvg7HVuJByMumIRL6t5Fy4KKBxVv13Ew2MqGXDI277fRyKeQXmjhw0UCynXZ8mRSe6CPDQylh9X4DX23Us/mYgex8xxtfHoS8bN/cjSeGeLJxTxazFyYSdaOQN6f44u1h+3rA11PGzKd8ibpRyOyFiWzam8WkoZ60a+ZaLq2Ph4zxgzyIvF7xDfO9tAyVM6Krgh0ni/n453xiEgw8P8wVT5W9chJy803sPFFEQqrtfHR2MjdmbDlcRFZe9RpVSzwI5TnAowP9GNnfl29+vMVL866izdLx4RsNcHWxv83GDdx4a2oIu49kMHVOFLuPZPD21BDC6rtZ0jwcpmTL7jRe/fc1Zi+IQSaDD95ogMLZsVgfHeTHyAF+fL0ynpfmRqHN0vOfWQ0rjrOhG2+/WI/dh7W88PYVdh/W8vaL9QhvUBrnQ+FKNu9K45X5V3nzoxikUgkfzmqIi+J/57Zc9ICp2P/ONy1UqHv37rz88svMnDkTLy8vAgICmDdvnuX9kJAQ1q1bx8qVK5FIJEyePLncNmwNQdq8eTOhoaG4urrSo0cPVqxYgUQiITMz02rdP//8k8aNG6NUKunfvz+JieabkHnz5rFixQo2bdqERCJBIpGwb9++cvvesmULHh4eGI3mSurcuXNIJBLeeOMNS5rnnnuOsWPHAtZDkJYvX85DD5mflNavXx+JREJsbOw9hyBptVrGjx+Pr68vrq6uhIaG8sMPP1jev337No899hienp54e3szbNgwYmNjLe+XDCX68MMPqVWrFo0aNWL27Nm0b9++3L4efvhh5s6da7VeCaPRyEcffUTDhg1RKBTUqVOH999/v9JxVNfQnp7sPprFrqPZ3ErWsWxdGulaPf27lO8lBdCvs4Y0rZ5l69K4laxj19Fs9hzLZngvD0uaL1Yks/1gFrG3i7mdrOPbn1OQSODhMDeb27yXYb082XUki52Hs7iVVMzStamkaXUM6OphM33/LhpSM3QsXZvKraRidh7OYveRLIb39rKkib5ZyPL1qRw8lYNOX/0eSal/HuDq3C9I2rizUunrPvs4hXGJRLz+AblXrhO/7Dfil6+n/vSnLGnqvTSJtF1HiFmwhLyo68QsWELanmOEvOT40+c9W1fSoecIOvYaRUBQfUZPnoWnTwAHd6yxmT64XmPadB5IYHBDvP1q067rYBo370RM5BmrdEajgeVfzmbgo1Px8QtyOD6An05cYXjzBoxs0ZD6Phre6NOGALUba89ctZle5eKMj9LV8opITCe7oJihzetb0nwwrBOPtm5EmL8X9Xw0zBn4CCaTieOxSQ7FuO/3lbTvOZIOd/Jx5ORZeHoHcHjHapvpg+o1pnWn0nxs22UI4Q93JOZK+Xxc+dWbDBgzDW//6uUjQJeH5Zy8YuDEFQMpmSa2HNGRmWuifRPbNz/aHPMT1TNXDRQW2z4vricYuRxrJCXTREa2icMXDSSlmwgJdOySY+OGdfTp259+/QcSXKcuzzw3FR9fX7b9vqXC9b756gu6de9JeHiTcu/t2rGd3Jwc3p4znyZNm+Hn70/Tps2oV7+BQzF2b+HE8Qg9xyP0pGhNbDxUTGauiU4POdlMr80xseFgMaei9BTaaZv/aWcRhy/pSUgz5+XqvUVIJBAa5FhDNcDFg8sJbzuKxo+MwdO/AZ2GvoXSI4CIY7/YTN9p6Fu06P40fsEPofEN4ZEB09H41OVmxF5LGr/gh+gweCYNWwxCKrf9eaviQcjLjo2lnI02cibaRFoWbD9lJDsP2jayfYxn5sG2k0bOXzfZPW9aNpTiqpDwy14D8akmsvIgLsVkt8GmMh6EvBzURcXek7nsPZFHQoqelVsySc800Ke90mb63u1VpGsNrNySSUKKnr0n8th3KpdB3dRW6SQSmDbWm992ZpGSUb2HKN1bOXPsso5jl3Uka41sOFCENtdoNx8zckysP1DEySt6Cux833HJRjYfKuLsVT366nUmsXgQynOA4f18+XVzModPZ3HzdiGffBeHwllKj/aedtcZ0c+XM5dzWL01hfjEIlZvTeFcRA4j+pU2+r796XV2Hsrg5u1CrscX8un3cfj7OBNar3zjXGWM6O/HL5uSOHwqi9hbhXz835sonCX07FBRnH6cuZTDr1uSiU8s4tctyZyNyGFEv9KHwm9/HMPOg3fijCvg0+/uxBniWJzCg0c0wPw/smLFCtzd3Tl+/DgLFizg3XffZedO883gyZMn6d+/P48++iiJiYksXHjvoQGxsbGMHj2a4cOHc+7cOZ577jnefvvtcuny8/P55JNP+PHHHzlw4ABxcXHMmDEDgBkzZvDoo49aGmUSExPp2LFjuW107dqVnJwczp49C8D+/fvx8fFh//79ljT79u2jW7du5dZ97LHH2LXLPCTjxIkTJCYmEhwcfM/PN2fOHCIiIti2bRuRkZEsWrTIMvwqPz+fHj16oFQqOXDgAIcOHbI0Lt3d02X37t1ERkayc+dOtm7dyvjx4zl+/DgxMTGWNJcvX+bixYuMHz/eZhyzZ8/mo48+ssTz888/4+/vX6U4HCWXQYNgBecirXsBnIvMI7yei811wuq5ci7SuifC2Yg8GtRxQWanxHF2liCTScjNr/pTILkMGtRx4VyE9T7PReYTXt92ZRZe37XcZzobkUfDuvZj/Lt5tG9B6q7DVstSdxxE07oZkju90DzbtyBt1yGrNGk7D+LZofwT/8rQ63XEX4+kcXPrc7Dxwx24EXWuUtuIvxHJ9ahzhDaxHmqz7bfFKNWedOw50qHYSugMBiITM+hQP9Bqeft6gZy/Vbnu5RvPx/BIvQBqaWxf4AMU6gzojSY0Ls5VjtGcjxGEPWydj2HNO3Lj6rlKbePWjUhuXD1Hw8bWQ0O238nHDtXMRzA/ca/tK+FqvPXV/7VbRkIC7t+J0LC2FF8PCTfsDHuoiE6nIzr6Ki1bWR9PLVu2JjLyst31du3YTmJiAmPH2x4Kd/z4UcIbN2Hxt18xcdwYpr3wDGtW/4zBUPU7IZkUgvykRMVb3+RFxesJCXC8saQsZzlIpZBf5FiDsEFfTOrtywQ16mS1PCi0E8mxZyu1DZPRiK4oD4Wb7Qb46noQ8lImhUBvCdEJ1uvGJBoJ9nX86WtYkIT4VBODHpHxxhg5U4fI6dJMisTBTT4QeSmDerWduXDVuofKhWuFNApR2FwntK4zF65Zpz8fVUj9IGer+ntUbw05eUb2nbTdM7LSMUoh2E9KVJx12RB100C9wPuXj9X1IJTnAAG+znh7OHH6Uo5lmU5v4mJULk1C7XQhAxo3dLdaB+DUpRyaNLS/jrur+fvJya16uW4vzgtXKo6zSUN3Tl/Ktlp2+mJ2heu4u5q/n5y8+9QSJ/zj/fPHkgj3zd29LEJDQ/n666/ZvXs3ffr0wdfXF4VCgaurKwEBAZXa3uLFiwkLC+Pjjz8GICwsjEuXLln1zgDzBfTixYtp0MD8ZPHFF1/k3XfNwzCUSiWurq4UFRVVuF+NRkOLFi3Yt28frVu3Zt++fbz22mvMnz+fnJwc8vLyuHr1Kt27dy+3rqurq2Woka+vb6U/X1xcHC1btqRNG/MNUEhIiOW9X3/9FalUyvfff4/kztXRDz/8gIeHB/v27aNvX/MwEXd3d77//nucnUtv4h5++GF+/vln5syZA8CqVato27YtjRo1KhdDTk4OCxcu5Ouvv2bSJHOvhgYNGtC5c+cqxXG3oqIiioqsx5kqFLYvdFRKGTKZhMwc60ohM8eAh9p28eGplnHWRnq5TIJaKUObXb6CeWKYDxlZes5fqfpwD7UlRuuLzMwcPZ52+oN7qOVk5uSVS19RjH83hb8PRcnWDQrFKelInZxw9vGkKCkVRYAPRcnpVmmKktNRBDg2DCA3W4vRaEClsR6ap9J4k51ZcePGv57vTW62FoPBwMAxL9Cx1yjLezFXznJ0zwbeXFB+OE1VafOLMJhMeLlbNwB6u7uQnmd/zp8SqbkFHI5J4INhnSpM9+Xes/ipXHmkXmCF6WzJu5OPahv5mJOZbmcts3de6GX+HgwGBox5gQ535eP1K2c5tnc9Mz8qP7zLEe4uIJNKyC2TbTn5JlTB1btgd3GGtye6IJeC0QQbDuq4dqvqF+zZ2VkYjUY8PKyfOHp4epKptd01IOH2LVYsX8p/FnyOTGb7BikpKYkL58/RvUcv5s5/n4SE2yz+9isMBgNjx9lutLHH3VWCTCohp8xQkZx8E2q3+9cdenAHZ7JyTeVusCqrME+LyWjAVWl9XLqqvMnPqVzj5fkDP6ArzqdB8wEOxXAvD0JeuinM501emVEtuQWgrOV4jJ4qCfWUcPG6iZ926/FWSxj0iAypFPZfqPq58yDkpdrdXH9nlblBzsoxoFHZfsjjoZKRlWOd+Vm55msMlbuUzBwjjeo6072tO7O/cKwH491K8jG7zAOinAITKvd/yBMbHozyHMBLY7521GZbzzWjzdbh523/gYenRk5mlvU6mVk6PDX2b2WfHVebS1G595yzxWacHubeTdqy+8zWVxynhxxtmWHr2ix9hXE+Nz6Ii1G5xN6q3lC5fxKJ9J9zbvwTiQaY/0cefth6XojAwMB7jqGvSFRUFG3btrVa1q5du3Lp3NzcLI0v1dlv9+7d2bdvH9OnT+fgwYO89957rFu3jkOHDpGZmYm/vz/h4eFV/yB2vPDCC4waNYozZ87Qt29fhg8fbumdc/r0aaKjo1GpVFbrFBYWWvVueeihh6waXwDGjx/PsmXLmDNnDiaTiV9++YVXX33VZgyRkZEUFRXRq1cvm+9XNo67ffjhh8yfP99qmblhznYPHFskEqhonuCyb5U8wbO1zvDennRurWLOwlvVGupTdtsSqHAy4/JvmYP8R01/XO5D2chIW2mqO4lzmUeuJkyWBj57Xn13OUWF+cRevcCmnxfiGxBMm84DKSzIY+VXsxn73FyUavvddqscYpn/TYCk3NLyNl+IQeXiTI8w+8N3lh+9zPaIm3w3oTcKeTWecJYL0lR+WRmvzF9hzsdrF9jy8xf4BNShdSdzPv749Wwef3befc1HsH2+VvcQKiqGL9YW4ewEobXN8xJk5Ji4nuDYRXvZ489kMpU7TgEMBgMfL/iQceOfoHaQ/e/YZDSi8fBg2kuvIpPJaBjaiIz0dNavW1vlBhjLNiu5zBE9WzrRspET32woqP5whbL5Ziqfv7ZEn93K6Z1f02/yN+Uace63ByEvbRa91YhLIoG8Qth8zIDJBIkZJlSuRjo1lTrUAGOJs5LLHHHfjstqVmMlR6/JBC4KCdPG+vDdugxyHOhVa5fNjPxHXTEA/7zyvEcHT16ZXFoWz/nsus1AJdz7BCp/2WZ/nWkTa1MvyJXX3792zxgBenb05JUnS3vH/+tT23HaWWT9vq1LNzsrvTgpiHrBLkz/d+XiFP43iAaY/0ecnKzHqkokEsucKo4wmcrflNm64bW1X0d+5ad79+4sXbqU8+fPI5VKadKkCd26dWP//v1otVqbw4+qY8CAAdy8eZPff/+dXbt20atXL6ZNm8Ynn3yC0WikdevWrFq1qtx6vr6lvQ/c3cv3wBg3bhxvvvkmZ86coaCggPj4eB5//HGbMbi6VjwetLJx3G327NlMnz7daplCoeDx1+PKpc3JNWAwmPBQWd+EapQysnJsj6nWZhvwtJFebzCV6145rJcHo/t6Mvfr29xMcGzIVPadGD3L9MjRqORk2unJkpmtL5feQ3UnRge6qv4VipLTyvVkcfb1wqjTUZyeaU6TlIYiwHrSUIWfV7meM5WlVHsilcrIKdPbJTcro1yvmLJK5nWpXacROVkZ/LF2EW06DyQtOZ701AT++9HLlrQmk7ncefnxlsz5YjO+AfceEljC002BTCIhvczj54y8wnK9YsoymUxsOn+dQc3q4WSnZ8TKYxEsPXKZxeN60cjPsYYO9zv5mF2mt0tO9r3z0ftOPtaq04iczHS2r11E607mfMxIvc13C0p/ua0kH18b24K3P9+CTxXyEcw3ewajCVWZYkbpKiG3oHpX7CYgPdu8jcR0PX6eEnq0lHO9iue5Wq1BKpWi1WZYLc/KzLQ5WXlBQQHR165yPSaaxYu+NsdiMmEymRg2uB/vvvcfmrdoiaeXF3K53KqHTFBwHbTaDHQ6Xbl6qyJ5BSYMxvK9ClRu5XsfOKJ7Syd6t3Fm0aYCEtMdr7Nd3D2RSGUUlOntUpCbfs8Glehzf7D/t3/Re8IXBIWWHyZ8vzwIeZlfZD5vlGXOG3cXc/yOys03YTBZ37ylZplQuZl/fcZQxXAfhLzMzjPX35oy1wxqpYxsO3VxZo7BZnq9wURuvpEgfyf8vOS8Mbm0/iy5VP3pw2Cmf5xYpTlhLPnoLgVKP6fK9f7k4/3yTy3Pj53NIiqmtMexk5O5Z4SnxsnqBw481HK02fa/F3MvEuty2d46UyfUpkNLDa9/EE2atnK/LHX0TBZXom3E6VE+zrI9cazizNTj5VHm+tJenBODzHG+f63ScT4oHpTJcGuKaIARHBYeHs4ff/xhtezUqVNV3o6zs3Olxt2XzAPzxRdf0K1bNyQSCd26dePDDz9Eq9XyyiuvVHnf9+Lr68vkyZOZPHkyXbp04Y033uCTTz6hVatWrF69Gj8/P9Rq9b03dJegoCC6du3KqlWrKCgooHfv3pY5XcoqmeB49+7dPP300+XedyQOhUJhd8hRWXoDxMQX0TzcjeMXSium5uFunLhoe1x11I0C2jazbnhq0diNmLhCqwvI4b08GN3fi3e/SSAmzvGf3tMbICaukOaN3Th2vvRnKFs0duP4eds/S3nlegHtHrae/6NFE3eibxZW+SL3r5J57Bx+g3pYLfPt05ms05cw6c0VufbYOXx6deLGwhWWND69O6M9Wrn5HMqSy50Irt+YKxeO0rxdaa+rKxeO8VDbHhWsac1kMqHXmy8m/GvV461P1lm9v/XXrykszLNM8FsVTjIZjQO9OHYjkZ5hpQ0Ox24k0r1RxZPSno5LIV6bw/DmtidaXXEsgu8PX+Kbx3vSNNDxJ/zmfGxCVJl8jLpwlIfaVD4fwYReb77A9a9Vj1kfr7d694/VX1FYmM/ISbPwqGI+gvmG7naqidBgGZdjSw/80NpSLsfe/4ZIRzoTOTk50bBhI86ePUOHjp0ty8+dPcMj7cs3BLi5ufH1t0uslv3++xYunD/H7Lfm4H9nCGqTJk3Zv28vRqMR6Z2u0gm3b+Hl5VWlxhcw5+OtFCONguVcvF6ab42C5Vy6Ub3JP3u0dKJPG2f+u7mA+Gr+/LRM7oxv7abcunaEes36WJbfunaEkKY97a4XfXYr+9a+Ta9xn1K3cfdqxXAvD0JeGoyQmG6iQS0JV+JLb2zrB0qJind8u3GpJh6qJ+Xuh+U+agnZ+SaH6qUHIi8NcON2MQ+HunDqcunYmYdCXTh92faQ5Gs3i2nVxLqV4eFGLly/VYzBCAmpOt741PrX5h7tp8FVIWXFZi3pVfxVQ4MR4lOMhNWRcSGmdN2wOjIuXq/+LyTeL//U8ryg0EhBmRmd0zN1tGqmIiau4M62JDwUpmTpGtu/xgYQGZ1Hq6YqNvyZalnWupmKiGjra9FpE2vTsbWGNz6MJjmt8g3+FcZ5szTOh8OVLF1tP86I6DxaNVOxfvvdcaqJuFYmzieC6NRaw4wPoklKrf6cjcKDRQzQEhz23HPPceXKFWbNmsXVq1dZs2YNy5cvByrXnblESEgIFy5cICoqirS0NHQ6263AJfPA/PTTT5a5Xrp27cqZM2fszv9SHe+88w6bNm0iOjqay5cvs3XrVho3bgyYhxH5+PgwbNgwDh48yI0bN9i/fz+vvPIKt27duue2x48fz6+//sratWuZMGGC3XQuLi7MmjWLmTNnsnLlSmJiYjh27BhLly69L3FUxuY9Wnp31NCrvZogfyeeHOmDj5cTfx7MAmDCUG9enljagPTnoSx8vczpgvyd6NVeTa8OGjbuzrSkGd7bk3GDvfl6VQop6To8VDI8VDJcnB1rMd+0W0ufTh706qAmKMCZKaN98fF0YvtB8z4nDvPh1UmlN6jbD5pjfGqUL0EBzvTqoKZ3Rw0bd5U+ZZfLoF6QgnpBCpxkErw95NQLUhDg69ivfMjc3VA3D0fd3DxMzq1eEOrm4bgEm+cYCXtvOs1/+MiS/uaSX3GtW4vGH7+JMrw+QZNHEfzkKK5/tsySJvbrlfj06UT9Gc/gHlaf+jOewadXB2K/WoGjeg5+giO713N0zwaSbl1n3fIFZKQl0qXPGAA2/byQlV+/ZUm/f/uvXDy1j5TEm6Qk3uTo3o3s3rKCtl0GAeDkrKBWnVCrl6u7ChcXd2rVCUXuwK+mTGgX/n/snXV4VEfbh+/djdvuxgOEBAghBNcixd2Ku7ZQKkhLS5HytsUKhWIFihYK5YUixd2huCZYIJAEjbvrbr4/lmyyyUaBpnm/ua/rXJBznpnz22fOzDln5pk57PX2Z98dfwIiYll08hYhcUn0q18V0Kzf8p8Dl/Ok23fHj1rlbHCzV+Q5tunKA349f4cfujWhnNyciIRkIhKSSUor2ahU624juHpmN1fPavy4Z/MCoiOCad5hAAAHty3jvzn8eOH4n9y/le3Hq2f3cubgZhq+X5gfzUrsR4ALdzNo7CGjYTUZ9goJPZoZorCUcNVH88DeubEBA9vo5u1kI8HJRoKxgQQLU83f9srsutumngFVK0ixtpRgp5DQorYBDdxleD0u2UtAr959OXn8KCdPHOPli+esX7ea8PAwunTtDsDm3zewZJGm7kilUlxcK+lsCrkCIyNDXFwrYWKieXHr0q0H8fFxrF+7isBXr7hx/Rq7dv5J1+4flEjjOe90mnga0Li6AfZKCb3eN0JpIeHyfc31062pEUPa63Z8l7OVUs5WirGhZpS6nK0Uhxx+bFvPkK5NjNh+JoWoeE0khKWZBKM3+NBQrRajeHT9Lx7d2E10qD+XD8wnISYYzyaaKMxrRxdzZvtUrb2f1yHO7phG0+5TcXCpQ1J8OEnx4aQmZy9MqcpIIyLoIRFBD1FnpJMYG0pE0ENiI56XSGNZ8OXlh2rqu0mp5ybBVg6dG0qRm8ONx5oX3/b1pPRurvuG6qjUbEYGYG4iwVEJdjnWMr7hq8bMGLo0lmJjCVXLS2hRS8oN35J3cJQFXx6+EE+bxha0bmhOOXsDhvdQYKuQceqqZgBlUGc5nw3M7hA/dTUeW6WMYd0VlLM3oHVDc9o0suDwec3Cp+kZ8Co0XWdLSlGTnKrmVWg6JVhnm3O302hSw5D3PA1wUErp3dIYpaWUS/c0fuzezIihHXUjMMvbSilvK8XYUIKFqYTytlIcrLNfu2TSbBsDKcgtNP+3lZc8cqAstOcA+46HM6i7A80ayHEpb8LkjyuSmqbm7NXsdb2+GVuRD/tnr8G270Q4DWpaMqCrPc5Oxgzoak89T90OmfEjKtC2qTU/rX5OcooapdwApdwAI8OS+XTvsTAG93CgeQM5rhVMmDy2IqlpmZy5kkPnJy58NCC3TisGdHuts5s99WpYsvd49tILE0ZWoF0zJfNXPyc5RfXGOv+NSKTSUtvKAiICRlBiKlWqxF9//cXXX3/NL7/8QtOmTZkxYwafffZZkSMsAD7++GPOnTtHw4YNSUhI4OzZs/l2prRp04bbt29rjyuVSjw9PQkKCtJ2jrwtjIyMmD59Os+ePcPU1JQWLVqwfft2QDPK+vfffzN16lT69OlDfHw85cuXp127dkWKROnfvz8TJkxAJpPpfHJaH9999x0GBgZ8//33BAUF4eTkxKeffvpWdBSFS7cTsDQPZ0AXa5RWMl4EpzF3VSDh0ZqRH6WVAXbW2U1JWGQGc1cH8WFfW7q0kBMVq2LDX+Fc9c6ORunSQo6hoZSpY3QXON1+JJIdR3SnGhSFi7fisTSXMbCbLdZWMp4HpzH711eEvw4zVsoNsLXOfugIi0xn9q+vGN3Pnq6tFETFZvDbzlCueGVrtJYbsGyGq/bv3h2s6d3BmnuPk/jP0pfF1ihvUJOmp7do//ZcpHn5fvnHHu6Ono6xkx2mztn+SH72ihs9xuK5eDounw0lNSiMB5N+JGTvCa1N9BUvvIZ+RbVZX1Jt1kSS/F/iNWQSMdfvFltfFg2adSYxPoaju9cSFx2Ok7Mbn0//FWu7cgDERYcTFZG9sGFmppoDf/5CZFggUqkBto4V6Dn0C5q3719iDYXRydOV2OQ01l28R0RCMm52ClYMbK39qlFEQgohcbqjTfEpaZx+9JJvOjTUlyU7bz8hXaXmmz0XdPZ/8n4tPm1ZW2+agqj/2o/Hd68h9rUfP5m2KtuPMeFER2aP0maq1Rzc9gtR4YFIpTJsHZzpMeRLmr1DPwLc8VdhZgLtGxpgZSYhJCqTjUc0n6oFsDKXoLDUfSic1D/7RaOCvZR6VQ2Iilfz01ZNJJuRAfRuYYjcXEJ6BoTFqNl+Jp07/iV7YG/RqjVx8XFs3/ZfoqKicHF15YdZP2L/OnIwKjqS8PDirStmZ2fP7Lk/8du61UwYNxYbG1t69OxN334DS6TR2y8DcxPo1MgIK3MJwZFq1h1KJjr+tR/NJCgtdR8Mvxlkpv2/s72MBtUMiYpTM+cPzch/81qGGMgkfNhFd7T/2PU0jl8v2YipW92upCbFcOvUryTFhWPtWJUuH63FUlkegKS4cBJiskd3fa7tQK3O4OK+2VzcN1u7371BL9oM/Ol1mjB2L+utPXb3743c/XsjTpUb8cGn2W1eUSkLvnzwLBMzYzWtasuwNIWwGNh6WkXs62bHwlRC7jXgP+uRfQ8qbwu1K0uJTshk2R7NfSouCf44qaJzIymffWBAfBJcfajm4oOSd8CUBV9evZOEpZmUPu3lKKxkvAxJZ8HGcCJiNO2FwkqGrSK7Mys8WsXCjeEM76GkYzNLouNUbD4QzfX7hS/CXlK8nmRgbppKp/eMkZtp/Lh2fw4/mktR5monpwzNvgAqOsho6GFIZJya2b9rLhK5uUTHpl0DI9o1MOLJqwxW7i7ZbykL7TnAziNhGBlJGT+iApZmMh4FJDH9Z3+SU7KvdTtrI3KukuDjl8S8Vc8Y1deJEX0dCQ5LY96qZ/gGZEdK9WinmZK96NuqOudbtP4FJy8W/9ly5+EwjI2kjB/l/FpnItMX+unotLcx1FlWwedJIvN+fcaofk6M7OdEcGgaP/76lEf+OXS210yPWzxDV+fP655z8kLxdQrKHpLMkizGIRDkw48//siaNWt4+bL4L6iC0qX3+H/3AmB7V1al52e+pS2jQPavrsZhw2qlLaNQuqX7cvJOyad9/RN0qGNM0ubZhRuWImYjv+eY978/dLhzXSOmrHl3Lydvg4WfmvLYP+86VP8m3KtUZNJK/dMa/00sHW/Bkv3/7ke7r3pK/vW+XDregh/++PevyzBrhGGZ8OXgKf/u+v3nwop88Ut84YalzC9fWJaJ9rzTSO/SllEgxzfXpePwkk3X/ic5saVeaUsoEa/Gv9vBo4KosPLNv7j5rhERMII3YtWqVTRq1AgbGxsuXbrEzz//zPjx40tblkAgEAgEAoFAIBAI/mmKsRTF/0dEB4zgjXjy5Alz584lKiqKihUr8vXXXzN9+vTSliUQCAQCgUAgEAgEAsG/CtEBI3gjli5dytKlS0tbhkAgEAgEAoFAIBAIShnxGeqCKRtLBQsEAoFAIBAIBAKBQCAQlGFEB4xAIBAIBAKBQCAQCAQCwTtGTEESCAQCgUAgEAgEAoFA8MZIpCLGoyCEdwQCgUAgEAgEAoFAIBAI3jEiAkYgEAgEAoFAIBAIBALBGyMW4S0YEQEjEAgEAoFAIBAIBAKBQPCOEREwAoFAIBAIBAKBQCAQCN4YsQZMwQjvCAQCgUAgEAgEAoFAIBC8YySZmZmZpS1CIBAIBAKBQCAQCAQCQdkm5JthpXZux5//W2rnLipiCpJAIABg4OTnpS2hQHYscqHjcK/SllEgJ7bU4+Sd1NKWUSgd6hhz2LBaacsokG7pvjzwCy5tGQVSw82Jh/6BpS2jUKpXKU+PTx6WtowCObi2Oh/NCittGQWy8Qd7en3+uLRlFMq+Ve50G3O/tGUUyOHfajJqZmhpyyiQTTMdykx5l4W68+mC6NKWUSBrpioZPSe8tGUUyobv7P711+W+Ve50/9intGUUyKH1nv96jaDRWRYRi/AWjJiCJBAIBAKBQCAQCAQCgUDwjhERMAKBQCAQCAQCgUAgEAjeGBEBUzAiAkYgEAgEAoFAIBAIBAKB4B0jOmAEAoFAIBAIBAKBQCAQCN4xYgqSQCAQCAQCgUAgEAgEgjdHKmI8CkJ4RyAQCAQCgUAgEAgEAoHgHSMiYAQCgUAgEAgEAoFAIBC8MRKJWIS3IEQEjEAgEAgEAoFAIBAIBALBO0Z0wAgEAoFAIBAIBAKBQCB4YyRSaaltxWXVqlVUqlQJExMTGjRowIULFwq037p1K3Xq1MHMzAwnJyc+/PBDIiMji3VO0QFThhg1ahS9evV6q3m6urqybNmyYqV59uwZEokEb2/vt6rl/xMzZ86kbt26pS1DIBAIBAKBQCAQCP7fsWPHDr788ktmzJiBl5cXLVq0oEuXLrx48UKv/cWLFxkxYgSjR4/mwYMH7Nq1ixs3bjBmzJhinbdYa8CMGjWKzZs3axIaGGBtbU3t2rUZPHgwo0aNQvovWfH43LlztGnThujoaBQKxT967kqVKrF69Wo6d+6s3VetWjWePn3K06dPKV++fInz/uWXX8jMzHwbMovMqFGjiImJYd++fdp9zs7OBAcHY2tr+49q+V9i8uTJTJgw4a3muWnTJr788ktiYmLear4AHZtZ0KO1HIWljFehaWzeH82jp6n52levbMyID5RUcDAiOi6DA+fiOHUlQa9ts7pmfDHMjhv3k1i0KfyNdA7v7UjXNrZYmMt45J/Iys2veB6YUmCa9xvKGdnPCSd7Y4LDUtm0K5hLt2K1xwf1cKB5QznOTiakpavxeZLIb9uDeBWS/+/Pj7+Pb+f0gU3ExkTgVKEKfUdNwa16A722/o9us3/rMkICn5KemoK1nRPN2/enbffheu1vXjrKpl+mUrthG8ZO+aXY2gCs329I5a9HI69fE5Ny9tzs+zmhB04XnKZFIzwXTcPCsyqpQWH4L/6NF+u269g49u6I+8wvMKtSkST/F/h+v5TQ/adKpDGLo4f2sX/PdqKjInGuWImPxo7Hs2btQtM99LnHd1O/oKJLJZas3KDX5uL50yxZOIfGTZoz7bsfS6zxyKH97Nu9Q6PRxZXRY8dRoygaH9xnxtQvqehaiWUr1+u1uXD+DIsXzKVxk+Z8+/2cEmsE6NpKSZ+O1ijlBrwISmX9zlB8/JLzta9Z1YzR/e2pWM6YqJgMdp+I5NjfMTo2zepZMvQDO5zsDAkOT2fL/nCueseXWGObhqZ0bmaGwlJKYFgGfx5P4MmL9Hzt3V0MGdTRgvL2BsTEqzl6KZFzt7LbgikjFXi4GuVJd+dxKr/8GZtnf1Ho0lJOr/bWKOUyXgansWFXOD7++fuxRlVTPuprh7OTEVGxGew9Gc3xC9nndnYyYkh3G6pUNMHexpANu8I4eDamRNpyM+QDezq3VGJhJsP3aTKrtwbxIqjgNq1ZfSuG97LHyc6I4PA0/tgbyhUv3TLt1tqaPp1ssVZorqV124N58CSp2PraNjKlSzNzbXlvOxbP4wLKu5qLIYM7WVLe3oDoeBVHLyVx9ma276eNUuZb3ku3xRRbH5Sd8i4LdadVPWM6NDZGbiElKELFrtPJ+L3KyNe+qrMB/dqaUs5WRkyCmhPXUrjgnaY9LpVC5yYmNK1phMJSSmiUij3nkvF5mn+ehdGmgQmdmr72Y3gG248n8uRlAX6saMjAjuaUt3vtx8tJnL+d7cdvhsv1+vHuk1R+2R5XYp1l4brs2lpJn042WGfdc3aEFthO1HQ3Y8wAh+x7zvFIjp6P1rFpVt+SYT3ts+85+8LytE8lYUgPOzq1VGBhJuPx02RWbwspQltZuJbi+kDwbliyZAmjR4/WdqAsW7aM48ePs3r1aubPn5/H/urVq7i6ujJx4kRA897/ySefsHDhwmKdt9g9Jp07dyY4OJhnz55x9OhR2rRpwxdffEH37t3JyCh5w/a2SE/PvzF81/ndvXuXyMhI2rRpo9138eJFUlJS6N+/P5s2bSo0j7S0tDz7VCoVarUauVz+j3co6UMmk+Ho6IiBgVjDuaRYWFhgY2NT2jKKRNM6Zoz8wJq9p2KZtjSIRwGpTB9jj41CptfeztqAaWPseRSQyrSlQew7HceHPa1pXMssj62tUsaw7koeBhTcSVIUBnSzp08Xe1b+8ZIJP/gSHZvBT1PdMDXJv5mr7mbGjPGVOH0pms9mPOL0pWhmjK+ER5VsrbU8LDhwKoIvZj1m2gJ/pFIJ86e6YWJcvObz1uVj7N60kE59Pmbagp1UqV6fVfM+JyoiWK+9kbEpLTsNYtKs3/nP0n106jOWQztWcPHUX3lso8KD2LdlMVWq1y+WptzIzM2Iu+vLgy9mF8ne1LUCjQ6uI+riLS426oXfgjXUWDoDx94dtTaKJnWpt20pgVv3c6FBTwK37qf+n8tQNC68IyI/Lv59ht/Xr6TvwGEsXv4b1WvWYu4PUwgPCy0wXWJiAssXz6d2Xf2dXgBhYSFs2rAazxol1wdw8fxZNq77lf4Dh7JkxTo8a9RizvfTiqRx2eL51K6bf1mGhYaw6bc1eNao9UYaAd5vaMmYAQ7sPBLJF3Of8sAvmZkTKmKn1N++O9gY8sMEZx74JfPF3KfsOhrJ2IGONKtnqbWpVtmUKR+X5+y1WCbOecrZa7FMHVsed1eTEmlsVMOYwZ0tOHQhkZlro3jyIp1JQ+VYW+mvg7YKKZOGKHjyIp2Za6M4dCGRIV0saVDdWGvz645YvlwUod3+syoSlTqTmz7F71gFaN7Ago/62bPrWCRfzX+Bj18y340rj20+frS3MeC7z8vj45fMV/Nf8NexKMb0t6dpXQutjbGRhJCIdP7YF0FU7Nt7vurX2ZbeHWxYsy2YSXP9iY5NZ+5XrpgW0KZ5VDZl2ifOnLkSw/hZfpy5EsO0TypSrZKp1qZFIys+HuTIjiPhTJztz/3Hicz6wgU7a8Ni6Wtcw5ghnS05eCGR79dE8vhFGl8NU2Atz7+8vxqq5PGLNL5fE8mhC0kM7WJJwxzlvWJHDF8sCtdu3/4agUqdyQ2fkt17ykp5l4W608DDkP7tTDl6JYUfN8Xh9yqD8f0tUFrqX8TTRi5lfD8L/F5l8OOmOI5dSWFgezPquWdfZz1bmNKyrjE7TiUx67c4/vZK5dPeFjjb639uKYxGnsYM6mTB4YtJzFofzZMX6Xw5pGA/fjlYzpMX6cxaH83hi0kM6WxBA4/sDpdVu+KYtCRCu323JuqN/Ahl47ps0dCKjwc6svNwBBNnB/DgSRIzJ1bEzjqfe46tITMnVuTBkyQmzg5g55EIxg5ypFn97HuOR2VTpo6twNmrMUyYHcDZqzFMHVsB9xztU0no29mGXh2sWbMthK9+fEp0bAZzJlUstK0sTEtxfVAWkUglpbalpqYSFxens6Wm5q1XaWlp3Lp1i44dO+rs79ixI5cvX9b7u5o1a8arV684cuQImZmZhIaG8tdff9GtW7di+afYHTDGxsY4OjpSvnx56tevz7fffsv+/fs5evSoTgdDbGwsY8eOxd7eHisrK9q2bcudO3e0x7OmYKxduxZnZ2fMzMzo37+/zuj9jRs36NChA7a2tsjlclq1asXt27d19EgkEtasWUPPnj0xNzdnzJgx2g4QpVKJRCJh1KhRgP7pNnXr1mXmzJn55jd37lwADh48SIMGDTAxMaFy5crMmjUrT4fT/v376dSpE8bG2TeqDRs2MGTIEIYPH87GjRvzRLC4uroyd+5cRo0ahVwu5+OPP2bTpk0oFAoOHTqEp6cnxsbGPH/+XGcK0tq1aylfvjxqtVonvw8++ICRI0cC4O/vT8+ePXFwcMDCwoJGjRpx6lTRR51nzpzJ5s2b2b9/PxKJBIlEwrlz5/JMQTp37hwSiYTjx49Tr149TE1Nadu2LWFhYRw9epTq1atjZWXF4MGDSUrK7t3NzMxk4cKFVK5cGVNTU+rUqcNff+V9ucxJamoqU6ZMwdnZGWNjY6pWrcqGDdmj2OfPn6dx48YYGxvj5OTEtGnTdMqpdevWTJw4kSlTpmBtbY2jo6NO+Q8ePJhBgwbpnDM9PR1bW1t+//33IunO8sfp06dp2LAhZmZmNGvWDF9fXx3f5p6C9Pvvv1O9enVMTEzw8PBg1apV2mNZPt+zZw9t2rTBzMyMOnXqcOXKFe05P/zwQ2JjY7VllfN3vQndWllx5noCZ64nEBiWweYD0UTGqOjY1FKvfYemFkRGq9h8IJrAsAzOXE/g7I0EerSy0rGTSGDCEFt2nYglNPLNb+q9O9vz5/4QLt2M5dmrFH5e+xxjIwltmyrzT9PJntv349l+MJSXwalsPxiKl088vTvZa21m/OzPyQtRPA9MIeBFMovXv8DB1oiqrsW7sZ859AdN2/amWbu+OFaoTL9RU1HaOnLhxE699s6VqtPw/a44ObthY1+exi27U71Oc/wf6raBarWKTcun03XA59jaVyiWptyEH/+bxz8sI2TfySLZu4wdRMqLYHy+nkfCowBebvyLl5v2UPmrj7Q2lSaMJOLUZfwXriPRNwD/heuIOHMV1wkjS6zz4N5dtOvYlQ6dulOhogujx07Axtae40f2F5huzcrFtGjdDncPT73HVSoVy36ey6ChH+Lg6FRifQD79+6ifccudOjcDeeKLoz5ZDy2dvYcO3ygwHSrVyylZet2VCtA49Kf5zFo2CgcnMq9kUaAXu1tOHkphhOXYngVksZvO0OJiE6nSyv99aZzKwXhUen8tjOUVyFpnLgUw6lLMfTuaK216dnOGu+Hifx1LJJXoWn8dSySO48S+aCdtd48C6NTEzMueCVzwSuF4AgVfx5PICpWTZtG+utg64amRMZq7IIjVFzwSuGCVwqdmmZ3rCamZBKXqNZuNSobkZZe8hfynm2VnLocy6nLcbwKSWPDX+FExKTTuaVCr33nFgrCo9PZ8Fc4r0LSOHU5jtNXYunZPtvvfs9T2bw3gou34snIeHvRrz3b27DjcDiXb8fxPCiVJRsDMTaS0uo9ef5pOtji5ZPArqMRvApJY9fRCO48SqBn++yBhN4dbDlxMZoTF6J5GZzK+h0hRESn07V18cq9U1Nz/r6dzN+3kwmOULHtmKa82zbM24kP0KahGZGxGrvgCBV/307mglcynZvlKO/kTGIT1NqtZhVj0tIzuf7gf7u8y0Ldad/IhEt307h0N42QSDW7TicTHa+mVT1jvfYt6xoTFa+xC4lUc+luGpfvptGhcXYH73s1jDh6JYX7ARlExKr52zsNn6fptG+sP8/C6NjEVOMLb40ft59IJCpOReuG+fixgSmRcRq74AgVF7xTuOitz4/Zm2el1358WPIOmLJwXfbqYMPJi9GcuKi556zfobnndG2lv53o0kpJeFQ663e8vudcjOHUpWj6dMxuez5ob42XTyK7jka+bp8095ye7Ut2z8miZztrdhyJ4IpXvKat/D3odVtplW+aomgprg8ExWP+/PnI5XKdTV80S0REBCqVCgcHB539Dg4OhISE6M27WbNmbN26lYEDB2JkZISjoyMKhYIVK1YUS+NbmTPUtm1b6tSpw549ewDNC2q3bt0ICQnhyJEj3Lp1i/r169OuXTuioqK06fz8/Ni5cycHDx7k2LFjeHt7M27cOO3x+Ph4Ro4cyYULF7h69SpVq1ala9euxMfrhnH98MMP9OzZk3v37jF79mx2794NgK+vL8HBwfzyS/HC8XPm99FHH3H8+HGGDRvGxIkT8fHxYe3atWzatIkff9QNTT9w4AA9e/bU0b9r1y6GDRtGhw4dSExM5Ny5c3nO9/PPP1OzZk1u3brFd999B0BSUhLz58/nt99+48GDB9jb2+uk6d+/PxEREZw9e1a7Lzo6muPHjzN06FAAEhIS6Nq1K6dOncLLy4tOnTrRo0ePfOe15Wby5MkMGDBAG/UUHBxMs2bN8rWfOXMmK1eu5PLly7x8+ZIBAwawbNkytm3bxuHDhzl58qTOBfqf//yH33//ndWrV/PgwQMmTZrEsGHDOH/+fL7nGDFiBNu3b2f58uU8fPiQNWvWYGGh6akPDAyka9euNGrUiDt37rB69Wo2bNig7UTLYvPmzZibm3Pt2jUWLlzI7NmzOXlS88I5dOhQDhw4QEJC9nSZ48ePk5iYSN++fYule8aMGSxevJibN29iYGDARx99RH6sX7+eGTNm8OOPP/Lw4UPmzZvHd999p53ylzPPyZMn4+3tjbu7O4MHDyYjI4NmzZqxbNkyrKystGU1efLkfM9XVGQyqFzeiLuPdcNX7zxOxt1V/4OMu4sxd3Lb+yZT2dkIWY4Wp18HOXEJas5e1z81qTg42hlhozDk1v3stiE9I5O7jxLwrGqebzpPN3Nu3dcN9b11L67ANOammh8Rn6gqsr6MjHReBjykeh3d+lO9dlOe+noXKY+XTx8S4OtNVU/d6I2jf63BwkpJs7Z9iqznbaFoUpfwU5d09oWfuIC8QU0kryPklE3qEnHqoo5NxMkLKJvWK9E509PT8ffzpU69Rjr769ZvxKOHD/JNd/rkUUKCgxg4JP+On11//oGVXEH7TsUbydCv8TF16zfU1VivYcEaT2g0Dhqav8adf27BSi6nQ6eub6QRwEAGbhVN8PJJ1Nnv5ZNI9Sr6Xyw8Kpvlsb/tk4ibi6m2fntUNs2b54NEqlfR/wJdEDIpuJQz4IG/bnTog4A03Croj6yoUsGQBwG57P1TcS1noNMG5aRFPVOu308lrQRBtAYyqFLRBO+HuuHj3g+T8KisP+qnWqW89l4+Sbi5mOSr8W3gaGuItcKQ2w+y292MjEzu+yZS3S3/8tGUqW5bfftBgjaNgUyCm4spXg/02BSj3GUycC1nwP1c5X3fPw03Z/3l7eZsmMf+nl8aruUMCyhvE67dT/mfLu+yUHdkUqjoKOPhU93ED5+mU7m8/miAyuXz2vs8TcfFUUbWSggGBpCu0u0sSM8AtwrFjzCQScHFySCPX3z80/LNr0p5A3z0XMMuTgX50YTrD0rmRygb16WBDNxc9NxzHiTgke89R1+78vqeI8uyMdPfPuWTZ1FweN1Wej3I1pqRkcn9x0kFtmmFaSmJD8okUmmpbdOnTyc2NlZnmz59er5Sc38yOzMzM9/PaPv4+DBx4kS+//57bt26xbFjx3j69Cmffvppsdzz1mKdPDw8uHv3LgBnz57l3r17hIWFaaNBFi1axL59+/jrr78YO3YsACkpKWzevJkKFTSjtitWrKBbt24sXrwYR0dH2rZtq3OOtWvXolQqOX/+PN27d9fuHzJkiM7L7dOnTwGwt7cv0ZSd3PkNHz6cadOmaSNLKleuzJw5c5gyZQo//PADoHn5v3PnDl27Zj8Ub9++napVq1KjRg0ABg0axIYNG3SmKIGmAyvny/LFixdJT09n1apV1KlTR69Ga2trOnfuzLZt22jXrh0Au3btwtraWvt3nTp1dNLPnTuXvXv3cuDAAcaPH1+oHywsLDA1NSU1NRVHR8dC7efOnUvz5s0BGD16NNOnT8ff35/KlSsD0K9fP86ePcvUqVNJTExkyZIlnDlzhqZNmwIav168eJG1a9fSqlWrPPk/fvyYnTt3cvLkSdq3b69Nk8WqVatwdnZm5cqVSCQSPDw8CAoKYurUqXz//ffaNYpq166tLbeqVauycuVKTp8+TYcOHejUqRPm5ubs3buX4cM1a21s27aNHj16YGVlVSzdP/74o/bvadOm0a1bN1JSUjAxyXsjnDNnDosXL6ZPH81LdKVKlbSdfVnXHWg6xbLC3GbNmkWNGjXw8/PDw8MDuVyORCIptKxSU1PzhOLljNrKiZW5DJlMQmy8bqRVbLwKhaX+UF65pYzYeFUuezUGMgmW5jJi4lVUczWmTWMLpi7RP/2muFgrNA+T0bG6Ty4xcRnY2+SdY52FUmFAdK6Q2ujYDJTy/JvGT4ZW4J5vAs9eFX20LyEuGrVahaVcd9qZpdyGuJiIAtP+59P2JMRFo1Kp6Nr/M5q166s95v/Iiytn9jJt4a4ia3mbGDvYkhqqqz8tLBKpoSFGtkpSQ8IxdrQlNVR3dfjU0EiMHe1KdM74uFjUajUKhW6EhlyhJCY6Sm+aoMBX/HfTOn5cuByZTH/ZPvS5x6kTh1my4rcS6SqSRqWS6AI0/rHpN+YtXIZMpr9uPXxwn1PHj7A0n3VhiouVhQEymYSYON06EBOfgcJKfyek0kpGTHwu+7gMDGQSrCwMiI7LQGFlkDfPuAyUVsUP/7c0kyKTSohN0G2D4hLUyKvof0OQW0iJy2Ufm6BpgyzMpHnyqlTOgAoOBvx+oGTrLlhaaNrJ3H6JjVOhtNJ/vSmsDIiN033xiYnP8qOM6Liid/AWh6y2TV/52NnkP1VIKc+nrXz9+6yyfJAnX1WB7Wlusso7LjFXeSeqkFvob8vlFlLicnWIxyUWUN7lDXB2MGTj/3h5l4W6Y2Em0ZR3Uu7yzsTKXL9GK3MpcYm6vo9LUiOTSbAwlRCXmInP0wzaNzLB72UG4dFqPFwNqFPVkHzeqQokv2syNjGTmhb5aLSQEpuo2wFU4DVZzoAK9gZsOljyNUvKwnWZdc+JztVORMerqJ9PO6GUa9Z10rGPy8DA4PU95/Uzm/57TslfcwtqK+0LaSsL0lISHwiKh7Gxcb7vNTmxtbVFJpPliXYJCwvLExWTxfz582nevDnffPMNoHmnNDc3p0WLFsydOxcnp6JFT7+1ks7ZW3Tr1i0SEhLyrHGRnJyMv7+/9u+KFStqO18AmjZtilqtxtfXF0dHR8LCwvj+++85c+YMoaGhqFQqkpKS8kRwNGyoO8r4puTO79atW9y4cUMn4kWlUpGSkkJSUhJmZmYcOHCA5s2bY22dHT62YcMGhg0bpv172LBhtGzZkpiYGJ2OIX36jYyMqF274DUIhg4dytixY1m1ahXGxsZs3bqVQYMGaR/eExMTmTVrFocOHSIoKIiMjAySk5OLHAFTXHLqdXBwwMzMTKeDxMHBgevXrwOaHsSUlBQ6dOigk0daWhr16ukfGff29kYmk+ntnAF4+PAhTZs21em1bN68OQkJCbx69YqKFSvm0Qng5OREWFgYAIaGhvTv35+tW7cyfPhwEhMT2b9/P9u2bSu27pznyaqQYWFhWh1ZhIeH8/LlS0aPHs3HH3+s3Z+RkYFcrhsSnl+eHh4een2ij/nz5zNr1iydfZoOqQ/zTZOJ7oOERALFCUTNKpJMMjExljB+iC3r/ookPtdDV1Fp20zJFx86a//+z+KArBPkoTCdude1lkjyTzR+ZAUqOZvw1ZwnRdaaN/Oc2vLvZc/iy9mbSE1J4tnju+zf9gt2js40fL8rKcmJ/LFiOoM/+QELq/ynWb1z9Dow1359Nm+4oHgev2Vm6n241kzZmcOgoaMoV945rwGQnJTEL4t+5POJ32AlV7yRrlwi9WjMK1KlUrFk4Y8MHjqS8hXy17h00Tw+n/g1VvL8p4qUhNwlUdg7Sr5FniOnPKVbzDajMAprg/L8ptci9V12Leqb8io0g6dBbzgVUo8jC7rM87Sr+WTzJrR+T8744dlT1WYuf67/HCV4MdVXBm+rqufJpxCBxTlHy3qmvAxN52ng/155F4V/Y93Jr03J1z7X37nNd55KYlhnM2aOsSITCI9Wc/leKs1qlWwKkr6TFn5t51PeehK9X9eEV2FvoQ3Ke9p/53WZp34X4svMwn2Z97ot3m9o/Z4V44Zlt5WzVrzQn29hWouqpbg+ELx1jIyMaNCgASdPnqR3797a/SdPntSZ0ZKTpKSkPGugZr13F+dDOW+tA+bhw4dUqlQJALVajZOTk97pNgVFpGQ18ln/jho1ivDwcJYtW4aLiwvGxsY0bdo0z0K15ub5TxfIiVQqzeMcfYvs5s5PrVYza9YsbXRCTrKiGXJPP/Lx8eHatWvcuHGDqVOnaverVCr+/PNPPvvsswL1m5qaFvpi1qNHD9RqNYcPH6ZRo0ZcuHCBJUuWaI9/8803HD9+nEWLFuHm5oapqSn9+vXTu9Dv28DQMLtHWCKR6PydtS9rzZqsfw8fPpzny1D59VqamhYcmqcvZCyrvHPuL0gXaDq2WrVqRVhYGCdPnsTExIQuXboUW3duf+RMn5OsfevXr+e9997TOZZ7JLyoeRbE9OnT+eqrr/JoHzEj73zHuEQVKlVmnmgXK4u8US5ZxMarkOexl5KhyiQhUU0FR0PsrQ2Y8mH2tLqs4tm2oCKTFgYVuibMlduxPPLLDt80NNSMQikVhjqLxCmsDIiJzT+eNzomA2uFbjOosDLIMzIB8PnwCjStJ+frH58QEV28GGELKyVSqYz4XNEuCbFReaJicpO1rkv5iu7Ex0ZxZNdqGr7flYjQl0SGB7F2wUStbWam5lqYOKge3y07gJ2j/pf5t0VqaESeSBYjO2vU6emkRcZobEIiMHbU/WKasb11nsiZomJpJUcqleaJJImNjUGuyDt/OiU5Cf8nvjz1f8L61ZrpqJmZmWRmZtKvR1t+mLsICwtLwkJDmDcrO0Q1q+3o16MtK9dtwdGp6F+wy9KYOyInNiYmT1QMaAYn/J74EuD/hHWrl+to7NO9PTPnLsTC0oqw0BB+nDUjj8Y+3dvz6/rNOBVDI0BcQgYqVWaeUUK5Zd4RvCyi9Yymyi0NyFBlEp+gaRP0jTwqLA2IKcFoanySGpU6E3mukWZL87wj9VnEJqjz2FuZS8hQZZKYrJvGyECz6Ou+c7rh4MXSmPC6nczjl7zRQlnEvI4U0rXX9ePb4Jp3PL5Pswe+DA00ja3SSjeiRWGpv93LQl9kYM5Ip7jXPshtI7eU5Xst6aOg8s4dNZCFprxz3XPMX99zcnXyGxnCezVN2Hu25FNf/83lraOzDNSdhKRMjUZzKZDtB0uzvBEnWcQlqpGb6z7rWZpJUakySUjWtIkJyZms2ZuIgQwsTCXEJGTSu5UpEbHFH/TJ8qNVbr8UpDFB/fo35dD4+ppMTNZ9D8ny4/7zb/YFnLJwXWrvObnbkgLaiZyRdlp7KwMyMjK1U8H12RR0H9PHNe8EfANytJVZz5W52kq5ngjPwvTm1FISH5RFJNIS9OqXAl999RXDhw+nYcOGNG3alHXr1vHixQvtlKLp06cTGBjIH3/8AWjevT/++GNWr15Np06dCA4O5ssvv6Rx48aUK1f0dfneSgfMmTNnuHfvHpMmTQKgfv36hISEYGBggKura77pXrx4QVBQkFbwlStXkEqluLu7A3DhwgVWrVqlndbz8uVLIiIKf2g3MtKEqapUuo2HnZ0dwcHZUx7i4uK005UKon79+vj6+uLm5qb3eEJCAmfPnuXXX3/V7tuwYQMtW7bU2QewZcsWNmzYoNMBU1JMTU3p06cPW7duxc/PD3d3dxo0yF4f4sKFC4waNUrbq5eQkMCzZ8+KdQ4jI6M8fnwbZC0u/OLFi3wjWnJTq1Yt1Go158+f105Byp3n7t27dTpiLl++jKWlZbE+/92sWTOcnZ3ZsWMHR48epX///tprqiS6C8PBwYHy5csTEBCgXb+nJBS1rIoamgegUkFAYBq13U25cT97XZfa7ibcvK//s4aPn6fSwFO3s6y2uykBL9NQqSEoLJ3Ji4J0jg/srMDEWMLm/dFExBR+A0pOUZOcotuRGBmTTv2alvg/1+gykEmo7WHBhh1B+rIAwMcvkfo1LdlzLPvz1w1qWuHzRPeBctyICjRvIGfyPD9CwovfgWlgYIhz5eo8unuFOo3bafc/unuVWo3aFJBSl8zMTDIyNJ0/DuUq8e2i3TrHD21fSUpKonaB33dNzFVv7Lvp6rfr8D6xt+6T+Xrx6+ir3ti2a87TX7LXM7Jt/z7RV7xKdE5DQ0OquFXjjtdNmjRrod1/x+smjZs0z2NvambO0l836uw7dng/9+/eZvL0WTg4OiGVSvPY/LllA8nJyXw0djw2trprcBVNozveXrd0NHp73eK9JnnX0TIzM+OXVbqfxD56eD/37ngx5duZODg6IpXK8ths/WMjyclJmgV+i6kRIEMFfi9SqFfdXOcT0XWrm3Ptjv5Q+EcBSTSupbsAdz1Pc/yeJ6NSZ9kkU7e6OftPR+nYPPQv/guGSg3PgzLwrGzE7UfZda9GZSO8fPUvVun/Kp267rptXI0qRjwLytBqzKJRDRMMDSRcuVvyL7FlqMD/RQp1q5tx7U72i31dDzOu3dX/cur7NIVGtXQHX+pWN8PveUoejW9Ccqqa5DDdNisqJp16NSwIeKn5zQYyCTWrmfP7X/oXHYTXZeppwb6T2dMJ63la8NBPU6YZqkz8nidTz9NC53Or9TwtivX5cZUKngVlUKOKEbcfZZdvjSpGeD3SX95+L9OpW023vGtWMeJZUHoeXzZ+Xd6X/0fLOydloe6o1PAiREV1VwO8n2QPbFR3NeTOE/332oBAFbXdDIHsZ5DqlQx5HqIi93hUhgpiEjKRSqFeNUNuPSr+/VulhufBGa/9lp3es7IRXo/15+cfmEGdqkZA9vVQo7IRz4P1+NHTWOPHe2/2NciycF1mqMDveQp1q5vrtBN1PS24lk878Sggmca1LYHsLwhq7zmqLJsk6nmas/9UznuOBQ8L+Px2bpJT1SSH6/7oqJh06nma52grNZ/E3rQ7/68ZFqalJD4QvDsGDhxIZGQks2fPJjg4mJo1a3LkyBFcXFwACA4O1pk5MmrUKOLj41m5ciVff/01CoWCtm3bsmDBgmKdt9gdMKmpqYSEhKBSqQgNDeXYsWPMnz+f7t27M2LECADat29P06ZN6dWrFwsWLKBatWoEBQVx5MgRevXqpZ1yY2JiwsiRI1m0aBFxcXFMnDiRAQMGaNewcHNzY8uWLTRs2JC4uDi++eabQqMgAFxcXJBIJBw6dIiuXbtiamqKhYUFbdu2ZdOmTfTo0QOlUsl3332X71z7nHz//fd0794dZ2dn+vfvj1Qq5e7du9y7d4+5c+dy7Ngxqlatqp1uk56ezpYtW5g9ezY1a9bUyWvMmDEsXLiQO3fu5Lu+S3EYOnQoPXr04MGDBzrTnUDjvz179tCjRw8kEgnfffddsaMlXF1dOX78OL6+vtjY2OSZElNSLC0tmTx5MpMmTUKtVvP+++8TFxfH5cuXsbCw0Fn3JKeWkSNH8tFHH7F8+XLq1KnD8+fPCQsLY8CAAXz++ecsW7aMCRMmMH78eHx9ffnhhx/46quvtOu/FAWJRMKQIUNYs2YNjx8/1lnouCS6i8LMmTOZOHEiVlZWdOnShdTUVG7evEl0dHSeaJX8cHV1JSEhgdOnT1OnTh3MzMwwMyv+ope5OXw+jvGDbfF/mcqT56m0a2KJrcKAk1c1N4rBXRRYy2X8ul3zYH7ySgKdmlsyvIeSM9fiqepiTNvGFvyyVdN5mp4BL0N0I0g0I2vSPPuLw95jYQzu4UBQSCqBoakM6uFAalomZ65Ea22++cSFyOg0Nu7UdMTuOxHO4hlVGdDNniu3Y2laX069GpZ8NfexNs2EkRVo01TJD8uekpySvZ5BYpKKtPSihxu27T6CP1Z8S8XKNajkXodLp/4iKiKYFh36A7B/2y/ERoUyYvw8AM4f2461rSMO5TWRhf6PvDh9cDOtugwGwNDImHIVq+qcw9Rc82Kce39RkZmbYe6WPUXOrFIFrOp4kBYVS8rLYKrN/QqT8g7c+VAT1fd83XZcPh9K9Z+n8XLDThRN6uH8YV+8hn2tzePZyj9ocua/VJ78MaEHT+PQox227ZpypfWQEmkE6NG7P8sXz8OtajWqedTgxLGDRISH0rHrBwD8d9M6IiMj+OLrb5FKpbi4VtZJL1coMDQ00tmf28bc3ELv/qLSs3d/li2e/1qjJyeOHSIiPJROXXsAsOX39URGRvDl5OmvNVbS1ShXYGhkpLM/t425hYXe/cVh36lIvvqwPE+eJ/MoIJnOLRTYWRty9G9NvRnRyw4bhQFLN2nqzLHzMXRvbc3o/vYcvxCDR2VTOjRXsOi3QG2eB05H8dNkF/p2suGadzzv1bWkTnVzpi58ViKNx68m8XFvK54FZeD/Kp1WDUyxlks5d1PzQNu3nTlKSym/7dO0SeduJtOukRkDO1rw9+1kqlQwpEU9U9buzrtORYt6Jtx+lJpnVLq47D8TzZcjnfB7noLv0xQ6NpdjqzTk+IUYAIb1tMVGYcAvmzWdHMcuxNC1lYIP+9px8lIs1SqZ0L6ZnCUbsweJDGTg7GT8+v8SrBUGVKpgTHKqmpDwkreV+09FMqCrHUGhqQSFpjGgmx2paWrOX4vV2nz1UXkiYzLYvEfzonHgVAQLplSmX2dbrnrH0aSuFXWrWzBlQYA2zd6TEXw9ugJPnr2+lloqsbM25Mg5/ese5cfxK4mM7SPnWVA6fi/Tad3AFBu5lLM3NZ09/dpZoLSSsn6vpjzP3kyifWMzBnWy4PytZNycDWlZ35Q1f8XmybtFPdP/V+VdFurOqRspfNjdnOchKgKCMmhRxxillZS/vTWdG71amqCwlLLpsKb8//ZOpXV9Y/q1NeXinVQqlzOgeW0jNhzI7mRwdZKhsJTyKlSFwlJK9+YmSCRw4lrJvjB04moyY3pZavwYmE7LeiZYy2Wcv6XxY5+2Gj9u2P/aj7eSadvQlIEdzPnbK4Uq5Q1pUc+EdXvy+vH9eqZ4+b65H6FsXJf7Tkby1ejy+D1P4aF/UnY7cV5zzxnZ2x4bpQFLNmoGz46ej6Z7G2vGDHDg2N/RVK9iRof3lfy8/pU2zwOno1jwjSt9O2ffc+pWN2dKCe85Wew/HUX/rrYEhaURFJpG/662r9vK7HL86qNyREZnsHlvWJG1FOaD/wUkkne4mvxb5vPPP+fzzz/XeyznF56zmDBhAhMmTHijcxa7A+bYsWM4OTlhYGCAUqmkTp06LF++nJEjR2pfciUSCUeOHGHGjBl89NFHhIeH4+joSMuWLXUWtXFzc6NPnz507dqVqKgounbtqvPp3Y0bNzJ27Fjq1atHxYoVmTdvXpG+7FK+fHlmzZrFtGnT+PDDDxkxYgSbNm1i+vTpBAQE0L17d+RyOXPmzClSBEynTp04dOgQs2fPZuHChRgaGuLh4cGYMWMAzeenc04/OnDgAJGRkTrzybKoWrUqtWrVYsOGDSxfvrzQcxdG27Ztsba2xtfXlyFDdF9oli5dykcffUSzZs2wtbVl6tSpxMUVb6G0jz/+mHPnztGwYUNtpE9BUU3FYc6cOdjb2zN//nwCAgJQKBTaT5vnx+rVq/n222/5/PPPiYyMpGLFilr78uXLc+TIEb755hvq1KmDtbU1o0eP5j//+U+xtQ0dOpR58+bh4uKiXVj4TXQXxpgxYzAzM+Pnn39mypQpmJubU6tWLb788ssi59GsWTM+/fRTbW/uDz/88FY+RX3lThKW5lH07aBAaSXjZUgaP20IIyJaM/SgsJJho8xuSsKjMvjptzBGfqCkU3NLouNU/L4/iuv33iy8tjB2Hg7D2EjK+FHOWJrJeBSQyPSFfiSnZHc62tsY6kxD9HmSyLxfnzGqnxMj+zkRHJrGj78+5VGOkfoe7TVTbBbP0O3U+Hndc05eKPqLRYNmnUmMj+Ho7rXERYfj5OzG59N/xdpOEwEYFx1OVET2CHRmppoDf/5CZFggUqkBto4V6Dn0C5q37188xxQDeYOaND29Rfu35yLNNf3yjz3cHT0dYyc7TJ2zFxhLfvaKGz3G4rl4Oi6fDSU1KIwHk34kZO8JrU30FS+8hn5FtVlfUm3WRJL8X+I1ZBIx1++WWOf7LdsSHxfHzj83Ex0VRUWXSsyYtQB7e03nfXRUJBHh+Y9Q/RO836oNcfFx7Nj2h0ajqyvfzZqPvYNGY1R0FOHhYaWqEeDizXiszEMZ1M0Wa7kBz4NSmbXyBeFRmggma7kBdtbZUx9DI9OZteIlYwY40K2VkqjYDNbtCOFyjpG8RwHJLPwtkOE97Rj6gR0h4WksXB/I42clG+G98SAVC9MEPmhljtxCSmBYBsu2xhL5ejqB3EKKtTx7MCUiRs3SbTEM7mRB20amxMSr2XY0nlu5Pu/qYC3D3cWIRVve/KH30q0ErMzDGNjVBqWVjBfBacxZFZjtRysZdjnaybDIDOasCuSjvnZ0bSknKlbFb7vCuOKdPXJtLTdg6bcu2r97d7Cmdwdr7j9O4j/Lsl8+istfxyIwMpLy+dByWJjL8A1I5rslz0hOzW4r7WyMdNYjeOifzIJ1Lxney4FhvewJCU9jwbqX+D7NHmG+cCMOK/MQBvew115LP/zynPCo4r2kXX+QioVZPD1bWWjLe8nWGG15Kyyl2OQq7yVboxnc2ZJ2jcyIiVez9Wg8N3OXt42Mai5G/PzH/5/yLgt159ajdCxMk+nW3AQrcylBESpW7kogKi6HRqvsl7nIWDUr/0qgf1tTWtUzJjZBzY5TSXg9zr7ODA0k9Gxhiq1CSmpaJvcD0vn9cCLJqSXr5Ljhk4qFqYQeLc00fgzP4Jc/s/2oyKUxIkbNsj9jGdTRnDYNX/vxWEKeCBwHaxnuFQ1Z/N+ST+PKSVm4Li/cjMPSQsag7tn3nJnLX2jbCaUi1z0nIp2Zy19o7jmtlUTGZrBuewiXb+e45/gns3DdK4b1smdYz6z26RWPnxY9AkYfu49FYmwo5bMhjtq28vulL3TbSmtD1Dkuq6JoKcwHgv99JJnFWTHmLTJz5kz27duHt7d3aZz+raFSqbC3t+fo0aM0bty4tOUIBCVm4OTnpS2hQHYscqHj8JJNW/mnOLGlHifvlGyE7Z+kQx1jDhtWK20ZBdIt3ZcHfm/nK1nvihpuTjz0DyzcsJSpXqU8PT55WNoyCuTg2up8NKv0O6QKYuMP9vT6/HHhhqXMvlXudBtzv7RlFMjh32oyambpdpIWxqaZDmWmvMtC3fl0wb97dH/NVCWj54QXbljKbPjO7l9/Xe5b5U73j31KW0aBHFrv+a/XCBqdZZHoH998qY2SopyxutTOXVTE967ekMjISCZNmkSjRo1KW4pAIBAIBAKBQCAQCASlRxlZhLe0EB0wb4i9vX2JprgIBAKBQCAQCAQCgUAg+P9Dqa2QM3PmzDI//UggEAgEAoFAIBAIBAKBBolUWmpbWaBsqBQIBAKBQCAQCAQCgUAgKMOIKUgCgUAgEAgEAoFAIBAI3hiJWAOmQEQEjEAgEAgEAoFAIBAIBALBO0Z0wAgEAoFAIBAIBAKBQCAQvGPEFCSBQCAQCAQCgUAgEAgEb45ExHgUhPCOQCAQCAQCgUAgEAgEAsE7RkTACAQCgUAgEAgEAoFAIHhjxCK8BSMiYAQCgUAgEAgEAoFAIBAI3jGSzMzMzNIWIRAIBAKBQCAQCAQCgaBsE7fky1I7t9VXy0rt3EVFTEESCAQA9PsioLQlFMhfv1Rm1MzQ0pZRIJtmOpC0eXZpyygUs5Hf88AvuLRlFEgNNycOG1YrbRkF0i3dlyf+z0tbRqFUreLCgK+flbaMAtm52JWbvtGlLaNAGlZT0n/S09KWUSi7llZiyLRXpS2jQLb9VIGBk//ddWfHIhcmLIsrbRmFsuJLqzLhy56f+Za2jALZv7rav76dBE1b2Xv8k9KWUSB7V1al60f3SltGgRzZWOtfrxE0OsskUjHJpiCEdwQCgUAgEAgEAoFAIBAI3jEiAkYgEAgEAoFAIBAIBALBGyORiEV4C0JEwAgEAoFAIBAIBAKBQCAQvGNEBIxAIBAIBAKBQCAQCASCN0esAVMgwjsCgUAgEAgEAoFAIBAIBO8Y0QEjEAgEAoFAIBAIBAKBQPCOEVOQBAKBQCAQCAQCgUAgELwxEqlYhLcgRASMQCAQCAQCgUAgEAgEAsE7RkTACAQCgUAgEAgEAoFAIHhzJCLGoyCEdwT5kpSURN++fbGyskIikRATE/POz+nq6sqyZcu0f0skEvbt2/dOzzlz5kzq1q37Ts8BMGrUKHr16lXqOgQCgUAgEAgEAoFA8M8jImD+AUaNGsXmzZvz7O/UqRPHjh0rBUVFY/PmzVy4cIHLly9ja2uLXC7Xa5ecnMxPP/3E9u3befbsGZaWlrRu3ZpZs2ZRo0aNN9IQHByMUql8ozzKCpMnT2bChAmlLUMvnd634oO2cpRWMl6GpLNpTyQPA1LytfesYsLI3jY4OxoSHati/5kYTlyK1x5v39SSVo0scHYyAiDgZSrbDkXj9yK1xBrbNjKlSzNzFJZSAsMy2HYsnscv0vO1r+ZiyOBOlpS3NyA6XsXRS0mcvZmsPT5tlBIPV6M86e48TmXptpgSadx56zGbr/oQkZBMFTsFk9s3oH5Fe7223x+8wsF7AXn2V7aVs3tsdwD2ePlx6F4AfhGxAFR3tGZC6zrULGdbIn1ZHD20j/17thMdFYlzxUp8NHY8njVrF5ruoc89vpv6BRVdKrFk5Qa9NhfPn2bJwjk0btKcad/9WCJ91u83pPLXo5HXr4lJOXtu9v2c0AOnC07TohGei6Zh4VmV1KAw/Bf/xot123VsHHt3xH3mF5hVqUiS/wt8v19K6P5TJdIIcPjQAfbs3kVUVBQVXVz4eOxn1KxZq9B0Pg8eMG3q17i4urJi5RqdYwkJCWzZ/DuXL18iISEeB0dHRo/5hEaNGpdYZ8dmlnzQ2gqFlQGvQtLYtD+KR0/zr4vVKxsz8gNrKjgaER2XwYGzcZy8kl2/G9cyo3c7OY62hsikEBKRwcHzsVy4lVhijSeP/MXhPVuJiY6kfMVKDB8zCY8adQtN5+tzh7nffk4Fl8rM/2WLzrHrl8+wa+s6woIDsXcqz4Bhn9KoaesSa+zY3JKebeQorGS8Cknn932RPArI34+eVUwY2dOaCo6GRMep2H8mlpOXdf3Yp4MCR1sDZFIJIRHpHDwXx983E0qsEaB9E3O6t7REYSkjMDSdPw7F4PssLV97j0pGDO+moLyDITFxKg7+Hc/pa9ll2bKBGZ/2t86TbuR/XpGeUTKNHZtZ0KO1HIWljFehaWzeH13oNTniAyUVHF5fk+fiOHVFv5+a1TXji2F23LifxKJN4SUTCLSobUi7BsZYmUsIjlSz53wK/kEqvbZWZhJ6tzTB2V6KnVLKee809pzX/T2O1lK6NTXG2UGGjZWU3edTOOeVf7kUlbLgyy4tFfTuoEQpN+BFcBobdoXh45ecr32NqqZ81M+eik5GRMVmsPdEFMcuxGqPOzsZMaSHLVUqmuBgY8hvu8I4eCa6xPrg7beTOWlW15wvh2v8+PPvYW+ks3MLOb3aKVHKZbwMTmPD7nAe+uf/vFbDzZQP+9ji7GREVKyKfaeiOX4x25cdmlnRurEVFctpnof8X6Sy9WAET56X/HkNYGhPezq3ssbCTIZvQBKr/hvEi6CC82zewIrhvR1wsjMiODyNzXtCuXI7Tnu8prsZfTvb4eZqio3CkDkrnnPFK66AHP93dArKFiIC5h+ic+fOBAcH62x//vlnacsqEH9/f6pXr07NmjVxdHREIsm7oFJqairt27dn48aNzJkzh8ePH3PkyBFUKhXvvfceV69efSMNjo6OGBsbv1EeZQULCwtsbGxKW0YemtUzZ1RvG/aciOGbnwN56J/Ct586YquU6bW3tzbg208ceeifwjc/B7LnZAwf9rHlvTrmWpsabiZcvJ3IzJXBfLs0iIhoFd995oi1XH+ehdG4hjFDOlty8EIi36+J5PGLNL4apsBarr+Js1VI+Wqokscv0vh+TSSHLiQxtIslDatnX2srdsTwxaJw7fbtrxGo1Jnc8Mn/QaYgjvs84+eTtxjdvCZ/ju5KPWc7xu84S3Cs/pfSbzo04OTEPtrt2PjeyE2N6OBRUWtz80UonWu4sn5oOzaP6IiTlRmf/XmGsPikEmkEuPj3GX5fv5K+A4exePlvVK9Zi7k/TCE8LLTAdImJCSxfPJ/adRvkaxMWFsKmDavxrFF4Z05ByMzNiLvry4MvZhfJ3tS1Ao0OriPq4i0uNuqF34I11Fg6A8feHbU2iiZ1qbdtKYFb93OhQU8Ct+6n/p/LUDQumda/z59j/bo1DBg4hOUrVlOjRi1mfj+DsLCCH64TExNZsnghderWy3MsPT2d72ZMIzQslOnffsfadRuZMHHSG7UbTeuaMaqnNXtOxzJ1SRAPn6by7ccO2Cj010U7awOmj3Hg4dNUpi4JYu/pWD7sZc17tcy0NglJavaciuU/y4P5ZnEQZ2/E8/lAW+pUMymRxisXTrLlt2X0HDCKH5dtxsOzLgtnTSIiPKTAdEmJCaxZNpsadRrmOfbk0T1WLPyO91t3Yf7yLbzfugsrFs7Az/d+iTQ2q2vOh71s2H0yhimLgngYkMKMsY7Y5uNHe2sDpn/swMOAFKYsCmLPyRg+6m3De7Vz+fFkDDOWBTP550DOXk/g80G21KlmWiKNAE1qmzKiu4J9Z+P4dnkoj56lMvVDW2zyaXvtlDKmfGjLo2epfLs8lH3n4hjZQ0GjmroaklLUfDY3SGcraedL0zpmjPzAmr2nYpm2NIhHAalMH2Nf4DU5bYw9jwJSmbY0iH2n4/iwpzWNc1yTWdgqZQzrrixwAKEo1Hc3oE8rE45fT2XB1kT8gzL4rJcZSkv9C08aGEBCspoTN9IIDFfrtTEyhIhYNQcuphCbqN+muJQFX77fwJLR/e3ZdSyKSfOe4+OXxPfjKmCr1D9GbG9jyPfjKuDjl8Skec/561gUYwY40LSehdbG2EhKaEQ6W/aFExVbwgsxB++inczCViljeA8lPgV0khSV5vUt+KivHX8dj+Lrn17g45/Md5+XL8CXBvzns3L4+Cfz9U8v2H08itH97GhSN9uXNaqacuFWPN/98oppi18SEZ3OD+PKl/h5DaBfF1t6d7Rl9X+D+HKOH9GxGfw4uRKmJvm/lnpUMWPapxU5czmGcT/4ceZyDNM/rUi1ytltkYmxlKcvU1j936ASayuLOv+VSCWlt5UBRAfMP4SxsTGOjo46W87IjiVLllCrVi3Mzc1xdnbm888/JyEhe8Th+fPn9OjRA6VSibm5OTVq1ODIkSPa4z4+PnTt2hULCwscHBwYPnw4ERERBWravXs3NWrUwNjYGFdXVxYvXqw91rp1axYvXszff/+NRCKhdevWevNYtmwZV65c4dChQwwYMAAXFxcaN27M7t27qV69OqNHjyYzMxPInoKzaNEinJycsLGxYdy4caSn5x+lkHMK0rNnz5BIJOzZs4c2bdpgZmZGnTp1uHLlik6ay5cv07JlS0xNTXF2dmbixIkkJhY+8rp27VqcnZ0xMzOjf//+OlOu1Go1s2fPpkKFChgbG1O3bt080Uv37t2jbdu2mJqaYmNjw9ixY3XKMDe3bt3C3t6eH3/URAHknoJUFH8FBwfTrVs3TE1NqVSpEtu2bcszjetN6dFazpmr8Zy+Gk9gaDqb9kYSGZ1Bx+ZWeu07NrciIjqDTXsjCQxN5/TVeM5ei+eDNtkRVL9sCef4xTieBaYRFJbOmu3hSKQSarmX7MWiU1Nz/r6dzN+3kwmOULHtWAJRsWraNsz7sAPQpqEZkbEau+AIFX/fTuaCVzKdm2XbJyZnEpug1m41qxiTlp7J9Qcle0j67/VH9KpThT513ahsK+ebDg1xtDJj1+3Heu0tTYywtTDVbj7BkcQlp/FBncpam3k9mzOggTvVHKypZCvnu67vkZmZybVnBb+YFsTBvbto17ErHTp1p0JFF0aPnYCNrT3Hj+wvMN2alYtp0bod7h6eeo+rVCqW/TyXQUM/xMHRqcT6AMKP/83jH5YRsu9kkexdxg4i5UUwPl/PI+FRAC83/sXLTXuo/NVHWptKE0YSceoy/gvXkegbgP/CdUScuYrrhJEl0rhv7246dOxMp85dcK5YkbGffIatnR1HDh8sMN3KFcto1boNHh7V8xw7eeI48fHx/Oe7mXjWqIG9gwM1atSkcuUqJdII0L2lnDPX4zlzLYHAsHQ2748iIiaDjs0s9dp3bGpJREwGm/dHERiWzplrCZy9nkCP1tntgY9/CjfuJxEYlk5oZAZHL8TzPDgNj0ol64A5uv9PWrfvQZuOPSnvXInhH0/CxtaeU0f2FJhuw6qfaNayI1Wr1cyb54Ht1KzbiJ79R1Kugis9+4+kRu1GHDuwo0Qau7e24sy1bD9u2vfaj/m0kx2aafy4aV+2H89c120nffxTuH4v249H/o7T+LFyyQclur5vybmbiZy7kURQeAZbDsUSGauifRNzvfbt3rMgMkbFlkOxBIVncO5GEuduJtK9hYWOXWYmOu1lbELJOxC6tbLizPUEzlxPIDAsg80HoomMUdGxqf5rskNTCyKjVWw+EE1gWAZnridw9kYCPVrp+l4igQlDbNl1IpbQyDd7KW9T35grD9K58iCd0Gg1e86nEp2g5v3aeaMmAaLiMtl9PpXrD9NJScvUa/MiVM3+i6ncfpxBhv5AmmJTFnzZs52SU5djOXkpllchaWzYFU5EdDpdWir02nduISc8Kp0Nu8J5FZLGyUuxnL4cS6/22VFYfs9T2LQnnAs340nP0O/v4vAu2knQ+HHiUDt2Ho8hLOrNO4o+aKvk9JVYTl2J41VoOht3RxAZnUHnFvoj2Du9LyciOoONuyN4FZrOqStxnLkaR692Cq3Nss2hHLsQy7PANAJD01m1LQyJBGpX0/98VRR6dbBl+6EwLt+O43lgKos3vMLYSErr9xQFpLHByyeBnUfCeRWSys4j4Xg/TKBnh+yI35v3EvhjbyiXb7+daJKyolNQ9hAdMP8SpFIpy5cv5/79+2zevJkzZ84wZcoU7fFx48aRmprK33//zb1791iwYAEWFpoHoODgYFq1akXdunW5efMmx44dIzQ0lAEDBuR7vlu3bjFgwAAGDRrEvXv3mDlzJt999x2bNm0CYM+ePXz88cc0bdqU4OBg9uzR/6C7bds2OnToQJ06dfL8nkmTJuHj48OdO3e0+8+ePYu/vz9nz55l8+bNbNq0SXvOojJjxgwmT56Mt7c37u7uDB48mIwMzY3r3r17dOrUiT59+nD37l127NjBxYsXGT9+fIF5+vn5sXPnTg4ePMixY8fw9vZm3Lhx2uO//PILixcvZtGiRdy9e5dOnTrxwQcf8OTJE0CzXk7nzp1RKpXcuHGDXbt2cerUqXzPe+7cOdq1a8esWbOYMWNGvroK89eIESMICgri3Llz7N69m3Xr1hU6wl4cDGRQ2dmYO766ERV3fJOpls/LlLurMXd8dUOHvR8lUaWiMbJ8WhwjIwkyqWbEt7jIZOBazoD7/rqh2vf903BzNtSbxs3ZMI/9Pb80XMsZ5quxRT0Trt1PIS3//sJ8SVepeBgcRdPKuh0PTSo5cedVwR2lWey74897lRwpJ7fI1yYlXUWGOhO5if6XgEJ1pqfj7+dLnXqNdPbXrd+IRw8f5Jvu9MmjhAQHMXBI/p0Vu/78Ayu5gvadupVI25ugaFKX8FOXdPaFn7iAvEFNJAaakUFlk7pEnLqoYxNx8gLKpnkjUQojPT0dP78n1KtfX2d/vXoNePTQJ990J08cJyQ4mCFDh+s9fu3aFTyqV2f1qhUMGzKAzz/7mJ07/kSlKtnbmkwGlSsYccdXt1Pxrm8K1Vz11++qLsbczWXv7ZtMZef863fNqiaUszPEpwQj5Rnp6Tz186VWvfd09teq9x5PHt3LN935U4cICw6kz+DReo/7PbpP7Vx51q7/Ho8LyDM/DGRQuULedu+ubzLVXPV3lri7mnA3l/2dR0XzY0HTCQpCJoNK5Q25+0Q3/b0nKbi76NdZ1cWIe7ns7z5JoVIFIx2dJkYSfpnqyIrpjkweaYNLOf1tb1E0Vi5vxN3HuXzzOBn3/HzpYsyd3Pa+yVR21tXYr4OcuAQ1Z6+/2RQumRSc7aU8eq77wvzoeQaVnEoeFfC2KQu+NJBBlYomePvoDpJ5P0zCo7L+ARmPyqZ4P9R9JvHyScTNxSTfuvMmvMt2sl9HBXEJqjf2I7z2pbNxHt94P0zMt/O7WiVTvB/q+t7LJ5EqFfP3pZGRBJlMUqLnNQBHO0OsFYbcfpD9mzMyMrnnm0h1t/w7dTyqmHH7vu4Urtv34/GsUvKOoP8Fnf9WJBJpqW1lAbEGzD/EoUOHtB0mWUydOpXvvvsOgC+//FK7v1KlSsyZM4fPPvuMVatWAfDixQv69u1LrVqa9QMqV84eBV+9ejX169dn3rx52n0bN27E2dmZx48f4+7unkfPkiVLaNeunfb87u7u+Pj48PPPPzNq1Cisra0xMzPDyMgIR0fHfH/X48ePadOmjd5j1atX19pkRXYolUpWrlyJTCbDw8ODbt26cfr0aT7++ON8z5GbyZMn062b5iUua50ZPz8/PDw8+PnnnxkyZIjWn1WrVmX58uW0atWK1atXY2Ki/yaUkpLC5s2bqVChAgArVqygW7duLF68GEdHRxYtWsTUqVMZNGgQAAsWLODs2bMsW7aMX3/9la1bt5KcnMwff/yBublmJHHlypX06NGDBQsW4ODgoD3X/v37GT58OGvXrmXw4MEF/taC/PXo0SNOnTrFjRs3aNhQE2L/22+/UbVq1QLzTE1NJTVVd/5qftO8LM1lyGQSYuN0X/Bi41UoLPU/aCqsZMQ+ymUfp8JAJsHSQkZMXN6XxWE9rImKVeV5ISkKlmZSZFIJcblCtuMSVcgt9HdEyC2kxCWqctmrMZBJsDCT5hm9rVTeAGcHQzYeKNloRXRSKqrMTKzNda8/G3MTIhML/83hCclc8g9iXs/mBdotP+uFvaUp71UqWYRJfFwsarUahUJ33SW5QklMdJTeNEGBr/jvpnX8uHA5Mpn+W8pDn3ucOnGYJSt+K5GuN8XYwZbUUN2OrrSwSKSGhhjZKkkNCcfY0ZbU0Egdm9TQSIwd7Yp9vri4ONRqNcpcflQqldyO1r8OQWBgIJs3bWDBwiXIZPrrVmhIMHfveNO6TVtmzppLYFAga1atRKVSMXjIsGLrtMqq3wm56mtCIfXbN6+9gUyCpbmMmHjNMVMTCWu/d8bAQIJaDRv2RHLvcfE7DuLjYlCrVcgVumuMyOXWxMZE6k0TEvSC7Zt/5fuf1uZ7TcbERGKVK08rhTWx0frzLIisdjLrt2vPEa9CYZWPHy1leu1zt5NmJhLWzqz42o+Z/PZXJHdL4Ed43VbKJMTG67ZvsfFq5O76H1oVFlLu6rHXlLeUmHg1QWEZrNkVzcvQdEyNJXRubsHMT+2Y/ksYIcWMjtBek3nOmf81KbeUERuf+x6l1rkmq7ka06axBVOXBBdLjz7MTSXIpBLik3QjK+KTMrEy+/eEv5cFX1pZZNUd3eskJj4DpVx/VJbCyoCY+MQ89gYyCVYWMqL1PGO8kcZ31E5WczWmbWMLpix5O9NQLC0Kaof0t4NKKxle+bRD+flyRE9bomIzuPOoZFOdlVaaztmYuFxlHpeBvU3+HbdKuYHeNEr5u3mVLSs6BWUTcTX8Q7Rp04bVq1fr7LO2zn74O3v2LPPmzcPHx4e4uDgyMjJISUkhMTERc3NzJk6cyGeffcaJEydo3749ffv2pXZtzdoEt27d4uzZs3k6eECzjou+DpiHDx/Ss2dPnX3Nmzdn2bJlqFSqfF8AikPW1KOca8fUqFFDJ28nJyfu3SveiGPW785KDxAWFoaHhwe3bt3Cz8+PrVu36uhQq9U8ffpU2ymUm4oVK2o7XwCaNm2KWq3G19cXMzMzgoKCaN5c9+W3efPm2uiehw8fUqdOHW3nS9bxrDyyOmCuXbvGoUOH2LVrF7179y70txbkL19fXwwMDKifY5Tdzc2t0EWL58+fz6xZs3T2/fDDD8CIfNMUN4A3M3eCrEtAT0Y928ppXt+CmSuD3yhUOPc5JRT8IJxHYwG0rGfKy9B0nga+WYhwbkWZFK4T4MBdfyxNjGhTrUK+NpuuPOCYz3PWD2uPscGb1d886z1lZqJnCShUKhVLf57DoKGjKFfeWW9eyUlJ/LLoRz6f+A1WcsUb6Xoj8lwgkrz79dkU50LJTS6nZRbgx0UL5zNk6AjKV8i/jNXqTBQKBeMnfIlMJsOtqjtRkZHs2f1XiTpgsnXp2VcMe33VOyU1k28WB2FiLKVWVRNGfGBNaGRGidc5yH1NZr6uPblRq1T8uugH+g75GKfyFfMc19Wt7zp/gxdoPX4p6PLJ75LMmU9yaibfLArExEhKTXcTRvZ6Mz/qRUKBBZ6nOc9VdfxepuH3Mjui8PHzKH6cYE/HZub8cTCWkpCZ66wSSfHuQ1qNZGJiLGH8EFvW/RVJfAlH7fVrLBuUCV/qrTv5q8x7SPJa47vjbbaTJsYSJgyxZe2uSOLf0no/+VHYbayw+p2TXu2VvN/Aku9+eVXk57XWTRRMGFFO+/cPy57rzb+w9lKfViSSt1bmZUVnmaGMrMVSWogOmH8Ic3Nz3Nzc9B57/vw5Xbt25dNPP2XOnDlYW1tz8eJFRo8erV3vY8yYMXTq1InDhw9z4sQJ5s+fz+LFi5kwYQJqtVobaZGbrA6K3GTqedAs6GaXH1mRM/p49OgRgE5EhqGhbq+xRCJBrS7ezSdnHlm/ISsPtVrNJ598wsSJE/Okq1ix4Ifx3Lpy/pv7/6DrQ33+1JeuSpUq2NjYsHHjRrp164aRUcFTRQryV37lVVg5Tp8+na+++kpnn7GxMUOnBOaxjU9UoVJl5hnFlesZvc0iJi7vqK/cUkaGKpP4XFEnH7SR06eDgtmrgnkeVLKvPcQnqVGpM5Fb6I7gWprnjWTJIjZBjdxCV6OVuZQMVWaesFojQ3ivpgl7z5Y8RFhpZoxMIiEyUfelKSoxJU9UTG4yMzPZfyeAbjUrYZhPx+gfV33YcPkBa4a0w92+5F8Ns7SSI5VKic4V7RIbG5MnAgEgJTkJ/ye+PPV/wvrVv2j1ZmZm0q9HW36YuwgLC0vCQkOYN2u6zm8C6NejLSvXbcHRqXyJNReF1NCIPJEsRnbWqNPTSYuM0diERGDsqPv1KGN76zyRM0XByspKrx9jYmLyRBeB5ktyT548xt/fjzWrVwLZfvyge2fmzJ1Pnbr1sLa2RmZgoNMp6+xckejoKNLT0/O0F4URl1W/c43iyi3yjoJrf0Nc3lFfKwtN/U7IUb8zM9GuDfE8KI3yDob0aicvdseBpZUCqVRGTK7IlLjYaL3XZHJyEgF+D3kW8JjNaxe/1qImMzOT4b2aM23WL9So0xCFwiZPBE1cbHSeqJiiUFA7ma8f41Uoc9tb5G0nMzM1X5ECeBaURgUHI3q3L74f4XVbqcpEbqnbVsot8m8rYxLUKHLZW1nobytzag54lYajbfGnIeV3TVoVcE3GxquQ57F/rTFRTQVHQ+ytDZjyYfYX57Juy9sWVGTSwqBirWOSmJyJSp032sXSTEJc0r/nNass+DIuQaNRmStCQ25poDdaFl5HE+SyV2Q9YyS83egXeDftZAVHI+xtDJn6UV4//rnQhS8XBBZ7bZ34hIJ06s8rOk6FUo+9vue1nu0U9Ouo5IeVgcV6XrvmHYdvQHa0jKGB5ocq5QZE51ggWW6VN3JER2us/nKPeQuLLJclnYL/DUQHzL+AmzdvkpGRweLFi5FKNQ86O3fuzGPn7OzMp59+yqeffsr06dNZv349EyZMoH79+uzevRtXV1cMDIpWpJ6enly8qLveweXLl3F3dy9W9MugQYOYMWMGd+7c0VkHRq1Ws3TpUjw9PfOsD/MuqV+/Pg8ePMi3sys/Xrx4QVBQEOXKaXq/r1y5glQqxd3dHSsrK8qVK8fFixdp2bKlNs3ly5dp3Fjz6VdPT082b96sjVgCuHTpkjaPLGxtbdmzZw+tW7dm4MCB7Ny5s9gvTVl4eHiQkZGBl5cXDRpovjzj5+ens3iwPoyNjYv8ZakMleYT0bWrmXL9bvaNqXY1U27c07+w8eNnqTSoqTvXtU41M/xfpKLK8bz+QVs5fTsqmbs6GP+XJf/UpkoFz4IyqFHFiNuPsqdW1ahihNcj/Z8K9HuZTt1quj6oWcWIZ0HpOhoBGtcwwdBAwuW7JR9xNpTJqO5kzdWnwbStlh0pcvVpMK3d8494ALj1IoyX0fH0qqN/odXNV3347dJ9fh3UlhpOb/YVLUNDQ6q4VeOO102aNGuh3X/H6yaNm+Sd/mRqZs7SXzfq7Dt2eD/3795m8vRZODg6IZVK89j8uWUDycnJfDR2PDa2+j/D/TaJueqNfTfdqZJ2Hd4n9tZ9Ml+vHxV91Rvbds15+stmrY1t+/eJvuJV7PMZGhri5lYVb6/bNGv2vna/t9dt3mvSNI+9mZkZK1et1dl35PBB7t7xZtq332mngVb3rMH5c2dRq9Xae0VgYCDW1tYlakdUKs2Lcm13E27cz1G/3U248UB/ePmT56k08NRdm6FONRMCXqbmqTs5kQCGsuKPiBkYGlLJrRr3va/rfCL6nvd1GjRumcfe1Mycn1Zs1dl36shuHty9xRfT5mHnoGnj3Txqcs/7Ol16Zk8Dvet1DXePwj8TnpsMFQS8SqW2uynX7+X0o6mOX3Py+FkKDWvkbidNi+ZHg5KNLKpU8DQwnVpuJtzMsZh4TTcTbvnonwr55Hka9aubANmRLLWrmvD0VVqBOl2cjHgZWvwFs1QqCAhMe+27bE213U24eV+/xsd6rsna7qYEvNRoDApLZ/Ii3WkeAzsrMDGWsHl/NBExxXsxUqnhZZgaj4oG3PXPTlutogH3Av49L1llwZcZKvB/kUKd6mZcvZM9yFG3uhnX7ugf9HgUkEzj2roR33U9zfF7nlLgNVlS3kU7GRSWztc/6w56DeqixMRYol3Au7hkqMD/ZSp1PMy4djf7+ayOhxnX83le832aTKOaulO96lY3w/+Fri97tVPQr7M1s38Nwv9F8T4/nZyiJjlF9xkvKiad+p4WBLzQtEMGMgm1qpnz+678PyDwyD+JejUs2Xcyu+O8fk1LfPxL/tXHsqhT8L9B2Vip5n+A1NRUQkJCdLasrxRVqVKFjIwMVqxYQUBAAFu2bGHNmjU66b/88kuOHz/O06dPuX37NmfOnNFOpxk3bhxRUVEMHjyY69evExAQwIkTJ/joo4/yXZzx66+/5vTp09pPR2/evJmVK1cyefLkYv2uSZMm0bhxY3r06MGuXbt48eIFN27coG/fvjx8+JANGza8WUh3MZk6dSpXrlxh3LhxeHt78+TJEw4cOMCECRMKTGdiYsLIkSO5c+cOFy5cYOLEiQwYMED74vPNN9+wYMECduzYga+vL9OmTcPb25svvvgCgKFDh2rzuH//PmfPnmXChAkMHz5cZ/0XAHt7e86cOcOjR490FhAuLh4eHrRv356xY8dy/fp1vLy8GDt2LKampm/V5wfPxdKuiRVt37OkvIMho3rbYKs04MQlzSJjQ7ormTA0O7rgxKU47JQGjOxlTXkHQ9q+Z0nbJpYcOJv9AN+zrZzB3axZ9Wc44VEZKCxlKCxlmBiVTPfxK4m0qm9Ki3omONnKGNzJAhu5lLM3NTe8fu0s+Lh39tcHzt5MwlYuY1AnC5xsZbSoZ0LL+qYcu5z3Btminim3H6WSmPxmI5vDGnuw19uffXf8CYiIZdHJW4TEJdGvviZCbPlZL/5z4HKedPvu+FGrnA1u9oo8xzZdecCv5+/wQ7cmlJObE5GQTERCMkklWSn4NT169+f0icOcPnGEVy+es3HdSiLCQ+nY9QMA/rtpHb8s1qw3JZVKcXGtrLPJFQoMDY1wca2MiYkpRkbGeWzMzS0wNTXFxbVyiToOZOZmWNXxwKqOBwBmlSpgVccDE2dNxF+1uV9R5/fsiMDn67Zj6lKO6j9Pw8KjMhVG9cX5w74ELMnuGHq28g9sOzSn8uSPMa9WmcqTP8a2XVOerdhMSejVuy8njh/jxIljvHzxgvXrVhMeHkbXrt0B2PT7BhYvWqj1o6trJZ1NLldgaGSEq2slTEw0D/Jdu3UnPj6OdWtXE/jqFTeuX2PXzj/p1v2DEmkEOPR3LO3es6RNYwvK2xsy8gMltkoDTl7R1O/BXRWMG5wdGXTiSjy2SgNGfKCkvL0hbRpb0LaxJQfPZa+P1KutnFruJthbG1DO3pBuLa1o2dCCC7dLFkXWpedgzp48wLmTBwl8+ZQtvy0jMjyUdl000zi3b17F6qWaaZVSqRRnlyo6m5VciaGREc4uVbS+7NxjIPe8rnNw9x8EvXrGwd1/8ODODTp/MLBkfjwXR7smOfzYy1rTTl5+3U52UzJ+SLYfT17W+HFkT+tsP76n2072aientrsJ9jYaP3ZvZUXLRhb8fbPk0XhHLsbTppE5rRqaUc7OgGHd5dgqZJy+pnlBG9jJis8GZEdpnb6WoPnccDc55ewMaNXQjNYNzTl0IVtDn3aW1K5qjL21DBcnQ8b2U+JSzpDTV0um8/D5ONo2tqB1I3PK22uuNVuFASevvr4muygYNyi7s/nklQRslQYM76GkvL0BrRuZ07axBQfPa67J9Ax4GZKusyUmq0lJzeRlSDolWcP67O1UmtY0pImnIQ5KKX1aGmNtKeXiXc0LXI/mxgzvqBvdWN5OSnk7KcaGEixMNf93tM5+DJdJs20MpCA3l1DeToqtvOT387Lgy/2no+nQXEG7plZUcDRidD87bJWGHLsQA8DwnrZ8OTJ7LcJjF2Kxszbko752VHA0ol1TK9o3k7PvVHbEoYEMKlUwplIFYwxlEmwUBlSqYIyjXckGvN52O5mekfnW/Qhw4Ew07ZvJadfEigoOhnzYxxZba0OOX9C0K8M+sGHi8Oxn0uMXNb78sI8tFRwMadfEinZN5ew7HaO16dVeyZDuNqzcGkZYZPobP68B7DsZwYDu9jStb4VLeWO+Gl2B1DQ1565ln/frMRUY1TfH+oknI6lfw4J+XWyp4GhMvy621K1uwf6T2VGqJsZSKjubUNlZU/ccbA2p7GyCnXXJyr2s6Pw3IpFKS20rC4gImH+IY8eO5ZkOVK1aNR49ekTdunVZsmQJCxYsYPr06bRs2ZL58+czYkT2mhwqlYpx48bx6tUrrKys6Ny5M0uXLgWgXLlyXLp0ialTp9KpUydSU1NxcXGhc+fO2lHS3NSvX5+dO3fy/fffM2fOHJycnJg9ezajRo0q1u8yMTHhzJkzzJ8/n2+//Zbnz59jaWlJmzZtuHr1KjVr5v3857ukdu3anD9/nhkzZtCiRQsyMzOpUqUKAwcW/FDt5uZGnz596Nq1K1FRUXTt2lW7ADLAxIkTiYuL4+uvvyYsLAxPT08OHDignV5lZmbG8ePH+eKLL2jUqBFmZmb07duXJUuW6D2fo6MjZ86coXXr1gwdOpRt27aV6Pf+8ccfjB49mpYtW+Lo6Mj8+fN58OBBvosNl4TLXolYmkfSr5MCpdyAF8FpzFsbQkS0puNIaWWArTK7KQmLymDe2hBG9bahcws5UbEZ/L4ngmt3skdgOr1vhaGBhG8+0u2c2nk0mp3H9C9SWhDXH6RiYRZPz1YWyC2kBIZlsGRrDJGxmiEchaUUG3l2ZFdEjJolW6MZ3NmSdo3MiIlXs/VoPDcf6o7sONjIqOZixM9/FF9Tbjp5uhKbnMa6i/eISEjGzU7BioGttV81ikhIISROd5QqPiWN049e8k2Hhnrz3Hn7CekqNd/suaCz/5P3a/Fpy9p60xTG+y3bEh8Xx84/NxMdFUVFl0rMmLUAe3vNA3B0VCQR4aElyvttIW9Qk6ant2j/9lz0LQAv/9jD3dHTMXayw9Q5u71NfvaKGz3G4rl4Oi6fDSU1KIwHk34kZO8JrU30FS+8hn5FtVlfUm3WRJL8X+I1ZBIx1++WSGPLVq2Jj49j+7atREVF4eLqwsxZc7F/3SEbHR1FeHjxvlhmZ2fP7Lnz+W3dGsaP+wQbG1s+6Nmbvv3y/+JdYVzxTsLSLIq+HRQorWS8DE5j/m+hRERr3gCUVgbYKrLrd3hUBvN/C2VkT2s6NbciOjaD3/dFcS1H5IexkYQxfWywUchIS88kMCydFdvCueJdshHApi06kBAfy94dG4iJiqSCS2W++X4JdvaaMo6JjiAyvHifXnevXpvx38xh13/XsmvrOhwcyzPhm7m46flkdVG47J2IhblU005aGfAyOI1560JztJOyPO3k/PWhjOxlTaf3NX7cuDeSazkiDU2MpIzpZ4uNPIcf/xvOZW/9o9lF4erdZCzMYujTzgqFpYxXIeks3BRBRIymvBVWMmxylne0ioW/RzC8u4IOTS2IjlOx+WCMTkSFmamU0X2UKCxlJKWoeR6Uzpy14fi/KllH8JU7SVia57gmQ9L4aUOY9ppUWMmwUepekz/9FsbID5R0am5JdJyK3/dH6UQjvW1uP87A3CSFzk2MsTKTEBypZvX+JKLjNR31cnMJSivd569pQ7OjNio6yGjkYUhknJqZGzUdVXILiY5N+4bGtG9ozJNXGSz/q2S/pSz48uKteCzNZQzsZou1lYznwWnM/vUV4a8/y6yUG2Cb48U0LDKd2b++YnQ/e7q2UhAVm8FvO0O54pXd4WctN2DZDFft3707WNO7gzX3Hifxn6Uvi63xXbST74JLtxOwNA9nQBdrlFYyXgSnMXdVIOE5ntfsrHO0Q5EZzF0dxId9benSQk5UrIoNf4Vz1Tvbl11ayDE0lDJ1jO47zPYjkew4on9x/sL462gExkZSxg0rh4W5DN+AJP6z+CnJKdlhN3bWhuRcoeChfxI/rXnBiD4ODO/tQHBYGj+teYFvQHZbVNXVlAVTsz9SMnawJuLx5MVolm589T+rU1D2kGSWZOEPgUDwr+TVq1c4Oztz6tQp2rVrV6y0/b4IeEeq3g5//VKZUTNL98W/MDbNdCBp8+zSllEoZiO/54Hfm3/B4l1Sw82Jw4bVSltGgXRL9+WJ//PSllEoVau4MODrZ6Uto0B2Lnblpu+bd3S+SxpWU9J/0tPSllEou5ZWYsi0f/dD/LafKjBw8r+77uxY5MKEZSX78t0/yYovrcqEL3t+5lvaMgpk/+pq//p2EjRtZe/xT0pbRoHsXVmVrh8V7wMb/zRHNtb612sEjc6ySNLGH0rt3GYfzSrcqJQRETACQRnmzJkzJCQkUKtWLYKDg5kyZQqurq46a9UIBAKBQCAQCAQCgaD0ER0wAkEZJj09nW+//ZaAgAAsLS1p1qwZW7duLfHCvgKBQCAQCAQCgUAgeDeIDhiBoAzTqVMnOnXqVNoyBAKBQCAQCAQCgQDKyGK4pYXwjkAgEAgEAoFAIBAIBALBO0ZEwAgEAoFAIBAIBAKBQCB4cyQl/0z5/wdEBIxAIBAIBAKBQCAQCAQCwTtGRMAIBAKBQCAQCAQCgUAgeGMkYg2YAhHeEQgEAoFAIBAIBAKBQCB4x4gOGIFAIBAIBAKBQCAQCASCd4yYgiQQCAQCgUAgEAgEAoHgzZGIGI+CEN4RCAQCgUAgEAgEAoFAIHjHiAgYgUAgEAgEAoFAIBAIBG+OVHyGuiAkmZmZmaUtQiAQCAQCgUAgEAgEAkHZJnnb/FI7t+mQ6aV27qIiImAEAgEA3cbcL20JBXL4t5r0+ORhacsokINrq3PMO620ZRRK57pGPPQPLG0ZBVK9Snme+D8vbRkFUrWKC4cNq5W2jELplu5L9499SltGgRxa71kmNP7b2yDQtEP/dp0H11an/eCbpS2jQE792ZCuH90rbRmFcmRjrTJRd9oMuFbaMgrk7M73/vV+BI0vxfPam1MW2knQ6BT87yE6YAQCgUAgEAgEAoFAIBC8MRKxCG+BCO8IBAKBQCAQCAQCgUAgELxjRASMQCAQCAQCgUAgEAgEgjdHLMJbICICRiAQCAQCgUAgEAgEAoHgHSMiYAQCgUAgEAgEAoFAIBC8OWINmAIR3hEIBAKBQCAQCAQCgUAgeMeIDhiBQCAQCAQCgUAgEAgEgneMmIIkEAgEAoFAIBAIBAKB4M2RiEV4C0JEwAgEAoFAIBAIBAKBQCAQvGNEB4xAAEgkEvbt21faMnB1dWXZsmWlLUMgEAgEAoFAIBAIio9UWnpbGUBMQRL844SEhDB//nwOHz7Mq1evkMvlVK1alWHDhjFixAjMzMyKlM+mTZv48ssviYmJebeC3wH5ab9x4wbm5ualI6oQhnxgT+eWSizMZPg+TWb11iBeBKUWmKZZfSuG97LHyc6I4PA0/tgbyhWveB2bbq2t6dPJFmuFAS+CUlm3PZgHT5KKra9rKyV9OlqjlGvyWb8zFB+/5Hzta1Y1Y3R/eyqWMyYqJoPdJyI59neMrv56lgz9wA4nO0OCw9PZsj+cq97x+jMsAheOb+fMwU3ExYTjWKEKfUZOpUr1Bnpt/R/d5uDWpYQGPSU9NQWlnRPN2venTbcReu1vXzrK5uVTqNWwDWO+WV5ijQBHDu1n3+4dREdF4uziyuix46hRs3ah6R4+uM+MqV9S0bUSy1au12tz4fwZFi+YS+Mmzfn2+zkl1nj40AH27N5FVFQUFV1c+HjsZ9SsWavQdD4PHjBt6te4uLqyYuUanWMJCQls2fw7ly9fIiEhHgdHR0aP+YRGjRoXW5/1+w2p/PVo5PVrYlLOnpt9Pyf0wOmC07RohOeiaVh4ViU1KAz/xb/xYt12HRvH3h1xn/kFZlUqkuT/At/vlxK6/1Sx9eVmSA87OrVUYGEm4/HTZFZvCylC/bZkWE/77PqxLyxP/e7aWkmfTjZYZ9XLHaElq9/FzKemuxljBjhk1+/jkRw9H11s/cXSWAbaoLKkc0TfcnRtZ4uluQGP/BJZ/vtznr9KKTBNi8YKRvUvj5ODMcGhqWzcEcilm9lae7S3o0cHOxxsjQF4/iqZLXuCuHEnrsQ6h/a0p3Mra829MSCJVf8t/N7YvIEVw3s7aO+Nm/eEcuV2toaa7mb07WyHm6spNgpD5qx4zhWvkmksC3UHYGT/8nRvZ4+lhQEPnyTwy4ZnPHuV/3UJ0PI9JR8OdKacgzFBoals+PMlF29E67Ud0qscHw9x5q/Dwfy6+UWx9ZUVP8L/v+e1ik5GDP3AjioVTXCwNWL9zhAOnNZ/HfwvaRSUXcpGN5Hgf4aAgADq1avHiRMnmDdvHl5eXpw6dYpJkyZx8OBBTp168xeJsoydnV2RO6D+Sfp1tqV3BxvWbAtm0lx/omPTmfuVK6bG+TchHpVNmfaJM2euxDB+lh9nrsQw7ZOKVKtkqrVp0ciKjwc5suNIOBNn+3P/cSKzvnDBztqwWPreb2jJmAEO7DwSyRdzn/LAL5mZEypip9Tfx+xgY8gPE5x54JfMF3OfsutoJGMHOtKsnqXWplplU6Z8XJ6z12KZOOcpZ6/FMnVsedxdTYqlLYvbl4+xd/MCOvb+mG9+2kUVjwasmf8ZURHBeu2NjU1p0XkwE2duYvqS/XTsM5YjO1Zy+dSuPLZR4UHs++8iqnjUL5G2nFw8f5aN636l/8ChLFmxDs8atZjz/TTCw0ILTJeYmMCyxfOpXTd/DWGhIWz6bQ2eNQrvKCmIv8+fY/26NQwYOITlK1ZTo0YtZn4/g7CwsEI0JrJk8ULq1K2X51h6ejrfzZhGaFgo07/9jrXrNjJh4iRsbGxKpFFmbkbcXV8efDG7SPamrhVodHAdURdvcbFRL/wWrKHG0hk49u6otVE0qUu9bUsJ3LqfCw16Erh1P/X/XIaiceGdYwXRt7MNvTpYs2ZbCF/9+JTo2AzmTKpYaP2eOrYCZ6/GMGF2AGevxjB1bAXcc9bvhlZ8PNCRnYcjmDg7gAdPkpg5sSJ21sUb+yluPg62hsycWJEHT5KYODuAnUciGDvIkWb1s+t3UfQXh7LQBpUlnQN7ONK3qwMrf3/BuBk+RMWks+Bbd0xN8r8mq1c15z8Tq3DqYiSfTPPh1MVIvvuiMh5Vsgc1wqPS+O3PQD6f4cPnM3zwehDP7MluuFQomdZ+XWzp3dGW1f8N4ss5fkTHZvDj5EoF6vSoYsa0Tyty5nIM437w48zlGKZ/WpFqlbOvPRNjKU9fprD6v0El0pVFWag7AIN6OtG/mxPLNz7j0+n3iYpJ5+f/eBToR8+qFnz/ZVVO/h3BmG/ucfLvCH6Y5EZ1t7yDWNWqmNO9vR3+zxJLpK+s+BH+fz6vGRtJCYlIZ/PecKJiM4qlp6xqFJRtRAeM4B/l888/x8DAgJs3bzJgwACqV69OrVq16Nu3L4cPH6ZHjx5a2yVLllCrVi3Mzc1xdnbm888/JyEhAYBz587x4YcfEhsbi0QiQSKRMHPmTADS0tKYMmUK5cuXx9zcnPfee49z584VS+e9e/do27Ytpqam2NjYMHbsWO25s9i4cSM1atTA2NgYJycnxo8f/8bac09BevHiBT179sTCwgIrKysGDBhAaGj2i/DMmTOpW7cuW7ZswdXVFblczqBBg4iPf/MRlJz0bG/DjsPhXL4dx/OgVJZsDMTYSEqr9+T5p+lgi5dPAruORvAqJI1dRyO48yiBnu2zX2h7d7DlxMVoTlyI5mVwKut3hBARnU7X1tbF0tervQ0nL8Vw4lIMr0LS+G1nKBHR6XRppdRr37mVgvCodH7bGcqrkDROXIrh1KUYenfMPm/PdtZ4P0zkr2ORvApN469jkdx5lMgH7YqnLYtzh/+gSds+NG3XF8cKlekzaipKG0cundih175Cpeo0aN4VJ2c3bOzL06hFDzxqN8P/0W0dO7VaxR8rptGl/zhsHCqUSFtO9u/dRfuOXejQuRvOFV0Y88l4bO3sOXb4QIHpVq9YSsvW7ajm4an3uEqlYunP8xg0bBQOTuXeSOO+vbvp0LEznTp3wbliRcZ+8hm2dnYcOXywwHQrVyyjVes2eHhUz3Ps5InjxMfH85/vZuJZowb2Dg7UqFGTypWrlEhj+PG/efzDMkL2nSySvcvYQaS8CMbn63kkPArg5ca/eLlpD5W/+khrU2nCSCJOXcZ/4ToSfQPwX7iOiDNXcZ0wskQas+jZzpodRyK44hWvqd+/B72u31b5pvmgvTVePonsOhr5un5r6kfP9tn1o1cHG05ejObERU29XL9DUy+7tipm/S5mPl1aKQmPSmf9jtf1+2IMpy5F06djdttTFP3F0lgG2qCypLNPF3u27Qvm4o0Ynr1KYeHqp5gYSWnbPP88+3Zx4Na9OP7cH8LLoBT+3B+C14N4+nS119pcvR3Lde9YAkNSCQxJ5fedgSSnqKnuZlEinb062LL9UJjm3hiYyuINrzA2ktL6PUUBaWzw8klg55FwXoWksvNION4PE+jZwVZrc/NeAn/sDeXy7ZJFveQ817+97gD06+rIf/cGcuF6NM9eJvPTr/6YGEtp/75t/mm6OXLzbizb9gXxMiiFbfuCuH0/jr7dHHXsTIylzJhQhUVrnxKfqCqRvrLiR/j/+bz25HkKv+8O48LNONLT1cXSU1Y1/uuRSEtvKwOUDZWC/wkiIyM5ceIE48aNy3eajSTHqtlSqZTly5dz//59Nm/ezJkzZ5gyZQoAzZo1Y9myZVhZWREcHExwcDCTJ08G4MMPP+TSpUts376du3fv0r9/fzp37syTJ0+KpDMpKYnOnTujVCq5Exl5ugABAABJREFUceMGu3bt4tSpUzodLKtXr2bcuHGMHTuWe/fuceDAAdzc3N5Ye04yMzPp1asXUVFRnD9/npMnT+Lv78/AgQN17Pz9/dm3bx+HDh3i0KFDnD9/np9++qlIv7UoONoaYq0w5PaD7A6ojIxM7vsmUt0t/2gdj8qmePnodlrdfpCgTWMgk+DmYorXAz02VYoeBWQgA7eKJnj56I5sefkkUr2K/pEkj8pmeexv+yTi5mKKTJpTf648HyQWS1sWGRnpvAzwoVrtZjr7q9VpxtPH3kXK49XThzx97I1b9YY6+4/9tQYLKyVN2/Yptq7cpKen4+/3mLr1dc9Rt15DHj18kG+60yeOEhIcxKCh+XcE7PxzC1ZyOR06dX1jjX5+T6hXXzfSpl69Bjx66JNvupMnjhMSHMyQocP1Hr927Qoe1auzetUKhg0ZwOeffczOHX+iUpXsgb24KJrUJfzUJZ194ScuIG9QE4mBZtRN2aQuEacu6thEnLyAsmneiJ6i4vC6fns9yL7WMzIyuf84qcBrXVOH9NVdTZ0zkIGbi556+SABj3zqpT5Kko9HZX3tyuv6LSua/uJQFtqgsqTTyd4IG6URt+7FavelZ2Ry92E8Ndzz7yjxrGrOrbu6HRY378RRo6r+NFIJtG6qxMRYis+TBL02BeFop//eeK+we2MVM27f1x0kuX0/Hs8S+is/ykLdAXCyN8ZGacTNO7rlfccnnhrVCihvdwtu3o3V2XfjTiw13C119n05xpWrXjHcvleyzqyy4kf4//u89jYpCxoFZR+xBozgH8PPz4/MzEyqVaums9/W1paUFM287nHjxrFgwQIAvvzyS61NpUqVmDNnDp999hmrVq3CyMgIuVyORCLB0TF7tMPf358///yTV69eUa6cZpR98uTJHDt2jN9//5158+YVqnPr1q0kJyfzxx9/aDuKVq5cSY8ePViwYAEODg7MnTuXr7/+mi+++EKbrlGjRtr/l0R7bk6dOsXdu3d5+vQpzs7OAGzZsoUaNWpw48YN7fnUajWbNm3C0lLz0DF8+HBOnz7Njz/+qDff1NRUUlN15wIbGxvnq0Mp1zQTMXG6IZMxcRnY2eQfeqqUGxCdK8wyOjYDpZUmPysLGTKZRE++Ku05i4KVhYH+fOIzUFjp7+hTWsmIic/7ewxkEqwsDIiOy0BhZaD3NyutZEXWlkViXDRqtQorue50Fku5DfExkQWm/f6zdiTERaNWqejS/zOatuurPRbwyIurZ/cwZcFfxdakj/i4WNRqNQqF7iiPXKkkOjpKb5qgwFf8sek35i1chkym3zcPH9zn1PEjLM1nXZjiEBcXh1qtRplLo1Kp5Ha0/vnUgYGBbN60gQULl+SrMTQkmLt3vGndpi0zZ80lMCiQNatWolKpGDxk2BvrLgxjB1tSQyN09qWFRSI1NMTIVklqSDjGjrakhupeL6mhkRg72pX4vAXVb/tC6rf++pFVvzX1MjqXTXS8ivolqN/FyUcpNyA6XrfjLDouAwOD1/U7NqNQ/cWhLLRBZUmnUq657vTdPxxsjfJPpzAkOjY9V5p0lArd67iSsynLZ3tgZCglOUXFzCX+vAgseG0Zveez0uT71upOMepFUSgLdQfAWpFV3nnLrqDytlYYEh2TK01MujY/gDbNrKlayZxPp98vkTYoO37MOm9WPrnz/V9+XnublAWNZQKp+Ax1QYgOGME/jiTXt+GvX7+OWq1m6NChOh0DZ8+eZd68efj4+BAXF0dGRgYpKSkkJibmG0Fz+/ZtMjMzcXd319mfmppa5LUcHj58SJ06dXTO0bx5c9RqNb6+vkgkEoKCgmjXrl2+eZREuz4dzs7O2s4XAE9PTxQKBQ8fPtR2wLi6umo7XwCcnJwKXAtj/vz5zJo1S2ffDz/8APQDoPV7csYPz54iMnP5cwAyc2dUgrZVIsmbT2amHps8Jyuc3EkKk6fvvJp8sg/o+80lkJa/qMzMQoV+MWszqSlJPHtyl4PblmHrWJEGzbuSkpzIlpXTGTR2JhZW+sNiS64zl6jMzDz1FjTTipYs/JHBQ0dSvoJznuMAyUlJLF00j88nfo2VPP8Q6DfVmJmZmUd2lsZFC+czZOgIylfIf4qWWp2JQqFg/IQvkclkuFV1Jyoykj27//pHOmCAAi7KzIJtilFhWr9nxbhh2fV71grNYpT66k9h2eZJo69+5JZbhHyLcrJC88l1UKLdnX/91qu/GJSJNkhPnqWts21zayaNcdH+PWPhk3zPW1ieeu9TuXa+DErhk2k+WJjLaNFYyZTPXPlqtm+hnTCtmyiYMCK77vyw7Ll+nXr2Fa5T8sblWtSTlXbdaf++DV+NraT9e/p8X32nLdI1pE9H1k47GyPGj3Jlyo+PSE9/C979l/kRxPNa5rurNWVCo6DsIjpgBP8Ybm5uSCQSHj16pLO/cuXKAJiaZof2PX/+nK5du/Lpp58yZ84crK2tuXjxIqNHjyY9XXfEIydqtRqZTMatW7fyjHRbWBRtjndmPi+boOk8yqlTHyXVXlQdufcbGuqOakgkEtTq/OeXTp8+na+++kpnn7GxMX3GaR56r3nH4/vUPzt/A825lFa6IyQKy4J79bNGeHKSc6Q0LkGFSpWZx0ZuKcsz8lAQcQkZmnyscueTd3RJqy1Opdc+Q5VJfIJm1ErfSJTC0oCYuOJPSTG3UiKVyojLFe0SHxeFpbzgjkEbe02nQbmK7sTHRHJs12oaNO9KROhLosIDWb9wgtY2M1NT7pMG12XG0oPYOurvFMkPSys5UqmUmFzRLrExMXmiYgCSk5Pxe+JLgP8T1q1e/lpDJpmZmfTp3p6ZcxdiYWlFWGgIP86akUOn5oGkT/f2/Lp+M05O5Yus0crKCqlUmiciJ6YAjU+ePMbf3481q1fqaPyge2fmzJ1Pnbr1sLa2RmZgoNNuODtXJDo6ivT09Dz17G2TGhqRJ5LFyM4adXo6aZExGpuQCIwddddEMLa3zhM5UxDXvBPwDchRvw018dG567dcT1RDTnKOjmrTWOas3xl667eipPW7GPno06awMiAjI1O7BkRh+otDWWiD/s06r9yK4ZFfdvi+oaHmnmOtMCAqR4SDwsogT5SEjtaYdKzluvVUaZU3KiZDlUlQqGaw53FAEtUqm9OnswPLNjwvUOc17zh8A7K/+KK9N8rfvO4oLGXEvOWFOf+tdefSzWidKV9Gr9sga4WhTnnrK7ucROWKdgFQyA2Jep3GvbI51gpD1v5UU3tcJpNQu7olvTs70nHIddRFeDf+t/oRxPNaVhv0NikLGssEZWQtltJCeEfwj2FjY0OHDh1YuXIliYkFr0R/8+ZNMjIyWLx4MU2aNMHd3Z2gIN2vARgZGeVZn6FevXqoVCrCwsJwc3PT2Qqa7pMTT09PvL29dTReunQJqVSKu7s7lpaWuLq6cvq0/k/KllS7Ph0vXrzg5cuX2n0+Pj7ExsZSvXreRUSLirGxMVZWVjpbzilIyalqgsPStNuLoFSiYtKpVyO7A8tAJqFmNXMe+uX/+cFHAcnU9dTt9KrnaaFNk6HKxO95MvX02fgX/bOGGSrwe5FCveq6kUV1q5vz0F//JwMfBSRRN5d9PU9z/J4no1Ln0K/HpjjasjAwMMS5sie+d6/o7Pe9e4VK7nWLkVMmGRlpADiUq8TUn/fwzYJd2q1mg9a41WjMNwt2obAt2vWeE0NDQ6q4uePtdUtnv7fXLTyq18hjb2Zmxi+rNrB05Xrt1qlrD8pXcGbpyvW4e1SngnPFPDaN3mtGzdp1WbpyPba29nnyLUyjm1tVvL10FyP29rqNR/W8CwCbmZmxctValq9crd26dO1GhQoVWL5yNdU8PACo7lmD4KAgnc7LwMBArK2t33nnC0DMVW9s2+muEWTX4X1ib90nM0Pz0Bd91Rvbds11bGzbv0/0Fa8inyc5VU1weLp209Zvz+xr3UCm+YRqQdf6o4AknTSQVXc1dS5DBX7PU/LUobqeFjzKp17qoyT56G97XtdvVdH0F4ey0Ab9m3Ump6gJCk3Vbs9fpRAZnUb9WtkRcwavX5wfPM5/rRafJ4nUr6W7cHSD2lY8KGx9F0l2p09hOvXdG+t76t4baxV2b/RPol4N3XVK6te0xKeE5Zof/9a6k7u8n71KJjI6jYa1dcu7jqclD3wLKO/HCTTIcY0ANKwt58Fjzfo6t+/F8uHXdxkz5Z52e+SXwKmLkYyZcq9InS/w7/UjiOc11TtYy7YsaBSUfUQHjOAfZdWqVWRkZNCwYUN27NjBw4cP8fX15b///S+PHj3Sjj5XqVKFjIwMVqxYQUBAAFu2bGHNmjU6ebm6upKQkMDp06eJiIggKSkJd3d3hg4dyogRI9izZw9Pnz7lxo0bLFiwgCNHjhRJ49ChQzExMWHkyJHcv3+fs2fPMmHCBIYPH46DgwOg+frQ4sWLWb58OU+ePOH27dusWLHijbTnpn379tSuXZuhQ4dy+/Ztrl+/zogRI2jVqhUNGzbMY/8u2X8qkgFd7WhazxKXcsZM+qg8qWlqzl/LXgDvq4/KM7KPg/bvA6ciqO9pQb/OtlRwNKJfZ1vqVrdg/6nsKJC9JyPo2EJJh+YKnJ2M+XigI3bWhhw5p3+9kfzYdyqSDu8raN9MTgVHI8b0t8fO2pCjf2vWBBnRy45Jo5y09sfOx2BvY8jo/vZUcDSifTM5HZor2Hsi+7wHTkdRz9Ocvp1sqOBgRN9ONtSpbs6B08XTlkXrbiO4emY3V8/uJeRVAHs2LyA6IpjmHQYAcHDbMv678lut/YXjf3L/1jnCgp8TFvycq2f3cubgZhq+3w0AQyNjylWsqrOZmltiYmJGuYpVMTAoWadBz979OXX8CKdOHOXli+dsWPcrEeGhdOqq+ULZlt/Xs2zRfECz2LSLayWdTS5XYGhkhItrJUxMTDF6/f+cm7mFBaamZri4VipR50av3n05cfwYJ04c4+WLF6xft5rw8DC6du0OwKbfN7B40UKtRlfXSjpblkbX1xoBunbrTnx8HOvW/h97Zx0fxfH//+dJXC7uIR5IcHd3tyItLaWl0JY6VWpAjZYWqFJKWwqlRYq7u2vQBEuAuOficvb74yDhkosd5ZPm+5vn43GPR7L7ntnXzu7OzL7nPbM/kxAfz5nTp1jzz0oGDxlmUjnKbKyxb94I++Z6B491gA/2zRth6au/Dxt+Np3mf3xVan938Sqs/LwI+/o9bBsF4jNpNL7PjCZm/pJSmzs//olL384EvjUFm4aBBL41BZfeHbnzwzKTNN5n075MxgxyKX2+X3/m/vNdtmjl9Ge9eHpkmbNM/3zYMnqAMz4e5owe4EyLMBs27S17PjbuySh9vn08zHlurLv++T5kfK2eyqgun6dHujH92bIw/B2HsnBzNuO5se74eJjTt7MDfbs4sn53Wd1TE/210lgP6qD6pHP9jlSeGO5B5zYO+PtY8s6L/hSVaNl/rCzPd1/0Z/J47wfSpNCmmT3jhnrg62XJuKEetGpix/rtZVNynx3nTZOGtri7mBPga8UzY71pHm7HvmMmXvc96Ywd4kbHVvb4eVswfbIPxSVaDp5Sltq8+ZwPk0aXtY2b9mTQqrEtjw10wcfDgscG3msb95RFsllaSAn0tSTQV/95bHcXMwJ9LWv9yd/68OwArN2ezISRXnRp64i/rxXvvRRIUbGWvUfLymTGS4E893hZVOe67cm0ba5g/HBPfL0sGT/ck9ZN7Vm3LRnQO3ruxBUa/IqKteTkqrgTVztHa30pR/j/s78ml0GAjwUBPhbI5RKcHcwI8LHA09W0flB90Cio34gpSIL/KUFBQURERPDFF18wY8YM4uPjsbCwIDw8nLfeeotp06YB0KJFC+bPn89XX33FjBkz6NatG3PmzGHixImleXXq1IkXXniBcePGkZGRwcyZM5k1axZ//PFH6SK5CQkJODs707FjRwYNqtnXV6ytrdm1axevvfYabdu2xdramtGjRzN//vxSm6effpqioiIWLFjAW2+9hYuLC4899thDa38QiUTCxo0beeWVV+jWrRtSqZQBAwaUOnr+l6zdmY65uZRpE7ywtZFxPaaQj+bfobC4zLXv6mxuMAc2KrqQrxbH8dQId54c4UZyWglfLY7j+u2yjs+RMznY2yTz+FA3nBRy7iYWM/O7u6Rl1nyqFsDRs7nY26QwfrBLaT6zf4wlLVMfOeCkkBt0XFMyVMz+IY7nxrozuLsjmdlqFq9O5nhE2ZcprsUUMve3BJ4a7sqEYa4kp5Uw99cEbtyp/WKNAK06DSA/V8mudYvIzkrD0zeY599biJOrvtOWo0wjKyOp1F6n1bJlxXdkpiUglcpwcfdl6BOv06nPGJOOX1O6dO9JTm4Oq1f8SVZmJg38/flo9hzc3PURNZlZmaSlVb7G0P+Cbt17kJubw6oVf5OZmYmfvx+zZn+G2z0HaZYJGl1d3fjkszn8tngRL7/0PM7OLgwbPpLRj401SaOidRM67lte+n/4N3rnWtyf67k0eQYWnq5Y+ZZ14ArvxHNm6FTC583A78UJFCemcvWNz0nesLvUJutEBBETptNw9us0nP0qBdFxRDzxBsrTl0zSeJ91OzOwMJPy4hMepc/3xwtiDZ9vJzODEeNr0YXMXRzPkyPceHL4/ec7nhsPPt9nc7CzlTF+SNlzOev72Fo/39Xl4+hQ7vlOVzHr+1j9893DkYxsNYtXJXP8/APPdw3014b6UAfVJ52rtyRjYS7l1WcbYGcjJyo6n/e+uEFhUdk96eZiYXBPRt7M57PvY3hmrBeTxnqRmFLMZ9/HcC26LJrVUSHnvZcCcHIwI79Aw+3YQmZ8edPkL+Ss3ZGOhbmUl5683zYW8OG82wY6XZ3MeHBWcFR0AV8uimXiKHeeGulOUmoJXy6K5XpM2b0X4m/FV+8Glv4/9XF9O7HnaBYLlsTXWF99eHYAVm1KwsJcyuvP+euv96083v78WpXX++qNPD759haTx/vw7DgfEpOL+eTbW0TdqjrC2hTqSznC/5/9NScHM77/qOx5GdXPmVH9nLl8PZ/358fWSl990fifp5KlHAR6JDqdScvhCQSC/2MMfs70rwT8L9j2WxOGPh9V1zKqZMsvYey8UFLXMqplQAtzoqIT6lpGlYQFeXMzuuo1GeqakCA/tpk1rN6wjhmsus6QKZV/ovu/wNZfw+uFxv96HQT6eui/rnPLL2H0efxsXcuokr0r2zDo2ct1LaNati9pWi+enZ5jT9W1jCo58E/7/3w5gr4sRX/t4akP9SToddZHijb/VGfHthz2Up0du6aICBiBQCAQCAQCgUAgEAgED49UrHJSFaJ0BAKBQCAQCAQCgUAgEAgeMcIBIxAIBAKBQCAQCAQCgUDwiBFTkAQCgUAgEAgEAoFAIBA8PGIR3ioRETACgUAgEAgEAoFAIBAIBI8YEQEjEAgEAoFAIBAIBAKB4OGRiBiPqhClIxAIBAKBQCAQCAQCgUDwiBEOGIFAIBAIBAKBQCAQCASCR4yYgiQQCAQCgUAgEAgEAoHg4ZGKGI+qEKUjEAgEAoFAIBAIBAKBQPCIEREwAoFAIBAIBAKBQCAQCB4e8RnqKpHodDpdXYsQCAQCgUAgEAgEAoFAUL8p2vV7nR3bsv/kOjt2TRERMAKBAIBRr96qawlVsv77YCZ+lFTXMqrkz089eWdRYV3LqJa5L1gx9PmoupZRJVt+CWPsm3fqWkaV/DPPnyFTIutaRrVs/TWcbWYN61pGlQxWXefnnXWtompeHAC5Z//jIgG7NgMoPLiyrmVUiVWPx+tFff5fr4NAXw/913X+M8+f57/MrGsZVfLLe07/+XIEfVkWbVtU1zKqxHLwC/R5/Gxdy6iSvSvb0Hv86bqWUS37VrWrawmmIT5DXSWidAQCgUAgEAgEAoFAIBAIHjHCASMQCAQCgUAgEAgEAoFA8IgRU5AEAoFAIBAIBAKBQCAQPDxiEd4qEREwAoFAIBAIBAKBQCAQCASPGBEBIxAIBAKBQCAQCAQCgeDhkYoYj6oQpSMQCAQCgUAgEAgEAoFA8IgRDhiBQCAQCAQCgUAgEAgEgkeMmIIkEAgEAoFAIBAIBAKB4KHRiUV4q0REwAgEAoFAIBAIBAKBQCAQPGKEA0ZQLzl48CASiQSlUvk/P/akSZMYMWJErdIsXboUBweHau169OjB66+/XuN879y5g0Qi4cKFC7XSIxAIBAKBQCAQCAT/OhJp3f3qAWIKkuChmTRpEsuWLauw/ebNmwQHB9eBovrL+vXrMTMzq2sZFRjQxZ7hvR1xtJcRl1zCknXpRMUUVWofHmzJMyNd8PUwJzNbw8Z9Wew+llO6v09He3q0s6OBpzkA0XHF/L0lg1uxxSZr7N3OmkFdbFDYykhIVfP3jmxu3FVVat/Q35wnBtjj7SZHmath29F8DpwpMLCxtpTwWB872oRbYm0pJV2pYcWOHC7dNE1nx8YyujeXY2ctISVLx+ZjKu4ka43a2lnDkI5m+LhKcVZIOHZZw5bjhufTJEBKr5ZmOCskyKSQnq3j8EU1529qTNJ3n0HdHRnVzwlHhZzYxGJ+/SeFyFuFldo3CbFm8hg3GnhZkKlUs253BjsPKw1sOrW0Y8IwVzxdzUhKU7F8UxonL+SarLFfJzuG9bDHwV5OfHIJSzdlcu125dclLNCCp4c54eNhTlaOms0Hcthzouz47ZpaM7K3Ag8XM2RSSE5Xs+VQNkfO5Zus8T5PDHWlfzcHbK1l3LhdyM8rkolNrPoe6tTKjieHu5WV18ZUTkQYltegHo6M6u+M0/3rtDqFqzcLKsmxIk5d2hD45mQUrZpg6eXG2dHTSNm8r+o0XdsS/s172IaHUJyYSvS834hdvMrAxmNkP0JnvYZ1UAMKomO5/vECUjbtrbEuY1w88jfn9v9Ofk4azh4hdB/1Pt5BbYza3rq4m0tHV5KWEIVGXYKTZwgdBryMf1hXA5vTexahTI9Fq1Hj4OpH657PENZ2hMka1+w5wvJt+0lX5hDo7cGbT42iZaMgo7ZnI2/ywuc/Vti+9uv38fdyB2DqZz9wPupWBZvOLcL57u3nTda5+uBplu0+Tnp2LkFebrw9dgCtQvwqtS9Rqfll2yG2n7pEek4e7g72PDeoKyM6twJg3ZFzbD15kVuJqQCEN/Dk5RG9aRrgY7LG+lCf15c6qD7o7N7Sgn7tLVHYSklM1/DP3gJuxasrtQ/xlTOmtzVeLjKUeVp2nyzi8IWyc5JKYWBHSzo2scDBTkpypoYNBwq5ervye6g66kM5Aqw+dpGlB86SnpNPkIcz74zoTqvAyp/FErWaX3afYtu5KNJzCnB3sOW5Pu0Y2b5JqU1OYRE/bj/Ovks3ySksxttJwZvDutE1PMBknRNHezGotwt2NnKu3crn+z/ucje+8n4lQNd2Dkwa442nuwVJKcUsWZ3AsbPK0v1D+7gytK8r7i4WANyNL2T5+kTOXMypJMca6HzMm8G9XLGzlRN1K4/vl9zlbnzl/SG9TkeeGetTqvP31fEcO5NVprOvG8P6uOHu+qDOBE5fyDZZp6B+IRwwgn+FAQMG8Mcffxhsc3V1rSM19Q+VSoWZmRlOTk51LaUCnVva8swoV35dk0ZUTCH9Oyv48EUvXvsilvSsih0kNyc5Hz7vxd4TOXz7ZwphgVZMGeNKTp6Gkxf1HYsmIVYcPZfLtdtFqFQ6RvRxZOY0L16bE0tmdu2dB+2bWDJhoD3LtmZzM1ZFzzbWvPWUEzN+SCMju6KDw8VBxltPOXLwbCG/rFMS0sCMp4coyM3XcjZS3wGQyeCdp53Iydfyw6osMrO1OCukFJboaq0PoHmQjKGdzNh4RO90aR8uZ/Jgc+atLkaZVzFPuUxCfhHsO6+mazPjVXVBMew7ryJNqUOthTA/KWN6mpFXqONGvHHHTnV0aWPHc2PdWbQimcjoAgZ0c2TWKw14aVY0aUaut7uzGTNf8WXXUSXzliQSHmTNC094kJOr4fg9h0HDQCvemeLNX5vTOBmRS4eWdrw71Zt3597hxp2qO1zG6NjCmknDnfhtfQbXbxfTp6Md709x5425CWQoK94/rk5yZjznzr5TefywIp2GARY8N8qZnDwNpy7rX9LyCrSs35tNYqoKtUZHq3Arpo1zISdPw8Xrtdd4n9EDnBnR14kFfySSmFLCuMEufPpGA174MJrCYuPXqFGgFe9O9eGvTXqnS8eWdrw71Yd35t7hxm19x69rG3umjPPg57+TiLxVwMDujsx6tQHTZt4iLbPyF5cHkdlYk3PpOvHL1tN6TUVnQHms/H1ou2Uxcb+v4cLTb+PYqRVNfphJSVomyRt2A+DQoQUtVyzgxszvSN60F4/hfWi18ltO9HgC5elLNSw1Q66f386hDXPoNWYmXgGtuHR8FRsXTeGpGduwd/KqYB8ffYYGjTrRacgbWFjZE3lqPZt/fZHx0//BzSccAAtrBe36voiTeyBSuRm3rxxg94r3sbJ1NnDU1JTdJ84zb/kG3ntmDM1DA1i//zivzl3Emrkz8HCpvF5f980H2FhZlv7vaG9b+vfXrz+LSl12P2fn5fPEjLn0adei1vrus+vMFb7+ZyfvPzGYFkENWHv4LC/98BfrZ72Ep5OD0TTv/LqGjJw8Zk4chq+rE5m5+Wi0Zffu2Rt3GNC2Cc2DfLEwk7N01zFe/G4562a+hLujfa011of6vL7UQfVBZ5tG5oztY82KXQVEJ6jo1sKSV8baMeu3bLJyKl5vZ4WUV8bYcfRiMUu25BHkbcYT/a3JLdQScV3vYBnRzYp2jS34a0c+yRkawgPNeGGULXP/yiEupfZ9jPpQjgA7I64zd+NBPhjdixYBXqw9fplpizey4d2JeFbyLL69bBsZuQXMGtcXXxcHMnMLDZ5vlVrDC4vW42RrzTeThuCusCNZmYuNhblJGgHGDfVg9CB3vl50m/ikIiaM9OKr90N5ZvoVCouMt4thITZ8+GoQS9ckcPSMki5tHfjotUBen3Wda9H6vmVaZgm/rUwgIVlffv26ufDJW8G8MCOyWueOMcYP8+SxQR7M/TmG+KQinhzlxdz3GzJp+qVKdYaH2PLRa8H88U88R89k0aWtIx+/FsRrs6K4dkuvMz2jhF9XxpGYUvyAzhCef+9qtc6dekM9iUSpK0TpCP4VLCws8PDwMPjJZDIADh06RLt27bCwsMDT05P33nsPtbrsBaG4uJhXX30VNzc3LC0t6dKlC2fOnDHIf/v27YSGhmJlZUXPnj25c+dOtZrmz59P06ZNsbGxwdfXl2nTppGXl1e6//60oF27dhEWFoatrS0DBgwgKSmp1Eaj0TB9+nQcHBxwdnbmnXfeQaervsO2dOlSGjRogLW1NSNHjiQjI8Ng/6xZs2jRogVLliwhMDAQCwsLdDpdhSlI/v7+fPHFFzz77LPY2dnRoEEDFi9eXOlxtVotU6ZMITQ0lLt371arsyYM7enAvpM57D2RQ0KKiiXr08nIUtO/i8Koff8uCtKz1CxZn05Cioq9J3LYfzKH4b0cS22+/TOFnUdzuJNQQkKqip9XpiKRSmgWam2SxgGdbDh0voBD5wpJTFPz944cMnO09GpnY9S+VztrMrK1/L0jh8Q0NYfOFXL4fAGDOpfZd2tljY21lO9WZHEzVkVGtoYbsSrikmv2cluers3knLmm4fQ1DalKHVuOq1Dm6egQLjNqn5Wrj5A5f0NDUSUvCTGJWq7e0ZKq1JGZo+PYZQ3JGTr8PU2v2kf0cWbPMSW7jymJTy7ht39SSM9SMbC7o1H7Ad0dSMtU8ds/KcQnl7D7mJK9x5SM7Ff20jm8txMXovJZuzOD+JQS1u7M4OK1fIb1Ns3hOKSbgv2nc9l/Ko+EVBXLNmWSrlTTr5OdUft+He1IV6pZtimThFQV+0/lceB0HkN7lHVII6OLOHOlgIRUFSkZanYcyeVuUgmNAiyN5llThvd2YvX2dE5E5HI3sZj5fyRiYS6le/vKX0yH9XEiIjKfNTsyiE8uYc0OfXkN71NWXiP6OrPnaBa7j+qv06+r9ddpUPeal2narsPcmPktyRv31Mjeb+p4imKTiHzzC/KuxRC3ZC1xS9cTOP3ZUpuAV54mfe9xoucuJv96DNFzF5O+/yT+rzxdY13lOX/wDxp3GE2TjmNw8giix6gPsHX04NKxlUbte4z6gDa9p+Dh1wxHN386D52Og6sfMVf2l9r4hrQnuHlfnDyCcHBpQMseT+Pi1ZDEmHMmafx7x0GG9+jAiJ4dCbgX/eLu7MjavceqTOdkb4uLg33pTyYte3YVtjYG+05dvo6luRl92rcwSSPA8r0nGNm5FaO6tCbQ05V3xg3Ew1HBmkNnjdofu3KTszfu8OMrE+gQFoS3iyNNA3xoEdSg1GbO5NGM69GORr6eBHi48vFTw9DpdJy+FmOSxvpQn9eXOqg+6OzTzpJjF4s5dqmY5Awt/+wrICtHS/eWFkbtu7e0IDNHb5ecoeXYJX3afu2sSm3aN7Zg54lCrsSoSM/WcjiimMjbKvq2NU1jfShHgOWHzjOyfRNGdWhKoLsz74zsgYeDHf8cM+78PhZ1h3PRCfw0ZSQdQv3wdlLQ1M+DFgFlju0Np6+QXVDEgmeH0jLAGy8ne1oFetPQ2/RB1lED3VixMYmjZ5TciS9i7s+3sTSX0qtz5e3X6IHunLucw8pNycQlFrFyUzIRV3MZNcit1Obk+WxOX8gmIbmYhORi/vgngcIiLWHBtpXmW7VOd1ZsTOTomSzuxBfy1cIYLC2k9O7sXHmaQe6cu5zNyk1J93Qmcf5KDqMHepTanDiv5PSFbOKTiohPKmLJ6ngKi7SEhxiv4wT/9xAOGMEjJSEhgUGDBtG2bVsuXrzIzz//zO+//85nn31WavPOO++wbt06li1bxvnz5wkODqZ///5kZmYCEBcXx6hRoxg0aBAXLlzgueee47333qv22FKplO+//54rV66wbNky9u/fzzvvvGNgU1BQwDfffMPy5cs5fPgwsbGxvPXWW6X7582bx5IlS/j99985evQomZmZbNiwocrjnjp1imeffZZp06Zx4cIFevbsaXC+97l16xb//PMP69atq3INl3nz5tGmTRsiIiKYNm0aL774IteuXatgV1JSwtixYzl79ixHjx7Fz6/ykPKaIpdBkK8FF68ZhnJfuFZQaSch1N+SC0bsgxpYIKukxjE310+hyS2o/ciUTAb+XmZcuWUYCnz5VjEhvsancwX7mnHZiL2/t1mpxlaNLLgVp2LiEAU/vOvGFy+7MLSbDaYs7C6TgrerhBtxhud3M16Lv8e/Vw0He0txdZBwO8m06Be5DIIbWBIRaRgCHRGZT1iQldE0jQKtK9ifj8wn2M+qtCwbBVpVzPNqPmFBtXe4yWQQ6GNeYYTw0vUiGvobvydD/Cy4VM7+wvVCAn0rvyebhFji5WpGZBVT7arD3cUMJwczIq6WnbtarePKjYIqz11fpnkG285fzSu9BnIZBPsZuU5X82hUyXX6N3Do0IK0cg6FtN1HULRugkSuj9Jy7NCC9L1HDWzS9xzBsWNLk46pUZeQGncVv4ZdDLb7NexM0u2IGuWh02pRFeVjae1gfL9OR+z1E2Sl3sY7qG2tNarUaq7djqND04YG2zs0bcilm7erTDvhg6/p/9JHvPjFj5y9erNK200HT9KvYyusLI2/mNZEZ1RsIh3DDadFdQgP4mJ0nNE0By9dp7GfF0t3HaPvu/MY9tH3zF+7i6KSyqdyFJWoUGu0KGxqfy/Wi/q8ntRB9UGnTAoNPGRE3jG8nyLvqAjyNh75Gegtr2h/W4Wfh4z7/ku5HFRqw4GLErWOIN/aB/7Xh3IEfaRKVHwKHUMN+34dGzbg4p1Eo2kOXo0m3NeNPw6coc+sxQyd8wfzNh+mqKTMMXnoSgzN/DyZs24/PT/+hVFz/+S3vacNomRqg6ebOc6O5py7XDbdRqXWcSkql8ahlTtKwkNsOHfJcCrR2Ys5NA4xnkYqgR4dHbG0kBJ5M8+oTdU6LXB2NOfsJUOdF6NyaRxq3PGm12lrkAbg7KXsSs9NKoGeHZ30Om/UXqegfiKmIAn+FbZu3YqtbVnlMnDgQNasWcPChQvx9fXlxx9/RCKR0KhRIxITE3n33Xf5+OOPKSws5Oeff2bp0qUMHDgQgF9//ZU9e/bw+++/8/bbb/Pzzz8TGBjIggULkEgkNGzYkMuXL/PVV19VqenBSJKAgAA+/fRTXnzxRRYuXFi6XaVSsWjRIoKC9B3Sl19+mU8++aR0/7fffsuMGTMYPXo0AIsWLWLXrl1VHve7776jf//+pU6i0NBQjh8/zs6dOw3sSkpKWL58ebVTtQYNGsS0adMAePfdd1mwYAEHDx6kUaNGpTZ5eXkMHjyYwsJCDh48iEJhPDoF9BFHxcWGnVULC+MdejsbGTKZBGWuoeMgO1eDg53xyA1HexkXytkrczXIZRLsbWVk5VR0sjw1zJnMbDWXrtc+9NLOWopMJiE7z7AzkJOnQWFn/LwcbGVczjMsg+w8LXKZBFtrKdl5Wlwd5YQFyDhxqZB5yzNxd5bz9BAFUqmETQdr10jaWIJMKiGv3OnlFuiw8304B4ylOXzwlCVyKWh1sOGIipsmTj+yt5Xrr3eO4aiwMleNg73xkRlHexnK3HL2Oep711tOVo4aB3t5xTxz1DjaG7+HqtR4757Mzit3T+ZVfk862MvIvl7RXi6TYGcjK72/rSwl/PKxL3K5BK0Wfl+fweUbpjtgHBX6JtbYubs5V77Wk6OisvLS53f/OmWVs8nK1dBK8eiadQt3F4pT0g22laRmIDUzw9zFkeLkNCw8XChOMYz4K07JwMLDtNHSwvwsdFoN1vaGI47Wdi4U5KbVKI9zB5agKikktOVAQ12Fufz2cTc06hIkUim9xszEr1HnWmtU3puS46QwjGpyUtiRnm18nSMXB3s+mDyOsABfStRqth89w4tzfuKXD16mVVjFtdOuRN8lOj6Jj6Y+Xmt998nKK0Cj1eFU7ll2trMhPcd4nZaQlkXErVjMzeTMf2EcyrwCvli5jez8QmY/PcJomu/W78XNwY72YYG11lgf6vP6UgfVB5221hJkUgk5+YbOktx8LfY2xutIexspufmGDpicfB0ymQRbK31ekTEq+rS15GacmrQsLY385bQIMTfJ4VYfyhEgK78QjVaHs52hc9/Zzob0XOMR0fEZ2UTcTsTcTM6CZ4ahzC/ki3X7yS4o4pPx/fQ2mdkk3opjUKtG/DRlBHfTlcxZtx+1RssL/TvUWqejQn9ds7LLtV/ZatxdKp/W5OhgRla24XXPylbh6GB4nwT4WvH9J40wN5NSWKRh1vxoYhNqX6b38zV2zPtrzBjDycHM6LkZ0/nDp+GlOmfOu8ldE3T+VxGfoa4a4YAR/Cv07NmTn3/+ufR/Gxt9By8qKoqOHTsieeBB7Ny5M3l5ecTHx6NUKlGpVHTuXNbpNTMzo127dkRFRZXm0aFDB4M8OnbsWK2mAwcO8MUXXxAZGUlOTg5qtZqioiLy8/NL9VlbW5c6XwA8PT1JTdUvJJidnU1SUpLBseRyOW3atKlyGlJUVBQjR4402NaxY8cKDhg/P78arZPTrFmz0r8lEgkeHh6lGu/z+OOP4+Pjw759+7C2rjqqYM6cOcyePdtg28yZM4EnK01T4XQlUNVELCPmxvMBRvR2oEsrOz7+IaHCiNVDIZEYPd59Kmgs11ZIJfpO4JJN2eh0cCdRjaOdjEFdbGrdYa/qmDWY0VYlxSXw7ZpizM0gxFu/zkxmro6YRNOcMEZ1VmdfLsH9stQ9kFOF06zmHqoOY+VW5T1ZXqORNEXFOt6el4ilhZSmIZZMHOZESoaayOiadYp6tLfnpSfLQrdn/xBrVJekEv0GesunMVZeRs7pYe+naqn0YuuqtnloYeXvQp2RbRW5dm4rJ3f+yLDnFmJtZ+jEMbewYcI7GykpLiDuxgkObfwSe2dffEPam6awnBydrnKF/l7upYvtAjQLCSAlQ8ny7QeMOmA2HTxJkI8nTYIePrJRUk5VVSWp1emQSCR8MXk0dvfWqnlLpeatxf8w4/HBWJobvlT8sesoO89c5rc3J2Hxby4o/1+sz/+DdVC91VnL6qEyjfdZvbeApwbaMHuKAh2QlqXl+KViOjUzLXrM2DHhP1iOGKuHdJU6nrQ6HRJgzoSB2Fnpy+ZNdTfeWraV90f1wtJcjlanw8nWmo/H9kEmlRLu605adh7LDpytkQOmV2cn3niurN76YO7Ne7oq6q7uNjDWjyi/MS6xiOffi8TWRkbXdo6886I/0z+5Xq0TpndnZ96Y4l/6//tf3TCuE6pdiqD8fokR8XGJRUx99wq2NnK6tnPk3WmBTJ8d9X/KCSOoHOGAEfwr2NjYGP3ike5e5638NtA7Ex78u7J0NVlzpTx3795l0KBBvPDCC3z66ac4OTlx9OhRJk+ejEpV5s0u/8WhBzWZSk3T33cCVYcxjdpyoZ+DBg3ir7/+4uTJk/Tq1avK/GbMmMH06dMNtllYWPD42xVD0HPzNWg0ugqRCgpbGdm5xqcLZeVUHBVS2MlQa3Tk5humGd7LgdF9HZn1UyJ3E0uq1F0ZuQVaNBodClvDSBJ7Gyk5ecY1KvM0KGxlFezVGh15BfqyVeZq0GgNG9/ENDUOdjJkMtDUYrZUfhFotDrsykXk21pJyCt8yPsNyMjR55GUocbNUULPlnJiTCjPnDz1vett2DQo7CpGZNwnK0dj1F6t0ZF7r/wfjN64j4OdHKWRaKhqNd67JyvcY1Xck0oj96S9rf6ezHvgntTpICVDf553E0vwdjdjRG9FjTvDpy7kcT0muvR/MzP9PeloLzcYEVMYiQh6kKzsiuX14DUovU6K8mUqqzLfh6U4Jb1CJIu5qxNalYqSDKXeJjkdCw8XAxsLN6cKkTM1xcrGEYlURkGOYfqC3Ays7VwqSaXn+vnt7F35AYOf+Y4GDTtV2C+RSnFw1b8YuPmEkZkSzZm9i2vtgHGws0EmlZKhNAyPz8rJxVlReah6eZoE+7PjWMW1WIqKS9h94jwvPDbQSKqa42hrjUwqIaNctEtmbj7O9sbD410Udrg52JU6XwACPF31z0pWDn7uZU6tZbuP8fuOI/zy+kRCfTyMZVct9aE+/y/XQfVNZ16BDo1Wh72tYR/QzkZKTr7xQYScfC325e4POxsJGo2utD3NK9Tx8/o85DJ9O6vM0zGqhxXpRhbMrY76UI4AjjZWyKQS0nMMp4Bn5hXgbGt8YM7V3gY3hW2p8wUg0N1Jrys7Fz9XR1ztbJDLpAbrUwW6O5GeW4BKrcFMXnUk64lzytLFZwHMzPTX2slBTqayrD/uYC+vEG3yIFlKFU4Kw/6wo33FqBi1Rle6uO2NmAIaBtowaoA73/5e9bqIx89lEXWrrG683347OZgZ6lSYocyuvJ3NVKpwKhft4qCoeG5lOou5EZNPwyAbRg30YMFvd6rUWW8Qi/BWiSgdwSMlPDyc48ePGzgljh8/jp2dHd7e3gQHB2Nubs7Ro2VrBqhUKs6ePUtYWFhpHidPnjTIt/z/5Tl79ixqtZp58+bRoUMHQkNDSUw0Pge2MhQKBZ6engbHUqvVnDtX9SKNpuh9WF588UW+/PJLhg0bxqFDh6q0tbCwwN7e3uBX2RQktUb/iejmDQ0b7+aNrLl223gH4cadIpo3qmgfHVuM5oH+1PBeDjzW35FPFyUSHWf656c1GriTqKJJkOE5NAky52ac8cb8VpyKJkGGoa5Ngi24k6Aq1XgjVoWbk8xg5MjDWT+FqjaddQCNFhLSdIT4GnZUQryllX6G+mGopj9UKWoN3IotomWYoXOwRZgNUdHGp4ddiymgRTn7luE23LpbWFqW12IKjdpERdf8k8n30WggJr6EZqGGc++bhVpyvZIvKt28W1zBvnlDS2LiDO/J8kgAM1nNw2gLi7UkpalKf7GJxWQqVbQMLzt3uQyahFpXee7XYgoM0gC0DLctvQZqDdy6W1ShTFuE23Ktkuv0b6A8eQGX3oaODNe+Xcg+dwXdvYXVs05ewKW34TQelz5dyDpRs/VayiOTm+Pm25jY64Zrz8ReP45nQOXrylw7t5XdK95jwMR5BDTuUbOD6XRo1LV3XJrJ5TQK8OXUlesG209dvk6zkJp/pvX6nXhcHCouzrznZAQqtZqBnWu/Pk15nWENvDgRFW2w/VRUNM2DfI2maRHkS5oyl4Kisjr6bkoGUonE4AtHS3cd49dth1n46pM09vc2WWO9qM//w3VQfdOp0UJssoYwf8MX1jB/M6ITjL/kxiSoK9iH+5txN1lD+WVJ1BpQ5umQSqFlQ3Mu3qz9Z6jrQzkCmMllhPm4c/KGoaPh5I1YmvtX/FocQIsAL9Jy8ikoLqv37qYp9c/3PedxiwAv4tKz0Wp1D9hk4WpvU63zBaCwSEtiSnHp7258ERlZJbRqWjZVXi6T0CzMjqtVrIESeTOfVk0N68fWzey5Wt36LpIyp0/tdBaSkVVC6weOKZdJaB5mx9UbxqeW6nXm0fqBcwNo00xR5bmBPgKoJjoF/zcQDhjBI2XatGnExcXxyiuvcO3aNTZt2sTMmTOZPn06UqkUGxsbXnzxRd5++2127txJZGQkU6ZMoaCggMmTJwPwwgsvEB0dzfTp07l+/TorVqxg6dKlVR43KCgItVrNDz/8QExMDMuXL2fRokW11v/aa6/x5ZdfsmHDBq5du8a0adNQKpVVpnn11VfZuXMnc+fO5caNG/z4448Vph89Cl555RU+++wzhgwZYuDQeli2HFDSu6M9vTrY4e1uxjMjXXBxlLP7qH6RsQlDnXn1ybJV6HcdzcbVUc6kkS54u5vRq4MdvTvYs2l/VqnNiN4OPDHEmZ9WpJKaoR+FdLCTYWluWuOz83g+3Vtb062VFV6ucp4YaIezQsb+0/qX3DF97Zg6uqxB3H+6ABcHGU8MsMPLVU63VlZ0b2XN9mP5D9jkY2st5clB9ng4y2geasHQ7rbsPV17pwHAkUtq2jWS0aahDDcHCUM7meFgJ+FkpL73P6CdnHE9DTuVns4SPJ0lWMgl2Frp/3dzLCujni3lhPhIcbKT4OogoWszOa1DZUTcqP0o33027s2gbxcH+nRS4ONhznNj3HB1MmPHYf31mzjClTcmeZba7zykxM3ZjMlj3PDxMKdPJwV9OzuwYXdmqc3mfZm0DLdhdH9nfNzNGd3fmeZhNmzel1nh+DVh6+Fsere3o2c7W7zdzHh6mCMujnL2nNB3ih4f5MBLj5dFR+w+kYuLo5yJwxzxdjOjZztberWzY8vBsoiFEb0UNA21xM1JjpebGYO72dOtjS1Hzj/conib9mUyZpALHVva4edlwevPeFNcouXQqbJjT3/Wi6dHlj1D+vKyZfQAZ3w8zBk9wJkWYTZs2ltWXhv3ZNCvqyN9Ozvor9NYd1ydzNh+KIuaIrOxxr55I+yb69eTsg7wwb55Iyx99de34WfTaf5H2VpbdxevwsrPi7Cv38O2USA+k0bj+8xoYuYvKbW58+OfuPTtTOBbU7BpGEjgW1Nw6d2ROz8sq33h3aNVj2e4cnItV0+uJTM5mkPrvyA3K4lmnccDcHTLPHb9VbbA+rVzW9n917t0G/4unv7Nyc9JIz8njeLCsk7z6T2/cPfaMbLT48hMieb8gT+IOrOJsDbDTNI4YWAPNh44yaaDJ7mdkMy85etJzshi9D1n1I+rtvDxz3+V2q/YcZCDZy8Rm5xKdHwSP67awv4zFxnbr+InsDcdOkn31k1xsHv4L2Q81acjG46eZ+Ox88QkpfH1PztJyszmsW5tAPh+w14+/GN9qf2gdk1R2Frz8bJNRCemcu7GHRas283wzi1Lpx/9sesoP23ez6ynh+Pl7EB6di7p2YZOm9pQH+rz+lIH1Qede08X0aW5BZ2amePhLGVMb2uc7KUcjtDfPyO6WzFpSNm9fyiiGGd7KWN6WePhLKVTM3M6N7dg9+ky57O/p4yWoWa4KKQE+8h5bawdEgnsOmXa9I76UI4AT3VvxfpTV9hw6goxKRl8vfEgSVm5jOmkn8r+3dajfLCirD86qFUjFDaWfLxqN9HJGZyLjmf+lsOMaNcYS3N9hOXYTs1RFhTy1caD3EnN4nBkDL/tPcO4zs1N1rl+RypPDPegcxsH/H0seedFf4pKtOw/VtbGvfuiP5PHez+QJoU2zewZN9QDXy9Lxg31oFUTO9ZvL5uS/+w4b5o0tMXdxZwAXyueGetN83A79h0zra+xfkcKT4zwonNbR/x9rHhnWiBFxVr2HStb5+zdaYFMHu9TTqeC8cM88fWyZPwwT1o1sWfdjuRSm8njfWjayBZ3V73OZ8f50Dzcnn1HDddPE/zfRUxBEjxSvL292b59O2+//TbNmzfHycmJyZMn8+GHH5bafPnll2i1Wp566ilyc3Np06YNu3btwtFR/9nbBg0asG7dOt544w0WLlxIu3btSj/NXBktWrRg/vz5fPXVV8yYMYNu3boxZ84cJk6cWCv9b775JklJSUyaNAmpVMqzzz7LyJEjyc7OrjRNhw4d+O2335g5cyazZs2iT58+fPjhh3z66ae1OrYpvP7662i1WgYNGsTOnTvp1Kli2H1tORaRh52NlLH9nXBUyIlNKubzRYmkZelHpxztZbg4ljkOUjPVfPZLIs+OdGFgVwWZ2Wp+X5fGyYtlneEBXRSYySW8M9nT4Fird2SyekftG8pTV4qwtc5heA9bHOxkxKeombc8i4xsvSPCwVaKs6JspCZdqeGb5VlMGGhP7/Y2KHM1LN+ew9nIss5ZZo6Wr5dl8sRAez57yZWsXA27T+Sz9Uh+hePXhIvRGqwtoU8bOfbWEpIzdSzZXoIyTz+qZG8jwcHO0AH1xpiyETQfNyktQ+Rk5mr58m99x9RcDiO7mqGwkaBSQ6pSy6r9Ki5Gm+6AOXo2F3ubFMYPdsFJIeduYjGzf4wlLVN/vZ0Uclydyq53SoaK2T/E8dxYdwZ3dyQzW83i1ckcjyh72b0WU8jc3xJ4argrE4a5kpxWwtxfE7hRyehhdZy4UICddSaj+zrgaC8jLqmEOb+lkJ6lP29HezkuDmXNW1qmmjm/pfD0cCf6d7YnK1vNHxszOXW57OXLwlzCc6OccXaQUaLSkZCq4ocVaZy4YNoL2n3W7czAwkzKi094YGsj43pMIR8viKWwuGwY1NXJjAcGF7kWXcjcxfE8OcKNJ4e7kZxWwleL47lxu+wF48jZHOxsZYwfUnadZn0fS1pmzUd4Fa2b0HHf8tL/w795H4C4P9dzafIMLDxdsfIte0YL78RzZuhUwufNwO/FCRQnpnL1jc9J3rC71CbrRAQRE6bTcPbrNJz9KgXRcUQ88QbK08Y/g1oTGrYaRFF+Fid3LaQgOxVnz1CGP78Yeyd95zw/J42crKRS+8vHV6PVqjmw9hMOrC1bVD2s3Uj6T/gSAHVJAQfWzCY3Oxm5mSVOboH0f+prGrYaZJLGfh1bkZ2Xz28bdpGuzCbIx5Pv3n4eT1f9Z1XTlTkkZ5Q5x1RqDd+u2ERaZjYW5mYE+njw7dtT6dKisUG+d5NSuXA9hh/fe9EkXeXp37YJyvwCftl2iPTsPIK93Pjx5Ql4OTsAkJadS1JmWftmbWnBotef4stVO5jwxWIUttb0a92Yl4aXTXX959AZVGoNb/3yj8Gxnh/SnReH9qy1xvpQn9eXOqg+6Dx7rQQbKwmDO1uhsJGSmK7hxzW5ZObo60iFrRQn+7Lx4oxsLT+syWVsb2u6t1KQnadl9Z4CIq4/ML1cLmFYN2tcHaQUl+i4HKNiydY8CotNm/JbH8oRYEDLhmQXFLF49ynScvIJ9nTmpykj8HLSR3Gk5+aTnFXWNltbmPPL86P5csMBnliwAoWNJf2ah/LywLIoRg9HOxY9P4qvNx5izDfLcVPYMqFbS57p1cZknau3JGNhLuXVZxtgZyMnKjqf9764QWFRWbvo5mJh0C5G3szns+9jeGasF5PGepGYUsxn38dwLbrsGXZUyHnvpQCcHMzIL9BwO7aQGV/e5Pxlw+mhNWXV5iTMzaW89qyfXuetPN794no5neYGUf6RN/L47PtbPDPWh0ljvUlMKebT76INpmE5Ksx476WgUp0xsQXMmHOdcybq/E8iFuGtEonuYRe8EAgE/ycY9eqtupZQJeu/D2biR0nVG9Yhf37qyTuLHt0UkH+LuS9YMfT5qLqWUSVbfglj7Jt36lpGlfwzz58hUyLrWka1bP01nG1mDas3rEMGq67z86MPFHwoXhwAuWf/4yIBuzYDKDy4sq5lVIlVj8frRX3+X6+DQF8P/dd1/jPPn+e/NC0K4X/FL+85/efLEfRlWbSt9hHd/0ssB79An8crrmf1X2Lvyjb0Hn+6rmVUy75V7epagkkUHFlTZ8e27jqmzo5dU8QUJIFAIBAIBAKBQCAQCAQPj1Rad79asnDhQgICArC0tKR169YcOXKkSvvi4mI++OAD/Pz8sLCwICgoiCVLllSZpjxiCpJAIBAIBAKBQCAQCASC/29YvXo1r7/+OgsXLqRz58788ssvDBw4kMjISBo0aGA0zdixY0lJSeH3338nODiY1NRU1OrafYFSOGAEAoFAIBAIBAKBQCAQPDS6erIGzPz585k8eTLPPfccAN9++y27du3i559/Zs6cORXsd+7cyaFDh4iJicHJSb/Gm7+/f62PK6YgCQQCgUAgEAgEAoFAIKjXFBcXk5OTY/ArLq74Vb6SkhLOnTtHv379DLb369eP48ePG8178+bNtGnThrlz5+Lt7U1oaChvvfUWhYW1W/9ROGAEAoFAIBAIBAKBQCAQ1GvmzJmDQqEw+BmLZklPT0ej0eDu7m6w3d3dneTk5Ar2ADExMRw9epQrV66wYcMGvv32W9auXctLL71UK41iCpJAIBAIBAKBQCAQCASCh0dSdzEeM2bMYPr06QbbLCwsKrWXlJsupdPpKmy7j1arRSKR8Pfff6NQKAD9NKbHHnuMn376CSsrqxppFA4YgUAgEAgEAoFAIBAIBPUaCwuLKh0u93FxcUEmk1WIdklNTa0QFXMfT09PvL29S50vAGFhYeh0OuLj4wkJCamRRjEFSSAQCAQCgUAgEAgEAsFDo5NI6+xXU8zNzWndujV79uwx2L5nzx46depkNE3nzp1JTEwkLy+vdNuNGzeQSqX4+PjU+NjCASMQCAQCgUAgEAgEAoHg/xumT5/Ob7/9xpIlS4iKiuKNN94gNjaWF154AdBPZ5o4cWKp/RNPPIGzszPPPPMMkZGRHD58mLfffptnn322xtOPQExBEggEAoFAIBAIBAKBQPD/EePGjSMjI4NPPvmEpKQkmjRpwvbt2/Hz8wMgKSmJ2NjYUntbW1v27NnDK6+8Qps2bXB2dmbs2LF89tlntTqucMAIBAKBQCAQCAQCgUAgeHgqWcT2v8i0adOYNm2a0X1Lly6tsK1Ro0YVpi3VFolOp9M9VA4CgUAgEAgEAoFAIBAI/r8n79SWOju2bfuhdXbsmiIiYAQCAQDzN/23fbHTh0v4bst/W+NrQyXciI6t3rCOCQ1qwLOzU+taRpUsmenG2etZdS2jSto0dGTIlMi6llEtW38N5+edda2ial4cANvMGta1jCoZrLrOhZtpdS2jWlqEuLLq+H+7rhzfScKHS0vqWkaVfDbJnDcX5te1jGqZN82GKV9k1LWMKvn1fWfmbfxv35NvjpAw+dP//vP9+0eu7IhQ1bWMKhnY0ox+T0XUtYwq2b285X9eI+h11kdqsxju/4+I0hEIBAKBQCAQCAQCgUAgeMSICBiBQCAQCAQCgUAgEAgED089WgOmLhARMAKBQCAQCAQCgUAgEAgEjxjhgBEIBAKBQCAQCAQCgUAgeMSIKUgCgUAgEAgEAoFAIBAIHh6xCG+ViNIRCAQCgUAgEAgEAoFAIHjEiAgYgUAgEAgEAoFAIBAIBA+NTizCWyUiAkYgEAgEAoFAIBAIBAKB4BEjHDACgUAgEAgEAoFAIBAIBI8Y4YAR/M+5c+cOEomECxcuAHDw4EEkEglKpfKRHrdHjx68/vrrj/QYtaH8eS9duhQHB4c61SQQCAQCgUAgEAgEJiOR1t2vHiDWgBHUmLi4OGbNmsWOHTtIT0/H09OTESNG8PHHH+Ps7Gxyvp06dSIpKQmFQvEvqq1/jBs3jkGDBtW1DKNcPb6Ci4d+pyA3DUf3YDoNex/PgDZGbWMu7yby5CoyEqPQqEtwdA+mTd+X8W3YtdQmM/kmZ3d/T1rCVfKyEuk4dAbNuj79UBqvHFtBxEG9Rif3YDoPfx+vQOMaoy/v5urxVaTf0+jkEUzbfi/ToJzG07u+Jy3+KrlZiXQeNoPm3R5O47atm1m/bg1ZmRk08PNnytQXadykabXpIq9eYca7b+Ln78/3P/5isC8vL4/ly5Zw4vgx8vJycffwYPJzz9OmbXuTdfZsY8WATtY42ElJSFWzclceN2NVldqH+pkxvp8t3m5ylLladhzL5+C5otL97zztQCN/8wrpLt4o5ruV2SZp3LN9LdvW/40yKwPvBgE89dwbNGrcotp01yMv8tn70/DxC2TOd8sN9p0+vp81fy8mNSkBN09vxj75Am079jBJH8CgHo6M6u+Mk0JObGIxv65O4erNgkrtm4Ra89xYdxp4WZCpVLNuVwY7DmUZ2HRqZceTw93wdDUjKU3F8o2pnIjINVkjwMUjf3Nu/+/k56Th7BFC91Hv4x1k/Nm5dXE3l46uJC3h3rPjGUKHAS/jH9bVwOb0nkUo02PRatQ4uPrRuuczhLUdYZI+py5tCHxzMopWTbD0cuPs6GmkbN5XdZqubQn/5j1sw0MoTkwlet5vxC5eZWDjMbIfobNewzqoAQXRsVz/eAEpm/aapBFg17b1bFm/EmVmBj4N/Hl6ymuENWlebbprkZeY/d4r+PoFMPeHpaXb9+3czOH9O4m7GwNAQHBDHp/4PMENw03WCHB6/wqO7fidPGUart7BDHziffxCjV/vyLO7OXNgFcmx+uvt6h1Mz+EvE9y07Hpr1CqObFvMhWMbyc1KwdkzgL5j3iLkAZva0q6hlK5NZNhaQ2qWju2nNdxN1Rm1tbWCgW1leDlLcbaHk1Fatp/WVLCzNIc+LWU09pNiaQFZubDzjJobCcbzrY5OjeX0aGmGvbWE5Ewtm46VcDtJa9TWzlrCsE7m+LhKcXGQcPSSmk3HSgxs2ofJadNQjoeT/gUiPk3L9lMlxKUaz7Om9GhlQf8OVihspSSmaVi9N5+bcepK7UMbyBnb2wYvVxnKXC27ThZyKKLYwKZ3W0t6tLLEyV5KXqGWc9dKWH+gAHXFYq8RV0+s4NIDfYyOQyvvY9y+spvIE6vISCrrY7TuY9jHAIi5vIuzu78nJyMWe+cGtO3/OgFN+pomEOjZ2pL+He+1i2lqVu3K52ZcFe1iAzPG9bPB2/Veu3i8gEPny9rFt59SGG0XL90s5rtVOSbrPLp7Ffu3/EGOMg0Pn2BGTnyXoLDWRm1jrp1ny4r5pCTeRlVchKOrF516j6HH4ImlNhdP72Hvxl9JS45Dq1Hj4tGAnoOfpm23YSZrBHhqpAeDerpgayPjWnQ+Py6L525CUZVpurRR8PRjnni6WZCUWszSNUkcO1fWhxg/1J3ObRT4elpSotISeTOf31YlEp9cXEWu/zd0CuoX9cNNJKhzYmJiaNOmDTdu3GDlypXcunWLRYsWsW/fPjp27EhmZqbJeZubm+Ph4YHk/+iCTSUlJdUbAVZWVri5uT1iNbXn1oXtHN8yh5a9XmD0axvwCGjD9t+nkpuVaNQ+6fZZfEI6MfDZxYx+dR1eQe3ZuXQa6QmRpTZqVRF2Tr60H/gm1nauD63x5oXtHN08h9Z9XmDMGxvwDGzD1t+q0BhzFt/QTgyevJgxr6/DO6g925dMI+0BjaqSIuydfOkw6N/ReOTQQX5b/DNjxz3Odz/8TOPGTZj18fukpqZWmS4/P58F8+bSvEXLCvtUKhUfffAuqakpvPf+Ryxa/AcvvzodZ2cXk3W2bWzB4wNs2Xokn1m/ZHIzVsUbExQ42RtvLlwcpLzxhAM3Y1XM+iWTrUfyeWKgHa3DLEptflqdzevfpJf+PlyYgUar42ykaZ2NE0f2sPy3bxk+dhKff7uMRuEtmDv7DdLTkqtMV5Cfx6JvP6Fx84od+5vXLvPD3I/o0mMgc75fTpceA/lh7gfcun7FJI1d29gzZZwH/2xL59VPYrh6s4BZrzbA1cn4uIe7ixmzXm3A1ZsFvPpJDP9sT2fqeA86tbIrtWkUaMW7U304cFLJK5/EcOCkknen+hAaYGWSRoDr57dzaMMc2vV7kQlvb8QrqDUbF00hJ9P4sxMffYYGjTox/PnFPP7WenyD27P51xdJjS97diysFbTr+yLjX1/Nk+9upnG7Uexe8T53oo6YpFFmY03Opetcfe2TGtlb+fvQdstiMo+e42jbEdz6ahGNF3yAx8h+pTYOHVrQcsUCEv7exJHWw0n4exOtVn6LQ7tmJmk8fngfy379npFjJ/Ll90to1Lg5c2a9RXpq9ffkwvmf0aR5xRekq5cj6NS9Dx/P+YFPv/kFF1d3Pv94OpnpaSZpBLhyajs7V8yh25AXeGH2BvxC2/DX/KkoM4xf77s3zhLUuBNPvrGY52euI6BRe1Z8N42ku2XXe9/67zh7cDWDJnzIS59vo02P8az64WUDm9rQxF/KoHYyDl7SsHCzirupOib2laOwMW4vl0F+ERy6pCE507gzRSaFSf3kONpKWHlQzXfrVWw6riancn9olbQIljG8izn7zqmYv6aQ20lapgyxxMHWeD9GLoO8Ih17z6tISjfuUAn2lhFxU83Pm4r4YX0hyjwtzw+1xN7G9L5RmzBzxvW1YduxQj75PZubcSpeHWdfeX2ukPLqWHtuxqn45Pdsth8vZHw/G1o1LHMUtG9szuie1mw5UsDHi5Us25ZP2zALRvW0Nklj9MXtnLjXxxj16gY8/NuwY8lU8qpov71DOjHgmcWMutfH2LXMsI+RcjeCfSumE9JqGI+9vomQVsPY+/cbpMZeNElj23ALxve3ZdvRAmb/msXNWBWvP1F1u/j64wpuxqqY/WsW244W8MQAW1o3KivHhWtyeGN+eunvo0WZD9UuApw/voMNy76k78gpvPXlGgIbteKXL18gKz3JqL25hRVd+j/BKzOX8d68zfQbOZXt//zA8b1rSm2sbRT0HTGV1z/9i3e+Wkf77iNYuegjoi4eM1nn2MFujBroxo9/xvHKzOtkZav58t1grCwrfy0NC7bmg5cD2Hcsixc/uMa+Y1l88HIAjYLK7rumjWzZvDed12bf4L2vopFKJcx5NxhLC9Ned+uLzv8iOiR19qsP/N+50oJHyksvvYS5uTm7d++me/fuNGjQgIEDB7J3714SEhL44IMPSm39/f354osvePbZZ7Gzs6NBgwYsXry40rwrm4qza9cuwsLCsLW1ZcCAASQlGTYgf/zxB2FhYVhaWtKoUSMWLlxY7Xmo1WpefvllHBwccHZ25sMPP0SnK+uwZWVlMXHiRBwdHbG2tmbgwIHcvHmzdH9GRgaPP/44Pj4+WFtb07RpU1auXGlwjB49evDyyy8zffp0XFxc6NtXP+Kyfft2QkNDsbKyomfPnty5c8cgXfkpSLNmzaJFixYsX74cf39/FAoF48ePJze3bLQ7NzeXCRMmYGNjg6enJwsWLPjXp1pdPrKURm1HE9Z+DI7uQXQe9j62Dh5Enlxp1L7zsPdp0eM53HybonD1p/3A6Shc/LgbeaDUxs23KR2HvENwi8FI5WYPrfHioaWEtRtNePsxOLkH0WW4XuOVE8Y1dhn+Pi17Pod7g6Y4uPrTYZBe452rZRrdGzSl09B3CGk5GNm/oHHjhnX07TeA/gMG4dvAjynPT8PF1ZUd27ZUme6nH76le49eNGpUcdR77+6d5OXm8sFHswlv3AQ3d3caN25CQGCQyTr7d7DmSEQhRyKKSErXsHJXHpnZWnq2Nf6S36ONFRnZerukdA1HIoo4ElFE/45lnY38Ih05+drSX+NAc0pUOs5EVj2KVBk7Nq2kR5+h9Ow3HG/fAJ6a8gbOLm7s3b6+ynS/L/ySTt36EdKwScU8N6+iSYu2DB/zNF4+/gwf8zSNm7Vl5+bVJmkc0deZPUez2H1USXxyCb+uTiE9S8Wg7k5G7Qd2dyQtU8Wvq1OITy5h91Ele49lMapfWXThsD5ORETms2ZHBvHJJazZkcHFa/kM72M8z5pw/uAfNO4wmiYdx+DkEUSPUR9g6+jBpWPGn50eoz6gTe8pePg1w9HNn85Dp+Pg6kfMlf2lNr4h7Qlu3hcnjyAcXBrQssfTuHg1JDHmnEka03Yd5sbMb0neuKdG9n5Tx1MUm0Tkm1+Qdy2GuCVriVu6nsDpz5baBLzyNOl7jxM9dzH512OInruY9P0n8X/FtCi3bRtX0avvEHr3H4qPrz+Tpr6Gs4sbu7dvrDLd4h+/pnP3voQ2alxh36tvz6T/4FH4B4bg7evH86+8i06r5fLFsyZpBDi+eyktu42mdfcxuHoFMfCJ97F38uDMfuPXe+AT79Nl0HN4BzbF2cOfPo9Nx8ndj+sXyurKSyc20XXI84Q2746Tmy/tej1OcJMuHN/5h0kaOzeWcu6mlnM3taRlw/bTGrLzoV1DmVF7ZZ7e5kK0luJKAhJahUixNpfw9341sak6lPlwN1VHcpZp0S/dmptxOkrNqSg1qVk6Nh0rQZmno1MT4w7WrFwdm46WcO66msJKxmT+3lvM8atqEjO0pCp1/HOwBIkEQnyMn3dN6NvOkqMXizl6sZjkDA2r9xaQlaOheytLo/bdW1mSmaO3S87QcPRiMccuFtOvfZl9oLcZt+LVnI4sISNbS+RtFacji/H3NC2o/tKRpTRsO5pG7fR9jE7D3sdWUXkfo9ODfQwXf9oNmI7C2Y+7UWX35OWjf+IT3ImWPZ/HwS2Qlj2fxzu4A5ePLjNJY78OVvq27YK+XVy1O5/MHA092lTSLra2IiNHb5eUruHIhSKOXjDWLpb9wgPutYtRpjtgDm77k/Y9R9Gx12N4eAcx6un3cHD24OieVUbtfQLCaN15EJ6+wTi7edOm61AaNetEzLWyujqkcTuateuDh3cQLh4N6D7oKbwahHL72nmTdY4c4MbKTckcO5vNnfgivv7lLhbmEnp1dKw8TX83zl/JZdWWFOKSilm1JYWIyFxG9i8buPzg62j2HMnkbkIRMbGFzPs1FncXc0L8TRukqC86BfUP4YARVEtmZia7du1i2rRpWFkZVg4eHh5MmDCB1atXGzgy5s2bR5s2bYiIiGDatGm8+OKLXLt2rcbHLCgo4JtvvmH58uUcPnyY2NhY3nrrrdL9v/76Kx988AGff/45UVFRfPHFF3z00UcsW1Z147ps2TLkcjmnTp3i+++/Z8GCBfz222+l+ydNmsTZs2fZvHkzJ06cQKfTMWjQIFQqfa+uqKiI1q1bs3XrVq5cucLUqVN56qmnOHXqlNHjHDt2jF9++YW4uDhGjRrFoEGDuHDhAs899xzvvfdeteUQHR3Nxo0b2bp1K1u3buXQoUN8+eWXpfunT5/OsWPH2Lx5M3v27OHIkSOcP296o1gejbqEtISr+IR2NtjuE9KZlDsRNcpDp9WiKs7HwvrRTDG7r9G3nEbf0NprtHxEGlUqFbdu3aBlK8NR7pYtWxMVdbXSdHt37yQpKZHHJzxldP+pUydoFBbOooU/8NQTY3jpxSn8s3oFGo1pceAyKfh5ybkabfiGcDWmhGAf406oIB8zrsaUs48uxt9LjqySFqZrSytOXymmpPLo7UpRq1TcvnWdpi0Np1g1bdmem9cuV5ru0N6tpCYlMOrxyUb337p2hWbl8mzWqj03qsizMuQyCPazJCIy32B7xNU8GgUZ72A1CrQi4mqewbbzV/MJ9rNCJrtvY01EZHmbPMIqybM6NOoSUuOu4tewi8F2v4adSbpdi2enKB9Lawfj+3U6Yq+fICv1Nt5BbU3SWVscOrQgba/h6Gza7iMoWjdBIte/JDp2aEH63qMGNul7juDYsWKkWXWoVSpibt2gWUvD82vesi03rlUeQXVgzzZSkhN47IlnanSc4uJi1Bo1tnb2tdYIoFaXkHTnKsGNDevKoMadiYuu2fXWarWUFOVjZVNWV6pVJcjNLAzs5OYWxN6svcNNJgUvZwm3Eg2jRG4lamngZvrIZiNfKbFpWoZ2kPHeODNeGS6ne1MppgTeyqTg4yrlepxhPXs9ToO/u+nOkvKYy/XHKigyzUkkk4Kfp5zIGMOK9uptFUE+xp0lgd5yrt4uZx+jws+zrD6/Fa/Cz0NW6nBxcZDSNMiMS7dqFu37IBp1CekJV/EJKdfHCO1Myt2a10El5foYKXcv4F2+3xLahZS7F2qt8X45lm/nIqNLCK6kHIO85USWa0evRJcYlGN5ura05PRV09pFALVaRfztSBo162SwvVGzTty5UbPIn/jbUdy+cYGgcOPTv3Q6HTcunyQ16U6l05qqw8PVHGcHM85dKRtMVKl1XLqWR3hIJWFuQHiwDeeuGE7NOnc5p8o0Nlb6ws7Nr32fqL7o/K+ik0jr7FcfEGvACKrl5s2b6HQ6wsLCjO4PCwsjKyuLtLS00ik0gwYNYtq0aQC8++67LFiwgIMHD9KoUaMaHVOlUrFo0SKCgvQj+S+//DKffFIWfv7pp58yb948Ro0aBUBAQACRkZH88ssvPP105SOYvr6+LFiwAIlEQsOGDbl8+TILFixgypQp3Lx5k82bN3Ps2DE6ddI3YH///Te+vr5s3LiRMWPG4O3tbeAIeuWVV9i5cydr1qyhffuyl7fg4GDmzp1b+v/7779PYGBghWN/9dVXVZaDVqtl6dKl2NnppyE89dRT7Nu3j88//5zc3FyWLVvGihUr6N27N6CPCvLy8qoyz+LiYoqLDUdYLCwsgIpzkYvys9BpNVjZGq7xY2XnTEFuepXHuc/Fw3+gKikgqPnAGtnXllKNdoYare2ciauhxguHHq3GnJxstFotDg6GoyYOjo4os7KMpklMiGfZ0t/5cu4CZDLjnfrk5GQuXbxAj569mTn7cxITE1i08Ac0Gg2PP2HcaVMVdtZSZFIJ2XmGLz85eVoUQcYbNYWtlJxy9tl5WuQyCbbW0gp5BXjJ8XGX88dm0+a45+Yo0Wo1KBwMoz4UCieylRlG0yQnxrJq2U98/OUvyGTGmz2lMgP7cnnaOziRnWU8z6qwt5Ujk0nIyjFcZyErV0MrhfHjOyrkZOUadr6yctTI5RLsbeVkZatxVMhRlstTmaPG0d60przw3rNjbV/+2XGhILdm01zOHViCqqSQ0JaGz05xYS6/fdwNjboEiVRKrzEz8WvUuZJc/l0s3F0oTjF89ktSM5CamWHu4khxchoWHi4Upxhe2+KUDCw8aj/dUP98a1A4lrsnHZ1Qnjd+/yQlxLFy2SJmffVTpfdkeVYs+xknZ1eatjD+clQdBblZaLUabMpdb1uFM3lXalZXHt/1ByXFBTRuV3a9g5t04cSupfiHtsHRrQG3o05wPWI/Wm3tXyasLUAmlZBXaLg9v1CHrZXpHWsnOwkOnhIuRWv5c68aZ3sJQ9vLkErhwMXarbFiYym5p9HQMZJXoMPO998Lfx/cwZzsfB034017KbO11uvMyTc8v9x8HQqbSupzGym5+YbnlZN/rz63kpCdr+NMZAl21lLenah3BMplEg6cK2LnidpHNBYVVNLHsK15H+PSkT9QqwoIalZ2TxbmpWNdLk9rW+ca12sPcr9dLF+O2fk6mtgaL0d7WynZlZVjZe2im5ylW0xfzys/R/982ykMz9tO4UyOsuqynDmtN3k5mWg1GgY8No2OvR4z2F9YkMvMF3uhVquQSqU89uyHNCzn6KkpTg76wZysbENPkzJHjZtzxX7ofRwd9O3gg9xvFyvj+Qk+XL6ex5342t+b9UWnoH4iHDCCh+Z+5MuDa7g0a1Y2j14ikeDh4VHtWhcPYm1tXep8AfD09CxNn5aWRlxcHJMnT2bKlCmlNmq1utqFfDt06GCgs2PHjsybNw+NRkNUVBRyudzAkeLs7EzDhg2JiooCQKPR8OWXX7J69WoSEhJKnRk2Noae7TZtDDvIUVFRRo9dHf7+/qXOl/LlEBMTg0qlol27dqX7FQoFDRs2rDLPOXPmMHv2bINtM2fOxL7lzMoTlR8m1FGjNXtuRWzl3J4f6T/ppwodrH8bSbl5n/rbsnqNNyO2cmb3jwx85ies7R6xRkl5jbqKZYv+Pvt67hyemDARbx+fSvPTabUoHBx46ZXXkclkBIeEkpmRwfp1a0xywFSuG6oagy2/7/556owk6trKivgUNbcTK18EsmaaypUlOoxdb61Gw0/fzGT0E1Pw9G5QdZ7l0+t0D7c2Vbnzl2C8TB48Xnl7/eay7RXLuuprUzPKn6PxsizPtXNbObnzR4Y9t7DCs2NuYcOEdzZSUlxA3I0THNr4JfbOvviGmL44dK0oX9D3r+OD243ZVHmBqqZiHWT8/tFqNHz/zWzGPDEZr2ruyftsWvs3xw7tZeacHzA3t6g+QVU6K9RDRu59I1w+uZWDG3/k8Vd/wvYBJ87AJz5g89KP+OH9QUgkEhzdfGnRZRQXjlY9JbB2oh8+eX4hbDyhQaeDxAwddlbQtYms1g6Y+1S4Vf7FpQd6tjCjZYichZsKTV7Y9j7G7uiqqyEjFdcDaUIbyBnUyYq/d+ZzO1GNm6OMcX2tyc6zYtuxcp6zGlKxPsdo21ieWxf0fYx+TxvpYxjJ81+tz6utLqqvz+/TpYUl8akP3y6WCjNQUX079uqsZRQXFXD35iW2rFyAi0cDWncu+yiEhaUNb3+1juKiAm5eOcnG5V/j7OZDSON2VeSqp1cnR157xrf0/w/nxdwXVoHqal+j1XoliV5+2ocAX0umf3rTuEE91Sn4v4FwwAiqJTg4GIlEQmRkJCNGjKiw/9q1azg6OuLiUrbwp5mZ4XQFiUSCVlvzTo6x9Pcbrfv5/PrrrwbOEqDSSIGaYKxRvL/9fuM1b948FixYwLfffkvTpk2xsbHh9ddfr7DQbnmHTGV5V0dV5WjM8VWTY82YMYPp06cbbLOwsOCnnRVtLW0ckUhlFJYbiSrMy6jWoXLrwnYOrf2QPk9+i0+IaSMlNeG+xvKjZYV5GdU6VG5e2M6Bfz6k31Pf4hv66DTa2yuQSqVkZRkuVp2tVBr99HhhYSG3bt4gJvoWi37+EdBfV51Ox/Ah/fnksy9p3qIljk5OyOVyg/vex7cBWVmZqFSqCvdPdeQWaNFodSjKjerZ2VSMcik9hzxtBXt7GwlqjY78QsM05nJo19iCjQcNp+bUBjt7B6RSGcpykSk52VkVomIACgsLiLkVxZ2YGyz7ZR4AOp0WnU7HUyM6897s72jcvA0ODs4VImhysrMqRMXUhJw8NRqNrsKIl4OdrEIEy32ysitGsjjYy1GrdaVhycZsFHYVo2JqitX9ZyfH8NkpyM3A2q7qhZyvn9/O3pUfMPiZ72jQsOKzI5FKcXD1A8DNJ4zMlGjO7F38P3HAFKekV4hkMXd1QqtSUZKh1Nskp2PhYXiOFm5OFSJnaoL++TZyTyqruCdvXuNO9E2WLFoAlN2Tjw/rzgefzjdYlHfL+hVsXLOcDz/7Fr+A4Frru4+1nSNSqYy8bMNzzM/JwEZRdV155dR2Nv3xIWOnfUtQY8PrbWPvxOOv/oRKVUxhnhI7Bzf2rJmHg0vlzuPKKCgGjVaHbblZdTaWFSNOakNuoQ6t1vDFKC1bh521BJkUNLXwweQX6dBo9WkfxNZKQm7Bw7tDe7SQ07u1GYs2F5GUYXp+eQV6neWjXexsKkZz3Cc7X4t9+frcWnqvPtdrGdHdmpNX9OvKACSkaTA3g6cG2bL9WGGtHMKW1sbb76K8jAoRLOWJvqjvY/SdULGPYWXrYrRPYGVb+wXq77eLFcul8nLMydMaKXfDcrzP/XZx0yETV4S+h429/vnOLRftkpedWSEqpjzObvpn1atBKLnZGexcu9DAASOVSnH10DuLffwbkZIQw95Nv9XIAXPifDbXbpW1+WZm+nJxdDAj84FIEQd7OcrsyudfZSnVODlUbCPLR5oCTHvKh44tFbz5+U3Ss2o2p6u+6Kw31JOpQHWFKB1BtTg7O9O3b18WLlxIYaHh6EZycjJ///0348aN+599xcjd3R1vb29iYmIIDg42+AUEBFSZ9uTJkxX+DwkJQSaTER4ejlqtNljPJSMjgxs3bpROvzpy5AjDhw/nySefpHnz5gQGBhos0lsZ4eHhRo/9MAQFBWFmZsbp06dLt+Xk5FSrx8LCAnt7e4OffgpSRWRyc1y9GxN/87jB9vibx3H3r3ythFsRWzn4zwx6Pf4NfmE9an5SJnBfY9yNchpvVK3xZsRW9q+aQZ8J3+Af/mg1mpmZERwcSkSE4fo8FyLOExZWcfFNa2trfly4mO9/XFT6GzBoCN4+vnz/4yIa3pvKFx7emKTERAPnZmJCPE5OTrV2voD+JeRuoprwQMPw2saB5tyKN945iI5X0bi8fZA5dxLVFV5q2ja2xEwu4cQl08Ns5WZmBAQ35MqF0wbbL184TUijip/0trK24csf/uaL7/4s/fUeMBJPbz+++O5Pghrqyz+4URMul8vzUsQpQo3kWR1qDdy6W0SLMENHbItwW65FGx8hvhZTSItwW4NtLcNtuHW3kPtL+lyLKaBluE05G1uiKsmzOmRyc9x8GxN73XC9lNjrx/EMqPzZuXZuK7tXvMeAifMIaNyjZgfT6dCoa79GhCkoT17ApbfhC5lr3y5kn7uCTq3vBGedvIBLb8MpUS59upB1ombrTjyI3MyMwOBQLl04Y7D90oWzhDaquOCzlbUNX//4J199/0fpr8/A4Xj5NOCr7/8w+Mz05nUrWLdqGTNmf0NQSM2m8FaqU26Op39joq8a1pUxkcfxDar8el8+uZUNv89g9PPfENq8R6V2ZmYW2Du6o9WoiTq3m0Yte9Vao0arj04J9jLsngZ7SYmt5DPUNSE2VYeTvWGcj4u9hJwCXa2cL/c1xqdpCfU1HPAJ9ZFxJ+XhwlV6tDCjT2tzFm8tIj7t4T4/rdHC3SQ1YQGGbUF4gBnR8cadtjEJasLL2weacTeprD43l0sqjPDro6iodRSQTG6Oi3djEoz1Mfyq6GNc0Pcxej/+DQ2M9DHc/VpUyDPhxjHc/VrUTiBl5Vi+nQsPNOdWJeUYnWC8HX2wHO/TNtxC3y5efrjpJ3K5GT4B4Vy/fMJg+/XLJ/APbV7jfHQ6HWpV1XV1TWzuU1ikJTG1pPR3N6GIDKWKVk3KorvlMgnNGtkSebPywZnIW/kGaQBaN7GvkOaliT50aaPg7Tm3SE6reZtTX3QK/m8gHDCCGvHjjz9SXFxM//79OXz4MHFxcezcuZO+ffvi7e3N559//j/VM2vWLObMmcN3333HjRs3uHz5Mn/88Qfz58+vMl1cXBzTp0/n+vXrrFy5kh9++IHXXnsNgJCQEIYPH86UKVM4evQoFy9e5Mknn8Tb25vhw4cD+migPXv2cPz4caKionj++edJTq76M6MAL7zwAtHR0aXHXrFiBUuXLn2oMrCzs+Ppp5/m7bff5sCBA1y9epVnn30WqVT6rzrDmnadxLXTa7l2Zh1ZKdEc3zyHPGUS4R3GA3Bqxzz2r3q31P5WxFYOrH6PjkPexd2vOQW5aRTkplFcWDa3WaMuIT0xivTEKLRqFfnZKaQnRpGdftckjc27TyLq9FqiTq8jMyWao5vmkKtMosk9jSe2z2PvyjKNNyO2sm/le3Qe+i4eDZpTkJNGQY4RjQlRpCdEodHc05hgusYRI0ezZ9cO9uzeSVzsXX5d/DNpaakMHDQEgGV//M78b/RrAkmlUvz8Awx+DgoHzM3N8PMPwNJSPzw8cPBQcnNz+PWXhSTEx3Pm9CnW/LOSQUOGmaQRYNfJArq1sqJLC0s8XWSM72+Lk0LKwbP6l/zRvW14bkRZ5+Lg2UKcFTLG9bPF00VGlxaWdG1pxa4TFUfzura05Py14gojgLVl4PDHObBnMwf3bCEh7jbLf/uWjLQUeg8cCcCqZQv5eYF+mp1UKsXXL8jgZ69wxMzcHF+/oNKyHDB0HJcjTrNl3Z8kxt9hy7o/uXrxDAOGjTNJ48Y9GfTr6kjfzg74eJjz3Fh3XJ3M2H5Iv+bP0yPdmP5s2XpNOw5l4eZsxnNj3fHxMKdvZwf6dnFk/e6yqIrN+zJpGW7L6AHO+HiYM3qAMy3CbNi0N7PC8WtKqx7PcOXkWq6eXEtmcjSH1n9BblYSzTrrn52jW+ax6693Su2vndvK7r/epdvwd/H0b05+Thr55Z6d03t+4e61Y2Snx5GZEs35A38QdWYTYW1Muy9lNtbYN2+EfXO9A8I6wAf75o2w9PUEoOFn02n+R9l6WncXr8LKz4uwr9/DtlEgPpNG4/vMaGLmLym1ufPjn7j07UzgW1OwaRhI4FtTcOndkTs/mPaVlMEjxrN/91YO7N5KfNwdlv36PelpKfQdNAKAFUsX8eO8TwH9PdnAP9Dgp1A4YmZmTgP/wNJ7ctPav1m9/FdefG0Gbu6eKLMyUGZlUFRo+kh5p36TOH94LecPryMtMZodK+eQnZFE2576671nzTzW/1pWV14+uZX1v71H//Hv4hPUnNzsNHKz0ygqKLve8dEXiTy7m8zUOO7eOMvy+VPQ6bR0HvScSRqPXdXSOkRKq2AprgoY2FaGwgbOXNc7N/q2kjG6i6Hzw8NJgoeTBHM52Fjo/3d9YEby6WsarC1gUHsZzvYQ6iOhezMZp66Z5jA5fFFF+zA57RrJcXOUMKyzOY52Ek5c0b+QD+pgxuO9DV/AvZyleDlLsTDTR8t4OUtxdyxrq3u2MGNgezNWHygmK0eHnZUEOyv9OZnKntNFdG1hQedmFng4yxjbxxonexmHzutf9kf2sObZoWWO30Pni3C2lzG2tzUezjI6N7OgS3MLdp8qcw5cvFVC91YWtA03x0UhJczfjOHdrLl4s8SkGXzNuk7i2pkH+hhb9H2MsHvt9+kd8ziw+oE+xgV9H6PDkHdxa1DWxyh5oA5q0vkp4m8e48LBX1GmxnDh4K/E3zpB0y6mfeVs98lCura0pEtzfbs4rq8NTgoZh87p28VRvWyYPPyBdvHcvXaxr42+XWxuSdeWlkbbxS4trYi4/vDtIkCPwRM5uX8dJw+sJzkhmg3LviIrPYnOffTt2JaVC/jrpxml9kd2reTKuYOkJd0lLekupw5u4MDWpbTpOqTUZs/GX7l+6TjpKXGkJMRwYNsyzhzZYmBTWzbsTOXxoe50bq3A38eSt6Y2oLhEx/4TZWvivf28H8+O9Sz9f+PuNFo3sWfsYDd8PS0YO9iNlo3t2LCrbHmDV572oXcnR+b8fJfCIg2OCjmOCjnmZqb1ieuLzv8iOomkzn71ATEFSVAjQkJCOHv2LLNmzWLcuHFkZGTg4eHBiBEjmDlzJk5Opn8G1RSee+45rK2t+frrr3nnnXewsbGhadOm1X5+eeLEiRQWFtKuXTtkMhmvvPIKU6dOLd3/xx9/8NprrzFkyBBKSkro1q0b27dvL40m+Oijj7h9+zb9+/fH2tqaqVOnMmLECLKzs6s8boMGDVi3bh1vvPEGCxcupF27dqWf6n4Y5s+fzwsvvMCQIUOwt7fnnXfeIS4uDktL45+YNIXgFoMoLlBybu9PFOSk4eQRwsBnf8HO0RuAgpw08pSJpfaRp1aj1ao5uvETjm4sWzg5tPUIeo778l6aVNZ9O7J036XDS7h0eAmegW0Z9sLyWmsMaTGI4nwlZ/f8RH5OGs4eIQyZ/At2Tg9ozCrTePWEXuPhDZ9weEOZxoZtRtB7vF5jfk4q/ywo03jh0BIuHFqCV2BbRkyrvcau3XuQk5vDqhV/kZmZiZ+/PzNnf46buzsAmVkZpKXVfJ0kAFdXNz757Et+W/wzr7w0FWdnF4YOH8nox0xzGgCcuVqMrVUew7rboLCVkpCq5tu/s8nI1g/bKWylOCnKXn7SlVoWrFDyeH9berW1QpmrZcWOXM6V+5Smu5OMUD9zvllufNHh2tCxa1/ycrPZsPp3lJkZ+PgF8vbH83F103eClFnpZKRV7xh9kNCwZrz89qes+esX1vy9GHcPb155+zOCjXyyuiYcOZuDna2M8UNccFLIuZtYzKzvY0nL1EcSOTrIcXUqG2lOSVcx6/tYnhvrzuAejmRkq1m8Kpnj58teKq5FFzJ3cTxPjnDjyeFuJKeV8NXieG7cNi0CBqBhq0EU5WdxctdCCrJTcfYMZfjzi7G/9+zk56SRk5VUan/5uP7ZObD2Ew6sLXt2wtqNpP8E/bOjLingwJrZ5GYnIzezxMktkP5PfU3DVoMwBUXrJnTcV/bMhX/zPgBxf67n0uQZWHi6YuVb1gEuvBPPmaFTCZ83A78XJ1CcmMrVNz4necPuUpusExFETJhOw9mv03D2qxRExxHxxBsoT18ySWOnbr3Jzc1m3aqlZGVm4OsXwHuzvsbVzQMAZVYGGWkptcpzz/YNqNUq5s/50GD7Y48/w5gJxr/mVR1N2g+iIF/Joc0/kZudhpt3CBPe+AUHF/31zstOIzujrK48e3A1Wo2abcs/YdvysuvdovMIRj5373qritm/4TuyUuMwt7QmpFl3Rk35Citr077WdOWOFmsL6NlChp2VjJQsHcv3qlHeG0C2swYHW8NO9svDyp4lbxdoHiQjK0/HvLX65y27AJbuVjOonYyXh5uRmw8nIjUcvmJalMmFWxqsLUro28YMextzkjK0/La1iKw8/Uu0vbUEh3JTVt4cVzavytcNWoXKyczR8vlf+ue3UxM5cpmESQMM2+9dZ0rYfca06Qlno0qwtcpnSBcrFLZSEtM0fL86h8wc/Xk72Epwsi/TmZ6t5ft/chjbx4YerS3JztOyanc+56+XjdBvO1oIOhjRzRoHOym5BVou3VKx4aBpjsGg5oMoKlByft8DfYxnHuhj5Br2MaJOrUanVXNs4yccK9fH6DFWf096+Lei9+PzOLP7O87u/h57J1/6TJiPW4OaR4I8yJnIYmytJAztZq1vF9PUfLeyrF10sJUalqNSy7crsxnfz4aebe61izvzOHfNMNLB3UlGaAMz5v1l+rTcB2nVaSAFednsWreIHGUanr4hPP/ezzi56p39OVnpZKWX1ec6nZatK78lMy0BqVSGi7svQx5/nU59xpbalBQXsmbJZ2RnpGBmboGbVwBPvjSHVp1M/2jBP9tSsTCX8vIkX+ysZVyLyWfG3FsUFpU9j27OZgZT6iNv5vPFT3eY9JgnTz/mSVJKCZ//dJtr0WX33dA++qmn8z4IMTje14vvsudI7Qcq6otOQf1DojN1cQqBQPCfIz8/H29vb+bNm8fkybXroM/f9N+uCqYPl/Ddlv+2xteGSrgRHVvXMqolNKgBz86unbPnf82SmW6cvf7wzppHSZuGjgyZElnXMqpl66/h/Gxkjaf/Ei8OgG1mVS8gXtcMVl3nws3af0Xlf02LEFdWHf9v15XjO0n4cOl/O+z+s0nmvLnw33kxfpTMm2bDlC9q/7W2/yW/vu/MvI3/7XvyzRESJn/633++f//IlR0R/+31Qga2NKPfU7Wfzvm/ZPfylv95jaDXWR/Juniozo7t2Lx7nR27pogIGIGgHhMREcG1a9do164d2dnZpZ/qvj9lSiAQCAQCgUAgEAj+V+jEIrxVIhwwAkE955tvvuH69euYm5vTunVrjhw5YvBFKoFAIBAIBAKBQCAQ1D3CASMQ1GNatmzJuXPn6lqGQCAQCAQCgUAgEEA9WQy3rhDxQQKBQCAQCAQCgUAgEAgEjxgRASMQCAQCgUAgEAgEAoHgoRFrwFSNKB2BQCAQCAQCgUAgEAgEgkeMcMAIBAKBQCAQCAQCgUAgEDxixBQkgUAgEAgEAoFAIBAIBA+NDrEIb1WICBiBQCAQCAQCgUAgEAgEgkeMiIARCAQCgUAgEAgEAoFA8NCIRXirRpSOQCAQCAQCgUAgEAgEAsEjRqLT6XR1LUIgEAgEAoFAIBAIBAJB/Sbt6qk6O7Zr4/Z1duyaIqYgCQQCAGb+qaprCVUye6IZHy8rqWsZVfLJ0+a88WNeXcuolgUv2zJi2o26llElGxeGMuaN23Uto0rWLAhg6PNRdS2jWrb8Ekbu2Z11LaNK7NoM4MLNtLqWUSUtQlzZZtawrmVUy2DVdQqOrKlrGVVi3XUM7ywqrGsZVTL3BStenp9d1zKq5cfpCiZ/+t9+dn7/yJWv1mrrWkaVvPuYlGdnp9a1jGpZMtONovXf1bWMKrEc9Rp9Hj9b1zKqZO/KNv95jaDXWS+RiEV4q0JMQRIIBAKBQCAQCAQCgUAgeMSICBiBQCAQCAQCgUAgEAgED41OxHhUiSgdgUAgEAgEAoFAIBAIBIJHjHDACAQCgUAgEAgEAoFAIBA8YsQUJIFAIBAIBAKBQCAQCAQPjU4swlslIgJGIBAIBAKBQCAQCAQCgeARIyJgBAKBQCAQCAQCgUAgEDw0OomI8agKUToCgUAgEAgEAoFAIBAIBI8YEQEjEAgEAoFAIBAIBAKB4KHRIdaAqQoRASMQ1DEbN24kODgYmUzG66+/XtdyBAKBQCAQCAQCgUDwCBARMII6IzU1lY8++ogdO3aQkpKCo6MjzZs3Z9asWXTs2PFfO46/vz+vv/76f9a58fzzz/PMM8/w6quvYmdnZ3I+d+7cISAggIiICFq0aPHvCQTaNpTSOVyKrTWkKWHHGQ2xqTqjtrZW0L+NDC8nCU72cCpKy86z2gp2lmbQu6WUsAZSLC1AmQu7zmm4mWA835po7NJYdk+jjh2nNdytQuOANjK8nKWlGnec0RjX2EpG+AMad55Vm6yxcxM5PVuZY28tITlTy8YjxcQkVSwbAHtrCcO6mOPrKsPFQcKRiyo2Hi0xsOkQLqdtIzM8nPS+9Pg0DdtOlBCbajzPmjKwm4IRfZxwVMiISyrh9zVpREYXVmrfOMSKZ0e74utpTma2mg17sth1JLt0v6+nOU8McSaogSVuzmb8viaVLQeUD6WxX2c7hvdU4GAvIz5ZxR8bM7gWU1ypfXiQJU8Pd8LHw4ysHA2b9mez53hu6f52Ta0Z1dcBDxc5MqmE5HQVWw7mcPhsnskaB3V3ZFQ/JxwVcmITi/n1nxQib1Vejk1CrJk8xo0GXhZkKtWs253BzsNKA5tOLe2YMMwVT1czktJULN+UxskLucYzrCFr9hxh+bb9pCtzCPT24M2nRtGyUZBR27ORN3nh8x8rbF/79fv4e7kDMPWzHzgfdauCTecW4Xz39vMmady1bT1b1q9EmZmBTwN/np7yGmFNmleb7lrkJWa/9wq+fgHM/WFp6fZ9OzdzeP9O4u7GABAQ3JDHJz5PcMNwk/Q5dWlD4JuTUbRqgqWXG2dHTyNl876q03RtS/g372EbHkJxYirR834jdvEqAxuPkf0InfUa1kENKIiO5frHC0jZtNckjff558Aplu06QroyjyAvN94aP4hWof6V2peo1CzecoBtJy+QkZOHu6M9kwf3YESX1gBEJ6SwcNM+ou4mkpSh5K1xg5jQt9NDaezYWEb35nLsrCWkZOnYfEzFnWTj9ZqdNQzpaIaPqxRnhYRjlzVsOa4ysGkSIKVXSzOcFRJkUkjP1nH4oprzNyvW+zWla3NzerexQGEjISlDy7qDhUQnGM/P3kbCqO6W+LrJcHWUciiihHUHiwxsPJylDOmkt3FWSFl7oJCDESVG86sNPVtb0r+jNQ52UhLS1Kzalc/NOFWl9qENzBjXzwZvVznKXC07jhdw6HyZ1refUtDI37xCuks3i/luVY5JGqNOruDy0SUU5qbh4BZM+8Ez8PBvY9S2ICeV0zvmkp54lZyMu4R3fJIOg983sNFqVFw8tJhbEZsoyEnB3iWAtv3fxCe0q0n6AHq2sWJAp3vlmKpm5a48bsZWUY5+ZozvZ4u3271yPJbPwXNl5fjO0w5Gy/HijWK+W5ldYXtNWX3iCkuPRJCeW0CQmxPvDOlMqwCvSu1L1Bp+2XeGbRdukJ5bgLvClud6tmZkm7BSm7+OXuSfU1dJVubiYGNJ3yZBvNq/AxZmpr9GThztxaDeLtjZyLl2K5/v/7jL3fiiKtN0befApDHeeLpbkJRSzJLVCRw7qyzdP7SPK0P7uuLuYgHA3fhClq9P5MxF0+7L+qRTUL8QDhhBnTF69GhUKhXLli0jMDCQlJQU9u3bR2ZmZl1L+5+Rl5dHamoq/fv3x8ur8gayOkpKHr6TVhmN/SUMaCNl2ykNsWk62oRIebK3jJ82q8nOr2gvl0JBkY7Dl7V0DJcZzVMmhYl9ZeQXwepDGnIKdChsJBSrTHNsNPGXMrCtjK2nNMSmamkbKuPJPnJ+3KSqVGN+ERy6pKFTuPFAQJkUnu4n12s8qCa7VKNJEmkRLGdEVwvWHirmdpKGTo3NmDrUii9XFKDMq3jeMhnkF+rYc7aE7i3MjOYZ7C3j/A0Vt5O1qNU6erUy54XhVny1ooDsfBOdRK1tefYxN35ZlcK1mCL6d1Hw0UvevPLpHdKz1BXs3ZzlfDTNmz3HslmwNJlGgZY8P96dnFwNJy7onRcW5nqHxrHzeTz7mKtJuh6kUwsbnhnhzK9r07l+u5i+nez4YKoHb3wZT7qy4guQm5OcGVPc2Xcyl+//SqNhgAVTHnMhJ0/DqUsFAOQVaFm/R0lCigq1RkfrxtZMG+9Cdq6Gi9crd5pURpc2djw31p1FK5KJjC5gQDdHZr3SgJdmRZNmpBzdnc2Y+Yovu44qmbckkfAga154woOcXA3HI/QOloaBVrwzxZu/NqdxMiKXDi3teHeqN+/OvcONO1V3CCtj94nzzFu+gfeeGUPz0ADW7z/Oq3MXsWbuDDxcnCpNt+6bD7Cxsiz939HetvTvr19/FpW67Dpk5+XzxIy59GnXwiSNxw/vY9mv3zP5xTdpGN6UvTs2MWfWW8xfuBwXN49K0xXk57Fw/mc0ad6abKVhu3L1cgSduvehYVhTzMzM2bzubz7/eDrzflqOk0vt71GZjTU5l64Tv2w9rddUdFCVx8rfh7ZbFhP3+xouPP02jp1a0eSHmZSkZZK8YTcADh1a0HLFAm7M/I7kTXvxGN6HViu/5USPJ1CevlRrjQC7Tl/m61XbmTFhKC2CG7Du8Ble/u5P1n3yKp7ODkbTvPPLKjJz8pg5aSQN3JzJzMlHrS1zhhSVqPBxdaJvmybMW73dJF0P0jxIxtBOZmw8one6tA+XM3mwOfNWFxutK+UyCflFsO+8mq7NjHdrC4ph33kVaUodai2E+UkZ09OMvEIdN+Jr77BuFWrG6B6WrN5XSEyihi7NzJk20obPluWSlWtMI+QW6Nh1qpierS2M5mkul5CerSXihopR3S2N2tSWtuEWjO9vy1/b87gVr6J7K0tef0LBRz9nkplT8bxdHKS8/riCwxGF/LYxl2AfM54cZEtegZZz1/T9jIVrcpA90LTbWkuZNdWRs5GVO8CrIubSdk5t/5KOQz/C3a8V186sZvey5xn12hZsHSr2izQaFZY2TjTv8TxXj/1pNM9ze74j+sIWOo/8BIVrIAk3j7Lv71cY8vwKnL1q72Rt29iCxwfYsnxbLrfiVPRobcUbExR8+FPl5fjGEw4cPl/IrxtyCPY146nBduQW6DgXpS+nn1ZnI5OVTdOwtZYw+wUnk8sRYOelm8zddpQPhnejhZ8Ha09FMm3pVja88TieDsYH+N5esYuMvEJmje6Jr7OCzLxCNA8839sibvDdrpPMHt2T5n4e3E1T8vHa/fq0Q7qYpHPcUA9GD3Ln60W3iU8qYsJIL756P5Rnpl+hsMj48xgWYsOHrwaxdE0CR88o6dLWgY9eC+T1Wde5Fq3v6KVllvDbygQSkvXtYb9uLnzyVjAvzIis1mlSn3X+FxGL8FaNKB1BnaBUKjl69ChfffUVPXv2xM/Pj3bt2jFjxgwGDx5capednc3UqVNxc3PD3t6eXr16cfHixdL90dHRDB8+HHd3d2xtbWnbti1795aNDvbo0YO7d+/yxhtvIJFIkFTxXXqlUsnUqVNxd3fH0tKSJk2asHXr1tL969ato3HjxlhYWODv78+8efMM0vv7+/PZZ58xceJEbG1t8fPzY9OmTaSlpTF8+HBsbW1p2rQpZ8+eBeDgwYOlES+9evVCIpFw8ODBWh1r0qRJKBQKpkyZQkBAAAAtW7ZEIpHQo0ePWlyRyukUJiXilpbzt3SkZ8POs1py8qFtqPHqQ5kPO85ouRijo6jEuBOgZbAUKwsJKw9oiEvTkZ0Psak6UrJM1Bgu5fwtLedvaknP1kfo5ORD24bGHUB6jRouxmgpqsShcl/jiv1qYg00mubY6NHCjFORak5FqknN0rHxaAnKPB2dmxp3rmTl6thwpISz19UUVeJf+2tPMceuqElM15Kq1LH6QDESCYT4GD/vmjC8lyN7j2ez93gO8ckl/L42jXSligHdHIzaD+jqQFqWit/XphGfXMLe4znsO5HN8D6OpTa37hazbEM6R8/lolabVn4PMqSHPftP5bL/VB4JqSqWbswkXammX2d7o/Z9O9mRrlSzdGMmCakq9p/KY//pXIb1VJTaREYXcfpyAQmpKlIy1Gw/nMPdpBIaBRp/WaqOEX2c2XNMye5jSuKTS/jtnxTSs1QM7O5o1H5AdwfSMlX89k8K8ckl7D6mZO8xJSP7lTlBhvd24kJUPmt3ZhCfUsLanRlcvJbPsN6VO0qq4+8dBxneowMjenYk4F70i7uzI2v3HqsynZO9LS4O9qU/mbSsPlDY2hjsO3X5OpbmZvRp38Ikjds2rqJX3yH07j8UH19/Jk19DWcXN3Zv31hlusU/fk3n7n0JbdS4wr5X355J/8Gj8A8MwdvXj+dfeRedVsvli2dN0pi26zA3Zn5L8sY9NbL3mzqeotgkIt/8grxrMcQtWUvc0vUETn+21CbgladJ33uc6LmLyb8eQ/TcxaTvP4n/K0+bpBHgrz3HGNGlNaO6tSHQy423xw/Gw1HBmoOnjdofu3KDc9fv8MOrE+kQHoyXiyNNAn1oEdyg1KZxgA9vjBnAgHbNMJM//Lhe12ZyzlzTcPqahlSlji3HVSjzdHSoxKGflauPkDl/Q1NpmxOTqOXqHX09mZmj49hlDckZOvw9TesG92ptzokrJZy4oiIlU8u6g0Vk5Wrp2rxiRANAZo6OdQeLOB2loqjYuMbYFA0bDxdx7roKtemBOQb062DFkYgijlwoIildw6rd+WTmaOjRxsqofY/WVmTk6O2S0jUcuVDE0QtF9O9oXWqTX6QjJ7/sFx5gTolKx5ko0xwHV44tI7T1KBq2HYODWxAdBr+PjcKDa6dWGbW3c/Smw5D3CWk5AnNLW6M2ty5splmPqfg27I69ky9h7R/HO6QLV44uNUlj/w7WHIko5EiEvhxX7sojM1tLz7aVlGMbKzKy9XZJ6Rr9NYgwVo7a0l/jwHvlGGn6C/jyIxcZ2SaMUW3DCXRz4p2hXfBQ2PLPyStG7Y9dj+Xc7UR+mjSYDsG+eDva09TXnRZ+nqU2F2OTaeHnwaAWoXg72tMptAEDmodwNSHNZJ2jBrqxYmMSR88ouRNfxNyfb2NpLqVX58rbstED3Tl3OYeVm5KJSyxi5aZkIq7mMmqQW6nNyfPZnL6QTUJyMQnJxfzxTwKFRVrCgo3fJ/9XdArqH8IBI6gTbG1tsbW1ZePGjRQXG2+0dTodgwcPJjk5me3bt3Pu3DlatWpF7969S6Nk8vLyGDRoEHv37iUiIoL+/fszdOhQYmNjAVi/fj0+Pj588sknJCUlkZSUZPRYWq2WgQMHcvz4cf766y8iIyP58ssvkd0b5jl37hxjx45l/PjxXL58mVmzZvHRRx+xdOlSg3wWLFhA586diYiIYPDgwTz11FNMnDiRJ598kvPnzxMcHMzEiRPR6XR06tSJ69evA3qHS1JSEp06darxsb7++muaNGnCuXPn+Oijjzh9Wt+B3rt3L0lJSaxfv96ka/MgMil4Oku4lWjYYYxO0uLravoCWw19JMSl6RjcXsbbY+RMGyqnaxMpVfjHqtUYnWg4GnErUUuDh9DYyFdKXKqWIR1kvDPWjJeGyenW1HSNPm5SrscZRj5cj1Pj72G6s6Q85nKQSqGgkg5+dchlENTAkgtRBQbbL0QV0CjQ+Ihsw4CK9hGRBQT7WSJ7BC2MXAaBPhYVolIuXS+kob9xZ0movyWXytlfvFZIoK9FpRqbhFji5WpGVHTtO8NyGQQ3sCQi0jD8KiIyn7Ag4x32RoHWFezPR+YT7GdVqrFRoFXFPK/mExZkjSmo1Gqu3Y6jQ9OGBts7NG3IpZu3q0w74YOv6f/SR7z4xY+cvXqzSttNB0/Sr2MrrCxr78xSq1TE3LpBs5ZtDbY3b9mWG9eMv1QAHNizjZTkBB574pkaHae4uBi1Ro2tnXEn3r+NQ4cWpJVzcqXtPoKidRMk95wYjh1akL73qIFN+p4jOHZsadIxVWo1UXcT6dg42GB7h8bBXIyONZrm0IVrhPt7sXTnEfq99RXDP1jA/H92UFRiYihgNcik4O0q4UacoQfiZrwWf49/r0IJ9pbi6iDhdiVTQKtCJgVfdxlRdw3r86i7agK8/juB5TIp+HnKuRpj6MGPjC4h2Me4ziBvOZHRhvZXokvw85RXWld2bWnJ6avFmHJLaNQlZCRexSu4s8F27+DOpMZG1D7De2jVJcjlhvWNzMyClLvnap2XTAp+XnKuliuXqzElBPsYH0AJ8jGrUO5Xo4vx96qqHK04fcW0cgRQqTVEJabRMcTXYHvHEF8uxqYYTXMw6jbh3m78cTiCPnOWMfSbv5m3/RhFqrJ7u6W/J1EJaVyO0+cRn5nN0et36drQzySdnm7mODuac+5y2TQrlVrHpahcGodW7oAID7Hh3CXDKTpnL+bQOMR4GqkEenR0xNJCSuTN2k8lri86/6voJJI6+9UH/jstheD/K+RyOUuXLmXKlCksWrSIVq1a0b17d8aPH0+zZs0AOHDgAJcvXyY1NRULC31D+s0337Bx40bWrl3L1KlTad68Oc2bl60D8Nlnn7FhwwY2b97Myy+/jJOTEzKZDDs7Ozw8Kg9V37t3L6dPnyYqKorQ0FAAAgMDS/fPnz+f3r1789FHHwEQGhpKZGQkX3/9NZMmTSq1GzRoEM8/r1/j4OOPP+bnn3+mbdu2jBkzBoB3332Xjh07kpKSgoeHB25ueo+4k5NTqb6aHqtXr1689dZbpf/fuXMHAGdn5yrPtbi4uILTS1++FXsF1hYgk+rDux8krxBsvUyv5BztJATYwuUYHX/tU+NsL2FwexlSKRy6VLsO8X2NeeVmieQX6bC1Mr3D7mgnIcBTwqUYLcv36jUOaS9DKoGDtdRoYyVBJpWQW2DoGMkt0GFv/e81FkM6mpOdp6vw8lJT7GxlyGQSlLmGLxbZORoc7Y03Fw72crJzDB0wylw1cpkEe1sZWTn/0lDufY029zUa5qvM1eBgb9yZ5WAnM2ovl0mws5WhvKfR2lLCL7MaIJdL0Gp1/LY2g0s3au+AsbeV6zXmGJajMleNg72N0TSO9rIK5a7MuV+OcrJy1DjYyyvmmaPGsZLzrg5lbj4arRYnhaHTwUlhR3q28XVlXBzs+WDyOMICfClRq9l+9AwvzvmJXz54mVZhwRXsr0TfJTo+iY+mPm6SxpycbLRaDQpHwxFHhaMTyvMZRtMkJcSxctkiZn31EzJZzbo5K5b9jJOzK01bGF934t/Gwt2F4pR0g20lqRlIzcwwd3GkODkNCw8XilMMz7E4JQMLD9Om8WXlFeivt73hi4CzvQ0Z2cY7/glpWVy4GYuFmRnzp00gKy+fOX9vISe/kFnPjDJJR1XYWBqvz3MLdNj5PpwDxtIcPnjKErkUtDrYcETFTROmH9ner8/zH219/rDYWUuRSSXk5BueY3a+jia2xsvS3lZaYfpqTr4WuUyCrbWU7DzDvAK85Pi4yVm6xbR1qIoLlOi0GqxsXQy2W9k6U5CXXkmq6vEO6cKVY0tx92+DvVMDEmNOEBu1H5229u3R/XIsf+45eVoUQcbLUWErJaecfXZeNeXoLuePzaavAZJVUIRGq8PZ1tDJ72xrTXpunNE08Zk5RNxNwlwuY8GTA1DmF/HFpsNkFxTzyWO9ABjYPISs/EIm/bIBdKDWahnbvjGTe7QySaejQu+0yso2bMuystW4uxiPIANwdDAjK9vQO5WVrcLRwdAJFuBrxfefNMLcTEphkYZZ86OJTah9O15fdArqJ8IBI6gzRo8ezeDBgzly5AgnTpxg586dzJ07l99++41JkyZx7tw58vLycHZ2NkhXWFhIdHQ0APn5+cyePZutW7eSmJiIWq2msLCwNAKmply4cAEfH59S50t5oqKiGD58uMG2zp078+2336LRaEojZe47jwDc3fULUjZt2rTCttTU1EqdJDU9Vps2pr0ozJkzh9mzZxtsmzlzJgR+UGkaXbmACokEHmYiiUSiX4Nl80kNOh0kZeqws9LSubG01g6YqngojUB+IWw+UabR3ho6N5bV2gFTlZ6Hn5Cjp1dLM1qGmvHThsKHD18vL0pS8R4wNDfcKSnd/ggpf09SjUYj93D5fAqLdbz9TQKW5lKahFry9AgnUjLURJoQBWNEYrUfZaxM44PlW+EUH/JZfPA4D+qoTKu/l3vpYrsAzUICSMlQsnz7AaMOmE0HTxLk40mTINNGS0s1llOk0+mMTinVajR8/81sxjwxGS/vBhX2G2PT2r85dmgvM+f8gLm5aVPOTKLSC66r2qaqG70GGL3elVxwrU6LRAKfPzcGO2t9FFyJSs3bi1bx3oShWJobjwB4WCo8Ow9/2hSXwLdrijE3gxBv/Tozmbk6YhL/nTZHwiOu80yl1rdQJfW5kURdWlgSn6rmdmLFda1qQ8V7Ulfhma8N7Ye8z7ENH7P+28EgkWDn5EtIq5HcPL/hoXQ+SHX9oIr3sP58jJV911ZWxKc8fDmCkboSXRXPt/5jwXPG98HuXoTim+pOvLViF+8P74almZwzMQn8duAcHwzvRlNfd2Izspm75Sgu+87yfO/q+6G9OjvxxnNl9f8Hc/URk6b0K421f+U3xiUW8fx7kdjayOjazpF3XvRn+ifXq3Vu1Bedgv8bCAeMoE6xtLSkb9++9O3bl48//pjnnnuOmTNnMmnSJLRaLZ6enqXrojyIg4MDAG+//Ta7du3im2++ITg4GCsrKx577LFaL0prZWV8WsB9jHX2jXVGzMzKOqP37Y1t02or7/DV9Fg2NsZH0qtjxowZTJ8+3WCbhYUFX6yuaFtQDBqtjnIDKthY6heINZW8Ah0anWHDlpatw85a/4UKTS36w5VrlDycxkIdGu2/ozG/UIdGW3F01M66YlSMKfRoaUafNub8vKmQpAzTXyZy8zRoNDocykW7KOwqRmfcR3kvMsPQXo5aoyM379+NfgHIzb+v0TDqQ2EnIzvX+PGUuZoKUSIKW5leY35ZGp0OktP153knsQQfd3NG9lHU2gGTk6dGo9FViBpS2FWMYLlPlpEoo/LlqI92MbRxsJOXRvDUFgc7G2RSKRlKw1HXrJxcnBU1/yJbk2B/dhyruHZKUXEJu0+c54XHBpqkD8DeXoFUKkOZZRgJkqPMQuFQcR5+YWEBMTevcSf6JksWLQBAp9Oi0+l4fFh3Pvh0Pk2aty6137J+BRvXLOfDz77FL6CiA+lRUZySXiGSxdzVCa1KRUmGUm+TnI6Fh2FkgIWbU4XImZriaGutv97lol0yc/MrRMXcx0Vhh5uDfanzBSDA0xWdTkdKVjZ+7i5G05lKfpG+PrcrV5/bWknIe4j6HPTvPxk5+jySMtS4OUro2VJOTGLt+gt59+pzOxvD+tz2X6rP/y1yC7T6dqdctIu9dcWomPvk5GlR2Bja29lIUWt0FdpTczm0a2zBpkOGEZC1wcLaAYlURkGu4T1dlJ+Jla1zJamqx8rGiT5P/ohaVUxxgRJrezfO7pqHnaN3rfO6X44K24rlUj7K5T7ZedoK9vY2knvlaJjmfjluPGjkiwG1wNHaEplUQnqe4fXIzCvE2db4NFVXOxvc7G1KnS8AgW6O6HSQkp2Hn4sDP+05zZCWDRnVVr94cYiHM/+PvbuOjuroGzj+XY27GwkxILg3uGtxh5bSUkpLFUpbqGHtU6FIgbohRYu7u0MgaEggISQQl43byvvHloRNNiFZ2ift+8znnD0nuTv33t9em7lzZ+YWFJcwb8sxJnVtiVRadUXZmTAVt+6U/TaFQp/e0V5OhqqspYi9rbxCy5FHZapKcLQzrPB1sK3Y2kSt0ZGQrG/lHRWTTz1/K4b2cWPxL/f+X8T5b6F7ggrU/wViDBjhHyUkJIS8PP0FsEWLFiQlJSGXywkMDDT4ODvrC30nTpxgwoQJDBkyhMaNG+Pu7l7aFechpVKJRlP1DUqTJk24f/8+UVFRlcZ18qRhX/zTp08THBxc2iLlr2LqupRKfZPIx/1WMzMzbG1tDT4Pu3iVp9FCYrqOgHLdjfw9pMSnml7QjEvV4Whj+JzG2VZCdr6uRhUbBjGWG0wxwFNK3JPEmKLD0dYwRqcniPF+ipZgH8Ob52AfObFJT1ZJ0bW5gl6tlPywvYD4J3z9tFoD0XGFNGtgWFhrVt+SWzHGKyEi7xbSrH659A0suXOvsMbbqboxxtwvokmw4R1ak2ALImONjycVFVtYIX3TehbExBdVGaMEUMhrXohQa+BOXCHNGxhWkjZrYEVEJa/zvhWTT7Ny6ZuHWHHnXkFpjLdiCoymiYg27QZIIZdTv64P565HGkw/dy2SJkF1q72cyNj7ONtXHDvlwNnLlKjV9G3f2shc1SNXKPAPDOZq+AWD6VfDLxJcv1GF9BaWVsxftpIvlvxW+unRdxCe3nX4YslvBq+Z3r5pDZvWrWDmnK8ICKpvcoymUJ0Nx7m74auaXXp2ICvsOjq1vpIu82w4zt0Nx8Zw7tGBzDOmjY2hkMtp4OvJ2ZuGrwg/e/MOTQOMtxZqFuhLalYO+YVl59a95HSkEgluDnZG53kSGi08SNUR5GOY1wV5SSt9DfWTkJuQfWu0EJ+soX4dw+t5fV/5X9KC4a+i0cK9RDUN/Q27S4T4K7lz33ic0Q/UhJRL39Bfyb1EdYVrZesQMxRyCWeumf7EXiZX4uTZkIQ7pw2mJ9w5jWsd08Y6epRcYYaVnRs6rZrYGweo06B7jZeh0cK9BOPb5c594zfi0fdLKmz3hgFKYhOMbMeG5vrtePXJWj4o5DIaeLpw9rZhd6Ozd+7TtI6b0Xma+bmTmpNP/iOvd7yXlqU/v+30lbKFxeoKDwVlEik6na5C61djCgq1JCQXlX7u3S8kPbOYFo3Lrh9ymYQmDWy4EVX5GCg3b+fRorFhPtOyiS03HjduiqSsMuX/Q5zC/w+iAkaoFenp6XTr1o3ff/+dq1evcvfuXf744w++/PLL0u43PXr0IDQ0lMGDB7Nv3z5iY2M5ffo0H374YembhAIDA9m8eTPh4eFcuXKFsWPHVmhd4ufnx/Hjx3nw4AFpacafHHbu3JlOnToxbNgwDhw4wN27d9mzZw979+4F4O233+bQoUPMmzePqKgoVqxYwbJlywzGYPmrmLouV1dXLCws2Lt3L8nJyWRlZVWZvrpOR2hpESileaAEZzvo00qKnRVciNJv5x7NpQxpb1iKdXfQf5RyfUsUdwdweaSsfiFSi6UZ9G0jxckGgrwkdGws5UKkaQXs0ze1tAiS0jxQqo+xtUwfY6S+cqNHCxlDO5SPUYK7gwSlHCzN9f8/GuP5SM2fMcpwsoVgLwmdGss4f8u0CpOj4SU8FSKnTQM5rg4SBndQ4mAt4fR1fcGnf6iSsT0MK8I8naV4OksxU+ifAHs6S3FzKMuguzVX0O8pJesOF5KRo2+dY2Mp4Ul6BWw7nEmPdnZ0D7XF213JC8NccHZQsO+ECoBnBjnz5nNl3ef2nlDh4qjg+WEueLsr6R5qS492dmw7WPZKK7kM6nqbUdfbDLlMgqO9nLreZri7mBbozqPZdH/Khq5trPFyVfDcYEecHeTsP60fh2BsfwdeG1v2ZP7A6RycHeQ8N8gRL1cFXdtY062tDduPlJ0jg7vb0STYHFcnOZ6uCp7ubEun1tYcv2jaoHhbD6bTs4M9PdrZ4e2u5MURrrg4KthzXL9dxg92YeqEsjdN7D2mwtVJwcQRrni7K+nRzo6e7e3Zsr/s9cnbD2XQPMSKYb2d8HZTMqy3E00bWLH9UEaF9VfXuL5d2HrkLNuOnuXugyQWrNpMUnomw/688V+2bgcff/d7afo1e45y9OJV4pJSiL6fyLJ1Ozh84Qoje3WssOxtx87SuWVj7G1Ma633UP/Bozm8fydH9u/kfnwsK35aQlpqMj37DdbHtPx7li2YB4BUKqWOn7/Bx87OAYVCSR0/f8zN9RVx2zauZv2qn3jlzZm4unmgykxHlZlOYYFplVkyK0tsm9bHtqm+Iseyrje2Tetj7qPfx/U+mUbT374oTX/vx3VY+HrSYP4MrOv74z1hGD7PDyNm4a+laWKXrcS5Z3v8p0/Cqp4//tMn4dw9lNilK0yKEeCZnu3ZciKMrSfDiElI4at1u0nKyGJ4F30l2ZJN+/nwl42l6fu2bYKdlQWzfttMdEIKYVF3WbxxL4M6tCjtflSiVhMZl0hkXCIlag0pqmwi4xKJSzY+Rs/jnLiqpk19Ga3qyXC1lzCgnQJ7Gwlnb+qvvX3ayBnV1fDa4eEkwcNJgplcgrWF/n/XR66VXZvLCfKW4mgjwcVeQscmcloGy7gcZdr1/HBYMe0aK3mqoQI3RylDO5vjaCPlxBV9a5qBHcx4to9hpa+XixQvl7LruZeLFHfHsmK4fgBifRq5DOxt9H8725teVN9/toCOzc3p0NQcD2cZo3pa4Wgn41iYviJ4aDcrJg4qa+12NKwAJzt9Og9nGR2amtOxuTn7zlQ8Lzo0t+ByZNETtTQFaNT+OaLCNhF1cROqlGjO7fqM3KxE6rcZBcDFfQs59sd7BvOkJ0SQnhBBSVE+hXmZpCdEkJlSVrGYEn+F2Bv7yc6IJyn2IvuWv4ROp6Vxx4kmxbjvbD6dWljQoZl+O47ubY2jnZSjF/XbcVh3K14c/Mh2vPjnduxlrd+Ozczp2NzC6Hbs2NycS7eefDsCPNuxKZsvRrDlYgQxKRnM33mSRFUOI9rqK6u/3nuGDzaUvSm0X9Ng7CzN+HjjYaKTMwi7m8DC3acZ3Ko+5gp9BWPnBr78ce46e67c5n5GNmdux/PNgXN0buBn8Pa7mti8J4Wxg9xp38oeP29z3n3Fj8JiLYdPleVl773ix8TRXo/Mk0yrJraMGuCOj6c5owa406KRDZt3p5SmeWGUF43qWePmrKSujwXPj/SiaYgNh06Zlkf+W+L8J9JJpLX2+TcQXZCEWmFtbU3btm1ZtGgR0dHRlJSU4OPjw6RJk3j//fcBfXed3bt388EHH/DCCy+QmpqKu7s7nTp1Kh1LZdGiRbzwwgu0a9cOZ2dn3nvvPbKzDZvTz507l8mTJxMQEEBRUZHR7jygfxPR9OnTGTNmDHl5eQQGBvL5558D+tY4GzZs4OOPP2bevHl4eHgwd+5cg0Fx/yqmrksul7NkyRLmzp3Lxx9/TMeOHY1236qpG7E6LM20dG4iw8YCUlSw+pCGrD9balpbSLArd3/1yoCywrGXMzTxl5KZq2PxZv1Tt+x8WHlAQ5/WUl4ZKCcnH85GaDl5w7QKmOuxWizMoEtTGTYWMlJU+sF9H8ZoYwF25ZqLTxloGGNTfxmZuToWbSp5JEY1fVrLmDJQ8WeMGk5cNy3G8DtqrMyhd2sltlYSEtO1/LizgMwc/fFoaynBwcYw43hndFnLEh9XGS3rKcjI1jJvpb4Q176xArlMwvN9DQv6e88Xs+98zZrVP3QqLBdbqxRG9XPCwVZGXGIx8759QGqGft852spwcSjLOlLS1cz79gEvDHOhXyc7MrI0/PxHCmfCyyouHO3kLHq/rG/1kJ6ODOnpyPWofD5cfL/GMZ4Oz8PaSsrw3vY42MqJTyzmPz8mk5apj9HBVobzozFmqPnsp2SeG+xI7w62ZGap+XVLOueulhWGzZVSXhzujJOdjOISHQ9SSlj6eyqnw01rFn7yYg62VsmM7u+Mo52cewlFzFkWV7Yd7eS4OJYdg8npJcxZGs+LI93o39mBjCw1P65P4vTlssEtb8UU8OXPD3h2kAvjBrqQlFrMlz89ICrW9CenvUJbkJWbx89b9pGmyiLA24Ov35mMh4u+e0+aKpuk9LLKtBK1hsVrtpGakYWZUoG/tzuL33mJDs0MX/V8LzGF8MgYls14xeTYHmrXqTs5OVlsWreczIx0fHzrMmP2fFxc9RWBqsx00lONv+WjMgd2b0GtLmHhZx8aTB8+5nlGjKv5TZpdy0aEHlpV+n/IV/p8LH7lZq5OnImZhwsWPmUVbgWx97kw4CVCFszE95VxFCWkcGPqpyRt2V+aJvPMZS6Pm0a9OW9Rb84b5EfHc3nsVFTnr9Y4vod6t2lMVl4+P+44QlpWDoGebix981k8nfSvR0/LyiHpzy5QAJbmZnw37Xm+WLOTZz75DjsrC3q2asyrQ3qUpklV5TB67jel/6/cd5KV+07SMtiPn999scYxXonWYGkOPVrJsbWUkJSh49fdxahy/7xWWkmwtzG8nk8dUdZFyttVSvMgORk5Wj5frW+5o5TDkI4K7KwklKghRaVl3eESrkSbVgFzKaoEKwsJfZ8yL72ef7slr+x6biXFsdz1fOazZTfoddyhdQMl6VlaZv2iP8ftrCUGaXq0MqNHKzNux6v5+g/TrkMXbhZhbSFhQCdL7KylPEhV8/XaLNKz9PmYvbUUR9uyONNUWhavzWJ0Lyu6trJAlaNlzd5cwm4Z5idujjKC6yhY8PuTdZsB8G/Sj6J8FeFHviU/JxUHtyB6jf8e6z+7C+XnpJKXZfgGy23flA0AnZ5wg5grO7G292TkO4cA0KiLuHRgCTmZ8ciVlngHd6LziC8wszDtLWcXbhRhbZHLwM5W+u2Yombx6rLtaGctxdGu7CFPmkrLojUqxvS2plvrP7fjnhzCyr2q281RRrCvkq9WZfJX6NMkiKy8In48dJHUnDwC3Zz4ZsLTeDroj6u0nHySVGV5s6WZgh9eGMjnO04w9puN2Fma0atxIK/1aluaZlLXVkiQ8M3+c6Rk5+FgZUHnBn4GaWpq/Y4kzJRS3nihDjZWciKi85jxnygKCsvKV67OZmgfKa7fvJ3HJ0tieH6kJxNGepKQXMQnS2K4FV12DDrYyZnxal0c7RXk5Wu4G1fAzM9vc+maaYMb/1viFP59JLrK7kYFQfifMmvl3/Na0b/KnPEKPl5hWqXCf8vc55RMXfbPf43gotesGTzFeHe7f4qt3wYzYmrVr0KubX8sqsuAyRG1HcZj7fihATkX99Z2GFWyadWH8NuptR1GlZoFubBLUe/xCWtZ/5JI8k/8UdthVMmy4wje/d54d7x/ii9ftuC1hX9NS9K/07Jpdkyc988+d375yIUvNv4NfVL/Qu8Nl/LCnJTHJ6xlv85ypXDz17UdRpXMh75JjzEVxwX7Jzm4ttU/PkbQx/lvFHe79spGdYIa1Nq6q+vf0U5HEARBEARBEARBEAThX0xUwAiCIAiCIAiCIAiCIPzNxBgwgiAIgiAIgiAIgiA8sX/LYLi1RWwdQRAEQRAEQRAEQRCEv5loASMIgiAIgiAIgiAIwhPTIXl8ov9hogWMIAiCIAiCIAiCIAjC30xUwAiCIAiCIAiCIAiCIPzNRBckQRAEQRAEQRAEQRCemBiEt2pi6wiCIAiCIAiCIAiCIPzNRAsYQRAEQRAEQRAEQRCemBiEt2qiBYwgCIIgCIIgCIIgCMLfTKLT6XS1HYQgCIIgCIIgCIIgCP9u0TExtbbuAH//Wlt3dYkuSIIgADBxXmpth1ClXz5yYfp3+bUdRpW+esWShdv++XXa0wZJ6P/i9doOo0q7fm7E2Bn3azuMKq353JsBkyNqO4zH2vFDAwqOrq3tMKpk0WUM607/s8+d0e0k5J/4o7bDeCzLjiPYpahX22FUqX9JJOG3/9l5TrMgFzae09Z2GI81vK2UUzdzazuMKrUPsWbqsn92jItesyYsKqO2w3islsGOFG74qrbDqJL5yOn0GHOxtsOo0sG1reg++nxth/FYh9a1qe0QhL+B6IIkCIIgCIIgCIIgCILwNxMtYARBEARBEARBEARBeGI6nRiEtyqiBYwgCIIgCIIgCIIgCMLfTLSAEQRBEARBEARBEAThielEG48qia0jCIIgCIIgCIIgCILwNxMVMIIgCIIgCIIgCIIgCH8z0QVJEARBEARBEARBEIQnpkMMwlsV0QJGEARBEARBEARBEAThbyZawAiCIAiCIAiCIAiC8MREC5iqiRYw/0JJSUn07NkTKysr7O3tAZBIJGzduhWA2NhYJBIJ4eHh1V7m8uXLS5cllJkwYQKDBw+u7TAEQRAEQRAEQRCEfznRAqaWTZgwAZVKVVp5Uh2LFi0iMTGR8PBw7OzsKnzv4+NDYmIizs7Of2GkpsVqqtmzZ7N169YaVSJVpUuXLjRr1ozFixfXaL6vv/4anU73l8Twdzt69Chdu3YlMzPzL69M69rSnN6hltjbSHmQqmbdvjxux5dUmj64joJRvazwcpGjytGy53Q+xy4VGqTp0caCrq3McbSVkZuv5WJEEZsO56HWmBZju4ZyujSTY2MpITlTx7ZTxdxN1BpNa2MJA9op8XaR4mwn4eQ1NdtPGf6eRnVldG8hx9lOikwKqVk6jl0p4VKUiQECN06v4cqxX8jPScXBLZB2A9/Ho24ro2ljru3n5tl1pCdEoFEX4+AWSKuer+FTr2Npmoyk21zcv4TUBzfIzUwgdMBMmnR8zuT4HjV2oCt9OjlgbSkj8m4B361OIC6hqMp52rWw5dnBrni4KElMLWbllmTOXM4xSNO/iyNDezvjaC8nLqGIH9clcuN2fo3j6/GUFU93ssHeRsaD5BJW7lQRGVtcafr6dZU8298eLzcFqmwNO47ncOhcXun3nVpa8vIIxwrzPffhfUrUNQ4PgH6dHRjayxEHO/1v/WlDMjfvFFSavlGQJRNHuFLH04wMlZpN+9PZe1xlkKZdcxvGDXTBw0VBYmoJq7alcjY8x/gCq2n90fOs2H+atKwcAjxdeWdkH1oE+VaavrhEzQ+7jrH73FXSsnNxs7flxX4dGdy+BQCbToSx8+wV7iSkABBSx4PXBnencV1vk2M8f3gNp/b8Qq4qFRevQPqOfR/fYOPnzs2L+7lwZB1Jcfpzx8UrkK6DXiOwcdm5o1GXcGLXj4Sf2kpOZjJOHnXpOWI6QY+kqakNR86xYt8J0lS5BHi6Mn10P1oE+1WavrhEzY87jrDrbDjp2bm4OdgysX8XBndoCUD0g2S+3XaIiHsJJKarmD6qH+N6tjM5PscOrfB/eyJ2LRph7unKxWFTSN5+qOp5OrYm5KsZWIcEUZSQQvSCn4n7cZ1BGvchvQie/SaWAXXIj44j8uNFJG87aHKcAPt2bWbH5rWoMtLxruPHc5PepEGjpo+d79bNq8yZ8To+vnX5cuny0umH9m7n+OG9xN+LAaBuYD3GjJ9MYL0Qk2M8e3ANJ3f/Sk5WKq5egfQfNxO/esaPydjIMPZtWEBqQgwlxYXYO3vSputI2veZYJDu+oX9HNy0hIyUOBxd69Bz+Js0bNXT5BgBDu/ZwN6tq1BlpuHl48+YidMJDmluNG3UzctsXLWUxPuxFBcX4uTiTpdew+g1cJxBuv071nBk70Yy0pKwtrGnVbvuDH/mNRRKM5NibN9ITtcWSmwtJSRlaNl6ooiYSvJvW0sJAzso8XGR4Wwv4cSVEraeNLz2PxUip3V9Be6O+ufM91M17DpTTFyK8WVWx4Fdm9i5eTWqzHS86tRl/KS3qN+w2WPni7x5hXkzX8XH15/Plqw0+O78qSP8sfpHkhMf4ObhxchnJ9M6tIvJMQKsP3eT5SevkJZbQICrA+/2fYoWfh6Vpi9Wa/jhyCV2XblDWm4+brZWvNi5OUNa1gOgRKPll+Ph7LgcRUpOPn5OdrzVuw3tg3yeKM7xwzzp190ZGys5t+7kseS3e9y7X1jlPB3b2DNhhBcebmYkJhfx6/oHnLqoKv1+QA8XBvR0wc1Zfxzeu1/Aqs0JXLiSbXqcw73o380FG2s5EXdyWfLrPe7drzwf18fpwPMjvUvj/GX9fU5dyCyLs6crA3u44ubyaJwPOB+eZXKc/zSiBUzVRAuYf6Ho6GhatmxJUFAQrq6uFb6XyWS4u7sjl4v6tZKSyisJqsPOzu5/vmVQ6xAzRve2ZtfJfOb8lMntuBLeGmuHo63xy4ezvZS3xthxO66EOT9lsutkPmP7WNOyvrI0TdtGZgzvbsX24/l8+F0Gy3fm0KahGcO6WZkUY9MAGQPbKzh4qYRFfxQSk6jhxf5m2FsbzwDkMgl5BToOhZWQmGa8gq2gSMehS2qWbi5kwYZCLtxSM6qrkmAf0y6bd8J3c3rHZzTv9jLD3tyCe91W7P7lJXIyE4ymT7x7Ee+gdvR94UeGvbEJz4C27F0+hbQHN0vTqEsKsXH0oW3ft7G0cTEpLmOG93FmSE8nvl+TyNRPosnMKuGTaX5YmFX+2+v7WzBjsg+Hz6h4bc4dDp9RMWNyHerVtShN07G1LZNGu7N+dypvzI3melQec970xcVRUaP4nmpiwfin7dl6JJv3lyRzK7aI9553xslOZjS9i4OMd5935lZsEe8vSWbr0WyeG2BP60YWBunyC7W88kmCwcfUypcOrWx4caQbG3an8+Ynd7lxp4DZr9fBxcH4ddnNScGs1324caeANz+5yx970nlplDvtmtuUpqnnb8G7k7w4ci6LN+bd5ci5LN57yYtgP3PTggT2XbjO/A17ebFfR9Z9+DLNA+vw6tLfScxQVTrPuz/9wflbMcwaP5Ctc17jsxeH4edeVuF/MSqWPq0b8dO051j53kTcHe145etVJGeaVgi+fm43e9d8RqenX+blOVvwDW7F7wtfQpVu/Ny5F3WRgIbteGbqj0yetYm69duy5uspJN4rO3cObf6ai0fX02/ch7z66S5adRnNuqWvGaSpiX3nrzF/3W4m9uvC2o+n0DzYl9e+XkliuqrSed79YR3nb0Uza8IQtn7yFp9NGoWfe9l5XFhcgreLI28M64WznbVJcT1KZmVJ9tVIbrw5t1rpLfy8ab3jRzJOhnGy9WDufPE9DRd9gPuQXqVp7J9qRvM1i3iwehsnWg7iwepttFi7GPs2TUyO8/TxQ6z4aQlDRo7n8yW/Ur9hUz6bPZ20lKQq58vPy+XbhZ/QqGnLCt/duHaZdp178PFnS5n31Q84u7jx6cfTyEhLNSnGq2d3s3v153QeOJlX527GL7glK76ajCrN+DGpNLPgqR7jmPTBKt76fBddB77MgY1LOH9kQ2mauNuXWf/NNJq3H8jrn2ylefuBrPtmGvHRV0yKEeD8yf2s/XUBTw9/gdkL1hAU0pxF814nPTXRaHozcwu69RvJjE9/4tOlGxkw/EU2r/mWo/s3l6Y5c2w3G1ctZdCoSXy6dCPPv/YR50/uZ+Pvy0yKsVmgnMEdzThwsZiv1ucTk6DhpQEWlebfMhnkFeg4cLGYhDTjFSqBXjIuRZXwzdYCvt6YT2aOjpcHWWBnZdpN4ZkTB1n582IGj5zAf75eQf2GTfli9rRqHZPfLZpHw6YVK+aibl1jyZcf0aFrHz5bspIOXfuw5IsPuRN5w6QYAfZei+bLPWeY1Lk5618ZQgtfd6as2kuiKrfSed5Zf4hzMQnMHtKJbW+O5POR3ajrYl/6/bKDF9h4IYIZT7djy+vDGdGmAVPXHCAiIc3kOEcNcGdYPzeW/RbHqx/cJENVwhfvB2NhXnkZo0GQFR++EcDBk+lMnnGTgyfT+ehNf+oHlJUbUzOK+XntA6Z8cJMpH9zk8o0c5k4PxNfbtDxy9EAPhvdzZ+lv95jy/g0yVSV8+X69KuMMCbLmozcDOXAijZfeu86BE2l8/GYA9QPL4kxLL+antfFM+eAGUz64weUb2cydHoSvt0WlyxX+fxEVMP8wXbp04Y033uDdd9/F0dERd3d3Zs+eXfq9n58fmzZtYuXKlUgkEiZMmFBhGca6IG3fvp2goCAsLCzo2rUrK1asQCKRoFKpDObdt28fDRo0wNramj59+pCYqM+kZ8+ezYoVK9i2bRsSiQSJRMLRo0eN/gadTseXX36Jv78/FhYWNG3alI0bN5Z+f/ToUSQSCYcOHaJVq1ZYWlrSrl07IiMjAX13qDlz5nDlypXSdS1fvhyArKwsXnrpJVxdXbG1taVbt25cuVJWOJk9ezbNmjXj119/xd/fHzMzM5577jmOHTvG119/Xbq82NhYNBoNEydOpG7dulhYWFCvXj2+/vprg99SvgvS4/YP6LuD/fDDDzz99NNYWlrSoEEDzpw5w507d+jSpQtWVlaEhoYSHR1tMN+OHTto2bIl5ubm+Pv7M2fOHNRqtcFyf/75Z4YMGYKlpSVBQUFs3769dJ937doVAAcHh0qPDVP0esqCE5cLORFeSGKahnX788jI1tCllfGMoktLC9Kz9ekS0zScCC/kZHghvUMtS9MEeCu4E1/CuetFpGdpuRGj/9vPs2Y34g91birn/C015yM0pKh0bD9VgipXR2hD4ze7mTk6tp0qISxKQ2Gx8QqY6AQt1+/ql5eerePkNTWJ6Trquhu/yX+cayeWU7/1MBq0HYGDWwDtB76Ptb07N8+uNZq+/cD3adblRVx9GmPn4kfbvtOwc/bl3s0jpWlcfRoT+vS7BDbrj1Ru2rYzZlAPJ9bvSuX0pWzuJRSx8NcHmCmldG5bscVd6Tw9nbl8M5c/9qRxP6mYP/akceVWLoN6OJWmGdLTmf0nM9l/IpP4xCJ+Wp9EWmYJ/bpUbHlSlX4dbDh6MY+jF/JJSFWzamcW6VkaejxlvAKve1tr0lUaVu3MIiFVzdEL+Ry9mMfTHQ1vanU6yMrVGnxMNbiHEwdOqdh/SsX9pGJ+3pBMWmYJfTs7GE3fp7M9qRkl/LwhmftJxew/peLgKRVDepVtm0HdHQmPyGPj3nTuJxezcW86V27lMbB7zbbfo1YdPMOQ9i0Y2qEl/h4uvDuqL+4Odvxx7KLR9Keu3+ZiVCzLXh/HUw0C8HJ2oHFdb5oF1ClN89nEYYzq0ob6Ph7UdXfh42cHotPpOH8rxqQYT+9fTvNOw2jZeQQungH0Hfs+to7uXDhs/NzpO/Z9OvR7ES//xji5+9Fj+DQc3XyJDC87d66e2UbHpycT3LQzjq4+tOk2hsBGHTi99zeTYvz9wCkGd2jJ0E6t8Pd05Z3R/fXb8eh5o+lPXY8iLDKWpW+M56mQQDydHWjk702zwLLt2LCuN1NH9KFPmyYo/oIHKqn7jhM1azFJWw9UK73vS6MpjEvk5tv/IfdWDPG/biR++Wb8p71Qmqbu68+RdvA00V/+SF5kDNFf/kja4bP4vW56S7xdW9fRrefTdO89AG8fPya89CZOzq7s3721yvl+XDaf9p17Ely/YYXv3nhnFr37D8XPPwgvH18mv/4eOq2Wa1eMH+ePc2rvClp2HkrrLiNw9Qqg/zPvY+fozrnD64ym9/QLoWlof9y8g3Bw8aJZ+4EENW7Pvciy9Z/et5KARu3oPOAlXDz96TzgJQJCnuL0vpVGl1kd+7b/Tsfug+jUcwiePnUZO3E6jk5uHNm70Wh6X//6PNWxD151AnB29SS0Sz8aNQvl9s3LpWmiI68RVL8pT3Xqi7OrJ42ahdK2Y29i75hWedmlmYJzN9Wcu6kmJVPH1pPFqHJ1tG9sPE/LzNGx5UQxFyPVFFbS6PH3A0Wcuq4mIU1LikrH+iNFSCQQ5G1a/r1761q69BxA194D8fLxY/ykqTg5u3Jwz+Yq5/v5my9o17knQfUbVfhu77b1NG7WmkEjnsPLx49BI56jYdNW7Nm+3qQYAVadvsaQFvUY2qo+/q4OvNsvFHdbazacN75vTt2OJyw2kW+e7c1TAV54OdjQ2NuVZnXcStPsunKHFzs3o2NwHbwdbRnZJoR2gd6sPHXN5DiH9nVlzdZETl5QEXu/kC+/u4u5Ukq39pXnZcP6uhF2LZu125KITyhk7bYkLt/IYWi/sgfRZy9lcT48iwdJRTxIKuK3DQ8oKNTSINC0Cuyhfd1YszWBkxcyib1fwBffxmBuJqV7e6fK5+nnRti1LNZuS/wzzkQuXc9mWF/30jRnLqk4H57F/cRC7icW8uv6+xQUagkJMu0hpPDvIypg/oFWrFiBlZUV586d48svv2Tu3LkcOKAvMF24cIE+ffowcuRIEhMTK1QYGBMbG8vw4cMZPHgw4eHhTJ48mQ8++KBCuvz8fL766itWrVrF8ePHiYuLY/r06QBMnz6dkSNHllbKJCYm0q6d8abQH374Ib/99hvfffcdN27cYOrUqTzzzDMcO3bMIN0HH3zAggULuHjxInK5nBde0BfqRo0axdtvv03Dhg1L1zVq1Ch0Oh39+/cnKSmJ3bt3ExYWRosWLejevTsZGRmly71z5w4bNmxg06ZNhIeHs2TJEkJDQ5k0aVLp8nx8fNBqtXh7e7NhwwZu3rzJxx9/zPvvv8+GDRuoSlX756F58+Yxfvx4wsPDqV+/PmPHjmXy5MnMnDmTixf1Ba7XXnutNP2+fft45plneOONN7h58yY//PADy5cv59NPPzVY7pw5cxg5ciRXr16lX79+jBs3joyMDHx8fNi0aRMAkZGR1T42HkcmBV8POTdiDEs5N6OLCfQ2fkMQ4CXnZrRh+uvRxfh6yJH9ecW5E1+Cr4ecup76ZTjbS2kcpOTq7aq7uFQWo5eLlKh4w5vlqHgNfu5/3SUu0EuKq72EmMSad0HSqItJfXAD7+D2BtO9g9qTHHu5krkM6bRaSoryMLOsvBLkr+DurMDRXsGlG2VPzNRqHdcj82gQaFnpfPX9Lbh80/Ap26UbuaXzyGUSAn0tuHzDSJqAypdbnkwGdb0UXL1t2FT52u1Cgn2NN38P8lVyrVz6q7cLqeutLD0mAcyVEr5+z52lM92Z/pwTviZWCMplEFjHnMs38wymX76ZR4MA4xWX9f0tK6S/dDOPQF+L0hj127jcMm/k1Wj7PapErSYiLoHQkACD6U+FBHAlOt7oPEevRtLQ15Pl+07R870FDPxoCQs37qOwuPLWhoXFJag1Wuysav50T60uJjH2BoENDc+dgIbtiY+u3rmj1WopLszDwqrs3FGXFCNXGB4vcqUZcbfDahxjiVpNxL0EQhsGGkx/qmEgV6LjjM5zLPwWIX6eLN97gl7Tv2DQB4tYuGFPldvxv83+qWakHjxlMC11/wnsWjZC8meFkMNTzUg7eNIgTdqBEziEGu/i8jjqkhJi7kTRpHlrg+lNm7cm6tb1Suc7cmAXyUkPGD72+Wqtp6ioCLVGjbWNbc1jVBeTEHuDwEaGx2Rg4/bE3a7eMZkQe5O4O+H41S/7nXF3rhDUyLBcFVSDZVaIs6SEe9G3aNjsKYPpDZs9xZ1bV6u1jHsxt7gTeZV6DVuUxdSgGbHREcRE6fdHStJ9roWdoknLDjWOUSYFb1cpkfGGTQ0j49X4mfiwwxilHKRSyC+qeZdydUkJd+9E0qR5G4PpjZu3JSqi8kqIowd3kpL4gGFjJhr9/vat6zQut8wmzdtyu4plVqVErSEiIY3QQC+D6aGBXlyJTzYe4617hHg689vJq/T4cjUDFq9nwd6zFD7S9LNYrUEpN9wXZgo54XFVt/6pjIerEicHJWHXyrrblKh1XI3IoWFw5RUlIUFWhF01bEV58Uo2DYOMzyOVQJdQB8zNpNy8XXkLoMrjNMPJQcnFq4ZxXonIoWGwTaXzhQRZG8wDcPFqVqW/TSqBrqGO+jijah7nP5UOSa19/g1EH5V/oCZNmjBr1iwAgoKCWLZsGYcOHaJnz564uLhgZmaGhYUF7u7uj1mS3vfff0+9evWYP38+APXq1eP69esVbu5LSkr4/vvvCQjQF8Zfe+015s7VN1W2trbGwsKCoqKiKtebl5fHwoULOXz4MKGhoQD4+/tz8uRJfvjhBzp37lya9tNPPy39f8aMGfTv35/CwkIsLCywtrZGLpcbrOvw4cNcu3aNlJQUzMz0BeevvvqKrVu3snHjRl566SUAiouLWbVqFS4uZU25lUollpaWBsuTyWTMmTOn9P+6dety+vRpNmzYwMiRIyv9jVXtn4eef/750mW89957hIaG8tFHH9G7d28A3nzzTZ5/vqyg+OmnnzJjxgyee+650m02b9483n333dJ1gb5FzpgxYwD4z3/+w9KlSzl//jx9+vTB0VH/5MDV1fUv6zZlYylFJpWQnWdYuZGVp6ORtfHKDVtrKVl5hoWc7DwtcpkEa0spWblazt8owtpSwowJ+jjlMglHLhaw53TV/WqNsTKXIJNKyMk3XGdOgQ4byye7EJsr4aPxFsiloNXB5hPF3L5f81YRhXmZ6LQaLKwNn5pY2DiRn1O9ZrxXjv9GSXE+AU371nj9NeFgp88WVNmGBWJVthoXp8orJBzs5GRmGc6TmaXGwVa/PFtrGTKZxMhyNaXrrA4bSykymYSsnHLHZI4Wu2Djx6S9tZSrRtLLZRJsrKSocrQkpKj5/o9M4pNLsDCT0Ke9NbNfdmHm1ykkpdesH5Kttdz4b81RY29r/AmXg60MVU7FbS6XSbC1lpOZrcbeVm50vzjYmnajkpmbj0arw7FcTE42VqRlGy8IPkjN5PKdOJQKOQtfHoUqN5//rN1FVl4Bc54bbHSerzcfxNXehrYN/GscY35OJlqtBitbw3PH2s6J3OvVO3dO7/uN4qJ8GrYpO3cCG3XgzL7l+AW3wsG1DncjzhB5+TBabc0rWPXbUYujrWEB28nWivSsyrdj+O04zBQKFk4ZR2ZuHp+t3kF2XgGznx9a4xj+DmZuzhQlG27j4pR0pAoFSmcHipJSMXN3pig53SBNUXI6Zu6mdYnMzs5Cq9Vg52D4JNzOwRHVpXSj8yQ+iGftiu+Z/cU3yGTVu5asWfEdjk4uNG5mfMyWquTnqNBqNVjbGY6zZ23rRG5W1cfkF292IS8nA61GQ7chr9K6y4jS73Kz0rC2Lb9MZ3Ies8zK5PwZp5294blja+9Elsr4tnzo7Rf7kpOViUarYdCol+jUc0jpd2079iYnO5PPPpgIOh0ajYaufYbTf1j1Kr8eZWVRSf6dr8P2CfPvRz0dqiQrV0dUfM3P75zsh9ux3DFp70CWKsPoPIkJ8axb8S2zPv++0mNSpUo3skxHVJlV75vKZOYXotHqcLI2rJB3srYgLcd42ep+Rg6X45JRymUsGtsTVX4h/9lxiqyCIuYO0ZfP2wV6s+rUNVr6eeDjYMu5mAccvRWLRmva+IgOdvpyhLHygpuz0tgs+vnsFWRmGVZQZ2aV4GBvWC6p62PBkrn1USqkFBRqmL0wmrgHVY8tU9n6Hq6j/DofjjFjjKO9wnhZyEicS+eFlMY5a8Ft7pkQp/DvJCpg/oGaNDHsO+3h4UFKSorJy4uMjKR1a8OnSW3atKmQztLSsrTyxdT13rx5k8LCQoPKCNBXijRvbvhE7NHf6eGhHyAsJSWFOnXqYExYWBi5ubk4ORkWJgoKCgy68/j6+hpUvlTl+++/5+eff+bevXsUFBRQXFxMs2bNqpynOvvn0TRubvqmnI0bNzaYVlhYSHZ2Nra2toSFhXHhwgWDSjGNRkNhYSH5+flYWlpWWK6VlRU2NjY13kdFRUUUFRm2NHlYoVWpcvmsRKLvrlHdGR4Wox4OaFzPV8HTHaz4fXcuMQkluDrIGNPbmqdzLdl5ouYDshojMRJ3TRUVw8INhZgp9E2XB7ZTkpFdRHSCiV1TJOUKlDp917LHuXN5J2EHltF7wjcVKnGeVJe2drz2rGfp/7OX3HsYmiETysISScXllD9uHn8sVXdlVLm/y3/1cLM/XPed+GLuxJe13Iq6l8Gnr7vSq50VK3eYNjBehXU+Lr2RbaNfTtkXxvbLk24+SbnIdFQeq1anQyKR8J+Jw7Cx0Pern16iZvqPG5g5pj/mSsNC5m/7TrL3wjV+fnsCZgrTu8mVP090uopxG3Pt7E6Obl3GmDe+wfqRSpy+Yz9g+/KPWPp+PyQSCQ6uPjTrMJTwk1V3Kag6RsP/dbqK0x7S6rRIJPDpiyOwsdRvx+ISNe98v44Z4wZU2I61ptKDUld1mic8qSsck38ed+VpNRqWfDWHEWMn4ullvOxQ3raNqzl17CCzPluK0sRBY/UxGtJRxQ7/06QPf6e4MJ/4O+Hs27AQJzdfmob2f2Sh5c9F47/7SSLVb8uq55jx6c8UFeYTHXmNjauW4erhw1Md+wBw6/pFdm78lWdfmoF/cCOSE+NZ+8tX2Dk4M3DkJJMiNHa0/FWvP+jWXEHzYAXfbCkweZB/wGj+bYxWo+Gb+bMYPvZFPB5zTFa4rhmZVlMVjssqr0P69gKfjeiGjbm+8uPtPhqmrz/I+0+3x1wh593+oczdeoLBX/+BRALeDrYMal6PbZcjqxVPt/aOTH2xbFD3D768XRqXQdzVyMuMlkvKTYxPKGTyjJtYW8no2MaBd1/xY9rcyMdWwnRv78TUSX6l/7//RZTxOOGxL+co/72x8mh8QiEvvXcdays5Hds48N4Uf6bNifh/Uwmj0/07WqLUFlEB8w+kKFdIlUgkaLWmj0VgrOBi7OJhbL01fQPQwzh37dqFl5dhM8jyN/mPru9hfFX9Tq1Wi4eHh9GxZx5t8WFlVb0+lBs2bGDq1KksWLCA0NBQbGxsmD9/PufOnatyvursH2O/rarfq9VqmTNnDkOHVnzyaW5eNnjYX3FsfPbZZwYtfwB9KxvZqxXS5uRr0Wh12JZr7WJrWbFVzEPZuVrsrAzT21hJUWt05BXoj6fBXaw4c1U/rgzAgxQNZso8xve3YdeJ/BoVvPIKdWi0FVu7WFtIyCl4siKcDkjP1i8jIV2Nq4OUbs0VRD/mbUDlmVs5IJHKKCjX2qUgN/2xFSp3wndzbOOH9HhmMd5Bpr8BpTLnwnOIvFtWgamQ67ejg61hixZ7G30rjMpkZqkrtGR5tMVGdq4GjUZXIY2djaxCq46q5ORr0Wh02NkYHmN21tJKx2xR5WqxL5fe1lp/TObmG59Hp4OY+8W4O9f8Rjg7V63/rbblf2vFFiwPZWZrjKZXa3Tk5OrvGvStXcptYxs5qmzT7iocrC2RSSWkl2vtkpGTh5Ot8ebSznY2uNrblFa+ANT1cEGng+TMbHzdyo7nFftP8cueE/zw1niCvavXYrM8SxsHpFJZhZYFednpWNlVfe5cP7ebbb99yMgpiwloaHjuWNk6MuaNbygpKaIgV4WNvSsH/liAvXPN39Sk347SCq1dMnLyKrSKeUi/HW1LK1/g4XbUkZyZha/bX/sWQ1MUJadVaMmidHFEW1JC8Z+DCxclpWHmbhirmatjhZYz1WVra4dUKqvQCiBblVmhtQBAQUE+MbdvERt9m1+/XwSATqdFp9MxZmBnPpi30GBQ3h2b17D1j1V8+MlifOsGVlhedVja2COVyiq0TMnLzjCo5DPG0UV/fLn7BJObnc7hLctKK2Cs7ZzJzTIcFDgvO/2xy6yMzZ9xZqkM48zJysD2MeeOi5u+/ObtG0R2Vgbb1v1YWgGzZc13tOvcr7RVjLdvEMWFhaz47hOeHj4RqbT6XX/zCvT5d/nWLjaWFVvFmKJLcwU9Win5blsBiemmlaNtbP/cjuWOyaysKo7JOxHExkSx/PuFQNkx+cygDsycu5iGTVthb+9k5DjPMLrM6nCwNEcmlZCWa/gQKyOvACdr490/XWwscbW1Kq18AfB3sddfz7Pz8HWyw9HKgsXjelFUokZVUISrjSWL95/H077ybjiPOhOm4tadsq6zCoV+Xzvay8lQlbUusbeVV2ht8qhMVQmOdob5sYNtxVYxao2OhGR9GS0qJp96/lYM7ePG4l/uVRnn6bBMIu6UXcMVCumfcSoM47RToMqqvMySoSrBsVxrF3u7ir+tLM4iomLyqBdgxdC+7iz6ObbKOIX/H8QYMP8D6tevz4ULFwymPRyHpCaUSiUaTdUF/ZCQEMzMzIiLiyMwMNDg4+NT/VfWGVtXixYtSEpKQi6XV1j24165bWx5J06coF27dkyZMoXmzZsTGBhYYWDc/5YWLVoQGRlZ4XcFBgZWuzCjVOoz0Mfto5kzZ5KVlWXwmTlzptG0Gi3cS1TT0N+wWWiIv5I7941nQNEP1ISUS9/QX8m9RDWaP8s/SkXFJxla7Z9PCWpYaa7RwoNULcHehtsp2FtGbJLpFZeVkZvQ20MmV+Li1ZD7t08bTL9/+zRufpWPlXDn8k6ObphJtzFf4dugS81XXA0FRVoSU4pLP3EJRWSoSmjesOzGUS6T0KieFRF3Km+ddCumgGYhhjebzUOsS+dRa3TcuVdAc2Npoqvf6kmjgbsPSmgcaPhWg0aB5kTdM14xdvteMY3KpW8SZM7d+8Wlx6Qxvh5KVDk1r9xQa+BOXCHNGxhWBjdrYEVEtPGm4Ldi8mlWLn3zECvu3CsojfFWTIHRNDXZfo9SyOU0qOPJmQjD6965iGiaBhi/XjcL8CFVlUN+Ydm2vpecjlQiwc2hbDyN5ftO8dOu43z7xjM09PMytqhqkcuVePg1JPqG4bkTc/M0PgGVnzvXzu5kyy8zGTb5K4Kbdqk0nUJhhq2DG1qNmoiw/dRv3q3GMSrkchr4enL25h2D6Wdv3qFpgPEn4M0CfUnNqmw7/r3jPFWX6mw4zt0NK65cenYgK+w6uj8HiM88G45zd8OxUJx7dCDzjGnjlsgVCvwDg7kablhmuRp+kWAjA5laWFoxf9lKvljyW+mnR99BeHrX4Yslvxm8Znr7pjVsWreCmXO+IiCovknxgf6Y9PRryJ3rhsfkneunqRNU/bFvdDodanVZq7s6gU0rLPN2DZdpEKdCgW9AfW5eMXyodOPKOQLrV/8tVTqdDnVJWZzFRYVIypVLJDKpPk+v4UM7jRbup2gJ9jGsWA72kROb9CTNVaBrcwW9Win5YXsB8U/w+mm5QkHdwHpcu2x4TF4PP09wg8YV0ltYWvHFst/5bMmK0k/3PkPw8KrDZ0tWEFBPP0h0UP1GXCt3nF+7fJ4gI8usDoVcRgNPZ85GPzCYfjb6AU193IzO06yOG6k5eeQXlVUO3EvP0l+HynVNNVPIcbO1Qq3VcehmLF0b+FUrroJCLQnJRaWfe/cLSc8spkXjsuucXCahSQMbblQxBsrN23m0aGw4ZlPLJrbceNz4LpKySp+axVlAemYxLR9Zp1wmoWkDG25E5VQRZy4tGxtew1s1savyt4G+BVB14hT+fxAVMP8DJk+ezK1bt3jvvfeIiopiw4YNpW8VqklTRz8/P65evUpkZCRpaWlGX/FsY2PD9OnTmTp1KitWrCA6OprLly/zzTffsGLFihqt6+7du4SHh5OWlkZRURE9evQgNDSUwYMHs2/fPmJjYzl9+jQffvjhYyuU/Pz8OHfuHLGxsaSlpaHVagkMDOTixYvs27ePqKgoPvroowoVVf8tH3/8MStXrmT27NncuHGDiIgI1q9fz4cffljtZfj6+iKRSNi5cyepqank5hq/2JuZmWFra2vwqaoL0v6zBXRsbk6HpuZ4OMsY1dMKRzsZx8L0N5JDu1kxcVDZk5CjYQU42enTeTjL6NDUnI7Nzdl3puwm8UpUMV1amtOmoRnO9lJC6ioY3MWK8Kgik1quH7uipk0DOa3ry3C1lzCwnQJ7Gwlnb+hvEvq2VTC6m2GlkKeTBE8nCUoFWJvr/3ZzKDsfujWXE+QtxdFGgou9hE5N5LQKlhF227T3EjfuOIFb5zdy68ImMpOjOb39M3JViYQ8NRqAc3sWcHjde6Xp71zeyZH1Mwh9+j3cfJuSn5NKfk4qRQVlGb9GXUxaQgRpCRFo1SXkZSWTlhBBVlrVT3oeZ9vBdEb2cyG0uQ2+nmZMfcGLomItx86VdcWZ9oIXzw0tK9RtP5hGixBrhvdxxttdyfA+zjRrYM22g2VP+LYcSKNXRwd6trfHx8OMSaPccXFUsPuo8X70ldl9Moeura3o3MoSTxc5zzxth7O9jEPn9E/ZRvW25ZWRZW8bOnQuF2cHGc/0t8PTRU7nVpZ0aWXFzhNl58jQ7jY0CTLD1VGGr4eCl4Y74Oup4NBZ0wbF23ownZ4d7OnRzg5vdyUvjnDFxVHBnuOZAIwf7MLUCR6l6fceU+HqpGDiCFe83ZX0aGdHz/b2bNlftm22H8qgeYgVw3o74e2mZFhvJ5o2sGL7oZptv0c92yOULScvsfXUJWISU5m/YS+JGVkM76QfG2PJloN8+FtZt5x+bRpjZ23Jxyu2EZ2QQlhULIs27WdQ++al3WZ+23eSb7YfZvZzg/B0sictK4e0cpUNNdGu1wQuHd/IpeObSE2IZs/az8hKT6R1V/25c+CPBWz+qezcuXZ2J5t/nkHv0e/hHdCUnKxUcrJSKcwvO3fuR1/h5sX9ZKTEcy/qIqsWTkKn09K+34smxfhMz/ZsORHG1pNhxCSk8NW63SRlZDG8i77775JN+/nwl7I3z/Rt2wQ7Kwtm/bb5z+14l8Ub9zKoQ4vS7ViiVhMZl0hkXCIlag0pqmwi4xKJSzZtjAiZlSW2Tetj21Rf+WBZ1xvbpvUx99Efh/U+mUbT374oTX/vx3VY+HrSYP4MrOv74z1hGD7PDyNm4a+laWKXrcS5Z3v8p0/Cqp4//tMn4dw9lNil1c/vy+s/eDSH9+/kyP6d3I+PZcVPS0hLTaZnv8EArFn+PcsWzANAKpVSx8/f4GNn54BCoaSOnz/m5von/9s2rmb9qp945c2ZuLp5oMpMR5WZTmGBaZWX7fs8R9ixTVw8tomUB9HsWq0/Jtt0GwXAvg0L+eOHsmPy7MHVRFw+QlpSLGlJsYQd38zJPb/RrN2A0jShvcdz5/ppju/8idSEGI7v/InoG2do13u8STEC9B74DMcPbuXEwW0kxN9l7a8LyEhLokvv4QBsXLWUn77+uDT9od0bCL9wnOSEOJIT4jhxaDv7tq0itHO/0jRNW3fiyN6NnDuxj9TkB9wIP8vWNd/RrHUnpLKaP6E4Gl7CUyFy2jSQ4+ogYXAHJQ7WEk5f15cx+4cqGdvDsIzi6SzF01mKmULf2tXTWVou/1bQ7ykl6w4XkpGjbyFrY6nP703Rb/AYjhzYztEDO3gQH8uqnxaTlppM9776VkDrVnzLtwv1LYulUik+vgEGH1t7B5RKM3x8A0qPyT4DR3Lt8nm2b1zFg/hYtm9cxfUrF+g7cJRpQQLPtmvM5rBItoRFEpOSyfzdZ0jMymVEmwYAfL3/PB9sLHsbXL8mgdhZmPPxlmNEp2QSFpvIwn3nGNwiGHOFvlLsanwKB2/c5X5GNpdiE5mycg9anY4JHUx/1fzmPSmMHeRO+1b2+Hmb8+4rfhQWazl8qiwve+8VPyaO9npknmRaNbFl1AB3fDzNGTXAnRaNbNi8u6wb/gujvGhUzxo3ZyV1fSx4fqQXTUNsOHTKtDxy855kxg72pH1rB/y8LXh3ij+FRVoOnSq7Br83xZ+Jo70N5mnVxI7RAz3w8TRn9EAPWjSyZdOeskGLJ472pnF9a9xc9HG+MMqbpiG2HDpp2rX9n0gMwls10QXpf0DdunXZuHEjb7/9Nl9//TWhoaF88MEHvPLKK48f++MRkyZN4ujRo7Rq1Yrc3FyOHDlCly5dKqSbN28erq6ufPbZZ8TExGBvb0+LFi14//33q72uYcOGsXnzZrp27YpKpeK3335jwoQJ7N69mw8++IAXXniB1NRU3N3d6dSpU+k4K5WZPn06zz33HCEhIRQUFHD37l1efvllwsPDGTVqFBKJhDFjxjBlyhT27NlT7Tj/Kr1792bnzp3MnTuXL7/8EoVCQf369XnxxerfDHh5eTFnzhxmzJjB888/z/jx40sr2p7EhZtFWFtIGNDJEjtrKQ9S1Xy9Nov0LP0TJXtrKY62ZXW5aSoti9dmMbqXFV1bWaDK0bJmby5ht8qeoD0c52VwFyscbKTk5Gu5ElXM5iOGb3iprivRGqzMS+jZUoGtlYSkDB2/7CoiM1dfm2NrKcHB2vCiPG1kWZNcH1doESwnI1vLf1bru0UpFRKGdlRiby2hRA0pKi1rDhVzJdq0p3KBzfpRlK8i7OA35Gen4ugeRN8XfsDGQV/AyM9OJVeVUJr+5rn1aLVqTm6dy8mtc0unB7ccTNdRn/85TwqbFpcNjnj1+K9cPf4rHv6tGfjyKpPiBNi4Nw2lUsqUcZ5YW8mIjCngo4WxFBSVPUV0cVIaVJZFRBfwxY/xPDvYjWcGu5KUWswXP8YTebesxceJC9nYWiUxZoArjnZy7iUUMevre6Rm1OzNL2evFmBtqWJod1vsbWTcTyrhy+VppKn0+8beVoaTfVn2lpqp4cvf0nj2aXt6hlqTma1hxQ4VF66XxWZpIWXiUAfsbWTkF2q5l1DCvB9Sib5v2ltpTl7MwdYqmdH9nUt/65xlcaRm6CvwHO3kuDiW3Q0kp5cwZ2k8L450o39nBzKy1Py4PonTl8sqDW7FFPDlzw94dpAL4wa6kJRazJc/PSAq1vQ+471bN0KVl88Pu46RlpVLoKcry14bh6eTPQCpWTkkZpRVvFmam/H9W8/y+bo9jPvPj9hZW9KrZUNeHVTWcmTDsQuUqDVM/8HwjXKTn+7MKwO61jjGRm37kZ+n4tj2b8jJSsXVK4hxU3/A3ll/7uRmpZKVXnbuXDy6Hq1Gza5Vc9m1quzcadZ+MENe1J876pIiDm/5msyUeJTmlgQ16czQSV9gYVnzt+IA9G7TmKy8fH7ccYS0rBwCPd1Y+uazeDrpKwLTsnJI+rPbDui343fTnueLNTt55pPvsLOyoGerxrw6pEdpmlRVDqPnflP6/8p9J1m57yQtg/34+d2aVxTZtWxE6KGy60LIV/o8OX7lZq5OnImZhwsWPmWVggWx97kw4CVCFszE95VxFCWkcGPqpyRt2V+aJvPMZS6Pm0a9OW9Rb84b5EfHc3nsVFTnq/eWHWPadepOTk4Wm9YtJzMjHR/fusyYPR8XV303NlVmOumpxt/qUpkDu7egVpew8DPDhxrDxzzPiHHG31JTlSZP9SM/V8WRbd+So0rFzTuI8W9/j8Ofx2SOKpWs9MTS9Dqtjv0bFpKZ+gCpTIajqw+9R06jddeym23foOaMmrKAA5u+5uCmpTi6+jB6ygJ8AprWOL6H2nToRW6Oiu0bfiIrMw2vOgG89eESnF31+zkrM42M1LIbQ51Oy6ZVy0hNeYBMJsPF3Zvhz75O517DStMMGDERiUTCljXfkpmRio2tPU1bdWLYMxW7MVdH+B01VubQu7USWysJielaftxZQGbOI/l3uS6k74wuG2jWx1VGy3oKMrK1zFupL1u0b6xALpPwfF/Drjd7zxez73wl766uQmjHHuRmZ7F53a+oMtLx9vXn3VkLcPlzO6oyan5MBjdowuvvzmXDqh/4Y/WPuLl78fq7nxBYr+Jr1KurT+MAsvKL+PHoJVJz8gl0c+SbZ/uUdhdKy80nKausnGVppuCHCf34fNdpxn6/BTsLc3o18ue1HmWDUxerNXxz6CL3M3OwVMrpEOTDp8O6YGth+vhJ63ckYaaU8sYLdbCxkhMRnceM/0RRUFhWxnB1NuPRcX5v3s7jkyUxPD/SkwkjPUlILuKTJTHcii77PQ52cma8WhdHewV5+RruxhUw8/PbXLpm+Pak6lq3PRGlUsqbL/jq47yTy3v/iSwXp9JguIabUbl8suQOz4/0ZsJILxKSi5j3dbRBNywHOwUzXg0ojTMmLp+Zn0USZmKcwr+PRFfTQT6E/xc+/fRTvv/+e+Ljjb9qVPjfM3Fe6uMT1aJfPnJh+nd/zQC9f5evXrFk4bZ//iV12iAJ/V+s/JWu/wS7fm7E2Bn3azuMKq353JsBkyNqO4zH2vFDAwqOrq3tMKpk0WUM607/s8+d0e0k5J/4o7bDeCzLjiPYpahX22FUqX9JJOG3/9l5TrMgFzae++u7sf7VhreVcurmP/v1te1DrJm67J8d46LXrAmLMr014X9Ly2BHCjd8VdthVMl85HR6jKn5UAf/TQfXtqL76PO1HcZjHVpX8aUp/wbX75j2mvK/QqNA08ac+28SLWD+R3z77be0bt0aJycnTp06xfz583nttddqOyxBEARBEARBEARB+J8gKmD+R9y+fZtPPvmEjIwM6tSpw9tvv13pwKuCIAiCIAiCIAiCUFP/lrFYaouogPkfsWjRIhYtWlTbYQiCIAiCIAiCIAjC/yTxFiRBEARBEARBEARBEIS/mWgBIwiCIAiCIAiCIAjCE9PpRBekqogWMIIgCIIgCIIgCIIgCH8z0QJGEARBEARBEARBEIQnphWD8FZJtIARBEEQBEEQBEEQBEH4m4kKGEEQBEEQBEEQBEEQhL+Z6IIkCIIgCIIgCIIgCMIT04kuSFUSLWAEQRAEQRAEQRAEQRD+ZqIFjCAIgiAIgiAIgiAIT0y8hrpqEp1Op6vtIARBEARBEARBEARB+He7FJVea+tuEexUa+uuLtECRhAEAMZ/lFjbIVRp5TwPXl+cXdthVGnpW7ZMXZZb22E81qLXrJkwO7m2w6jS8tlujJp+r7bDqNL6r3zpMeZibYfxWAfXtvpXnN8fLi+u7TCq9MkEJe9+X1DbYTzWly9bEH47tbbDqFKzIBd2KerVdhhV6l8SyZFr//z93bWxBckRYbUdRpXcGrTkp4O1HUXVJvWAzCvHajuMx3Jo2pm3v82r7TCqtGCKFd1Hn6/tMKp0aF0buo48V9thPNaRDW1rOwSTiDFgqibGgBEEQRAEQRAEQRAEQfibiQoYQRAEQRAEQRAEQRD+p3z77bfUrVsXc3NzWrZsyYkTJ6o136lTp5DL5TRr1qzG6xQVMIIgCIIgCIIgCIIgPDGdTlJrn5pYv349b731Fh988AGXL1+mY8eO9O3bl7i4uCrny8rKYvz48XTv3t2k7SMqYARBEARBEARBEARB+FcrKioiOzvb4FNUVGQ07cKFC5k4cSIvvvgiDRo0YPHixfj4+PDdd99VuY7JkyczduxYQkNDTYpRVMAIgiAIgiAIgiAIgvDEdEhq7fPZZ59hZ2dn8Pnss88qxFhcXExYWBi9evUymN6rVy9Onz5d6W/77bffiI6OZtasWSZvH/EWJEEQBEEQBEEQBEEQ/tVmzpzJtGnTDKaZmZlVSJeWloZGo8HNzc1gupubG0lJSUaXffv2bWbMmMGJEyeQy02vRhEVMIIgCIIgCIIgCIIg/KuZmZkZrXCpjERiOG6MTqerMA1Ao9EwduxY5syZQ3Bw8BPFKCpgBEEQBEEQBEEQBEF4YjUdDLc2ODs7I5PJKrR2SUlJqdAqBiAnJ4eLFy9y+fJlXnvtNQC0Wi06nQ65XM7+/fvp1q1btdYtxoARBEEQBEEQBEEQBOF/glKppGXLlhw4cMBg+oEDB2jXrl2F9La2tly7do3w8PDSz8svv0y9evUIDw+nbdu21V63qIAR/iuOHj2KRCJBpVLVdiilunTpwltvvVXbYVTg5+fH4sWLazsMQRAEQRAEQRCEGtHW4qcmpk2bxs8//8yvv/5KREQEU6dOJS4ujpdffhnQjyczfvx4AKRSKY0aNTL4uLq6Ym5uTqNGjbCysqr2ekUXJKFUfHw8s2fPZs+ePaSlpeHh4cHgwYP5+OOPcXJyqu3w/mdcuHChRifxf0P3Npb062CFnbWMBylqVu/JIupeSaXp6/kpGdvHFi9XOaocDbtO5nHkQr5BGktzCcN72NAqxBxLcylpKg1r9mRz9bbxV8U9TscmCrq3NMPWSkJiupbNxwqJTtAYTWtrKWFIJ3N8XKW4OEg5Fl7M5mOG63V3lNI/1AwfNxlOtlI2HSvk6OVik2J7qH0jOV1bKLG1lJCUoWXriSJiEo1nF7aWEgZ2UOLjIsPZXsKJKyVsPWm4/qdC5LSur8DdUV+Xfj9Vw64zxcSl1DQLMtSttQV921lhbyPlQYqaNXtziIqrYn/7KhjT2wYvVzmZORr2nMrnyMWC0u9nTHCgvp+ywnxXoopYtEZlUoy92lkzoIsd9jYy7icXs2JbJrfuVn7sNPA3Y/xAB7zdlGRmq9l+NJuDZ3KNpm3XzJI3n3HhwvV8vlqealJ8jxo/zJN+3Z2xsZJz604eS367x737hVXO07GNPRNGeOHhZkZichG/rn/AqYuq0u8H9HBhQE8X3Jz1/Zzv3S9g1eYELlzJrnF8/4bzu009KR0bybC2hJRMHbvPa7iXojOa1toC+raW4ekkxckWzkZo2X2+4rXAXAk9msto6CvF3Awyc2DvBTVRD4wv93FCG8ro3FSOjaWE5Ewd20+VEJtk/Fy0sYSnQxV4u0hxspNw6pqGHacNt3mjulK6NVfgZCdBJoW0LB3Hr6i5dNv4da269u3azI7Na1FlpONdx4/nJr1Jg0ZNHzvfrZtXmTPjdXx86/Ll0uWl0w/t3c7xw3uJvxcDQN3AeowZP5nAeiEmxefYoRX+b0/ErkUjzD1duThsCsnbD1U9T8fWhHw1A+uQIIoSUohe8DNxP64zSOM+pBfBs9/EMqAO+dFxRH68iORtB02KEeDo3vUc2L6CrMw0PH0CGDHhHYJCWhhNeyfiMpt/X0zyg1iKiwtxdPagY89h9BjwrEG6/Lxstq1ZxuVzh8nPy8bZ1Ythz02jcYuOJse5ZfcB1m7dSUamCj8fL16fOJ6mDesbTXv52k3e/OiTCtNXLZuPr7cXADv2H2bfkRPExMUDUC+gLpOeGUVIcKDJMV4+vpoLB38hLysVZ48gug5/H+/AVkbTRoXv58qJtaTcj0CjLsbJI4h2/V6jbojxbXTr4i52/jaNwCbdGTz5W5Nj3LjvKKu37yNdlUVdb0+mThhFswZBRtOG3Yjk1TkLKkxft2gOfl4eAOw8eppPvl1eIc2x37/BTKkwOc52DeV0aa4oLWdsO1XM3UrKGTaWEga2U+LtIsXZXsLJq2q2nTIsZ7RtIKdVPfkj5Qwtu88VE/+E5Yzxw73o380FG2s5EXdyWfLrPe7dL6hyno5tHHh+pHdpvvjL+vucupBZ+v2Anq4M7OGKm8uj+eIDzodnmRzncyO8eLq7qz7O27l8/UsssY+Js1NbB54f5YOnmxkJyUX8sjaek4/E+aixgz2ZNNaHjbsS+WZFnMlxCqYZNWoU6enpzJ07l8TERBo1asTu3bvx9fUFIDExkbi4v36/iAoYAYCYmBhCQ0MJDg5m7dq11K1blxs3bvDOO++wZ88ezp49i6OjY22HWWM6nQ6NRvNEI1X/VYqLi1EqK96Elufi4vJfiKb62jYyZ1xfW1bszOJ2XAldW1ky/VlHZi5NJT2rYgbsbC9j+rMOHL1YwA+bVATVUfDc03bk5Gm5eFN/0ymTwbvPOZKdp2XpukwysrQ42UkpKDbtxqdFsJyhnc3ZcLiQmAQN7ZsoeGWwJZ+uyiUzp+Iy5XLILdCy/4KaLs2N7xOlAtKytFy+XcLQzuYmxfWoZoFyBnc0Y+OxIu4mamjXUMFLAyz4fE0+qtyKMcpkkFeg48DFYjo3M14YC/SScSmqhLtJWtRqHd1aKHl5kAVfrMknK8+0bdmmoRlj+9iwclcOt+OK6drKgmnP2PP+N+lkGN3fUqaNc+DYpXx+2JxFUB0l4/vb6Pd3hP5me+l6FXJZWX9gKwsJ815x4sLNqishKhPa1JLnBjryy+YMImML6fGUDTNfdGXa/ATSVRVvTl0c5cx40ZXDZ3NZtiaNen7mTBzqSHaulvPXDCsOnB1kPPO0AxExpsVW3qgB7gzr58b87+9yP7GQcUM8+eL9YJ6fdp2CQuMF2AZBVnz4RgDL/3jAyQsqOrS256M3/XlrdiS3ovMASM0o5ue1D3iQpI+zVydn5k4P5OWZNx9bufOof8P53chPSr82Mnac1RCXoqV1PRnje8pZsrWErLyK6eUyyCuEY1c1tAsx3tBXJoUJveTkFcDao2qy83TYWUkoqrzeqUpNA2QMaKdg6wl9pUvbEDkT+ytZsL7I6Pktl0nIK4RDl9R0bGI8f8ovgkOXSkhV6VBroYGvlBFdFeQW6Ii6b9rNz+njh1jx0xImvvI29UIac3DPNj6bPZ2F367C2dW90vny83L5duEnNGrakixVhsF3N65dpl3nHtRr0BiFQsn2Tav59ONpLPhmFY7ONc/PZFaWZF+N5P6KzbT8Y9lj01v4edN6x4/E//IH4c+9g0O7FjRaOovi1AyStuwHwP6pZjRfs4ioWV+TtO0g7oN60GLtYs50GYvq/NUax3jx1D7+WD6fMS++T0D9Zpw4sJFl/3mVWYs24+jiUSG90syCrn1H4+UbhNLMguhb4az+YR5m5hZ07DkcAHVJCV/PfRkbO0demj4fByc3MtOSMbewrHF8Dx06eYalv65k2uQXaFQ/mO37DvHuvC9YuXQ+bi7Olc63+psFWFpalP5vb2tb+vfl6zfp3rEdb9YPQqlUsHbLTqbP/pwVS7/Exanm5cRbYbs5svEzeoyahVdAC66cXMembybx/Ee7sHX0rJD+/p0L+NZvR4eBUzG3sOX6mc1s+f4Vxr2zATcfw0q/rPQHHN3yBd4BxitzquvA6QssXr6ed14cS5N6gWw9eJyp/1nC2kWzcXeu/AHlhsXzsLIsKz/Y29oYfG9lYc6Gr+cZTHuSypdmgTIGdVCy+Xgxd5M0hIYomPS0OV+uLajkOgS5hToOXiqhcyXXoUAvGZdvq4lN0qLW6OjaXMHkAeZ8ua6AbBPLGaMHejC8nztffhfD/cRCnhnqyZfv12PCtKuV5oshQdZ89GYgv224z8kLmXRo7cDHbwbw5uwIbt3RZwRp6cX8tDaehGR92UOfLwYxecaNx1buGI1zkAcj+nvwxbfRxCcW8uxQL+Z/WJ/xb12pMs6P3wri1/X3OXE+g45tHJk1NZA3Pr5JxB3DDKtegBVP93AhOtZIRib810yZMoUpU6YY/W758uVVzjt79mxmz55d43WKLkgCAK+++ipKpZL9+/fTuXNn6tSpQ9++fTl48CAPHjzggw8+KE3r5+fHf/7zH1544QVsbGyoU6cOP/74Y7XWc+rUKZo2bYq5uTlt27bl2rVrBt9v2rSJhg0bYmZmhp+fHwsWGD5B+P3332nVqhU2Nja4u7szduxYUlJSSr9/2NVp3759tGrVCjMzM06cOEFeXh7jx4/H2toaDw+PCss15sqVK3Tt2hUbGxtsbW1p2bIlFy9eLP3+9OnTdOrUCQsLC3x8fHjjjTfIyyu7iPr5+fHJJ58wYcIE7OzsmDRpEqGhocyYMcNgPampqSgUCo4cOVI636NdkFQqFS+99BJubm6lzdx27txZ7TieVJ92Vhy7lM+xsAISUtWs3pNNRraWbm2Mt9Lp1saS9Cwtq/dkk5Cq5lhYAccv5dOvfVn6Ti0ssbKU8vWaTG7HlZCepSEqroT4JLVJMXZtYcaZGyWcuVFCcqaWzceKyMzV0qGJ8cqVjGwdm44VcT6ihMJKbgrjkrVsO1nEpSg16id74AxAl2YKzt1Uc+6mmpRMHVtPFqPK1dG+sfHCVmaOji0nirkYqaawkoY3vx8o4tR1NQlpWlJUOtYfKUIigSBvmclx9g614vilAo5fKiAxTcOavblkZGnp1sr4TUDXVpakZ+nTJaZpOH6pgBOXC+jTrix9XoGOrFxt6adRgBnFJTrO3zCtkqN/Z1sOn8/l8PlcHqSoWbE9k3SVhl6hNkbT9wy1Jj1Tw4rtmTxIUXP4fC5HLuQyoLOtQTqJBF4f68wf+7NITjftWCxvaF9X1mxN5OQFFbH3C/nyu7uYK6V0a1/5jcqwvm6EXctm7bYk4hMKWbstics3chjaz7U0zdlLWZwPz+JBUhEPkor4bcMDCgq1NAi0rlF8/4bzu31DKWG3tYTd1pKaBbvPa8jKgzb1jB/nqlx9mvBobaUVKi2CpFgqJaw+rCYuRYcqD+6l6EjKNO2GomMTORduaTh/S0OKSseO0yWocnU8FWI8xswcfQuZS1GaSq9BMQlabsTqz+2MbB2nrmlIStfh52F60W3X1nV06/k03XsPwNvHjwkvvYmTsyv7d2+tcr4fl82nfeeeBNdvWOG7N96ZRe/+Q/HzD8LLx5fJr7+HTqvl2pWLRpb0eKn7jhM1azFJWw88PjHg+9JoCuMSufn2f8i9FUP8rxuJX74Z/2kvlKap+/pzpB08TfSXP5IXGUP0lz+Sdvgsfq8/Z1KMB3eson23IXToMRQPb39GPv8uDk7uHNv/h9H0dfzr07pDXzx9AnF29aJtp/6ENG3HnYjLpWlOH95KXm42r7y7iMD6zXFy8SSwQXO8/eqZFCPAhm276d+jC0/37IqfjxdvvDgeF2cntu6tuuWPvZ0tTg72pR+ZrOyY+3jaawzp15Mgfz98vb14Z8oktDodYVevmxTjxUO/0Th0GE3aj8DJPYBuwz/AxsGd8BNrjabvNvwD2vSchIdvExxc/eg4aBoOLr5EXztskE6r1bB7+XTa938dO2cfk2J7aO3OAwzo1oFB3TtS19uDqRNG4erswOb9x6qcz8HOBid7u9KPTGp47kokEoPvneztnijOTk0VnI9Qcy5CX87YdkpfzmjXyHjlSmaOjm0niwmLVFNQSTlj9cEiTt9Qk5CuvxZtOFr8xOWMoX3dWLM1gZMXMom9X8AX38Zgbiale/vKK7OG9nMj7FoWa7cl/pkvJnLpejbD+pZVHJ+5pOJ8eBb3Ewu5n1jIr+vvU1CoJSTItFblw/u58/uWB5w4n0lsfAGffxONuZmUHh0qr7wc3t+di1ezWLM1gfiEQtZsTdDH2d+wgtvcTMoHrwfw1Q93ycn7CwqZ/zA6naTWPv8GogJGICMjg3379jFlyhQsLCwMvnN3d2fcuHGsX78ena6skLhgwQJatWrF5cuXmTJlCq+88gq3bt167LreeecdvvrqKy5cuICrqysDBw6kpERfQg4LC2PkyJGMHj2aa9euMXv2bD766COD2sfi4mLmzZvHlStX2Lp1K3fv3mXChAkV1vPuu+/y2WefERERQZMmTXjnnXc4cuQIW7ZsYf/+/Rw9epSwsLAqYx03bhze3t5cuHCBsLAwZsyYgUKhv1m+du0avXv3ZujQoVy9epX169dz8uTJ0lGxH5o/fz6NGjUiLCyMjz76iHHjxrF27VqDbbl+/Xrc3Nzo3LlzhRi0Wi19+/bl9OnT/P7779y8eZPPP/8cmUxWozhMJZOBn6eC63cMuw1cu1NEkE8lrTJ8FFwzkt7PS8HDMlyL+mbciS9h/NN2LH3Plf+85syATlYYeevb42OUgo+rlFv3DG/ubt1TU9fD9ALCX0kmBW9XKZHxhjFGxqvxc//rYlTKQSqF/CLTbiL1+1vO9WjDktj16GICq9jf5dNfu1OMn2fZ/i6vY3Nzzl0vpNiE1gYyGfh7KbkaZfg060pUAcF+xl87GOxrxpXy6SML8PdRGsQ4vKcd2blajpw33jWppjxclTg5KAm7Vtb8uUSt42pEDg2DK68oCQmyIuyqYVeii1eyaRhkfB6pBLqEOmBuJuXm7erH/m85vz2dJNxJMHzaeCdBSx1X0wta9X2kxKVqGfCUjBmjFLw+SE7nxlKTY/RykRAVb1iIvn1fi5/7X1fMCvSS4mIvqbQ7weOoS0qIuRNFk+atDaY3bd6aqFuV3zwfObCL5KQHDB/7fLXWU1RUhFqjxtrG9vGJ/wL2TzUj9eApg2mp+09g17IRkj9bvzo81Yy0gycN0qQdOIFDaPMar09dUkJcTAQNmoYaTG/Q9CliIq9UaxlxMbeIibpCUEjL0mlXLh7FP7gJa3/+jHcmdmPu1GHs2fQzWo1pN2clJWqiou/SulkTg+mtmzXm+q2oKuedOO19Bj8/hbc++pRL125UmbaoWL+/ba1rVvkLoFEXkxx/A78GHQym+zVoT0LM5UrmMqTTaikuysPc0t5g+pnd32Bh40jjdiNqHNejStRqImPiaNvUsHVN2yYhXIuMrnLe8e/Oo/9L03lt7kLCrlcsIxcUFjF4ygwGvPwub3++lMi7pnd1kEnB20VKZLnrUGS8Bj+3v7acIZNCfqFp5QwPVzOcHJRcvGqYL16JyKFhsPGHKKBvWfLoPAAXr2ZVmpdKJdA11FGfL0bVPE8vjfNKuThv5tCwXhX5d3DFOC9cyarw29560Y+zl1VculbzbsPCv1/t98sQat3t27fR6XQ0aNDA6PcNGjQgMzOT1NRUXF31T2D79etX2lzrvffeY9GiRRw9epT69Y33K35o1qxZ9OzZE4AVK1bg7e3Nli1bGDlyJAsXLqR79+589NFHAAQHB3Pz5k3mz59fWsnywgtlT7T8/f1ZsmQJbdq0ITc3F+tHMv+5c+eWric3N5dffvmFlStXVlh3VeLi4njnnXdKf1NQUFlf3/nz5zN27NjSQXyDgoJYsmQJnTt35rvvvsPcXN/ktFu3bkyfPr10vlGjRjF16lROnjxJx476/spr1qxh7NixSKUVC+oHDx7k/PnzRERElL5z3t/fv8ZxPKqoqIiiIsMbKDMz4zeuNpZSZDIJWbmGBf7sXA12NsbnsbeWcS3XcPlZuVrkMgnWllKycrW4OMhpUFfGmasFLFiVgZuTnOeetkMqlbDtaM0ySisLCTKphJx8w8JATr4OW8t/Rk34fyvGp0OVZOXqKtwIVpeNpRSZVEJ2Xrn9nafBztp4ayI7aynZ5Z7eZOcZ7u9H1fWS4+Om4NftphU6bK1k+mMyx3C5WTka7G2MFzLtbGRk5WjKpdfHaGMlQ5WjoZ6fGV3bWPPewkST4jLGwU5fiZGZZVjxlpmlxs258u6IDvYKMrMMa6cys0pwsDesFKnrY8GSufVRKqQUFGqYvTCauAfVb1X0bzi/Lc1AJpWQW671eF6BDmsL0ys3HG0k2HtIuBqtZeVBNU62Ega0lSGVwpErNavgsDI3HmNOvg4bnyergDFXwgfPmiOXglYHW06UcNvE7kfZ2VlotRrsHAxbX9k5OKK6lG50nsQH8axd8T2zv/gGmax6RcY1K77D0cmFxs2erNtHdZm5OVOUnGYwrTglHalCgdLZgaKkVMzcnSlKNvyNRcnpmLnXvItUbk4mWq0GWzvD7Whr50S2Kq2SufRmvNSL3OxMNFoNT494mQ49hpZ+l5b8gMjrF2jTsR+vvb+MlMQ41v38GVqthv4jJtc4zqycHDRaLQ7lWlU42tmRkWl8TAwnR3vemfIiwQF1KSkpYf/Rk0z9+D98/cmHNGtovIz4/cp1uDg60rJpoxrHWJCbiU6rwdLWsOWDpY0zednVG3/rwqFfKSkuoF7LvqXTHkSHce3MRsbP3FrjmMpTZeei0WpxtDOsUHS0syVdZTwfc3awY8ZLz1Lfvw4lajV7jp/ltXmL+HbW2zQP0Zfl/Dzd+XDKBALreJFXUMj63Yd46aMvWDX/Y+p4VHwF7uNYmUv+vA4ZljNy83XY+Px15Yz+TynJytNx+75p5YyH+ZixPO7hmGbGONorjOalxvLFpfNCSvPFWQtuc68G+eKj66s8zsrzb0d7BZmqcvOoSkqXB9C1nSNBda14eaZprcb+DXT8M8rf/1SiAkZ4rIetNSSPPBps0qTsiYpEIsHd3b20K1Dfvn05ceIEAL6+vty4Ufb0JDS07ImRo6Mj9erVIyIiAoCIiAgGDRpksO727duzePFiNBoNMpmMy5cvM3v2bMLDw8nIyECr1RdE4+LiCAkpezrRqlVZwS86Opri4mKj667KtGnTePHFF1m1ahU9evRgxIgRBAQEAPrWOnfu3GH16tUG20mr1XL37t3SyqxH4wD9+C49e/Zk9erVdOzYkbt373LmzBm+++47ozGEh4fj7e1dWvlSXnXjeNRnn33GnDlzDKbNmjULqEEBTyJBV8XDj/JflX+qLJVATp6WX7dlodNBbIIaBxsZ/TpY1fgGrbJ1/hMZi/GvirtbcwXNgxV8s6XgibtMld+3ksdkpFUdC+V1am5BfHIJdx88WRcfXbktJ5HUbFs+PCZ16DA3k/DaWGd+3JhOTr7pAwt2a+/I1Bd9S///4Mvb+nWU357ViLXC95KKE+MTCpk84ybWVjI6tnHg3Vf8mDY3skaVMEb9A8/vijE++ex5BbD1jAadDhLSddhYQMdGshpXwDxkbLvU5NwwpqgYFv9RhFIBQV76cWYycnTEJJh+nJY/n3U6nUH+/pBWo2HJV3MYMXYinl51qrXsbRtXc+rYQWZ9thSlsvKbqb+csZOs/HSjJ6LpO6j8NtNfk6o+MKfP+42iwnxioq6ydfUSXD18aN2h75/habGxc+SZyR8hlcnwDQghKzOV/dtWmFQBUxpnuf91VDxnH6rj5Ukdr7JxVxrVDyYlLZ11W3cZrYBZs3kHh06cZsknH2FWjTHuKo+xYpTGjsnyIi7u5PTuZQyZ/C1WNvpKnOLCXHateIdeY+dhaf3XjV1YPhwdukq3o6+nO76eZV1OGgcHkJyWyeod+0srYBoF+9MouOyBWpN6ATz33if8secIb78w2uQ4KxzSf+F9cNdmCpoHyfl2W/XLGd3bOzF1kl/p/+9/oW99VbGcgUHrcGPKfy8Bo/niS+9dx9pKTsc2Drw3xZ9pcyIeWwnTo4MT016qW/r/zM8ijcaJCfm35JH828VJyWsT/Hj301uUlPwbSq7C30FUwAgEBgYikUi4efMmgwcPrvD9rVu3cHBwwNm5rM/jw644D0kkktLKkJ9//pmCggKj6Yx5mMkaKwQ+erHNy8ujV69e9OrVi99//x0XFxfi4uLo3bs3xcWGXSAefYvQ4y7olZk9ezZjx45l165d7Nmzh1mzZrFu3TqGDBmCVqtl8uTJvPHGGxXmq1OnrKBq7G1G48aN480332Tp0qWsWbOGhg0b0rSp8TdQlO8SVl5143jUzJkzmTZtmsE0MzMzJn2SUSFtTr4WjUaHnbXhU1xbKynZucZzX1WuBjtrWYX0ao2O3D9vblU5GjRaw4wtIVWNvY0MmQxq0uI6r0CHRluxJYmNpYTs/H9G5lZVjOVbxZiiS3MFPVop+W5bAYnppt+Y5eRr0Wgr7m8bq4otWR7KytU+dn8/pFToB33dcsT0m/DsPA0aja5Caxdb64qtXEpjzNFgVyH9nzHmafF2V+DqKOfd58vGWHl4KVrzRR2mfplQrTFhzoSpSgcDBFAo9AtxtJeT8cgTMXtbeYWnao/KVJXgaGd47XSwrdgqRq3RlQ42GBWTTz1/K4b2cWPxL/ceGyv8O87v/CLQaHVYl7sUWplXfNJbEzkFOrTlYkzN0mFjqX/jkKYGp1FeoT5Gm3IxWls8WYygL7OnZ+uXkZiuxtVBQtfmcmISav5GNltbO6RSGapMw5Yg2apM7Owr3qgWFOQTc/sWsdG3+fX7Rfp4dFp0Oh1jBnbmg3kLadS0rAvNjs1r2PrHKj78ZDG+dU1/I05NFSWnVWjJonRxRFtSQnG6Sp8mKQ0zd8NxG8xcHSu0nKkOaxsHpFIZWSrD7ZiTlYGtfdVvjHR2079JyMs3iJysDHZu+L60AsbOwQWZTI5UVnZ+uXvVJVuVhrqkBHk1ylOPsrOxQSaVkqEybO2SmZVVoVVMVULqBbH/2MkK09du3cnvG7excO77BPhVr4KuPAtrByRSGXnZhvshPycdS5vKx9kA/eC9+37/gAEvfo1v/Xal01Wp8WSnP2DL96+UTtPp9Cf0gtdDmPjxXuxdqh+vva01Mqm0QmuXzKycCq1iqtIouC57T5yr9HupVEqDAD/ik5KrvcxH5RXqyxk25coZ1hZ/UTmjmZzuLRV8v72QxPTqL+90WCYRd8ryfIVCn9842isM80U7BaqsyvPZjHKtSPTzVMxLy/LFIqJi8qgXYMXQvu4s+jm2yjhPXcw06MKrrCROY3nx4+NUkPHnPMH+VjjaK/jh87IWYzKZhCYNbBjSx51eY8+j/WcUXZ/Iv2UsltoiKmAEnJyc6NmzJ99++y1Tp041uOlPSkpi9erVjB8/vlpPIwC8vLwq/e7s2bOlFQOZmZlERUWVdvEJCQnh5EnDTP706dMEBwcjk8m4desWaWlpfP755/j46AdUe3RQ3MoEBgaiUCiMrtvYuCuPCg4OJjg4mKlTpzJmzBh+++03hgwZQosWLbhx4waBgTUvZA4ePJjJkyezd+9e1qxZw7PPPltp2iZNmnD//n2ioqKMtoIxJQ4zM7NKuxyVp9FAbEIJjQLMCIso63bQKEDJpVvGXyd7J76E5vUMl98o0IzYByWlNzVRcSWENjE3eADp7iQjM1tTo5sz0N8oxadoqV9HztXossy7Xh0512L+moFUn5RGC/dTtAT7yLkWU/YDg33kXL/7ZDF2ba6gZyslP2wveOLXQur3t5qG5fZvwwAll6vY383K7+8AJbEJJRVuYts0NEchl3D6quktNDQaiHlQTJNgCy5cL+vz0STYnIvXjb/lIOpeES1DDO+OmwRbEBNfjEYLCSklTP8qweD7UX3sMTeTsGJbJmmq6u2jgkItBYWG2yk9s5gWje24E6uPTf5nQeuntfcrXc7N23m0aGzLpj1lBfGWTWy58bjxXSRllT7V8W85vxPSdQR6SomIK5tZ/7/px3tcio4m/lKDhkXOtvpK25pUvjyM8UGqjiAfGTdiy2YO8pJyI/avH1xRbuJwDnKFAv/AYK6GX6BNu7K872r4RVq17VAhvYWlFfOXrTSYtn/3Zm5cvcTUGZ/g6l72ttPtTTAAAQAASURBVJ/tm9awef0K3p+7gICgqrsi/9VUZ8Nx7d/VYJpLzw5khV1Hp9afu5lnw3Hu3p67X68oTePcowOZZ6o3zsij5AoFdfwbEHH1DM3bdiudHnH1HE1bd6n2cnQ6HSUlZRVpAfWacv7kHrRabWmX5OTEe9g5uNS48gVAoZATHFCXi+HX6PRU2bg/F8Ov06FtyyrmNHQ7JhYnB3uDaWu37GDlH1v5atYM6gf6G5+xGmRyJW4+DYm9dYqgZj1Lp8feOk1gk+6VzhdxcSf7fn+f/s8vJKBRF4PvHN39ee6DHQbTTu1YTHFhHl1H6Af4rQmFXE49/zqcv3qTLm3Kxgw6fzWCTq0f//r2h6LuxuNcRcWXTqfj9r14AnwqL0NXRaPVvyI62EfG9buPlDO8ZdyIfbJyRpdmCnq0VPDjzkLup9bsAllZvtiysS13YvVvIZTLJDRtYMNPa+IrXc7N27m0bGzHpt1l+WKrJnbceMz4LpJq5ouVxdmqiZ1hnCE2/Li6ijij9HFu3JVULs4cAC5dy+L5tw3fvPbeK/7EJRSydlvC/4vKF+HxxCC8AgDLli2jqKiI3r17c/z4ceLj49m7dy89e/bEy8uLTz/99C9Zz9y5czl06BDXr19nwoQJODs7l7a6efvttzl06BDz5s0jKiqKFStWsGzZstIxVOrUqYNSqWTp0qXExMSwfft25s2bV8Xa9KytrZk4cSLvvPOOwbqNjbnyUEFBAa+99hpHjx7l3r17nDp1igsXLpR26Xnvvfc4c+YMr776KuHh4dy+fZvt27fz+uuvPzYeKysrBg0axEcffURERARjx46tNG3nzp3p1KkTw4YN48CBA9y9e5c9e/awd+/eJ46juvaezqNzS0s6tbDA00XO2L42ONnJOHxenyGN6GnDS8PKChWHz+fjbC9jbB8bPF3kdGphQecWluw+lfdImjysLaU8088WdycZTYPNGNDZmoPn8yusvzqOXCoitJGCp0IUuDlIGdrJDEcbKSev6gu3A9qb8Wwvw/FwvFykeLlIMVNIsLbQ/+3uWHZM6AfW1E+XS8HOSoKXixRnO9Nq9Y+Gl/BUiJw2DeS4OkgY3EGJg7WE09f1T0X6hyoZ28PwxtbTWYqnsxQzhf4plqezFDeHsvV3a66g31NK1h0uJCNH/+TLxlLCE7zFkn1n8ujcwoKOzc3xcJYxprc1TnZSjlzU75vh3a2ZNKTsqd+Ri/k428kY3dsaD2cZHZub06mFBXtPV9yXHZtbcOlWEXlP2Cpg17FsurWxpktrK7xc5Ywf6ICzvZwDZ/UFnDF97Xl1dNmT6ANncnF2kPPsAAe8XOV0aW1FtzbW7Dimf6JZoob4pBKDT16BlsIiHfFJJTWuNHjU5j0pjB3kTvtW9vh5m/PuK34UFms5fKqsxdl7r/gxcbTXI/Mk06qJLaMGuOPjac6oAe60aGTD5t1lb3x7YZQXjepZ4+aspK6PBc+P9KJpiA2HTlVsyVaVf8P5feqGlpZBUloESnGxg76tZdhZwYVI/Y7p2ULGsA6GtRLujhLcHSUo5WBlpv/f5ZF7n/O3NFiaQb+2MpxsIdhbQucmMs7dMm1nn7iqpk19Ga3qyXC1lzCgnQJ7Gwlnb+qX16eNnFFdDU9MDycJHk4SzOQSrC30/7s+cn53bS4nyFuKo40EF3sJHZvIaRks43KU6Qdk/8GjObx/J0f27+R+fCwrflpCWmoyPfsNBmDN8u9ZtkCfr0qlUur4+Rt87OwcUCiU1PHzx9xcX6m5beNq1q/6iVfenImrmweqzHRUmekUFpi2v2VWltg2rY9tU31FjmVdb2yb1sfcR1/hU++TaTT97YvS9Pd+XIeFrycN5s/Aur4/3hOG4fP8MGIW/lqaJnbZSpx7tsd/+iSs6vnjP30Szt1DiV26AlP0GPAspw5t4dShrSTej2HDb/PJTEukUy/9K6W3rF7Cb0s+LE1/dM86rl48RnLiPZIT73H68FYO7FhJ2079S9N06j2SvJwsNvz2JckJ97gWdpy9m3+hc5+RJsUIMHJQP3YePMKug0eJjX/A0l9WkZKWxqDe+sqNH1at49PF35am37B9DyfOXiA+IZG7cff5YdU6jp05z9B+vUrTrNm8g59X/8F7r03G3dWF9EwV6Zkq8gtMq1hv1f15rp3eyLXTG0lPiubIxv+Qk5FI0w76bjjHty1g94p3S9NHXNzJnhXv0Xnoe3j6NSUvK5W8rFSKCvTXf7nCDBfPYIOPmYUtSnMrXDyDkclr3lVqzNM92X7oJDsOn+Tu/UQWL19PcloGQ3rqKzK/XbOZOcvKjrd1uw5y7Pxl4hKTiYlP4Ns1mzly7hLD+5RVFP78xw7Oht/gQXIqUbHxfPrdCqJi4xnSq+oHg1U5fqWEtg3ktKmvL2cMbK/EwUbCmev6Cph+TykY093w93s6SfF0eqSc4WRYzujaTEHftgrWHykiM1uHjYUEGwv9tdVUm/ckM3awJ+1bO+DnbcG7U/wpLNJy6FRZq7L3pvgzcbS3wTytmtgxeqAHPp7mjB7oQYtGtmzaU1bRMXG0N43rW+Pmos8XXxjlTdMQWw6dND7G1eNs3J3EuCGedGjtgJ+PBTNe1cd58GRZi62Zr/rz4piyt2xt2p1E66Z2jB70Z5yDPGjZ2JZNf1bIFBRqiY0vMPgUFmnJzikhNr7mr8oW/p1ECxgB0A/eevHiRWbPns2oUaNIT0/H3d2dwYMHM2vWLBwd/5p+tJ9//jlvvvkmt2/fpmnTpmzfvh3ln/2GW7RowYYNG/j444+ZN28eHh4ezJ07t3QAXhcXF5YvX87777/PkiVLaNGiBV999RUDBw587Hrnz59Pbm4uAwcOxMbGhrfffpusLOOD0AHIZDLS09MZP348ycnJODs7M3To0NKxU5o0acKxY8f44IMP6NixIzqdjoCAAEaNGlWt7TBu3Dj69+9Pp06dKu0q9NCmTZuYPn06Y8aMIS8vj8DAQD7//PO/JI7qOHe9EGvLbAZ1scbeRsb9ZDULVmWSnqW/CbC3luJkV3bzk6bS8NWqTMb1taV7WytUORpW7c7m4s2ywllGtpb5KzIY29eWT151ITNHw/4zeew8Ydrrsy9FqbEyL6TPU2bYWkpITNfy3bZ8MnP0N/p2VhIcbA0r3GaMKxu0uY6bjNb1FaRna5n9q/5pip21xCBNj1Zm9Ghlxu37apZsrPmNRfgdNVbm0Lu1ElsrfYw/7iwojdHWUoKDjWGM74wue5Wzj6uMlvUUZGRrmbdSv/72jRXIZRKe72vYumPv+WL2na95FwWA8zeKsLbMYVBna+yspTxIUbNwtYr0LP1TL3ub8vtby8LVmYzpY0P31paocrSs3pPDxQjDJ0luTjLq+SqZvzLTpLgedeZKPjZWGQzraY+DrYz4pGI+/yWFtMw/j0lbGU4OZdlbaoaaz39O4bmBDvRub0NmtobftmVw/pppN4g1sX5HEmZKKW+8UAcbKzkR0XnM+E8UBYVlTxFdnc0MnnrdvJ3HJ0tieH6kJxNGepKQXMQnS2K4FV12fjjYyZnxal0c7RXk5Wu4G1fAzM9v1/iNCv+G8/t6rBZLM+jaTIaNhYzkTB2rDqpR/bk4G0uwtzasGH1tYFllh5czNA2QkZmrY8FGfYVnVj4s36+mXxsZrw1SkJMHZ25qOH7dtFY1V6I1WJpDj1ZybC0lJGXo+HW3/hWwALZWEuxtDGOcOqKsUtjbVUrzIDkZOVo+X60/d5RyGNJRgZ2VhBI1pKi0rDtcwpVo0ytg2nXqTk5OFpvWLSczIx0f37rMmD0fF1d9qwBVZjrpqTXrAnFg9xbU6hIWfvahwfThY55nxLiJNY7RrmUjQg+tKv0/5Kv3AYhfuZmrE2di5uGChU9Z65uC2PtcGPASIQtm4vvKOIoSUrgx9VOStuwvTZN55jKXx02j3py3qDfnDfKj47k8diqq84ZPoqurVfve5Oao2LXxB7Iz0/CsE8hr7y/DyUU/fkpWZioZaWUDeut0OrauXkJaygOkMjkubt4MGfcGHXsOL03j6OzOmx99xx/Lv2Le2yOwd3SlW7+x9B5cvbdPGdO9QyjZ2bmsWL+Z9EwVdet488VH7+Luqu+ylZ6hIjm17OZUrVbz7fI1pGZkYKZUUtfHmy8+fIfQVmUtP7buOUCJWs3HXy42WNeEUUN5Ycxwaqp+y34U5GVyZs+35GWn4OwRzNApP2LnpK+UzstKJTuzbFteObkerVbNofVzObR+bun0hm2H0Hf85zVef3X0bNearJw8ftm0i/TMLPx9PFk483U8XPQV/WmZWSSllVV+l6jVLF21kdQMFWZKBXV9PFk443XatWhcmiY3L5/Pf1xFuioba0sLguv68P2cd2gYWLfC+qsr/I4GS7NierZSYGulJDFdy887C8nMLStn2Jfrcvr2qLLyg48rtAiWk5Gt5dPf9ZUB7RrJkcskTOhj+BBr34Vi9l8w4VWGwLrtiSiVUt58wVefL97J5b3/RJbLF5UGQwjcjMrlkyV3eH6kNxNGepGQXMS8r6MNuv062CmY8WpAab4YE5fPzM8iCTPxTUPrtiVippTy1ot+pXG+8+mtKvPvG1G5zF18h4mjvXlhlDcJSUXMXXyHiDum5X//VmIQ3qpJdKYOkCEIwv8r4z/6697+8ndYOc+D1xf/s1/Xt/QtW6Yu+4sGGf0bLXrNmgmzTetn/t+yfLYbo6ZXbyyT2rL+K196jHl8N8jadnBtq3/F+f3hctMqDf9bPpmg5N3v//lPKL982YLw29V7g0xtaRbkwi5F1QPh17b+JZEcufbP399dG1uQHBFW22FUya1BS346WNtRVG1SD8i8cqy2w3gsh6adefvbf/bN/IIpVnQffb62w6jSoXVt6Dqy8jF5/imObGhb2yGY5OTN2jtGO4RUHH/zn0a0gBEEQRAEQRAEQRAE4YmJsWyqJsaAEQRBEARBEARBEARB+JuJChhBEARBEARBEARBEIS/meiCJAiCIAiCIAiCIAjCExOD8FZNtIARBEEQBEEQBEEQBEH4m4kWMIIgCIIgCIIgCIIgPDGdTrSAqYpoASMIgiAIgiAIgiAIgvA3Ey1gBEEQBEEQBEEQBEF4YjrxGuoqiRYwgiAIgiAIgiAIgiAIfzNRASMIgiAIgiAIgiAIgvA3E12QBEEQBEEQBEEQBEF4YlrxGuoqSXQ60UtLEARBEARBEARBEIQnc+haYa2tu3tj81pbd3WJFjCCIAAw5t242g6hSmu/rMO73xfUdhhV+vJlC2atLKntMB5rzngFg6dE1XYYVdr6bTCvL86u7TCqtPQtW/q9cK22w3is3b82ZuTbsbUdRpU2LPDj7W/zajuMKi2YYsVrC7NqO4zHWjbNjo3ntLUdRpWGt5Vy5No/+3retbEFuxT1ajuMx+pfEsnxG//sc6dTQys+XF5c22FU6ZMJyn/8dgT9tnxlvqq2w6jSd+/Y/yvKGP/0GEEf57+ReA111cQYMIIgCIIgCIIgCIIgCH8zUQEjCIIgCIIgCIIgCILwNxNdkARBEARBEARBEARBeGJihNmqiRYwgiAIgiAIgiAIgiAIfzPRAkYQBEEQBEEQBEEQhCemE6+hrpJoASMIgiAIgiAIgiAIgvA3Ey1gBEEQBEEQBEEQBEF4YloxBkyVRAsYQRAEQRAEQRAEQRCEv5mogBEEQRAEQRAEQRAEQfibiQoYQfiHmT17Ns2aNavtMARBEARBEARBEGpEp5PU2uffQIwBIwAwYcIEVCoVW7dure1Q/udNnz6d119/vbbDMNAz1JqnO9tibyPjfnIJK7dnEhlbVGn6Bv5mPPO0A95uCjKzNew8ls3Bs7lG04Y2teSNcc5cuJ7PwpVpJscY2lBG56ZybCwlJGfq2H6qhNgkrdG0NpbwdKgCbxcpTnYSTl3TsON0iUGaRnWldGuuwMlOgkwKaVk6jl9Rc+m2xuQYW9eT0j5EirUlpKpgzwUNcSnGO8paW0DvVjI8HSU42sK5CC17L1b8PeYK6N5cSoM6UszNQJUD+8I03H5gegfcvp3sGNzDEQc7GfGJxfzyRyo3owsqTd8wyIIXhrng46EkI0vNlgOZ7DuRVfq9j4eSsU87EVDHHFcnBb/8kcKOIyqT4wPo2ERB95Zm2FpJSEzXsvlYIdEJxveNraWEIZ3M8XGV4uIg5Vh4MZuPGR6/7o5S+oea4eMmw8lWyqZjhRy9XPxEMT40bpArfTo7Ym0pIzImn29/TyAuofLzB6B9S1ueHeKGh4uSxNRiVmxO5syl7NLvGwVbMqyPC4F+FjjZK5i39B5nLmdXscTK9Wpnw8AuttjbyrmfVMzybRnculv1+f3cQEe83ZVkZqvZfiSbA2dySr9v09iSId3tcHdWIJNCUpqaHceyOBGWZ1J8AO0ayunSXIGtpYSkDC3bThVzN7Gy81vCwHZKvF2kONtLOHlVzbZThvuybQM5rerJcXfUP4e6n6pl97li4lOML7M6OjZV0r2VGXZ/HpObjhYQ/aCSY9JKwtDO5vi4yvTH5OViNh0tNEjj7iTl6Xb6NE52UjYeKfhLjsmzB9dwcvev5GSl4uoVSP9xM/Gr18po2tjIMPZtWEBqQgwlxYXYO3vSputI2veZYJDu+oX9HNy0hIyUOBxd69Bz+Js0bNXT5BiP7l3Pge0ryMpMw9MngBET3iEopIXRtHciLrP598UkP4iluLgQR2cPOvYcRo8Bzxqky8/LZtuaZVw+d5j8vGycXb0Y9tw0GrfoWOP4HDu0wv/tidi1aIS5pysXh00hefuhqufp2JqQr2ZgHRJEUUIK0Qt+Ju7HdQZp3If0Inj2m1gG1CE/Oo7IjxeRvO1gjeN71JE9G9i3beWf29KfUS9MJ7iSbXk74jKbVi4h6c9t6eTiQadeQ+k54JnSNPM/mkTUjbAK8zZu0YE3PlxiUoxt6knp2EiGtSWkZOrYfV7DvSryxr6tZXg6SXGyhbMRWnafNzzPmgdKGdah4i3O7FXFqE3Mwv8N2xGgUzMlPVubYWctJTFNwx+HC7hTxXVoeBcL6rjrr0NHw4r540jFvL55sIIB7c1xtpeSptKy7WQhV26XGFli9fwbyhj/hhiFfy9RASP8Y5SUlKBQKGo7jL9NdX+ftbU11tbW/4WIquepppaMH+DAr1sziIwtokdba2ZMdGH6gkTSVRUzdRcHGe++4MKRc7l8sy6Nen5mvDDYkexcDeevG2ZezvYyxvW3JyKmsMJyaqJpgIwB7RRsPaGvdGkbImdifyUL1hehyq1YiJPLJOQVwqFLajo2MX4ZzC+CQ5dKSFXpUGuhga+UEV0V5BboiLpf85u0hn4S+rSSsuuchrhUHa2CpDzTXcY329VkGbkvlUshv1DH8WtaQkNkRpcpk8L4njLyCmH9MQ3Z+TrsrCQUlZhe+dK+pTUvDHflh3XJ3IoppHcHOz561YvX58WSlqmukN7VSc5HU7w4cCqLRcuTqO9vzuTRbmTnaDgTrq90M1NKSEor4dSlXF4Y7mJybA+1CJYztLM5Gw4XEpOgoX0TBa8MtuTTVblk5hjZ33LILdCy/4KaLs2VRpepVEBalpbLt0sY2tn8iWN8aHhfZ4b0cmbhL/d5kFzE6Kdd+XR6XV56P4qCQuPHUf0AS2a8XIdVW5I5fSmbdi1smflyHd75PJrIGP05ZG4m5W58IQdOZvLha74mxxfazJIJgxz5eXM6kXeL6BFqw/uT3Jj65QPj57ejnJkvunHoXC5L16RRr64ZLw51IjtXw7lr+QDk5mvZfDCLhJQS1BodLUIsmDLKmexcDVcia36uNwuUMaiDks3Hi7mbpCE0RMGkp835cm1BJec35BbqOHiphM6VnN+BXjIu31YTm6RFrdHRtbmCyQPM+XJdAdl5NT9/WgQrGNbFnPWHCohJ0NChiZIpQ6z4ZEWO8WNSBjn5OvadK6JrSzOjy1TKJfpjMuqvOyavnt3N7tWfM+C5j/ANasGFI+tZ8dVk3vxsB/bOnhVjMLPgqR7jcPcJRmlmyb2oMLb+NhuFmSVtuo4EIO72ZdZ/M40ew94gpGUPboYdZN0303jpw9/xCWha4xgvntrHH8vnM+bF9wmo34wTBzay7D+vMmvRZhxdPIzG2LXvaLx8g1CaWRB9K5zVP8zDzNyCjj2HA6AuKeHruS9jY+fIS9Pn4+DkRmZaMuYWljWOD0BmZUn21Ujur9hMyz+WPTa9hZ83rXf8SPwvfxD+3Ds4tGtBo6WzKE7NIGnLfgDsn2pG8zWLiJr1NUnb/o+98w6L6vge97sFlrIsSy/SRECwYsHee+waNZZEY4opphqj6T0xzfTENEtibLGXGHuJHcUuiAIqKL33suX3x+quCwvCar7G32fe57nPA/eeO/fsmZk7c8+cmdmB94h+tF32FYd6TSQ/+rRVeh7dv5UVCz9n0uOvEhLRmr1bV/PNB8/y7tercLNgS4XCnt6DH8AvMBSFnT0JcSdY/OOHKBT29BhwPwBPz/ocjcb08V1cVMB7M8bTrks/q3RsESRlcAcZGw9rSc7UEdVUxuT+cr5ZV2W5bZRBSTnsPa2lS7PaA/nLK/V8tdbcSWCt8+VesCNAu6Y2jO1jz/LtZSRe09C9tYLpY5S8t6CwlveQhKIyPX8fLqdvLe+hxr4yHh3mwMb95Zy8WEVkqA2PD3Pg82XFXE5ruEHvhT7GvaDjfx29WIS3TsQUJEG9iI2NZfDgwSiVSry8vHjooYfIzjZFKxQVFTFp0iQcHR3x8fHhyy+/pFevXrzwwgu1pnljqs2CBQsIDg5GoVCg1+tJTk5mxIgRKJVKVCoV48aNIyMjw+zeefPm0aRJE2xtbWnatCmLFy82uy6RSPjpp58YOnQoDg4OREREcOjQIRISEujVqxeOjo507tyZxMTEWvWrrKzkmWeewcfHBzs7O4KCgpgzZ47xekFBAdOmTcPT0xOVSkWfPn04depUnb/vp59+olGjRuh05h9ew4cPZ8qUKWb33cyCBQto3rw5CoUCHx8fnnnmmXrrcbsM6e7E7qPF7I4uITVTw+8b88nJ19K/k2UnUb9OTuTkafl9Yz6pmRp2R5ew51gxQ3qqzOQkEpg+wY1V2wvIzK3ZoDWE7q3kHD2vJfq8lsx8PRsPVpFfrKdTLY6LvCJDhMzxC1rKKy23EkmpOs5d1pGZrye3UM+BM1rSc/QE+Vj32uwSIeVEgo7jCXqyC2DLMR2FJRAVZjm9/BL4+6iOU0n6WnVsEyLFXiFh2W4tKVl6CkogOVNPRp5VKgIwoo8LOw4WsONgIVfTK5m/Kovs/CoG9VBblB/UXU1WXhXzV2VxNb2SHQcL2XmogBH9XIwyCVcq+G1tNvtjitBobr9V7t1WwaFzVRw6V0VGno41eyvIK9bRrZVl50puoZ7VeyuIjquq1ZbJGTrW76/g+AWN1Z10S4zs787yTZkcPF7IlWsVzJ1/FYWtlF4d1XXc48aJ2GL+3JzF1fQK/tycxcm4Ykb0dzfKHDtTzO/XHTS3w9AezuyKLmLXkWKuZVbx2/pcsvM1DOjiZFF+QGcnsvM1/LY+l2uZVew6Uszu6GKG9TLV79jEco6eLeVaZhUZORr+3lfElbRKwhtb50To0dqG6DgNR+I0ZObpWX+gkvxiPV1aWHau5BXpWb+/kph4DWW1BIws2VHBwXMaUnMMdfzPPZVIJBDqZ/mdcSv6tLPl0NlKDp2tIiNXx+o95eQV6ejeuo4yuafcUCYraiuTWtb9U05MfNUdK5MHtvxGu56jieo1Fs9GTRjy4Gs4u3pzZNdyi/K+Qc1o3XkIXn6huHg0IrLrcEJbduVK/DGjzMGtv9OkRRd6DpuGh28wPYdNo0mzThzc+rtVOu7YuJiufUbRrd9ofPyCGTd1Fi5u3uzdttKifEBwOFHd7sPXPwR3z0Z07DGEZq27kBB3wqTjrnWUFBfy1KwvCQlvg5uHLyERbfALamqVjllb/+HC21+Rvm57veQDp42nPDmN2Jc+ovh8EikLVpGyaA3BMx4xyjR+dgrZOw6S+OnPlMQnkfjpz2TvOkzQs1Os0hFg+8YldOs7ku79R+HjF8z4R1/Gxc2LvVtXWZQPCA6nY/dBNApogrunL516DqF5ZGcu3mRLRydnnF3cjUfcqcPYKuxo38W6iKeuzaXEXNQRc1FHVgFsjtZSUAIdmlqui/nFBpmTiToq6gjC0APFZeaHtdwLdgTo217BwTOVHDhTSXqujpW7y8gr0tEj0rJzJbdQx8pdZRw5V0VZLUGPfdopOH9Zw9YjFWTk6th6pILzyRr61OKwuRX3Qh/jXtBRcG8jHDCCW5KWlkbPnj2JjIzk2LFjbNmyhYyMDMaNG2eUmTFjBgcOHGDDhg1s376dffv2cfz48VumnZCQwJ9//snq1as5efIkACNHjiQ3N5e9e/eyfft2EhMTeeCBB4z3rF27lueff56XXnqJs2fP8sQTTzB16lR2795tlvb777/P5MmTOXnyJOHh4UycOJEnnniCV199lWPHDJ3Hmx0Z1fnmm2/YsGEDf/75J/Hx8fzxxx8EBQUBoNfrGTJkCOnp6WzevJmYmBjatm1L3759yc3NrfX3jRkzhuzsbDNd8/Ly2Lp1K5MmTbKox7x585g+fTrTpk3jzJkzbNiwgZCQkAbpYS0yGTRuZMvpC+aj1qcvlhMWZLnxDQ205fRFc/lT8eUE+9kiu+mNc38/Z4pKdOw5av20BDBEgTTykHAhxfwL5eJVHUHed+4VF9JIiodaUuu0h7qQScHHTUJCqnmjm5imw9/D+vmqTf0kpGTpGdJRxstj5Tw9TE73FlIkViYpl0GTADtOxpWanT8ZV0p4sOWP56aNa8qfiC0lJNDOLL/vFDIp+HtKOX/F3Gl3/oqGxj7WfTz/W3h72OCqtuH4OdP0O41Gz5n4EiJCah95D2/iwPGzRWbnjp8tolkT60bra0Mmg2A/2xpRKafjy2kaZDm/QwMVnK4mfzK+jGB/Ra353SLUDl8PG2KtiHSTScHPQ0p8tfodn6IlyOvO5bet3PCs0vKGd4xlUvD3khFXrUzGXdHQ2Pe/E2is0VSSevkcIS26mp0PadmV5IsnarnLnNTLsSQnnCQoPMp4LjnhFKEtupjJhTYgTTMdq6pIToojonVns/MRrTuRFF+/gYXkpPMkXThFaLN2xnOnju0hOKwVy36dw8uP9uG9F+/n79W/otPeQW9rHag7RZK144DZuaxt+3Bu1wKJ3FBGXDpFkr1jv5lM9vZ9uHRuY9UzNVVVXEmMo1nrTmbnm0d2JvF8/W2ZGH+asJtsWZ39O9cT1W0ACjv7Busok4Kvm4SEVPN2NSFVR4Dn7a3lYCuHmWNseHmsDQ/2lePjal1694IdwWDLAG8ZsZervYcuawhuZP17KNhXXiPN2Esagq14t90LfYx7QUfBvc9/p2cg+M8yb9482rZty0cffWQ8t2DBAvz9/blw4QI+Pj789ttvLF26lL59+wKwcOFCfH1rhjNXp7KyksWLF+PhYQjH2759O6dPn+bSpUv4+/sDsHjxYpo3b87Ro0eJiori888/5+GHH+bpp58GDM6fw4cP8/nnn9O7d29j2lOnTjU6iWbPnk3nzp158803GThwIADPP/88U6dOrVW35ORkQkND6datGxKJhMBAU5j/7t27OXPmDJmZmSgUBkfE559/zrp161i1ahXTpk2z+PsABg0aZGarlStX4urqavy/Oh988AEvvfQSzz//vPFcVFRUg/S4mYqKCioqzIc6btxbHZWjDJlMQkGxeSe1oEiLs5PlhkjtJKOgyPxDq6BYi1wmwclRSn6RjrBAW3pFOfLqV+kW02gIjnYgk0pqjG4Vlepx8r+9ls/OFl5/yA65FHR6WLuviotWTD9yUBh0LKn2/VlcBkpf6zuZLk4SGivhTJKeP3ZqcFNJGNJRhlQKe083XE8npSG/84vMO1sFhVpcVJabC7VKTkGheccjv0iDXCZBpZSRV3hnP3Ac7SXIpBKKSs0/lItK9agc/luLr7moDFMO8wvN7ZlfqMHTrfbpiC7Ocov3uDjf2Sa71vpdrEXtZNm5oVbJKIivKW+o3zLyiwzX7O0k/PSWP3K5BJ0O5q/J4cyFhjtgHO0k1+u3eX4Xl+px8r9z+T2kky0FJXouXm14eVXeKJMl/+0yWVqUj06nRensbnZeqXKjuKDu9bc+eb4XJUW56LRa+oyaTlSvscZrxQXZKFXV03Sn6BZpWqK4KA+dTovK2dXsvMrZjcL8utN7ZdoAigvz0Oq0DB37JN36jTZey864RvzZo3ToPphnXvuOzLRklv86B51Oy5CxTzRYz4ai8HKnIsNc/8rMHKQ2Nti6u1CRnoXC252KjBwzmYqMHBTe1k1XKL6e3yq1m9l5J2dXCvJzarnLwMuPDTLacvi4J+jef5RFuUsXz3ItOYEp09+ySscbbWP19rukTI/S3vr2O6tAz5r9WjLy9ChsoHMzGY8PlvP9+ipyim59/83cC3aEm99D5m1/UYkOZ0fr2w6Vo4Si0mpplupQOTb83XYv9DHuBR3vBXT8d9q+/yLCASO4JTExMezevdviuiSJiYmUlZVRVVVFhw4djOednZ1p2vTWob2BgYFmzom4uDj8/f2NzheAZs2aoVariYuLIyoqiri4uBqOha5du/L111+bnWvVqpXxby8vLwBatmxpdq68vJzCwkJUKvPpMWBYmLh///40bdqUQYMGMXToUAYMGGC0SXFxMW5u5g1yWVmZ2bSm6r8PYNKkSUybNo0ffvgBhULBkiVLGD9+PDJZzQ+ezMxMUlNTa3XO1FePm5kzZw7vvvuu2bm3334beMSiPGCI5b0JiaRh8ztvvIb1erBTSJg+wZ1fVufWaNRvh+rqNFRHS1RUwlcrK7C1gdBGhnVmcov0JKVap3d1fSSSmno3BInEMBd+w2Etej2k5epxstfRtbnUKgeMSdHqD6rblvpqNxjz23oNbsl/MYC3Vyc1z042OZ7f/uoKYCHfLZyrTo3LEsm/9pst6VLXsyz9nur3lFfoeXluKnYKKS1D7Zg83JWMHA2xidat91RDxzvYt+sdaUObUDk/rC+7o9PPJPw3y2l10+nRc6uwucff+IPK8lJSEk6y9c8vcPMKpHXnITclan6/Hj0Sa0PxoMa9hndM3enNfH8hFeWlJF04zbol3+Dp409Ut/sM9+t1ODm78uATbyKVyQhs0oyCvCy2rf/t/8QBc10J8/9v/Mabz1tsJG6vFNXMhlvnzawP51+35RnWLP4WDx9/OnYfVENu/451NAoIoXFoi9vSsQa3Wb+vZum5mmWyW3KmhqeHy+kUIeOvaOsq+b1ix5ptx+33he74eh73QB/jntBRcM8iHDCCW6LT6Rg2bBiffPJJjWs+Pj5cvHgRsNBhqscb29HRscY9lhq06uctPav6uZsXvL1xzdK56uux3KBt27ZcunSJv//+mx07djBu3Dj69evHqlWr0Ol0+Pj4sGfPnhr3qdXqWn8fwLBhw9DpdPz1119ERUWxb98+vvjiC4s62NvXHYpaXz1u5tVXX2XGjBlm5xQKBQ+/mVFDtrBEi1arx7naaLhKKaOw2HInJr9Ia1Feo9VTXKrDz8sGT1c5Lz9sckzdyLo/5vgz47O0Bq0JU1IOWp0ep2qmUtrXHDVvKHogp9CQRlqOBk8XCb3byElKbdhOJKUVBh2V1XR0tDOM9FlLcakerd68U5BVoMfJwbBzk7aBPpiiYkN+q6uN8jg7yWqMBt0gv1BjQV6ORqunqJYycjuUlOnR6mpGFjg5SCgsvbtdnSMnC4lPMo2C2cgNOro4y8krMNnPWVUzwuVm8go0NUba1E4y8gtub62k6tyo39WjXZyVMgqKaqnfhTWjY4z1u8R0j14PGTkGfa+kVtLIy4aRfZ0b7IApKTfkt1O1/Fba14yCsoZekXL6trPhxw3lpOVYl17x9TLpVG1EWOlwZ3S8Uzg4qZFKZTUiU0oKc1Gq3Gq5y4Crhx8A3v5hFBfmsGvtd0YHjNLZneKCrGpp5twyTUsonVyQSmU1IguKCnJrRCBUx92rEQCNAkMpKshl058/Gh0wzi4eyGRypDcNdHg3akxhfjaaqirk//IGABUZ2TUiWWw9XNFVVVGZk2+QSc9G4W0eSaTwdK0ROVNflNfzuyCvui3zakQYVcfjui39AkMpzM9l44qfajgOKirKOHpgG8PHP2mVflBX23j77ffN6IFr2XrcVA337NwLdgTTe0jlKAVM72InB+lttY2FJTfSNOHkILVqsfJ7oY9xL+h4LyAW4a0bMTNNcEvatm3LuXPnCAoKIiQkxOxwdHSkSZMm2NjYEB0dbbynsLDQ6JhpCM2aNSM5OZmUlBTjudjYWAoKCoiIiAAgIiKC/fvN50kfPHjQeP1OolKpeOCBB/jll19YsWIFq1evJjc3l7Zt25Keno5cLq9hE3d39zrTtLe3Z/To0SxZsoRly5YRFhZGu3aW5wU7OTkRFBTEzp2Wt7e0Rg+FQoFKpTI7apuCpNXCpWuVtAo1n27UMtSOC7VsQ33xSiUtq8m3CrMj6WolWh2kZlXx8tw0Xvkq3XjExJYRm1jBK1+lk9PAj0ytDq5l6Qn1N/8oDG0krXUb6ttBbsWyE1odpOXoaVJtulGwj5SULOtbqeQsPa5OErPBQneVwRHRUOcLGHaISEwuJzLCfK2RyHAHzteyfkf8pXIiw6vJRziQcKXcKh1uhVYHKZk6wgPMOztNA+RcsmJHhjtJWbmOtMxK45GcWkFufhVtm5miB+UyCS2bOhKXUFprOucTS2nT3HwR3LYtnIhNrP0ea9BqIelqJa3CatbX+MuW8/vilYoa8q2b2pGUUlFnfksAG1nDP360OsMW0WHV6neYn4zLGbeX370ibejXzpafN5VzNcv6wqrVQUqGtkaZDA+Ucyn1zjrNbge53BbfoOYknD1odj7h7EECQuu/zoher0ejMTmhA0Ja10jzYgPTNOpoY0NAcARxpw+ZnY87fYTgpvXfUUmv11NVZdKxSdPWZKYnmw24ZKRdwdnF4193vgDkHz6Je1/zdXI8+nejIOYseo2hjOQdPol7X/P1edz7dSPvUMPX0gGDLQObRBB36ojZ+dhTh2kS3oDdqfR6NFU1Bx2OHdhOVVUlnXoOtko/MNSd1Bw9Ib7mnyMhvlKSa9mG2lq8XQ07/jSUe8GOYLBlcrqWiEDz91BEoJyka9a/h5JSNUQEmafZLEhOkhXvtnuhj3Ev6Ci49xEOGIGRgoICTp48aXYkJyczffp0cnNzmTBhAtHR0SQlJbFt2zYeeeQRtFotTk5OTJkyhZdffpndu3dz7tw5HnnkEaRSaYNDkPv160erVq2YNGkSx48fJzo6msmTJ9OzZ0/at28PwMsvv8yiRYv48ccfuXjxIl988QVr1qxh5syZd9QeX375JcuXL+f8+fNcuHCBlStX4u3tjVqtpl+/fnTu3JmRI0eydetWLl++zMGDB3njjTeMC/zWxaRJk/jrr79YsGABDz74YJ2y77zzDnPnzuWbb77h4sWLHD9+nG+//RbgtvWoD3/tK6J3ByW92jvi6ynnoWFq3NUydhw2LCw6fpAzTz1gGpnccbgIdxcZDw5V4+spp1d7R3pHKflrr2G3lioNXM2oMjtKy3WUVei4mlGFNWsi7jutoUO4jPZNZXiqJQzrYoPaScLhWENigzrIeaC3eSfbx02Cj5sEhVyC0t7wv6eLqbz2biMn1E+Kq5MED7WE7q3ktAuTceKCdR99B+N0tA2R0iZEgrszDGovxdkRjl4wtM792kgZ1dX8I9PbxXDYyg0jgt4u4OFsun40XoeDAu7rIMXNCUIbSejeUsrReOtb/PW78ujXxZm+nVX4edvyyP0euLvYsHVfPgAPjnDn+SneRvkt+/LxcLVh6v0e+Hnb0rezin5dnFm/w7QVk1wGjf0UNPZTIJdJcFXLaeynwNvDug+f3ccr6NzChk7NbPBykTK6hwJXJyn7Txs6t8O6KnhogLmToJGHlEYeUhQ2EpT2hr+9XU1NoGExZ8N5uRScHSU08pDi7nx7sfDrtmczbqgnnduqCGykYMajflRU6thzJN8o89Jjfjx8v5fx//Xbc2jbXMmY+9zx81Yw5j53IiOUrN9uGgm3U0gJ9rcj2N/wO73cbQj2t8PDtWE23fRPAX07OtG7g5JGnjZMGe6Cu4uc7YcMCyVMGKxm+gSTM3fboSLcXeRMHu5CI08bendQ0qeDExv3mHZjGtnHmZZhdni6yvH1tGFIDxU92ivZd7y4xvPrwz+nqugYIadDuBxPFwnDu9ri4iTh0FnDB8DgTjZM6Gu+25CvmxRfNykKG0O0jK+bFK+b63ekDfd1tGHF7gryCvU42Utwspdga2Vc8K6YSrq0tKVTcxu8XKWM7mmHq5OUfacMZXJ4NwUPDTIf5jeVSYOOdZZJGaidDH+7q63vunUdNIWYvas5tnc1mdcS+WvJHApy0ujQx7DQ/dY/v2DlT7ON8od3LCHuxG6y0y+TnX6ZmH/WsP/vhUR2GWaU6TxwMglnD/LPpl/ISk3in02/kHjuEF0GTrZKx37DHuLAzrUc2LmOtKtJ/LnwM/Ky0+gxwLCl9Nol37DwmzeM8nv+Xs7pY3vJSLtCRtoVDu5ax/aNv9Oxh2mKVI+B4ygpKuDPhZ+SkXqFMzH/sGXNfHoOGlfj+fVB5uiAqnU4qtbhADg09kPVOhw7f8OWxE0/mEHrhaao4Ss/L8c+0JeIz15BGR6M38P34z/1fpK+WGCUufzd77j370rwzMdxbBpM8MzHce/bmcvf/maVjgD9h01i38617L9uyxULPic3O52e17dCXvPHt8z/+k2j/O6/V3Dq6F4yUpPJSE3mwM71bNuwmI4WnAP7d66jTYdeKJ3UVusHcOCcjnahUtqGSPFwhvuiZIa28fpaU/3byri/W7W20VWCt6uhvjoqDP/f3Db2bi0lxFeCi9JwbVRXGT6uEqKtbBvvBTsC7DxWQddWtnRuYYu3q5Qxve1wUUnZd8owYDaiux1TBps7Cvw8Zfh5ylDYGqL2/DxleLuZ3jG7YyqICJIzoIMCL1cpAzooCA+Usyumlm2TbsG90Me4F3T8r6PXS+7acS8gpiAJjOzZs4c2bcxHrKZMmcKiRYs4cOAAs2fPZuDAgVRUVBAYGMigQYOQSg0v6S+++IInn3ySoUOHolKpmDVrFikpKdjZNWzbUYlEwrp163j22Wfp0aMHUqmUQYMGGR0OYNgl6euvv+azzz7jueeeo3HjxixcuJBevXrdtg1uRqlU8sknn3Dx4kVkMhlRUVFs3rzZ+Js3b97M66+/ziOPPEJWVhbe3t706NHDuN5MXfTp0wdXV1fi4+OZOHFinbJTpkyhvLycL7/8kpkzZ+Lu7s6YMYaOqEQiuS096sPhU6U4OUgZ3c8ZtUpGSnoVnyzIIjvf0DlSq2S4q02do6w8LZ8uyOKhYS4M6OJEXqGW3zbkEX32NvaAvAWnErU42EG/9nJUDhLSc/Us2GzYqhYMi8ipncxfyi+ONZVNP08pbULl5Bbp+HiJoVNhK4dR3W1wdpRQpYHMfB3Ld1VxKtE6B8y5y3ocFDp6tpLhZA+Z+bBkp2G7TTB8gDlXm7H21DBTw9zIHVoFS8kr1vPVGsOHZ2Ep/L5dy6AoKU8Nl1NUCofjdOw/Z70D5kBMMSrHTB4Y7IaLSkZyWiXv/3CNrOvTwlxVMjxcTE1HZo6G93+4xiP3ezC4hzO5BVp+XZnJoZOmj21XZzlfvmZaxHpUf1dG9Xfl7IVS3vjqaoN1PH5Bg6NdOYM6KVA5SEjL0TFvfSl5RYb8dnaU4KIy/0h9ZZIpCiXAS0ZUuA05hTreWWDQ01kpMZPp115Bv/YKLl7V8M0q6yNPVv2djcJWyvQHfVE6yohPKuWNuZcoKzflkYerDTfPhIxLLOXjH5OZPNqLh0Z5kZZZycc/JhOfZKpDoUH2fDI72Pj/tAmGtWe278/jywX1t+mhk6U4OeRyf381LioZKWmVzPk1g+w8Qzl3UclxV5vyOytXw5xfM5gywpWBXVXkFWhYuC6XI2dMNlLYSnhstBtuahmVVXquZVbx7dIsDp20zo4nE7Q4KCrp394GlaMtaTk6ft1UTt6N+u0gQa00z++XHjA5O/w9oW2YnNxCHR/+YbBhlxZy5DIJDw8yb6O2Hq1k29E69ratheMXqnC0l3BfJztUjoYy+cPaEmOZVDlKcXUy1/HVh0xRTgHeEBVhS06BjrfnG5xfzkqJmYyxTKZo+HqldbvHteo0mNLifHav/4Gi/Cy8/EKZ/NKPuLgbpkoU5WdRkJNmlNfr9Gz78wvysq4hlclw9fRn4LgZRPU27UwYGNqGB56ey/bVX7Nj9be4evoz/um5+DdpQHTATbTvOpDionz+WvUThXnZ+AaE8Mxr3+HmYSjjBXlZ5GbfpKNez7ol35CdeQ2pTI6Hlx+jJj1H9/5jjDKu7t48/+Y8Vi76nPdfGova1ZM+gycycGTtC/HXhXO7FnTeudj4f7PPXwMg5fc1nH70VRQ+Hthfd8YAlF2+ytFh02g291UCn5pERWom5178kPS124wyeYdOcGLSDJq++wJN332O0sQUTkx8kfzo01bpCBDVbSDFRQVs+vMXCvKy8Q1ownOvf4Obp8GW+XnZ5GabFsPX6fSs+eM7sjOvIbtuy9EPPkuP646GG6SnXiEh7iQvvvWD1brd4Oxlw0BC70gZTvYyMvL0LN6hIf96EXdyALXSvP1+Zrh529i6iYy8Yj1zVxnqrp2thJFdZCjtobzSsD7ar39ruJZtXVTNvWBHgJj4KhztyxjS5fp7KFvL96uLyb0+ldpZWfM99PoU0zsm0Bs6NDO8h9742eBUT0rVMn9jKcO72TGsmx1Z+Tp+3VjKZSsjTu+FPsa9oKPg3kair89CHQJBAykpKaFRo0bMnTuXRx999G6rI6gHE2Yl320V6mTZpwHM+vHfc+LcCT590p63f2/4x9v/Ne9OtmHk0xfuthp1su6HMJ79qvDWgneRb19QMfiRM3dbjVuyeUFLxr10+W6rUSd/zg3ipR9ub0v6f5u5TzvyzBcFd1uNW/LdDGdWHflvx72P6Shl95n/9vu8d0t7/rK59WYCd5shVfH8c+6/XXd6NHfkjUUNWzvt/5oPHrb9z9sRDLZ86rP8u61Gncx7WX1P9DH+6zqCQc97kQ3H7t6U8OHtrVgr4P8YEQEjuCOcOHGC8+fP06FDBwoKCnjvvfcAGDFixF3WTCAQCAQCgUAgEAgE/xfoRHhHnQgHjOCO8fnnnxMfH4+trS3t2rVj3759t1yQViAQCAQCgUAgEAgEgv8FhANGcEdo06YNMTExd1sNgUAgEAgEAoFAIBDcJcQCJ3UjdkESCAQCgUAgEAgEAoFAIPiXEQ4YgUAgEAgEAoFAIBAIBIJ/GTEFSSAQCAQCgUAgEAgEAsFto0dya6H/YUQEjEAgEAgEAoFAIBAIBALBv4yIgBEIBAKBQCAQCAQCgUBw24htqOtGRMAIBAKBQCAQCAQCgUAgEPzLiAgYgUAgEAgEAoFAIBAIBLeN2Ia6bkQEjEAgEAgEAoFAIBAIBALBv4xErxc+KoFAIBAIBAKBQCAQCAS3x8rDurv27LGd/vvxJWIKkkAgAKDHqP13W4U6+WdtN6a8lX631aiT397z5sXviu+2Grfky2eUPPJu5t1Wo04WvO3JAzOv3G016mTF54EMfTz2bqtxSzb90oxxL12+22rUyZ9zg3j8o5y7rUad/PKaG4++n3W31bgl89/04EDsf/s91LWZkoy4mLutRp14RbTjn3Mld1uNW9KjuSN/2TS922rUyZCqeOZtudta1M1Tg6Bs1+K7rcYtse/zEE99ln+31aiTeS+rGfzImbutRp1sXtDyP68jGPS8FxHhHXXz33cRCQQCgUAgEAgEAoFAIBDc44gIGIFAIBAIBAKBQCAQCAS3jU4vudsq/KcRETACgUAgEAgEAoFAIBAIBP8ywgEjEAgEAoFAIBAIBAKBQPAvI6YgCQQCgUAgEAgEAoFAILhtxCK8dSMiYAQCgUAgEAgEAoFAIBAI/mVEBIxAIBAIBAKBQCAQCASC20ZEwNSNiIARCAQCgUAgEAgEAoFAIPiXEREwAoFAIBAIBAKBQCAQCG4bnYiAqRMRASP4n2LRokWo1eq78uw9e/YgkUjIz8+3qMs777xDZGTkXdFNIBAIBAKBQCAQCAT/LiIC5n+Ehx9+mN9++834v6urK1FRUXz66ae0atXqLmomuMHMmTN59tln77YatTL1gQCGDfDCyVFO7MVivvw5kcsppXXe07OTG49ODMTX247U9HJ+WXKFfUdyzNKcOj7A7J6cvEpGPRLdYP36RNkzuJsjzkoZqVkalvxdyIUrVbXKNw2yYeIgFb4ecvKLtGzeX8LuY2VmMg52Eu7vq6R9Mzsc7KRk52tZtqWQ0xcrG6wfQNcWcnq3tUXlICE9V8e6fRUkpeksyqocJAzvZou/hwx3tYR9p6pYt9/8uZ2ayYkKt8Hb1eBLv5ql5a9DlSRnWk6zvvRub8+gLg6onaRcy9SwbGsxF5Nrt2VYoA3jByhp5Cknv0jH3wdK2BNTbrw+a4qa8CDbGvedulDB18sKrNJxQBclw3o5o3aScTWjkt/W53H+UkWt8hHBCiYPd8HPy5a8Qg0b9hSy41CxRdkukQ48/6AHR8+W8vmiLKv0Axjcy4XRA91wdZaTnFrBLysyOHex9jrTIsyBx8Z5EeCrIDdfw+qtOfy9N89ct7ZOPDjCEx8PG9Kyqli8LpNDJ4qs1hFgQBcnhvdSoVbJuZpeyaL1ube05ZThrvh5X7fl7kK2HzLp0KGlA6P6OuPtboNMCunZGjbuLWBfTInVOvZqq2BgJ3uclVJSs7Ss2FHCxRRNrfJhAXLG9XXE10NGfpGOrYfL2HvC/Df1jbKjV1s7XFVSist0xJyvZM3uUjRa63Ts3c6OgZ2v15ssDcu3lnAxpY56E2DDAwMcaeRxvd4cLGXvcVO9efkhZ4v15vTFCr5eXmidksCuv/9ky7rF5Odl08g/mAmPziSsWRuLshdiT7Bq8bekXb1MZWU5bh7e9BpwPwOGTzKT27ZxKbu3rCI3Ox2lk5r2Xfoy5sFnsLFVWKXj2s3bWbZuE7l5+QT5N+LZRyfTunm4RdkTZ2J5/s0Papxf/N1nBPo1AmDjtl1s3b2PpOQUAJo2aczjDz5As7AQq/QD2P33n2xd/zsFedn4+gfzwCMzCWvW1qLsxbgTrP79G9Kv3bCjDz0GjKb/sAeNMp+9+TgXzsXUuLdl224898Y3DdbPtVt7gl96FOe2LbDz9eTY/U+TsWFn3fd0j6LZ56+gbBZKRWomiXN/Jfnn5WYy3qMGEPbO8zg0CaA0MZn4t74kY/2OBut3M6f2LSFm13xKCrNw8w6l5+jXaNSkvUXZhFPbOL1/GVnX4tBqKnH1CaXToGcIiuhuJhO9/Ufys5PRaTWoPQJp13sqEVEjrdZxxd5j/Lb9ENkFxTTx8eDlsQNoGxpQq3xllYafNu9jc/QZsgtL8FI78dh93RjZJRKAnSfOM3/LAZKzctFodQR4ujK5X0eGdry9PnmPSFv6RylwVkpJy9ayclcZCdcsv9RUjhLG9LInwFuGh4uUPTGVrNxdVkOuTZgNw7ra4a6Wkp2vY/3+ck5drP3dVh8mjfBkUE9XlA4y4pNK+eGPVJJTa293ALq2U/HQKC98PGxJy6rktzUZHDpuehe2CHPg/kEehATZ46a24f1vr3DohPXvyntJT8G9hXDA/A8xaNAgFi5cCEB6ejpvvPEGQ4cOJTk5+S5rJgBQKpUolcq7rYZFJo5qxLjhvsz59iIpqWVMHuPPF+80Z9L045SVW27Ymzd14u2Z4cxfanC6dO/oxrszmzL9tdPEXTR9+CYllzDj7bPG/7VWxC12aGHHpPtU/L6pkAvJlfSOcuClB1149btscgtqOiPc1TJeetCFPTFl/Lgqn7AAWyYPVVFUquNYrKFhlcng5SmuFJZo+W5FPrkFWlydZZRXWBdXGRkiZ2R3Bav2VnApTUuX5jZMG2bPx0tLyS+umaZMBiVlerYfq6RnpI3FNEMayTh+oYpL6To0Gj192try5Ah7PllaSkGJdXpGNVcwYZCSxX8VkZBSRa929rw4yZk3vs8lt9CSLaW8OFHNP8fL+GVtISH+Njw0xImiUj0xcQZbfr+iAJlMYrxH6SDh3SddjbZuKJ1bOzBluCvz1+QSf7mcfp2cePUxT2Z8lkpOfs3y6OEq55XHPNl1uJjvlmbTNMiOR0e7UlisI/qMuUPE3UXGg0NdiEsqr5FOQ+jeXsXjD3gzb0kasQml3NfThXeeC+DptxPIyq3pOPByt+Gd5wLYui+Pz3+9RrMQB56a5ENBkYaDxw3OjfBge2ZP8+OP9QanS+c2Tsye5sesTy9z4VLNTnN96BzpwMMjXPl1TQ7xlyro19mJ1x734sVPr9Vqy1cf82LnkWK+XZpN08YKHhvtRmGxliPXbVlcqmPNjgJSM6vQaPW0bWbP0w+4U1is5VR8w+3aPsKWB/o7smRLCQlXNfRso+C5B1S8/XO+5TLpLOW5cSr2nSzn1w3FhPjJmTTIkaJSPcfjDU7Mjs1tub+3A4s2FZN4TYOXq4ypQw3v3z931O1YtkRUMwXjByr5Y3MxCVer6NnWjhcmOvPmvNrrzQsTnPnnRBm/risixM+GBwcrKS41OIIAflhZiExmukfpIOWdaS5W1xuA6P3bWLZgLg9Ne4WQ8Ej2bFvNl+8/ywffrMTNw6eGvMLOnj6Dx+EfGIrCzp6LsSf57ccPsbWzp9eA0QAc2ruZVYu/5ZFn3iIkvDXpqVeY/807AEx45KUG67hz/yG+XfA7M554hBbhYWzYupNZ73/C799+hpeHe633Lfl+Lg4O9sb/1SqV8e8TZ2Pp270Lz4eHYmtrw7K1m5j5zsf89u2neLi5NljHo/u3smLh50x6/FVCIlqzd+tqvvngWd79epVlOyrs6T34Afyu2zEh7gSLf/wQhcKeHgPuB+DpWZ+j0Zg+aouLCnhvxnjadenXYP0AZI4OFJ6O5+pva2i38rtbytsH+RG18WdS5q/k5JSXcenSlhbfvk1lVi7pa7cBoO4USZulX3Lh7a9JX78D7xH9aLvsKw71mkh+9Gmr9Iw/vpm9a+fQZ+zb+DZuy+mDy1n34+M89OpfqFx9a8hfTTxKQHgXugx9EYW9itgja9jwy1OMn/Ennn7NAFA4ONOh/1O4egUjldtw6exuti19DXulm5mjpr5sPXaOz1Zu47Xx9xHZxJ9V+44z/ftlrHnrSXxcnS3eM+vXNeQUlvD2g0Px93Qlt6gErdb0LlA52vHYfV0J8nLHRi7lnzMJvP37RlydHOnSrEmDdQRo19SGsX3sWb69jMRrGrq3VjB9jJL3FhSSV1SzTyCXSSgq0/P34XL6trPsLG3sK+PRYQ5s3F/OyYtVRIba8PgwBz5fVszlNOu81WPuc2fUAHe+mH+VaxkVjB/qyYczGzPttQuUlVseQApv4sArTwaweG0GB48X0qWtilefDODljxOJTzK0f3YKKZdSytm+P483ngm0Srd7Uc//Inq95NZC/8OIKUj/QygUCry9vfH29iYyMpLZs2eTkpJCVpZphHf27NmEhYXh4OBAcHAwb775JlVV5l7uDz74AE9PT5ycnHjsscd45ZVXzKbOaDQannvuOdRqNW5ubsyePZspU6YwcuRIo8yWLVvo1q2bUWbo0KEkJiaaPefgwYNERkZiZ2dH+/btWbduHRKJhJMnTxplYmNjGTx4MEqlEi8vLx566CGys7NvaYutW7cSERGBUqlk0KBBpKWlGa8dPXqU/v374+7ujrOzMz179uT48eNm90skEn799VdGjRqFg4MDoaGhbNiwwUxm8+bNhIWFYW9vT+/evbl8+XKdOlWfgvTwww8zcuRIPv/8c3x8fHBzc2P69Olm+ZGWlsaQIUOwt7encePGLF26lKCgIL766qtb2qAhjB3aiMWrUvjncA6Xkkv56JsLKBQy+vfwqOMeX46dymPJmqskXytjyZqrxJwuYOywRmZyWq2e3Pwq41FQWPuodm0M6uLAP8fL2Hu8jLRsLUv/LiK3UEffKAeL8n2i7Mkp0LH07yLSsrXsPV7GPyfKuK+ro1GmRxt7lPYSvlmaz8XkKnIKdFxMriIlo+H6AfSKtOFIrIYjsRoy8/Ss219JfrGeri0tO1fyivSs3VfJsXgN5bUE3PyxvYIDZzWkZuvIzNezYncFEgmE+sks31APBnZyYN+JMvadKCctW8uyrcXkFujoHWVvUb5Xe3tyCgxyadla9p0oZ9+JcgZ2Ntm+pFxPYYnOeDQPtqWySs/RWOucHEN6qtgVXcyu6GKuZWr4bUMeOflaBnR2sijfv7OSnDwtv23I41qmhl3Rxew+WsywniozOYkEnp3ozsptBWTkWJfPNxjZ343t+/PYtj+fq+mV/LIig+y8Kgb3tPyxd19PF7Jyq/hlRQZX0yvZtj+fHQfyGD3AzSgzvJ8rJ2JLWPl3DlfTK1n5dw6nzpcwol/DPyBvMLSHM7uii9h1pJhrmVX8tj6X7HwNA7pYtuWAzk5k52v4bX0u1zKr2HWkmN3RxQzrZbJlbGI5R8+Wci2ziowcDX/vK+JKWiXhje2s0rF/Bzv2n6pg/6kK0nO0rNhRSl6hlp5tLafXs60duYUGufQcLftPVXDgVAUDOprkgxvZkHBVQ3RsJTkFOmIvVREdW0GQj3XjUgM62RvK/klDvVm+rYTcQi292tdSb9rZk1NokEvL1rLvZDn7T1qqN6ajWePr9SbOegfM1g1/0L3vCHr0H4Wvf2MmPjoTVzcvdm9ZZVE+MDicTt0H0SigCe6evnTuNZgWkZ25GHvCKJMYf4bQ8NZ06nEf7p6+tIjsTMfuA7mcEGuVjn+u38yQfr0Y2r83Qf6NeO6xyXi4u7FuS91RFmpnFW4uauMhk5m6uG/NeIZRg/sTGhxEoF8jXn76cXR6PTGnz9aRYu1s37iEbn1H0r3/KHz8ghn/6Mu4uHmxd6tlOwYEh9PxJjt26jmE5pGduRhnsqOjkzPOLu7GI+7UYWwVdrTv0t8qHbO2/sOFt78ifd32eskHThtPeXIasS99RPH5JFIWrCJl0RqCZzxilGn87BSydxwk8dOfKYlPIvHTn8nedZigZ6dYpSPA8T0Lad7pflp0HourdxN6jX4dpYs3pw8ssyjfa/TrtO/7ON6BrXDxDKLrsBmoPQJJOrvLKOMf2pGQ1v1x9W6C2j2ANr2m4O7blNSkmhFG9WHxziOM6hLJ6G5tCPZxZ9a4AXi7qFj5j+X0DpxL5NjFK3z3zHg6RQTTyE1Ny6BGRDbxN8pEhQXRJzKcYB93/D1cmdSnA6GNvDiRkGKVjgB92ys4eKaSA2cqSc/VsXJ3GXlFOnpEWnau5BbqWLmrjCPnqiir5bXSp52C85c1bD1SQUaujq1HKjifrKFPLQ6b+jCyvzvLN2Vy8HghV65VMHf+VRS2Unp1VNdxjxsnYov5c3MWV9Mr+HNzFifjihnR3+SUPXammN+vOz7uBPeKnoJ7D+GA+R+luLiYJUuWEBISgpubqYPv5OTEokWLiI2N5euvv+aXX37hyy+/NF5fsmQJH374IZ988gkxMTEEBAQwb948s7Q/+eQTlixZwsKFCzlw4ACFhYWsW7fOTKakpIQZM2Zw9OhRdu7ciVQqZdSoUeh0Bo9yUVERw4YNo2XLlhw/fpz333+f2bNnm6WRlpZGz549iYyM5NixY2zZsoWMjAzGjRtX528vLS3l888/Z/Hixfzzzz8kJyczc+ZM4/WioiKmTJnCvn37OHz4MKGhoQwePJiiIvMw/3fffZdx48Zx+vRpBg8ezKRJk8jNzQUgJSWF0aNHM3jwYE6ePGl0VDWU3bt3k5iYyO7du/ntt99YtGgRixYtMl6fPHkyqamp7Nmzh9WrV/Pzzz+TmZnZ4OfUhY+XAjdXW46ezDeeq9LoOXWugBbhlj/SwBABc/M9ANEn82jR1PwePx971syPYsWP7Xl7RlN8vBrWqMtkEORjw9lE897D2YQKQgJqhu8DhPjbcjahpnyQr2HKBECbcDsSUqqYPFTFN7M8+HC6G0N7OCKxwqkvk4Kfp5T4alMm4lM0BHlb7yypjq0cpFIotTJKRyaFQF855xLNPT7nkioJ8bPsKGriZ8O5pGryiRUE+cqR1dLCdG9jT/TZCiqtiGCWySC4kS2nL5hHfJy6UEZYkOWyExao4FR1+fgygv1tzXQc09+ZwmIdu6MtT02qL3IZhATacSLWfMrNiXPFhDex/EEeHmzPiXPmzz1+roSQQHtjFER4sAMnYqvLFBNRS5q3QiaDYD/bGlEpp+PLaRpk2bkRGqjgdDX5k/FlBPsras3vFqF2+HrYEGtFVJFMCoE+cmKTzAvLuUtVNPGz7CwJbiTn3KVq8klVBPqYymTC1SoCvWVGh4u7WkrLJjacTmj49MIbOlavB7GJlYTUomOTRnJiq9Wzs4mVZjpWp3sbO6LPWVdvADRVVVxJPE/zyE5m55tHdiLhfP2iF64knSch/jRNm5um2oRGRHI5MY6kCwZnRmb6Vc7EHKBVu24N1rGqSsOFxEtERZpPw4iKbMnZ8xfqvPfRGa8xcurTvPDmhxw/c65O2YrKCjRaDSorok4NdoyjWevqduxM4vlT9UojOek8ifGnCWvWrlaZ/TvXE9VtAAo76+p3Q1F3iiRrxwGzc1nb9uHcrgUSuaEcu3SKJHvHfjOZ7O37cOlseQrbrdBqKslMOUdgU/OyEti0K2mXTtRylzl6nY6q8hLsHNSWr+v1JMcfIi/zEo2aRDVYxyqNlrjkNDo3CzY73ykimFNJVy3es+f0BZoH+LBo2yH6v/I1w9/+gS9W76C8lsqr1+s5cv4SlzNy6pzWVBcyKQR4y4i9bN7PiLusIbiR9RMegn3lNdKMvaQh2Ne6NL09bHBV23D8pvZOo9FzJr6EiBDLg2ZgiCw5fta8H378bBHNmtR+z+1wr+j5X0Wvv3vHvYCYgvQ/xKZNm4xTXEpKSvDx8WHTpk1Ipabe3htvvGH8OygoiJdeeokVK1Ywa9YsAL799lseffRRpk6dCsBbb73Ftm3bKC42vaC+/fZbXn31VUaNGgXAd999x+bNm810uf/++83+nz9/Pp6ensTGxtKiRQuWLFmCRCLhl19+wc7OjmbNmnHt2jUef/xx4z3z5s2jbdu2fPTRR8ZzCxYswN/fnwsXLhAWFmbRDlVVVfz44480aWII8XzmmWd47733jNf79OljJv/TTz/h4uLC3r17GTp0qPH8ww8/zIQJEwD46KOP+Pbbb4mOjmbQoEHMmzeP4OBgvvzySyQSCU2bNuXMmTN88sknFnWqDRcXF7777jtkMhnh4eEMGTKEnTt38vjjj3P+/Hl27NjB0aNHad/eMFf6119/JTQ0tM40KyoqqKgwdz4oFLU7PdzUBidGbr55xyE3vwpvj9rvc1Xbklftnrz8KlxdTE6R2ItFfPT1BVJSy3BR2zB5bAA/zGnNlOePU1hUvwgEJwcpMpmEgmLzcNCCEh3OSstfMs5KKQUl1eSLdchlEpQOUgqKdXi4yIhobMuh02V8sTgPLzc5k4eqkElh/Z6GrWXhaC9BJpVQVGreMhSV6lE53LkwzaGdbSko1nMhxbqwYCcHKTJpTVsWFutwblK7LQur276aLW+msa8cPy85CzdYN/KjcpQZ8ruo2jOLtKidLDuznJ1kFBRpq8kbdHRylJFfpKVpkILeHZTM/iLNYhoN0lEpRyaTkFctmiuvSEtbZ8vNrouznLxqOuYVapDLJaiUcvIKNLg4y8mvlmZ+oQYXlXVNudGWxdVsU1y7LdUqGQXxNeVvtiWAvZ2En97yRy6XoNPB/DU5nLnQcAeM0sFQdwqr1deiEj3OjrWUSUcpRdWm4BWWXC+T9hIKSvQcja3EyUHK7MmGyB25TMLumHK2HGq4jjfqTXUdC0r0tKjlHaRSSmtMEzTqWFu98ZSzaKP16/0UFeWj02lxVruZnVep3SjIz6nlLgMvPXYfRQV5aHVaRjwwjR79Rxmvdew+kKLCPOa8/ijo9Wi1WnoPGsOQ+6c2WMeCoiK0Oh0uavNpHa7OzuTmWV4vys1VzctPP0ZYk8ZUVVWxbc9+XnzrI77+4A0im0dYvOfH35fj4epKu9YtGqxj8XU7qqrZ0cnZ9ZZ2fPmxQRQXGuw4fNwTdL/Jjjdz6eJZriUnMGX6Ww3Wz1oUXu5UZJhHEFdm5iC1scHW3YWK9CwU3u5UZJj/xoqMHBTetUfD1kVZSR56nRYHlbktHZzcKS2q3/pbMbsXUFVZRlib+8z1Kivi17d6oNVUIpFK6TP2bQLDuzZYx7ziUrQ6Pa5Ojmbn3ZwcyS6w7Ky/lp3HicQUbG3kfPHkGPKLy/ho2d8UlJTx7uRhRrmisnIGvPo1VVVapFIJr024j84RwRbTvBXKG/2MGu9KHc6O1n/uqRwlFJVWS7NUh8rRur6Li8owmGOpLfN0szzQA9Te/tXSpt4u94qegnsTURr+h+jdu7cxWiU3N5cffviB++67j+joaAIDDXMQV61axVdffUVCQgLFxcVoNBpUN82jjo+P5+mnnzZLt0OHDuzaZQj9LCgoICMjgw4dOhivy2Qy2rVrZ4xuAUhMTOTNN9/k8OHDZGdnG68lJyfTokUL4uPjadWqFXZ2dmbPuZmYmBh2795tcd2UxMTEWh0wDg4ORucLgI+Pj1nUSGZmJm+99Ra7du0iIyMDrVZLaWlpjbVybl682NHREScnJ2M6cXFxdOrUCclN4RKdO3e2qE9dNG/eHNlNiwD4+Phw5swZwJAXcrmctm1NI5EhISG4uLjUmeacOXN49913zc69/fbbgGGeef8eHrz0pGlhwtkf3hhJNP9YkEhu7WnW6+u+58jxmxYYTYZz8edYNq89g3p78ueG1LoTr/6sav9LuIV+1a5Vj2yRSgwdl4UbCtHr4XKaBrVKyuCujg12wNSmY23nrKFPGxvahNnw/doyqxcRrQ2JpG49a9j+ujEt2b97W3uuZmi4lHp7U3z0lspjA+6/kd969NgpJDwz0Z2fV+XU6GjeppLmz+RWZbLabzKeNp2vaevbL0OWdGqAmiY9bzpXXqHn5bmp2CmktAy1Y/JwVzJyNMQmWjftrKF1p/q7B2N+GwgLkDO4iz1LtpRwKVWDp4uMB/o7UFBsz18HrFtPx9I7pe535K3z+wbdIu24mnn79cb8Sabn3Sqy75UPf6WivJTE+DOsWvwdnj7+dOo+CIDzZ4+xadUCHpr2CsFhLchIS2HZ/M9xdnFn+LjH6064XhoaLFWbjgGNfAloZForpEV4GJnZOSxf95dFB8zSNRvZue8g33zwJgpby1GS9dKxhj56szbfErM+nE9FeSlJF86wZvG3ePj40/G6HW9m/451NAoIoXFowx1Et0WNeiOped6SzG0PO1vM8VvedT5mE4e3fMfwx37AwcnciWOrcGTSrHVUVpSScuEQe9d9jMrNH//QjtZpWC1v9RbO3UCnN5SFjx4ZiZO9oR87c0x/Zv6yilfHD8LO1vAB76hQsOK1xymtqCQ6/jKfr9pOI3c1UWFBVul4Qy9zxW8/e27n/l6d1Dw72VQ/3/7qisU0b9k+Yum3Se5YH+pe0VPw/wfCAfM/hKOjIyEhpg/rdu3a4ezszC+//MIHH3zA4cOHGT9+PO+++y4DBw7E2dmZ5cuXM3fuXLN0ajRCFt5Et5IZNmwY/v7+/PLLL/j6+qLT6WjRogWVlZVG+VulodPpGDZsmMWoEh+fmovg3cDGxtxzLZFIzNJ++OGHycrK4quvviIwMBCFQkHnzp2NutWVzg1HkiWbWIM1z7jVs1999VVmzJhhdk6hULBr/FEA9kfnEnvBFPprY2MYwXVV25KTZ4pocXG2Ia+g9nD93PxKs2gXALWzDXn5td9TXqEj6UoJfj71D7kuKtWh1epRVxtpVjlKa4xI36CguGZ0jMpRikarp/j6B3h+sSHdm82ZlqVB7SRDJgNtA5wcJWV6tLqa0S5ODjWjYqyhVxsb+rW3Zd76MtJyrHcgFJXq0Or0NWzj5FgzyuUGlm0pQaPVU1Jmfo+tHDo0V7DOSgcWQGGJ1pDf1SI0VMqaUS5GHYu0ONeQv57fJTr8vG3wdJUza6qn8fqN18/STwJ48dPUBq0JU1isQavV1xjxUjvJaoyM3SCvoGYki1olR6PRU1SirVXG2anmaFu99azFls512DK/sGZ0jEopu25L0z16PUabXUmtpJGXDSP7OjfYAVNcaqg71aNdnBxrRpzcoKBEh6p6mXSQXi+Thvo2sqcDh88a1pUBuJalxdYGHhqsZPOBsgZ1lm/Um5rPrF3HwmKdhd9kruMNbtSb9XsbvjiwWfpOaqRSGQX55lEORQW5qJzdarnLgIeXYe0uv8BQCgtyWb/8Z6MDZu3SeXTpOdgYFeMXGEpleTm/zfuAoWMeNYuyvRXOTk7IpFJy882jXfIKCmpExdRFs6ahbNu7v8b5Zes28ceq9Xzx3ms0CbJuqofyhh3zzCNBigryUDnXvR6TmR3zc9m44qcaDpiKijKOHtjG8PFPWqWftVRkZNeIZLH1cEVXVUVlTr5BJj0bhbf5QsgKT9cakTP1xd7RBYlURmmh+f2lRTk4ONW+4DIYFu/dsex1hkz9moCmXWpcl0ilqD0Mg4uefhHkZiRydMfPDXbAuCgdkEkl5BSaR7vkFpXgpnK0eI+7Somn2snofAFo7O1ueC/mFxHoaSgnUqmEgOt/h/t7cyktmwVbDlrlgCm+0c9wlAKmd7GTg5TC2+hnFJbcSNOEk4OUwnou9H/kZCHxSaZ3l43c0Li6OBsiO2/grKq7LbPYRjrJyC+4E07pe0fPewUr9tP4n0KsAfM/jEQiQSqVUlZmGO07cOAAgYGBvP7667Rv357Q0FCuXLlidk/Tpk2JjjbfIvjYsWPGv52dnfHy8jKT0Wq1nDhh+qDPyckhLi6ON954g759+xIREUFenvlWq+Hh4Zw+fdpsqszNzwFo27Yt586dIygoiJCQELPD0dFyo1gf9u3bx3PPPcfgwYNp3rw5CoWiXgv73kyzZs04fPiw2bnq/98u4eHhaDQaM9smJCSQn59f530KhQKVSmV23DwFqaxcy7X0cuNxOaWUnNxK2rdWG2Xkcgmtmztz9nzt4fDn4ouIuukegKhINWfja7/HRi4h0M+BnLz6r8Og1cLltCqaNzGfDtW8iYKEZMvpJKRU1pBv0UTB5dQqbmxScDG5Ek9Xudkop5ebnLxCbYOcLwBaHVzN1BHmb94oh/nLuZx+e+EqvdvYMKC9LT9tKCPlNref1urgSqqGZsHmjrPmwbYkXLU8dz3xahXNq8s3seVyqgZtNXWimtthI5dw6LT1OwxptZB0rZJWYeZOulZhdly4bHkVwQtXKmgVZldN3p6klEq0OkjNrGLm56nM/jLNeMTElnEusZzZX6aRnd+wjpNGCwlXyomMMH8PRTZTcj7RcnTF+aQyIpuZR/O1aeZIwpUyY3k7n1RKm2aO1WSUxNWS5q3QaiHpaqUF29gRf9lyHl20YMvWTe1ISqmokd83IwFsZLce0a6how6upGmIaGzujG7W2IbEq5bzJemahmbV5YNtuJJmKpO2ckmNUUy9/vqYewPVvKFj9XrQLNiWhFp0TLxmuZ7drOMNopopDPXmzO3tzCW3sSGwSTixp46YnT936ggh4fXf+lav16OpMr1bKyvKkVRzskhkUoMTq4GDETY2csKaNObYyTNm54+dPEuLcMtRrZa4mHQZNxe12bllazfy+59r+ezt2YSHWDfNA27YMYK4anaMPXWYJuGt659QNTve4NiB7VRVVdKp52CrdbSG/MMnce9r7sjw6N+Ngpiz6DWGcpx3+CTufc2n8bj360beofqt11IdmdwWT//mJMebrz2THH8Qn8a1rytzPmYT25a+wqDJc2ncvFf9HqbXo9U0fI0nG7mMiAAfDsVdMjt/JO4SrYP9LN4T2cSfrPwiSm9aQf9KZg5SiQQvde1r5+nRU6mx7kNdq4PkdC0Rgeb9jIhAOUnXrP/4T0rVEBFknmazIDlJ9YzGKyvXkZZZaTySUyvIza+i7U3tnVwmoWVTR+ISancyn08spU1zc9u1beFEbOLtOabvNT0F/38gHDD/Q1RUVJCenk56ejpxcXE8++yzFBcXM2yYYT5qSEgIycnJLF++nMTERL755hvWrl1rlsazzz7L/Pnz+e2337h48SIffPABp0+fNotWefbZZ5kzZw7r168nPj6e559/nry8PKOMi4sLbm5u/PzzzyQkJLBr164aERkTJ05Ep9Mxbdo04uLi2Lp1K59//jlgiq6ZPn06ubm5TJgwgejoaJKSkti2bRuPPPII2oZ+Id9ESEgIixcvJi4ujiNHjjBp0iTs7Ru2CN6TTz5JYmIiM2bMID4+nqVLl5otnnsnCA8Pp1+/fkybNo3o6GhOnDjBtGnTsLe3v2UYdENZuekaD47xp3tHNxoHOPDqs6FUVGjZ/o9pjvZrz4Ux7UHTdnqrNqXSPtKFiaMaEdDInomjGtG+lZqVG68ZZZ6eEkTr5ip8PBVEhCp5b1YEjg4ytuxu2ELCWw6W0rOtPd3b2OPjLmPiICfcnKXsOmpo8Mb2UzJttGn0dNfRMtzVUiYMcsLHXUb3Nvb0aGvP3wdMkRm7oktROkiYdJ8TXm4yWocpGNbDkZ3R1jWie05W0amZnA4RcjxdJIzsZouLUsLBswbHxpDOtkzsZ+4U8nWX4usuRWFjmN/t6y7Fy8WUt33a2DC4ky3Ld5WTW6THyUGCk4ME29qnJ9+SrYdL6dHWnm6Rdvi4yxg/UImrs5Q9xwwf+ff3deSxkabOxZ5jZbg5y3hggBIfdxndIu3o3saerYdq2ql7GzuOn6+oMcLfUP7aW0ifDkp6RTnSyFPO5OEuuKvlbD9scO5NuE/N9PGmEf3th4pxd5Hz0DAXGnnK6RXlSJ8OSjbuNaxDU6WBlPQqs6OkTEd5hZ6U9KoGO9wA1m3PYUB3F/p3VePnbctj47zwcLVh816Ds3nKKE9mPGIKd/57bx6ebjY8Ns4LP29b+ndV07+bC2u2mUbZN+zMpU0zJfcPcsPP25b7B7kRGeHI+h251pgRgE3/FNC3oxO9Oyhp5GnDlOEuuLvI2X7oui0Hq5k+wTQSve1QEe4uBps38rShdwclfTo4sXGPaU2fkX2caRlmh6erHF9PG4b0UNGjvZJ9x61b3Hh7dDndIxV0baXA203GuH4OuKpk7D1ucEiM6uXAI8NMneS9x8txU8kY19cBbzcZXVsp6NZawbYjJgfGqYRKerZVENXMFndnKRFBNozo4cCpi5VWhdtvO1xG9zZ2dGttqDcP9HfE1VnG3hhDvRndx5FHR9xUb2Ku15v+joZ609qO7m3sLNabbm3sORF/+/UGYODwB/lnxzr27VhPasolli2YS252Or0GjgFg1eJv+eVr07ojOzf/ycmj/5CRmkxGajL7dm5g6/rFdL7JOdA6qge7t6ziyL6tZGVc49zJw6xbOo/IqB5IZZbXEqqLcSMGs2nHbv7asYfLKdf4dv5iMrOzGTGwLwA/LV7Oh1/9YJT/c8Pf7Dt8lJTUNC4lX+WnxcvZeyia0YMHGGWWrtnIr0tWMvuZJ/D29CAnL5+cvHxKy6xzavUfNol9O9eyf+c60q4msWLB5+Rmp9Pz+pbSa/74lvlfv2mU3/33Ck4d3Wu044Gd69m2YTEdLThZ9u9cR5sOvVA6qa3S7QYyRwdUrcNRtQ4HwKGxH6rW4dj5GyKEm34wg9YLTRHEV35ejn2gLxGfvYIyPBi/h+/Hf+r9JH2xwChz+bvfce/fleCZj+PYNJjgmY/j3rczl7/9zWo92/aaytnDqzh3eBW56YnsXfMRRXlptOo6HoD9G+ey9Y9ZRvnzMZvY9sdseoyYjU9Qa0oKsygpzKKizDS4E739J66cP0BBdgq5GYkc372QuKPriWg/3CodH+rbkbUHTrDu4EmS0rL5bOU20vIKGNPdMAX8m3W7eGPReqP84KgWOCvteWvxRhLTsoi5eIUv1+xkRJfWxulH87cc4FBcElez8riUns3iHYfZdPgMQzq0tEpHgJ3HKujaypbOLWzxdpUyprcdLiop+65H+o3obseUweaLwfp5yvDzlKGwNay55ecpw9vN9Hm4O6aCiCA5Azoo8HKVMqCDgvBAObtirN+Nbd32bMYN9aRzWxWBjRTMeNSPikode47kG2VeesyPh+/3Mv6/fnsObZsrGXOfO37eCsbc505khJL1200DpHYKKcH+dgT7GwYJvNxtCPa3w8PVuk7RvaLnfxGxCG/diClI/0Ns2bLFODXHycmJ8PBwVq5cSa9evQAYMWIEL774Is888wwVFRUMGTKEN998k3feeceYxqRJk0hKSmLmzJmUl5czbtw4Hn74YbOIl9mzZ5Oens7kyZORyWRMmzaNgQMHGtcykUqlLF++nOeee44WLVrQtGlTvvnmG6MeACqVio0bN/LUU08RGRlJy5Yteeutt5g4caJxXRhfX18OHDjA7NmzGThwIBUVFQQGBjJo0KAGhTxXZ8GCBUybNo02bdoQEBDARx99ZLZLUn0ICAhg9erVvPjii/zwww906NCBjz76iEceeeTWNzeA33//nUcffZQePXrg7e3NnDlzOHfunNnaOXeCpWuvobCVMWNaE5RKOXEXi3jp3XOUlZu+TL08FGbTn87GF/Hu3PM8NjGQRycEkppRzjtz44m7aPoI83BT8PaMpjg72ZBfWEXshSKenH2KjKyGNezRZ8tR2ksY0UuJ2knKtUwNX/yRR06BYSjZ2UmGq7PpQyA7X8vcP/KYOEhF3w4O5Bdp+WNzIcdiTc/NLdTx2e95TBzkxAdPu5NfpGXb4VL+2mfd9JmTCRoc7WBglC0qRwlpOTp+3lRGXpHBZioHCS5O5uX25fGmjpK/p4x2TW3ILdTx/u+Gj7SuLW2QyyRMvc/cQbglupKt0Q0f6QM4eq4CpX0xw3s64qw02PKrJQUmWyql1Wyp48ul+UwYqKRPlD35RYbtvWOqbZXr5SojLNCWzxebR7tZw6FTpTg55nJ/fzUuKhkp6ZV8PD+T7DxDeVSrZLi5mJq3rFwNH/+ayZThLgzs6kReoZaF63OJPvPvjUjtO1aIk1LG+KHuuDrLuZJawTvfJJOVa3C4uajlZp2tjOwq3vkmmcfGeTGklws5BRp+Xp7OweOmj4rziWV8+vNVHhzpyYMjPEnPquSTn69y4ZKVa5YAh06W4uRwky3TKpnza4bRli4qOe5qc1vO+TWDKSNcGdhVRV6BhoXrcjlyky0VthIeG+2Gm1pGZZWea5lVfLs0i0MnrbP3sbhKlPYlDO1mj7NSSmqWlm9WFJJbaCiTaqUEV5Wp7mQX6Pjmz0LG9XOkVzs7Cop1LN9WwvF4U534a38Z6GFkDwfUTlKKSnWcTqhi7R7rdDwaW4HSXsKwHg6GepOl4etlpnqjVkrNdczX8dWyAsYPcKR3++v1ZksxMefN662Xq4ywABvm/mH9tL2b6dBtAMVF+Wz48xcK8rJpFNCEF974BndPQ9+gIC+b3Kx0o7xer2P14u/IyryGTCbDw9uPMQ89a3Q0AAwb+ygSiYS1S38gLzcLJ5Wa1u17cP+D063SsW+3zhQWFvPbijXk5OXTOMCPT96chbenYXpMTm4+GVkmx6RGo+GHRUvJys1FYWtLY38/PnnjZTq3N0VQrPt7O1UaDW99+pXZsx5+YDSPTBjTYB2jug2kuKiATdft6BvQhOde/wY3T4NTNT8vm9xskx11Oj1r/viO7MxryGRyPLz8GP3gs/S4yY4A6alXSIg7yYtv/cDt4tyuBZ13Ljb+3+zz1wBI+X0Npx99FYWPB/b+punaZZevcnTYNJrNfZXApyZRkZrJuRc/JH3tNqNM3qETnJg0g6bvvkDTd5+jNDGFExNfJD+6frtoWaJp28GUl+RxeOsPlBZk4uYTxognfkblapiuVVKYRWGeaXH0MwdXoNNp2L3qPXavMm2gENFhFAMnfQyAprKU3SvfpaggHbmNHa6ewQx86DOatrUuqmhg++bkl5Tx01/7yC4sJsTHg++mj8fXTQ1AVkExabmmaXMOdrb8+NwkPl6xlUlz5uOstGdA22ZMH97LKFNWUclHy/4mM78IhY2cIG93Ppw6goHtm1ulI0BMfBWO9mUM6WJn6Gdka/l+dTG5hYZ+hrNSimu1fsbrU0yO4UBv6NDMlpwCHW/8bHCqJ6Vqmb+xlOHd7BjWzY6sfB2/bizlcpr1A52r/s5GYStl+oO+KB1lxCeV8sbcS5SVm8L/PFxtuGnpSOISS/n4x2Qmj/bioVFepGVW8vGPycQnmdq/0CB7Ppltim6bNsFQH7fvz+PLBZZ3rPr/QU/BvYdEf6cWqxD8z9K/f3+8vb1ZvHixxes6nY6IiAjGjRvH+++/b/VzlixZwtSpUykoKGhwRMr/ClevXsXf358dO3bQt2/fBt3bY1TN+fL/Jf5Z240pb6XfWvAu8tt73rz43e1tYfx/wZfPKHnk3Tu7XfmdZsHbnjww88qtBe8iKz4PZOjjsXdbjVuy6ZdmjHvp8t1Wo07+nBvE4x/VvYPM3eaX19x49P367cxyN5n/pgcHYv/b76GuzZRkxMXcbTXqxCuiHf+cuzOOr3+THs0d+cum6d1Wo06GVMUzb8vd1qJunhoEZbss92P/S9j3eYinPsu/22rUybyX1Qx+5MytBe8imxe0/M/rCAY970UW7r57z57a++49u76ICBhBgygtLeXHH380RrQsW7aMHTt2sH37dqPMlStX2LZtGz179qSiooLvvvuOS5cuMXHixAY96/fffyc4OJhGjRpx6tQpZs+ezbhx44Tz5SZ27dpFcXExLVu2JC0tjVmzZhEUFESPHj3utmoCgUAgEAgEAoHgfwwR3lE3wgEjaBASiYTNmzfzwQcfUFFRQdOmTVm9ejX9+vUzykilUhYtWsTMmTPR6/W0aNGCHTt2EBFRczvIukhPT+ett94iPT0dHx8fxo4dy4cffninf9I9TVVVFa+99hpJSUk4OTnRpUsXlixZUmP3JIFAIBAIBAKBQCAQ3F2EA0bQIOzt7dmxY0edMv7+/hw4cKBOmfowa9YsZs2adWvB/2EGDhzIwIED77YaAoFAIBAIBAKBQCC2ob4FYhckgUAgEAgEAoFAIBAIBIJ/GREBIxAIBAKBQCAQCAQCgeC2EWvA1I2IgBEIBAKBQCAQCAQCgUAg+JcRDhiBQCAQCAQCgUAgEAgEgn8ZMQVJIBAIBAKBQCAQCAQCwW2j091tDf7biAgYgUAgEAgEAoFAIBAIBIJ/GREBIxAIBAKBQCAQCAQCgeC2EYvw1o2IgBEIBAKBQCAQCAQCgUAg+JeR6PXCRyUQCAQCgUAgEAgEAoHg9vhx69179pMD796z64uYgiQQCAAY99Llu61Cnfw5N4hH3s2822rUyYK3PZkwK/luq3FLln0awJOf5N1tNerkx9kujHgq/m6rUSfr5zWl97gjd1uNW7L7z4488XHu3VajTn56xZW56/7b40EvjZTwyar//sqCs8dIefG74rutRp18+YySX3bcbS3q5vF+8Maiyrutxi354GFb5m2521rUzVOD4C+bpndbjToZUhV/Vz8a68uTA+HD5dq7rUadvD5exoCHTtxtNepk2+I2/3kdwaDnvYgI76gbMQVJIBAIBAKBQCAQCAQCgeBfRkTACAQCgUAgEAgEAoFAILhtdCICpk5EBIxAIBAIBAKBQCAQCAQCwb+MiIARCAQCgUAgEAgEAoFAcNvc3T1+JHfx2fVDRMAIBAKBQCAQCAQCgUAgEPzLCAeMQCAQCAQCgUAgEAgEAsG/jJiCJBAIBAKBQCAQCAQCgeC2EdtQ142IgBEIBAKBQCAQCAQCgUAg+JcRETACgUAgEAgEAoFAIBAIbhud7m5r8N9GRMAI7jgSiYR169b9a+lfvnwZiUTCyZMn75oO/xaLFi1CrVbfbTUEAoFAIBAIBAKBQHCHEREwggaRnp7Ohx9+yF9//cW1a9fw9PQkMjKSF154gb59+95t9YykpaXh4uJyt9VoMA888ACDBw++22rUYEAXJ4b3UqFWybmaXsmi9bmcv1RRq3xEsIIpw13x87Ylr1DDht2FbD9UZFG2S6QjLzzkwdGzpXy2MNNqHXu3t2dQFwfUTlKuZWpYtrWYi8lVtcqHBdowfoCSRp5y8ot0/H2ghD0x5cbrs6aoCQ+yrXHfqQsVfL2swCod+3dWMrSnCrWTjKsZVfy+IY/4y3Xb8cGhLvh52ZBXqGXT3kJ2HC62KNu5tQPPTXLn6NlSvvg92yr9btCzjYL+HRQ4K6WkZmtZubOMhKuaWuVD/eWM6WOPr7uM/GId246Us+9kpfG6VAqDOtnRuYUtaicpGbla1uwpI/ZS7Wneivt6qBnV3wUXZznJaZXMX5lJbEJZrfLNQ+15ZIwnAT625BZoWLstly37TPno72PLxGHuNAmww8vNhl9XZrJxV57V+t3MlLGNGNrXEyelnLiLxXw9/zKXr9auK0CPji5MfcAfXy8FqRkVzF+Wwv6jlvWZONKXxyf6s+qvNL7/LbnB+vVso2BARztjfv+5o/SW+T22r4Mpvw+X889JUzmWSuG+znZ0bqFA7SQlPVfL2t1lnLtUe328FecOLeX03vmUFmXh4hVC52Gv4dO4vUXZS2e3EXtoOTlpcWg1lbh4hdCu3zP4N+1uJpd0ZivHtn1DYU4yKrcAoga+QOMW/a3WMe7wUs7sX0BZURZqzxA6DnkV7yDLOpYWZhL996dkp56jMOcKzTo/SKchr5nJ6LRVnNr7Mwkn1lNamIHKvTFRA1/CL6y7xTTrS9cWcnq3tUXlICE9V8e6fRUkpVkerlQ5SBjezRZ/Dxnuagn7TlWxbn+lmUynZnKiwm3wdjWM6V3N0vLXoUqSM60fAj3xzxKO7phPSUEW7j6h9B7zGn4hlm154eQ2Tu1bRuZVQ367+YTSZfAzNG5m2U7nj/3FpoUzCGnVl5FP/GC1jh2aSuneQobSATLz9GyO1nIl0/LCB0p7uC9Khq+bFDcVHI7TsTlaaybTJkTK/d1qdsvfWVyJRlvjdL05tW8JMbvmU1KYhZt3KD1Hv0ajJpZtmXBqG6f3LyPrmsGWrj6hdBr0DEER3c1korf/SH52MjqtBrVHIO16TyUiaqRV+rl2a0/wS4/i3LYFdr6eHLv/aTI27Kz7nu5RNPv8FZTNQqlIzSRx7q8k/7zcTMZ71ADC3nkehyYBlCYmE//Wl2Ss32GVjmCw47GdN9nx/tfwq8WOF2/Y8aYy2ek+czveTHzMX2z+bQZNWvZl+OPWl0mAdiESOoVLUNpDVgFsP6EjJcuyrNIO+raR4OMiwdUJjl7Qs/1EzTIcFSahXYgElQOUVUJcip7dp/RobyPK4aFR3gzu7Y7SUcb5xBK+++0qV66V13lPt/bOTBnjg4+ngrTMChatTONAjKkdHz/Mi67tnfH3saOySkfsxRJ+XZ7K1fTa+1n/v+gpuLcQETCCenP58mXatWvHrl27+PTTTzlz5gxbtmyhd+/eTJ8+/W6rZ4a3tzcKheJuq2FEq9Wiq0c8nr29PZ6env8HGtWfzpEOPDzClTU7C5j9RSpxlyp47XEv3NQyi/IernJefcyLuEsVzP4ilbU7C5g60pWOLR1qyLq7yHhomAuxiXU3ZrciqrmCCYOUbNpXwjs/5XIxuYoXJznjqrL8inNXS3lxopqLyVW881Mum/aVMPE+J9pFmMrM9ysKeOHzbOPxxg85aHV6jsVa10B2au3A5GEurNtVwKtfpxF/qZxXHvWo3Y4uMmY94kH8pXJe/TqN9bsLmDLchQ4t7C38HhmThqiJS7o9OwK0C7dhbF97/j5UzoeLCkm4quGZsUpcnCQW5d2cpTwzRknCVQ0fLipky6FyHujnQJswG6PMiO729IhUsGJHKe/+Wsg/Jyp4cpQSf0/Lv/1WdGvnxKNjPVm5JZcXP7pCbEIpb033w93F8piCp5sNb033IzahlBc/usKqLbk8Ns6Lzm2URhmFrZSM7CoWr8sit8B6x1B1xo/wYewQH75ZcJknXz1Lbn4Vn70Rjr1d7c1vs1Alb70QyvZ/snns5TNs/yebt18MISLEsYZs0yaODO3nQeLlEqv0ax9uy7h+Dmw+WM4HCwtISNHw7DgnXGqpO27OUp4d60RCioYPFhbw98FyHujvQJumpvwe2cOe7pF2LN9eyju/FBjye7QSfy/r8jvx1GYObZxDmz5PMvq5tXgHtefvBdMozku1KJ+WdIxGoV0YNPVnRj+3Gt8mHdn629NkX4s1ymRcOcHOpTMIbTucMS+sJ7TtcHYseZHM5FNW6Zh0ejNHNn9M655PMGL6GryC2rHttycozreso1ZbhZ2jK617PYGrd7hFmZjtXxMf/Sedhr7OqOc3Ed7hAXYueZac1FiL8vUhMkTOyO4Kth+r5PMVpSSlapk2zB610nL9lsmgpEzP9mOVpGZbbsNCGsk4fqGK79eV8fWqUvKK9Dw5wh5nR8tp3orzMZvZvWoOnQY+xeRX19EopB2rv3+cwlzLtryacJTA8C6MfvpnHpq9hoDQjqz98SkyUmraqSDnGnvWflLrh3N9aREkZXAHGXtOa/lhQxVXMvVM7i/HuWYVBUAug5Jy2HtaS3pu7atTllfq+XhFpdlxO86X+OOb2bt2Dh0GPMWkl9fh26Qd636sw5aJRwkI78KIJ35mwsw1+Id0ZMMvT5F51WRLhYMzHfo/xfgXVvDg7A007zCabUtf43LcPqt0lDk6UHg6nnPPv1cvefsgP6I2/kzu/hj2R40k4ZMfaf7l63iPGmCUUXeKpM3SL7m2ZD372o3g2pL1tF32FeoOrazSMf74ZvasuW7HWeto1KQd6+bVbsdrCUcJaNqFkU/+zMSX1+AX2pH1Pz9FpoUyWZh7jX/WfVKrU6whRPhL6N9GwoFYPb9u1ZGSpWd8Dymqmt0vwFC/S8vhQKyejHzLMs0DJfRpLWHfOT0//a1jU7SOZgESere2rn4DjBviyej7PPnu9xSefTuevAINH88OqbNdjAhx4PVnGrPzQB5PvX6enQfyeP2ZxoQ3Mf24luFKNuzI5vl3L/DKJ4lIpRLmzA7BTmHd5+69oud/Eb3+7h33Av//5LTgX+fpp59GIpEQHR3NmDFjCAsLo3nz5syYMYPDhw+byWZnZzNq1CgcHBwIDQ1lw4YNZtdjY2MZPHgwSqUSLy8vHnroIbKzTaP2Op2OTz75hJCQEBQKBQEBAXz44YcW9dLpdDz++OOEhYVx5coVwHwK0o0pS2vWrKF37944ODjQunVrDh06VOfvfeeddwgICEChUODr68tzzz1nvFZZWcmsWbNo1KgRjo6OdOzYkT179hiv35hKtGnTJpo1a4ZCoeCXX37Bzs6O/Px8s+c899xz9OzZ0+y+m9mwYQPt27fHzs4Od3d3Ro8eXW897gRDezizK7qIXUeKuZZZxW/rc8nO1zCgi5NF+QGdncjO1/Db+lyuZVax60gxu6OLGdZLZSYnkcBzkzz4c2s+mbm398E7sJMD+06Use9EOWnZWpZtLSa3QEfvqJrOCoBe7e3JKTDIpWVr2XeinH0nyhnY2dRAlpTrKSzRGY/mwbZUVuk5Gmudk2NIdyd2Hy1md3QJqZkaft+YT06+lv6dlBbl+3VyIidPy+8b80nN1LA7uoQ9x4oZ0rOmHadPcGPV9oLbtiNAvyg7Dpyu5MDpStJzdKzcWUZekY6ebSw7NHtEKsgtMsil5+g4cLqSg6cr6d/BzijTsbktfx8q52yShuwCHf+crCT2UhX9OljnJB3R14UdBwvYfqCAq+mVzF+ZRXZeFff1UFuUH9TdmazcKuavzOJqeiXbDxSw82ABI/u5GmUSrpSzaE0W+44VUaW5cy34mMHe/LH2Gvui87icUsbH3ydip5DSr5t77fcM8ebY6QKWrkslJbWcpetSOX62kPuHeJvJ2SmkvP5sEz7/6RJFJdZ9pfXrYMeBUxUcOF1Beo6OP3eWkldYe373bKMgt9AgZ8hvw70DOpjqWsfmCrYcKuNsUpUhv09UEHupiv5RdhbTvBWn9y2iadT9hHcYi4tXE7oMfw2lszexh5dZlO8y/DUiez2Gp39LnN2D6DBoBs5ugVyJ222UObP/d/xCutCm9xOoPYNp0/sJGoV04sz+36zS8eyB3whrN5qmUWNRezah05DXcHT25vyR5RblnVwa0Wnoa4S2GYmtneV3QMLJDbTqNQ3/pj1RufoT0XECjUK7cXb/Iqt0BOgVacORWA1HYjVk5ulZt7+S/GI9XVvaWJTPK9Kzdl8lx+I1lFdaFOGP7RUcOKshNVtHZr6eFbsrkEgg1M86h9uxnQtp2fl+WnUdi5t3E/qMeR0nF29O7rOc333GvE6H/o/jE9gKF88guo+YgYtHIIlndpnJ6XRaNi+aSdchz+Ls7m+Vbjfo2lxKzEUdMRd1ZBXA5mgtBSXQoanl35xfbJA5maijoo5AMD1QXGZ+3A7H9yykeaf7adF5LK7eTeg1+nWULt6cPmDZlr1Gv077vo/jfd2WXYfNQO0RSNJZky39QzsS0ro/rt5NULsH0KbXFNx9m5KaFGOVjllb/+HC21+Rvm57veQDp42nPDmN2Jc+ovh8EikLVpGyaA3BMx4xyjR+dgrZOw6S+OnPlMQnkfjpz2TvOkzQs1Os0vH47oW06HQ/LbsYymSv+w1l8vT+Wux4/+tE9TPZsZsFO4KhTP79+0w6D34WZ7fbK5MAHcMlnEzSczJJT04hbD+hp7AU2oZYdpYUlBhkzlzW11ou/dwgJRvOXdFTUAKX0g1/+7ha74AZNciTZevTOXCsgMtXy/nspysobCX06Vx75PqogZ4cP1vE8o0ZpKRVsHxjBidiixg10DRo+fpniWzfl8uVa+UkJZcx95dkvNxtCQ2y3Bf8/0VPwb2HcMAI6kVubi5btmxh+vTpODrWHOKp7jR49913GTduHKdPn2bw4MFMmjSJ3NxcwDA9qGfPnkRGRnLs2DG2bNlCRkYG48aNM97/6quv8sknn/Dmm28SGxvL0qVL8fLyqvHcyspKxo0bx7Fjx9i/fz+BgYG1/obXX3+dmTNncvLkScLCwpgwYQIajeUP1lWrVvHll1/y008/cfHiRdatW0fLli2N16dOncqBAwdYvnw5p0+fZuzYsQwaNIiLFy8aZUpLS5kzZw6//vor586d48EHH0StVrN69WqjjFar5c8//2TSpEkW9fjrr78YPXo0Q4YM4cSJE+zcuZP27U2jJPXR43aQySDYz5ZT8eZOh9Px5TQNsvwxFRqo4HQ1+ZPxZQT7K5Dd9MYZM0BNYbGW3dGWp9TUW0cpBPrKOZdo/nVwLqmSED/LHxVN/Gw4l1RNPrGCIF+5mY43072NPdFnK6i0YhaFTAaNG9ly+kI1O14sJyzI8oduaKAtpy+ay5+KLyfYz9ZMx/v7OVNUomPPUesiIMz0lEKAt4y4alNF4i5VEdzIcnRJcKOa8rGXqgj0liG9rqdcDlVac6dGlQZC/Bo+C1YugyYBdpyMNf+9J+NKCQ+23HkJD7bnZFyp2bkTsSWEBNrVmt93Ah9PBW4uthw7ZQo9rtLoORVbRPOmlj+6AZqFKTl22nya29FTBTQPM3d6vvBYEIdP5HP8TKFV+t3I79jL1fLvchVNas1veU15S/ldzYlVqdHTxL/h+a3VVJJ97Rx+oV3NzvuFdSXjyol6paHX6aisKEHh4Gw8l3HlJI3CqqfZjYwrJ63SMSf1HL4h5uk1CulKZnL9dLSETlOJXG7+fpDZKMi4Yt2HrkwKfp5S4lPM2734FA1B3tY5SyxhKzdMQyutaLgjU6upJCPlHEER3czOB0V0JTWpYflt56A2O39o8/fYO7nSssvYBut1MzIp+LpJSEg1jwhKSNUR4Gn9RykYbDdzjA0vj7Xhwb7y2/rI1WoqyUw5R2BTc1sGNu1K2qX627KqvKYtjdf1epLjD5GXeYlGTaKs1rUhqDtFkrXjgNm5rG37cG7XAonc8I5x6RRJ9o79ZjLZ2/fh0rlNg593o0wGhpvbMSC8K6kNsWNFCXaOarPzh7d8j73SlRadb69MgqHO+bjApXTzepeUrsfP3fpylJJtSNf3+niF2hFCfCQkpFo3UOHtYYub2oaYs6Zp6VUaPafPF9MstJYQMqBZiCMxZ83bupgzhXXe42hvaJSsGaC4V/T8r6LT373jXkCsASOoFwkJCej1esLDLYdKV+fhhx9mwoQJAHz00Ud8++23REdHM2jQIObNm0fbtm356KOPjPILFizA39+fCxcu4OPjw9dff813333HlCmG0YomTZrQrZt541dcXMyQIUMoKytjz549ODs7UxczZ85kyJAhgMFB1Lx5cxISEiz+puTkZLy9venXrx82NjYEBATQoUMHABITE1m2bBlXr17F19fXmPaWLVtYuHCh8XdVVVXxww8/0Lp1a2O6DzzwAEuXLuXRRx8FYOfOneTl5TF2rOXG98MPP2T8+PG8++67xnM30quvHtWpqKigosJ8Gk1t07VUjjJkMgkFxeaNQkGxFrWT5Q67WiWjIL6mvFwmwclRRn6RlqZBCvp0UDLrC8vhuw3ByUGKTCqhoNi8M1xYrMO5ieWva2ellMJq8gXFOuQyCUoHaY20GvvK8fOSs3CDdR+6tdqxSIuzk2VHltpJRkGRuQPGZEcp+UU6wgJt6RXlyKtfpVulV3WUDhJkUgmFpdVsWaJH5WjZlipHKYUl5h90haU6ZDIJSnsJhSV6Yi9p6BdlR0KKhqw8HeFBclqH2iCxok+oUhpsmV9k/sz8Ig0utcT/q1Vy8otKasjLZRJUShl5hf9Op8dVbXAA5hWYOyzyCqrwcq+5vtDN9+XlV7snv8qYHkDvLq6ENnbkyVfPWq2fMb9LzHssRSU6VI6WnZcqRylFJea6FZbozfM7qYp+UXZcvCm/I0Ntrcrv8tI89Dot9ko3s/P2SjdKi+q31tHpfQvRVJXSpNV9xnNlxdk4VEvTQelGaVEtiyXUQUVp/nUdzaOa7JVulBZbvx5To9BunD2wCK+g9qhcA0hNOkRy3C70OuvKq6O9Ib+LSqvld6kelcPtOQ5uZmhnWwqK9VxIabieZcWG/HZQVcsbJ3dKCuuXN0d3LqCqsoym7Uz5fS0xhjOHVjH51XUN1qk6DgqQSSU1olNKyvQo7a336GYV6FmzX0tGnh6FDXRuJuPxwXK+X19FjuUl1OqkrKR2W9a3nMfsNtgyrM19Zucryor49a0eaDWVSKRS+ox9m8DwrrWkcmdReLlTkWFeryozc5Da2GDr7kJFehYKb3cqMnLMdc7IQeHt0eDnGe3oZG5HRyd3rjTEjhXmdryWFMO5Q6t4cPa6ButkCQdbkEolFFcL0i2pMKz1Yi2xyXocFDC5rxQkhrIfc1HHoTjrvnRraxfzCzV4utXeLrqo5eRVmx6cV6DBxbn2T9knJvlxJr6Yy1cbHrl8r+gpuDcRETCCeqG/PqlOUs8edKtWpnm2jo6OODk5kZlpWGA1JiaG3bt3o1QqjccNJ0hiYiJxcXFUVFTcclHfCRMmUFxczLZt227pfKmuk4+PD4BRp+qMHTuWsrIygoODefzxx1m7dq0xWub48ePo9XrCwsLMfsPevXtJTEw0pmFra2v2TIBJkyaxZ88eUlMNjoclS5YwePDgWhcMPnnyZK12qK8e1ZkzZw7Ozs5mx5w5c2qVB8tzKutqeqvL3yg1esBOIeHZie78tDKHopJ/b586ieQWOtaQN2hp6bd2b2vP1QwNl1Jvc4pPdbtIGjZf1WhHvcGO0ye488vqXIpK76wda+TfLap9DVtW+//PHaVk5mp55zEV372s5oF+Dhw8U3Fbc3UtlTF9HQnWvHQ9v61XoQb9urmx+ff2xkMuq6VM3aJsWtJLIjGd9HCz5ZmHg/jo20Sqqu7AL2hgErXV7xus2FFKZp6Odx935vtZLozv78jB07eX39XbHr3h5C3vSzi5iZjt39F34pc1nDjV79dbeE7DdDT/X6/XI6lhnfrTcehrqNyCWPPVEBa93YpDGz8gtO0oJNLbi1axlA13qh70aWNDmzAbFv5dfltrl9S0m75eeRN3bBMHN3/HsEe+xPH6B3NleTF//fYyAya+j4PS9RYp3Aa36cO6mqXnVJKO9Dw9VzL1rNijIadQT6eI241OqmnL+ih7PmYTh7d8x+CHv6zhfLBVODJp1jrGv7SKLkNeZO+6j0m5eOQ29WwAtTVSN5+3JHN7L6FqKtTfjof+/o7BU012rCwvZsvvL9NvwvvY/5tl8rqGt1O/AzyhazMJW2L0zN+qY9U+LSG+Ero1r1+B79PFhfW/tDIeMtmNvKope8t20VK213LTM1P8aOxvx5zvL/9/pee9wr20BswPP/xA48aNsbOzo127duzbV/t6VmvWrKF///54eHigUqno3LkzW7dubfAzRQSMoF6EhoYikUiIi4tj5MiRt5S3sTEfPZVIJMZFaHU6HcOGDeOTTz6pcZ+Pjw9JSUn10mnw4MH88ccfHD58mD59+jRIpxsdudoWxvX39yc+Pp7t27ezY8cOnn76aT777DP27t2LTqdDJpMRExODTGbeMVIqTdMK7O3ta3QYO3ToQJMmTVi+fDlPPfUUa9euZeHChbXqbG9f+3zQ+upRnVdffZUZM2aYnVMoFDz0WloN2cISLVqtvka0i7NSRkGR5d51fmHN6BiVUoZGq6e4RIufty2ebjbMfsQ0H/aGmZZ9GsgLn1wjI6f+jo6iUh1anR5npbk/2cmxZpTLDQqKdTXkVY4SNFo9JWXm99jKoUNzBev2WD/F54YdnS3YpbC4FjsWaS3Ka7R6ikt1+HnZ4Okq5+WHTSN6N+z4xxx/ZnyW1uA1YYpL9QZbOkoBk15ODhIKa3GWFZboaiy26eQgRavVU1xmaAmLy/T8uLYEuQyU9hLyi/WM6mlPdkHDHUeFxQZbuqjMmy9nJzn5tUSy5BdqasirnQy2LKrF/tZw4FgesRdNU+psbQxlzFVtQ+5NES0uKpsao2o3k1st2gVA7WxD7vV7woIdcVXb8NPHLYzXZTIJrSKcGDXImwETo+sVhnsjv1XVFmB1cpTWmd+qGnVNUiO/560pNsvv0b3syc5vuK3tHFyQSGU1ol3Ki3NqRLBUJ/HUZvaueoP+k77CL7SL2TV7pXuNNMuKc2pEsdQHhYPaso4luTWdPg3A3tGVfg9+h6aqgorSfBxUnhzbOhcnl0ZWpVdSdj2/HarX15pRMdbQq40N/drbMm99GWk51jmF7ZWG/C4pNLdlaVEODk515835mM1s/eN1hj32NYHhpvzOz0qhMOcaa398ynhOrzfoN/fZZjz61hbUHgH11rG0ArQ6PcpqzbOjncRYB+4EeuBath43lXWeHXvH63XHClvGH9/MjmWvM2Tq1wQ07VLjukQqRe0RCICnXwS5GYkc3fEz/qEdrdK1IVRkZNeIZLH1cEVXVUVlTr5BJj0bhbf5b1R4utaInKkPtdqxuH523L70dYY88jWBN9kxPzuFwtxrrP+5Zpn86oVmPPx6w8okQGkl6HT6GtEuDgrDAtDW0rOllDOXDevKgGFnJRu5nsFREvafu3V5P3S8gPMJpv6TzfV20UVtY7bgvVolJ7+OdjEvX4Orulo7rpKTV1izn/P0Q350buPMSx9eJDuvfvPG7xU9BXeWFStW8MILL/DDDz/QtWtXfvrpJ+677z5iY2MJCKhZB//55x/69+/PRx99hFqtZuHChQwbNowjR47Qpk39pzgKB4ygXri6ujJw4EC+//57nnvuuRrrwOTn59dYB6Y22rZty+rVqwkKCkIur1kEQ0NDsbe3Z+fOnTz22GO1pvPUU0/RokULhg8fzl9//WVcyPZOYW9vz/Dhwxk+fDjTp08nPDycM2fO0KZNG7RaLZmZmXTv3vDtQCdOnMiSJUvw8/NDKpUap0VZolWrVuzcuZOpU6fWuGatHgqFot47RGm1kHS1klZhdhw9a1pDo1WYHUfPlVq85+KVCto1M++Ztm5qR1JKBVodpGZW8dJn18yuj7/PBTuFhEXrDAv8NgStDq6kamgWbMvx86Z1XZoH23Ii3vKORYlXq4gMM7dB8ya2XE7V1NhWMaq5HTZyCYdOW9+D0Wrh0rVKWoXaceycKW69ZagdMbXasZK21ezYKsyOpKuVBjtmVfHyXHOn2biBztgrpPy2IY8cK3by0eogOV1LRJCckxdNnYGIIBtOXbS8AmfSNS2tQmwA0++KaGzDlXQt1f2bGi3kF+uRSqFNUxtizteyqmcdaLSQmFxO6wgHDp8yOTsiIxw4csryekLnk8ro0MrcKRnZzJGEK+W3tY1mdcrKdZSVm5e5nLxK2rdyJuGyIZ/lMgmtmznx85KUWtOJvVBMu5bOrPrLNLWsfStnzl0wzEM4fqaAqS+dNrtn9lPBJKeWs2x9ar3nQJvy24aTF+qb3xpahpiHXzcLqk9+2xIT1/D8lsltcW/UnGsXD5ptEX314kGCmtXueE84uYm9K1+n78S5BET0qnHdKzCSaxcP0qr7w8Zz1y4cwCsw0iod3Xybk5pwkKDmJh1TEw4SEHHrwYFbIbdRIHf2Qqet4vK57TRuOciqdLQ6uJqpI8xfzpkkkzMszF/O2dvYEh6gdxsb+re35acNZaTcxvbTMrktXv7NuXz+AKGRJltePn+QkFa1R8XGHdvE1j9eY8jUL2jSopfZNVfvYKa8vtHs3IGNX1FZXkLvsYbFVBuCVgepOXpCfKXEJZvsaPj/zkYjertKyMizzqkjk9vi6d+c5PgDhLQ22TI5/iDBLWu35fmYTWxf9hr3Tf6Cxs171e9hej1aTcPrtzXkHz6J55DeZuc8+nejIOYs+uuRynmHT+LetyuXvjYtqu3erxt5h040+Hk3yuSV6nY8f5Amt7DjtqWvMXjKFwRXs6OrVzAPvWJeJg/+9RWVFSX0Gt3wMgmg00FaHjT2lhB/zVRmGntLuHDNesegjaxm8MaNNqY+QUWGdtG8bOTkV9G2hROJVwz9BrlMQqtwJfNX1D4tPTahhLYtnFizxTTtq10LFbEXzQfHpk/2o2s7Z2Z+lEB6Vv3L5L2ip+DO8sUXX/Doo48avze/+uortm7dyrx58yzODvjqq6/M/v/oo49Yv349GzdubJADRkxBEtSbH374Aa1WS4cOHVi9ejUXL14kLi6Ob775hs6dO9c7nenTp5Obm8uECROIjo4mKSmJbdu28cgjj6DVarGzs2P27NnMmjWL33//ncTERA4fPsz8+fNrpPXss8/ywQcfMHToUPbv32/hadaxaNEi5s+fz9mzZ0lKSmLx4sXY29sTGBhIWFgYkyZNYvLkyaxZs4ZLly5x9OhRPvnkEzZv3nzLtCdNmsTx48f58MMPGTNmDHZ2tU/Offvtt1m2bBlvv/02cXFxnDlzhk8//RTgtvWoL5v+KaBvRyd6d1DSyNOGKcNdcHeRs/2Q4WNwwmA10yeYRoG2HSrC3UXO5OEuNPK0oXcHJX06OLFxj2H9lCqNnpT0KrOjpExHeYXhvNaKgISth0vp0daebpF2+LjLGD9QiauzlD3HDI3m/X0deWykaQHTPcfKcHOW8cAAJT7uMrpF2tG9jT1bD9V0hnRvY8fx8xWU3ObI5l/7iujdQUmv9o74esp5aJgad7WMHYcNToPxg5x56gHTaPmOw0W4u8h4cKgaX085vdo70jtKyV97b9gRrmZUmR2l5TrKKnRczbDOjgA7jpbTtbWCLi1t8XaTMraPPS4qKf+cNHQQRvaw4+Ehpt2i/jlZgatKypg+9ni7SenS0paurWzZHm1yWAX5yIgMs8HdWUqIn5znxiqRSGDbEeu29F6/M4/+XdX07azCz9uWR8d44O5iw5Z9+QA8NMKdF6aYOrBb9hXg4WrDI/d74OdtS9/OKvp1cWbdjlyjjFwGjf0UNPZTYCOT4KaW09hPgbeH5bVQ6suqzelMGuVLtygXgvzteWV6MOUVOnbsN42mvjo9mMcmmHbAWL05najWzowf4YO/rx3jR/jQrqWK1dcdMmXlOi6nlJkd5RU6CouquJzSsG1TdkSX0621gi6trud3XwdcVVL+OWHIm5E97Xl4qMnhvvdEBW4qKWP7OBjyu5UtXVsr2BZtem6Qj4w2N+X38+OckEhg6xHrnJituj/M+aOrOH90NXkZiRzcOIfi/DQiOo0HIPrvuexeMdson3ByE7tXvEKnobPxDGhNaVEWpUVZVJaZFtJo0fUhrl48wMk9v5CfmcTJPb9wNeEQLbtNsUrHFl2ncCFmNReOrSY/M5Ejf82huCCN8A4PAHBs6xfsXTnb7J6c1DhyUuOoqiilvCSPnNQ48jITjNczU05x+dw2CnNTSL98jK2LpqHX62jZ/VGrdATYc7KKTs3kdIiQ4+kiYWQ3W1yUEg6eNTjghnS2ZWI/c+e0r7sUX3cpChtDRJOvuxQvF1NURp82NgzuZMvyXeXkFulxcpDg5CDB1sqq077vVM4cXMWZg6vISU9k96qPKMpNo3U3Q37/s34um3+bZZSPO7aJv3+bTc/Rs/ENak1JQRYlBVlUXM9vuY0CD98ws0Nhr8LWzhEP3zBk8trXc6iNA+d0tAuV0jZEiocz3Bclw9kRjl5f/6x/Wxn3dzOPYPR2leDtKsFWDo4Kw/8eN82e7t1aSoivBBel4dqorjJ8XCVEx1vv1GnbaypnD6/i3OFV5KYnsnfNRxTlpdGqq8GW+zfOZesfJluej9nEtj9m02PEbHyCWlNSmEVJocmWANHbf+LK+QMUZKeQm5HI8d0LiTu6noj2w63SUebogKp1OKrWhqnoDo39ULUOx87fMFW86QczaL3QFDF95efl2Af6EvHZKyjDg/F7+H78p95P0hcLjDKXv/sd9/5dCZ75OI5Ngwme+TjufTtz+Vvrdjlr23sqZw+t4uwhQ5ncc8OO18vk/g1z2bLY3I5bF8+m50jLdpTbKHD3DTM7FPYqbBWOuFtZJgGOnNcTGSyhdWMJbiro10aCswMcTzD0X3q1kjCso3lElZfacNjKDdEyXmpwv2mzxYupetqFSGgWIMHZERp7Qc+WEi6m6q2e0bV2SyYThnnRtZ0zQX52zJwWQEWlnl2H8owyLz8RyCPjfIz/r9uWRbsWKsYN8cTfR8G4IZ60ae7E2q2mpQSeneJH3y4uzJl3hbJyLS7Oclyc5djaWBdFdq/o+V9Er9PftaOiooLCwkKzo/ral2DYyCUmJoYBAwaYnR8wYAAHDx6s1+/U6XQUFRXh6tqwqYQiAkZQbxo3bmx0HLz00kukpaXh4eFBu3btmDdvXr3T8fX15cCBA8yePZuBAwdSUVFBYGAggwYNQnp9G40333wTuVzOW2+9RWpqKj4+Pjz55JMW03vhhRfQ6XQMHjyYLVu20KVLzXDZhqJWq/n444+ZMWMGWq2Wli1bsnHjRtzcDB/ICxcu5IMPPuCll17i2rVruLm50blzZwYPHnzLtENDQ4mKiuLo0aM1PKnV6dWrFytXruT999/n448/RqVS0aNHD+P129Gjvhw6WYqTQy7391fjopKRklbJnF8zyM4zdDRdVHLcbwq3zMrVMOfXDKaMcGVgVxV5BRoWrsvlyBnLkR53gqPnKlDaFzO8pyPOSinXMjV8taSAnOtTXJyVUlydTZ3h7HwdXy7NZ8JAJX2i7Mkv0rH07yJi4sxf0F6uMsICbfl8cR63y+FTpTg5SBndzxm1SkZKehWfLMgyTstQq2S4q006ZuVp+XRBFg8Nc2FAFyfyCrX8tiGP6LO3uS/pLYg5X4XSvowhXe1QOUpJzdby3cpicgtvsqXK5LvPKdDx3apixvaxp2cbBQXFOlbsKOXETREVNnIJI7rb466WUlGp52xSFQv/KqHMil1SAPbHFOHkKOOBIe64qmRcSavkve+vknV9ypWLsxx3V9PXX2ZOFe99f5VHx3gyuKea3AINv/6ZwaETpogZV2c5X70eZPx/VH9XRvV35cyFUt74svZolVuxfH0aClspLzwWhJOjnLiEYl7+8Dxl5aaPKk93hVnUyrkLxbz3VQKPjvfjkQf8SE2v4L2vEohLsH4aXG0cO1+Jo72EIV3tcTbmd1Gd+f3tyiLG9XWgZ1tnQ35vL+VEvHl+D+/hgMf1/D6TVMWCTcVW53eT1oMpL83n+M7vKS3MwtU7lPum/mScilNalEVxvmlEMu7ICvQ6DQfWvceBde8Zz4e1G0mvcR8D4B3Ulr4T5nJ029cc2/YNKld/+k36As+A1lhDcKvBVJTmc3L3D5QWZeHiFcqAyT+ivEnHkgLziLX13482/p2Teo6kU5tQqn0Z9/JOALSaCo5v/4aivBTktg74hfWg59hPUNibb0XfEE4maHC0g4FRtqgcJaTl6Ph5Uxl5RYa8UTlIcHEyH5t7ebzJ4ervKaNdUxtyC3W8/7vhnd61pQ1ymYSp95lH7G2JrmRrdMNHdsPbDaasJI9Df/9ASWEm7j5hjH76Z5zdDLYsKciiMM9ky1P7V6DTadi54j12rjDld/OOo7hv8scNfn59OHtZh4MCekfKcLKXkZGnZ/EODfnXq6iTA6irTe17ZrjpndTIHVo3kZFXrGfuKkPdsbOVMLKLDKU9lFdCWq6eX//WcC3beud/07aDKS/J4/DWHygtyMTNJ4wRT/yMyvW6LQvNbXnmoMGWu1e9x+5VJltGdBjFwEkGW2oqS9m98l2KCtKR29jh6hnMwIc+o2lb6/odzu1a0HnnYuP/zT5/DYCU39dw+tFXUfh4YO9v+sAtu3yVo8Om0WzuqwQ+NYmK1EzOvfgh6Wu3GWXyDp3gxKQZNH33BZq++xyliSmcmPgi+dHmkYP15YYdj2z9gZLrdhz5pLkdi2624wGDHXetfI9dK012bNZhFAMf/HfKJEBcimHB3G4tJCjtJGQVwPJ/dBRe734p7bk+ZdhUph4bZOp3+LhKaBEE+SV6vt9oaAP2n9OD3uB0cbKXUFphcMrsOW19ufzzr0wUtlKeedgfJwcZ55NKePXTBPN20c3GbF232IslfPT9ZR4e48OUMT6kZVTy4feXOJ9o6lsO62eYmjb39VCz53328xW278ulodwregrMmTNnjtnmJWAY0H7nnXfMzmVnZ6PVamvssuvl5UV6ev02t5g7dy4lJSVmO/nWB4m+rlULBQLB/wzjXrp8t1Wokz/nBvHIu5YXTf6vsOBtTybMSr7batySZZ8G8OQnt+9U+jf5cbYLI56Kv9tq1Mn6eU3pPe7/cOFJK9n9Z0ee+Pi/3an76RVX5q77b3dHXhop4ZNV/97C4XeK2WOkvPid5el4/xW+fEbJLzvuthZ183g/eGPRf39qwAcP2zJvy93Wom6eGgR/2TS922rUyZCqeH5s+Fqa/+c8ORA+XP7f3q749fEyBjzU8Ole/5f8P/bOOj6K4///z5Pk4hcXooQEQrAEd3cpLoUipVChLTVKhU+L1N1poQKUCu4Ud5cQLIEQEiLE3e1y9/vj4I5LLiEJpSG/7zwfj3tAdt8z+9rZ3ZnZ97xndu/q4EdeI2h1NkQ+3Vh/beVLw8uMfu214vILiYmJuLu7c/LkSYOZHB988AGrV6/m+vXr1R7n77//ZtasWWzdupX+/fvXSqOIgBEIBAKBQCAQCAQCgUDQoKnpWpeOjo7IZLJK0S6pqamVomIqsnbtWp566inWr19fa+cLiDVgBAKBQCAQCAQCgUAgEPwfwdTUlHbt2rFv3z6D7fv27at2OYu///6bGTNm8Ndff1X7IZXqEBEwAoFAIBAIBAKBQCAQCB6YhrLAyauvvsrUqVNp3749Xbp0Yfny5cTFxenWHX3rrbdISEjg999/B7TOl2nTpvHNN9/QuXNnXfSMubk5SqWyyuNURDhgBAKBQCAQCAQCgUAgEPyfYeLEiWRkZLBkyRKSkpJo2bIl//zzD97e3gAkJSURF6df23HZsmWoVCqef/55nn/+ed326dOns3LlyhofVzhgBAKBQCAQCAQCgUAgEDwwanUDCYEB5syZw5w5c4zuq+hUOXz48L9yTLEGjEAgEAgEAoFAIBAIBALBQ0ZEwAgEAoFAIBAIBAKBQCB4YBrKGjD1hYiAEQgEAoFAIBAIBAKBQCB4yAgHjEAgEAgEAoFAIBAIBALBQ0ZMQRIIBAKBQCAQCAQCgUDwwIgpSNUjImAEAoFAIBAIBAKBQCAQCB4yIgJGIBAIBAKBQCAQCAQCwQOjFiEw1SLRaEQJCQQCgUAgEAgEAoFAIHgw3vtbVW/HfufxRz++5NFXKBAI/hN6jj5e3xKq5ejm7kx7J6m+ZVTL7++58dI3efUt475885I1T72XVt8yquXXd5yY8FpMfcuolnVf+DB8dnh9y7gvO34ObBBl2RDuyZmLU+tbxn35baEzITcy61tGtbRrak/WpSP1LaNa7Nr04mhYQX3LuC89W1hSdHB1fcuoFvO+U/lpT32rqJ5nB8FOk2b1LeO+DCuL4JmPH+3ne9mb9vQYeay+ZVTLsa096D7i0a6DAI5v71XfEgQPAeGAEQgEAoFAIBAIBAKBQPDAaNT1reDRRizCKxAIBAKBQCAQCAQCgUDwkBERMAKBQCAQCAQCgUAgEAgeGLHEbPWICBiBQCAQCAQCgUAgEAgEgoeMiIARCAQCgUAgEAgEAoFA8MCoxRow1SIiYAQCgUAgEAgEAoFAIBAIHjLCASMQCAQCgUAgEAgEAoFA8JARU5AEAoFAIBAIBAKBQCAQPDBiEd7qEREwAoFAIBAIBAKBQCAQCAQPGeGAEdQbycnJDBgwAEtLS2xtbQGQSCRs2bIFgJiYGCQSCRcvXqxxnitXrtTl1RCpyzkLBAKBQCAQCAQCwaOAWlN/v4aAmIIk+FeYMWMG2dnZOudJTfjqq69ISkri4sWLKJXKSvs9PT1JSkrC0dHxX1RaN63/FQ/rnP8NnpzoxYiBLlhbygmPzOer5VHExBdWm6ZXZweemuxNI1czEpOL+fnPWI6dyTDI88lJXgZpMrJKGT3zbK319etowdDuliitZCSkqvhzVw43YsuqtG/mY8rkwTa4O8vJzitn5/ECDp0zPB8LMwnj+lvTPtAMCzMp6dnl/LUrl8uRJbXWB9C9tQl925piYykhOUPNpqMlRCeWG7W1sZAwqqcCD2cZTrYSjl4sY/NRw+O62ksZ2sUUD2cZDjZSNh0p5sjFqs+5pvRpZ8agLhbYWktJSFOxZk8BkfFV59vUy4SJAy1xd5KTnadm18lCjlwo1u1/faqSAB/TSukuR5bwzZrcOmkc2NWax3rbYGsj53ZyKSu3ZnL9VtXXpbmvgumP2ePhakpWropth3LZdyrPqG3XIEtenurEuauFfLYitU76AIb2tmPMIAfslXLiEkv4eW0KYZFVPzMtm1owa4ILXo0UZGar2Lgng11Hsgy1tbXmiZHOuDmZkJRWxuotqZwKNX4eNeXfLsuOrSwY3U+Jq6MJMikkp6vYfiSHYyEFddbYEO7JPu3NGdz1jsZUFX/vyScyrhqN3iZMGmh1pw5Ss+tEAYdD9BrnT7c1qvHSjRK++TunThoB9u3cyI5Nf5KdlYG7V2OmzX6ZgBZB900XEX6J9956Hk9vXz769neDfWdPHGL9n8tJSUrAxc2dCVOfoUOX3nXWuGHPYf7ctoeM7BwaezTilRkTCWrub9Q2JCyC5xd/UWn7mq8W4+PuBsCOwyd5f+nKSjZH/vgBhalJnTQe2rWOPVt/JycrnUaevkycOY+mgW2N2kZeC2Xj79+SnBBDaWkxDk5u9Bw4hgEjntDZfPbObG6EhVRK26ptd+b+79s6aQRYe+Q8q/adIj0nnyZuTrw+fiBt/b2qtC8tU7Hsn2P8c/YK6bkFuNhaM2tId0Z1DQLgQOh1ft19gri0TFTlaryc7ZnWvxPDO7Wus8ZLx/7k/IFfKchNw8HVn15j38ajSXujtpGX9nL5+N+k3b5GuaoUBzd/Og95AZ/mPYzaR4Ts5J9Vr9KkVT8em720Tvrsu7fH97WnULZtiVkjZ86PnUPKtgPVp+nRgcDP38Qq0J+SxFSivviFuOVrDGxcRw+k6aKXsGjiRWFUHBHvfkXK1v110niXXsEKBnYyQ2klJTG9nHX7C7l5W1Wlvb+nnPH9LGjkKCM7X83e08Ucvaiv/6VSGNLFjC4tFdhaS0nOLGfzoSLCbj1YX+PJSV48NshV26e8kceXy2rQp+ziwKwpPro+5fI/Yjh2+p4+5SQvZj7ubZAmI6uUUTPO1FnnzMe9eWyQG9ZWd3T+FMmtuPvo7OrIrCk+uLuZk5BUxM+rb3H0Hp0AjvamPDfDl87t7FEopMQnFPHxtxFEROXXWaug4SAcMIJ6Iyoqinbt2uHvb7xTJZPJcHV1/Y9VPTzKysowMam+o/eonvPk0e5MeKwRH30XSXxiEdPGefLlohZMef4CRcXGHQgtmlmzcF4Av/6ldbr06OTA4nnNeP7ty1yL1Dcw0XEFvLrwqu7v8jq4rzu1NGPKEBtW7cghMq6MPu0tmDfVnre+SyMjp/K38BxtZcybasfh80Us25iNv5cJ04cryStQcz5c+wIkk8H86fbkFqj5bk0WmTlqHJRSikrr5l4P9pczuqeC9YdKuJVYTtdWJjw70pyP/iggK69ynnIZ5Bdq2He2hN7BlV/CAExNID1HQ2hkCaN7KuqkqyIdAhVMGmTFH//kc/N2Gb3amvHyZCXv/JhJZq6xspTy8uNKjoYW8cuWPPw8THhiqBX5hWpCrpcCsHR9LjKZPo2VhZRFT9txPrxujqwuQRbMGGnPL5syiLhVQv8u1rw924VXPk0gI7vy/ehkL+etWS4cOJPPd3+l06yxglljHMjNL+fMFcOOlKOdjKkj7AiPKq6UT23o0d6G2RNd+fHPJMJvFjKklx2L5noxZ+FN0jIrd4ZdHE1YNNeLPcey+PyXBAL9LHhuihs5eSpOXtA6NwJ8zXnjaQ/+2Kp1unQJtuaNpz2Y/2kMN24V1UnnwyjL/EI1m/bnkJhahqpcQ9tAc+ZMdCQ3v5xLEbUv14ZwT3ZooeDxwVas3pnHzfgyercz55UpSv73Q9UaX5lsy9ELRfy8ORc/TxOmDrMmr1BDyDWthh/W5iCTSe7RKGHxs/Z11ghw6th+fv/la2Y++zpNA1tzYPdmPln0Kp/98BeOzlW3PYUF+fz41Xu0aNOe3OxMg303rl/h20/fYfwTs2nfuRfnTx/h20/+x8JPluHXrEWtNe47eY6vV67l9VmTad3Mjy37j/LKh9/y91eLcHV0qDLduq/fw9LCTPe3rY21wX5LczPWffOewba6Ol/OHd/D2hWfM2X2W/g1b8ORPRv59v0XWfzNBhyc3CrZKxTm9Bk6EQ9vfxRm5ty8Fsrqnz5AoTCn58CxAMyZ/zkqlf6lNj8vhyWvTqJd1/510giw53wYn63fy9uThhDUxJMNxy7w/A9/s+ndZ3GzrzzwBTD/l01k5Baw8InheDrbk5lXQHm5/h62sTRj1pBu+Lg4YiKXcvTKTRb+vh17a0u6BjaptcaIC/9weNNH9B2/kEa+bblyYg1bfpzNtLd3YmPfqJJ9ws1zeDXrSrfhr6AwtyHszCa2Ln+Ox19dh7NnoIFtbmYCR7d8gnsVzpyaIrO0IPdyBLdXbaLd+u/va2/u40GH7cuJ/3U9F6e/jl3XtrT8biGlaZkkb94LgG3nIIL/+oobC78heet+XEf2p+3fX3Oq92Syz16uk872AaZM6G/BX3sKiUooo2eQGS9OsGbRLzlkGamHHJRSXhxvzfFLJfy2PZ8m7iZMHmRBXpGa0AjtvTiqpzkdWyj4Y1cByRnlBPqa8OwYKz79I5f4FOP9v/sxeYwHE0e68+E3N4hPLGL6BC++WtKSyXNCKCqquk+56PXm/PpnDEdPZ9CzswNLXg/g+bcuE35DPwAQHVvAK+9e0f39IJ9DnjLWk4mjPPjg6wjiEwqZPtGbr5a05vHnzlWj04bF8wP55Y9bHD2dTs/Ojix5I5A5b1zU6bS2lPPjp8FcuJLNvEVXyMopxd3VnLyCqh1lgv+/EFOQBA+F3r17M3fuXObPn4+9vT2urq4sWrRIt9/Hx4eNGzfy+++/I5FImDFjRqU8jE3H2bZtG/7+/pibm9OnTx9WrVqFRCIhOzvbIO2ePXto3rw5VlZWDB48mKSkJAAWLVrEqlWr2Lp1KxKJBIlEwuHDh42ew4YNG2jVqhXm5uY4ODjQv39/Cgr0I7grVqygefPmmJmZERAQwNKl+pGVu9rXrVtH7969MTMzY+nSpZibm7N7926D42zatAlLS0vy8/ONnnNYWBjDhg3DxsYGa2trevToQVRUVI10/FuMH+7O6g3xHD2dwa24Qj789gYKhYwBPZ2qSdOI85ey+HPTbeISivhz021CLucwfoS7gV15uYbM7DLdLye39g3Q4K6WHLlQyJGQIhLTVPy5K5fMXDV9O1oate/b0YKMHDV/7solMU3FkZAijl4oZGg3vX3PthZYWkj55q8sIuPKyMgp50ZcGfHJdWsge7c15XRYGafDykjJUrP5aAlZ+Wq6tTL+ApCZp2HT0RLOXVdV6fSJS1Gz7XgJoTdUqOrWD6rEwM7mHAst5tjFYpLSy1mzt4DM3HJ6tzc3fl7tzMnI1dolpZdz7GIxxy8WM6iLhc6moFhDboH+F9jYlNIyDeeu1e1FcnhPJQfP5nHwTD4JqWWs2ppJeraKgV2tjdoP7GJNeraKVVszSUgt4+CZfA6dzWdEbxsDO4kE5k5xYt2ebFKNOElqw6gBDuw7nsXe49ncTi7l57UppGeVMbSXvVH7Ib3sSMss4+e1KdxOLmXv8Wz2n8hizED9C+dj/e0JDS9g/a4MbieXsn5XBpeuFzCyv/E8a8LDKMvwqGLOXS0kIbWMlAwVu47lEZtUSkBjM6N53o+GcE8O6mzBsdAijoVqNf69J5/MHDV9OlShsb05GTlau6T0cu35hRrTqNb9Wvje0Rhed+fgP1v+pveAEfQZ9Bjunj5Mm/0KDo7O7N+1qdp0v/zwCV17DcA/oGWlfbu3rqVVUAdGjp+Ou6cPI8dPp0Wb9uzatrZOGv/esY8Rfbszsl8PGnu48cqMiTg72rFp75Fq09kprXGwVep+MqlhF1cikRjsd7A17oCoCfu2/0n3fqPoMWA0bh6+THrqdewcXDiyZ4NRey/fADr1GIy7VxMcnRvRudcwWgR1IfJaqM7G0lqJ0s5R97t26TSmCjPadx1QZ52rD5xhdNcgxnQPxtfNkfkTBuJqZ8P6o5UjbQBOhEVxPjKW71+YROfmvrg72NLKx52gJp46mw5NfegbFICvmyOeTvZM6dsRf3cXQm/G10njhUMraNl5LK26jsfBtQm9xy7A2s6Vy8f/Nmrfe+wCOvSfjat3a+ycfeg+4lVsnbyJvnrQwE6tLmfX7/PoMvRFlA6eRvOqKWl7jnJj4dckb9lXI3vvpydRHJdE+Gsfkn89mvjfNhC/chO+r87U2TR+cTrp+08S9elyCiKiifp0OekHT+Pz4vQ66+zf0YwTl0o4cbmE5Aw16w4UkpWrplew8QGaXsEKMnO1dskZak5c1qYd2FFfb3VqoWD3qSKuRpeRnqPmaGgJ4bfKGNChbvU5wIQR7vy+Xt+n/ODrCBSm9+lTPubO+YtZ/LFR26f8Y+NtQi5nM36EoZOuYp8yO7fukTrjH3Pn93VxHD2VrtX51XUUChkDezlXfW4j7+jcEE/c7SL+2BBPyKVsJjzmobOZMs6T1PQSPvomgmuReSSnlhByOZvE5Acb+HmU0Kg19fZrCAgHjOChsWrVKiwtLTlz5gyffvopS5YsYd8+beN17tw5Bg8ezIQJE0hKSuKbb765b34xMTGMGzeOUaNGcfHiRZ555hkWLFhQya6wsJDPP/+c1atXc/ToUeLi4pg3bx4A8+bNY8KECTqnTFJSEl27dq2UR1JSEo8//jgzZ87k2rVrHD58mDFjxuhW9f75559ZsGABH3zwAdeuXePDDz/knXfeYdWqVQb5vPHGG8ydO5dr164xfvx4hg0bxp9//mlg89dffzFy5EisrKwq6UhISKBnz56YmZlx8OBBQkJCmDlzJiqVqlY6HgQ3FwUO9qacu5it21am0nApLIeWAcZf0kA7WnFvGoCzF7No2cwwjYebOZt+7cDan9qz8NVmuLnULpJDJgOfRiZcvWn44nTlZgn+nsadG36eJlwxYu/jrp0yAdA2QMHN+DKmDVfy3RvOfPiCIyN6WiKRGMnwfhql4OksJSLO0EsSEVtOYzdZFan+e2RS8HaTExZdarA9PKoUPw/jAZNN3OWERxnaX40qxdtNrivLivQINuNsWAmldegXyWTg62FaKZLickQxzXyMdwj9vRVcrmB/MaIIX0+FgcZxA23JzS/n0NkHCwGWy8DP24zQcMMpN6Fh+QQ0Mf5CHuBrTmiY4XEvhBXg522ui9QI8LUgNLyiTT7Nq8jzfjzMsryXlv5mNHIyITy69p3LBnFPSsG7kZywCscMiy7Fz8N4HdTEw6TSOYVFleDTqDqN5py9WjeNAKqyMm7djKB1cEeD7a2CO3Hj2pUqUsHh/TtITUpg7ONPGd0fef0qrSrk2Tq4E5HV5FkVZSoVEdFxdGpjGMnQqXUgVyKiqkilZdr89xj29DxeWPIlIVevV9pfVFzCqDlvMuLZ+bz28XdE3IqrtT7QlmNs1DUC23Q22N4iqAtR1y/VKI+46OtERVymaWC7Km2OH9hKh+4DUZjV7fkuU5VzLS6JLoG+Bts7N/flUvRto2kOX75BCy83Vu49xYA3v+GxhUv5cuN+iqu46TQaDWeu3yImJaPaaU1VUa4qJSU+DO+A7gbbvQK6kXgrtIpUFTSo1ZSVFGBmaWuw/fTuHzC3sqdll/G11vWg2HYOIm3/CYNtaXuPoWzXEolcW2/ZdQ4iff9xA5v0fcew6xJcp2PKpODlKiM8xvBahceU0cTdeF3p6y6vbH+rDG9XGXf9l3K5ts93L6UqDU086zaJws3FTNunDNVPry1TabgYlkPLAJsq07VsZs25i4ZTcs+GZlVK49HInM0rOrJ2eQcWzQvAzaVujqJGLmY42is4W1Hn1ezqdQbYcDbUMErwTGgmLZvr03Tr6MD1m3m890Yg21d34bev2zJi4KMX/S54eIgpSIKHRuvWrVm4cCEA/v7+fP/99xw4cIABAwbg5OSEQqHA3Ny8xlNufvrpJ5o1a8Znn30GQLNmzbh69SoffPCBgV1ZWRk//fQTTZpoQ2FfeOEFlixZAoCVlRXm5uaUlJRUe9ykpCRUKhVjxozB21s7n7RVq1a6/e+99x5ffPEFY8aMAaBx48aEh4ezbNkypk/Xj168/PLLOhuAKVOmMG3aNAoLC7GwsCA3N5edO3eyceNGozp++OEHlEola9as0U1fatq0aa113EtJSQklJYbOB4WiaqeHg612+ktmtmEjnZldhqtT1ensbU3JqpAmK7sMezv9dJrwyDxdCKqdrQnTxnux9KM2TH/pArl5NYtAsLaQIpNJyMk3jDPNzS9HaW1cn62VjCv5hmWQk69GLpNgZSElJ1+Nk52c5o1lnLpcxBerM3FxkDN9uBKpVMLWw7V7Qbc0lyCTSsgtNNSYV6TB2vLR8YNbW0i1OgsMdeYUaGhpZVynjZWUnALDzllugWFZ3kvjRnI8nOWs3F63dUtsLGV3rrehMysnvxxba+POLFsbGTkRle3lMgnWljKy88pp5qOgb0cr5n+ZWCddBhqt5MhkErIqRHNl5ZXTVmm82bVTysnKM9SYlatCLpdgYyUnK0eFnVJOdoU8s3NV2NnUrSl/WGUJYG4mYdm7nsjlEtRq+HVTBldu1N4B0xDuybsaK9dBapRNjGtUWknJrWBfsQ6qpNFFzoptdVufBiAvNxu1uhylrWHElNLWjpwK04rukpQYz5pVS1n48U/IZMbvs+zsDCN52pOdlWHUvjqyc/MpV6uxVxq+4NgrbcjINn7ujnZK3nx6KgG+XpSpVOw6epoX3vuKpQtfIzhQ2176NHLlf3Nm4OflTkFRMWv/OcDT73zC6s/excvNpVYa8/O05WhjazgdylppT0529ef8+qzB5OdmUa4u57EJz9BjwGijdrcir5IQd5Ppz79bK233kpVfSLlag721YSSog7Ul6TnG27CE9CxCo+IxNZHz5bPjyM4v4sO/d5FTUMTiaSN0dnlFxQx86xvKysqRSiW8/fgQujT3NZpndRQVZKFRl2NhbViWltaOxOal1SiPkEO/UVZSRNPgIfrziA4h7NQGnnhjS601/RsoXBwpSUk32FaamoHUxARTRztKktNQuDpSkmJ4v5SkZKBwrToKpDqsLO70MyrUfXkFamwsjTuCbSyl5BUY9tNyCzTIZBKszLV5hUeX0b+DGZHxKtKy1AT4yAnyN63TYBSAg51WS2ZOxf5hKa7OVTtL7G1NjfZDDfqUN/K004USi7CzNWX6eE9+/KQN014MqXGfUnc8u7t9X0NHeVZ2KS730Xm/vm8jV3NGDTFn7Zbb/L4+jsCm1rz8tB9lZRp2H0qplc5HFfEV6uoRDhjBQ6N1a8MF2dzc3EhNrfuClhEREXTo0MFgW8eOHSvZWVhY6JwvdT1umzZt6NevH61atWLQoEEMHDiQcePGYWdnR1paGvHx8Tz11FPMnj1bl0alUlVaTLh9e8N5x8OGDUMul7Nt2zYmTZrExo0bsba2ZuDAgUZ1XLx4kR49ehhdO6Y2Ou7lo48+YvHixQbbtI4y7TzzAT2deO1ZP92+Nz4Iu/M/w9pUIrl/BavRVJ/mzIV7RjPiICwijL9/bM/gPs6s2/aAL8ISSbX6Ku6q2JmQSrQdl9+25qDRQEyiCjtrGUO7W9baAVPlQeHRbKUqSLr/ta5wne9uNZKoe5AZt1NV3Ep8sCk+xvRUJ7GivU4jYKaQ8OJkR5atzyCv4AEmjN9HkMSIjupEGitHY/ftg95B/2ZZ3qW4RMPrXyRippDSyt+MaY/Zk5KhqvvaOg3gnqzI/a5N5WupVWnsvHq0Ned2yr+ksWJlV4VIdXk5P3y2kHGTZ+HmXn10g6RCnhoj2x5MoqbKFz7vRq54N9IPqLRq2oSU9Cz+3L5X54Bp2dSXlk31DoLWzZow/Y33Wb/rEK/NnPSvaATNfc95/ge/UlJcSPSNK2xa/R1Obp506jG4kt3x/Vtw9/KjsX/lKV+111nza6PWaM/hw5mjsDbXvmTOGzeAeT9v4K1JgzG7s2aOpULB2rdnU1hSytmIGD7fsA93R1s6NPWpq0hDjRoN+qe2aq6H7ODUru95bPZSnROntDif3b+/Tv/H38Pcqu7TMx+YShWlpPJ2YzYP2ieoZfKq6vO7rN1fyNQhliyerUQDpGWpOXm5hK6taxatPKCXE/Oe06/1+MZ7YUYPrD316sXfr7gM+pSxhYRdz2XNsg4M6ePC2m0J99HpzOvP6wc45y+5E8FXh0bX2Hncu0kqges381i++hYAkdH5+HhZMGpoo/9vHDCC6hEOGMFDo6LTQCKRoH6A1bA0msqdG2OVnLHj3q9Sr4hMJmPfvn2cPHmSvXv38t1337FgwQLOnDmDhYV2jv7PP/9Mp06dKqW7F0tLw5EnU1NTxo0bx19//cWkSZP466+/mDhxInK58UfR3Lzq0OO7ZVkTHffy1ltv8eqrrxpsUygUHJx0DoDjZzMJv6EP/TUx0Y7g2tuakpGl9+rbKU3IyjEcGbiXzOxSA48/gK3ShKzsqtMUl6iJji3Aw63mIdd5hWrKyzUoK4yG21hKyc03vjBKdn45SitZJXtVuYb8O1Eq2XnllKsNG83ENBW21jJkMiivxZorBUUaytUabCylgP4ZsDaXkFf46Dhg8grVWp0Vy9KicgTCXXLz1SgrRPFY3ynLgiLDczOVQ8cWCrYeqf4LAtWRW1BOebmmUoSG0kpGTl4V1zu3ckSHjZVMe70LyvFwNcXZwYQ3Zurndd+tav7+1JuXP0kgJaPmL765+SrKyzXYVYh2sbWWVYpguUtWTuVIFlsbOSqVhryC8iptlNaVo2JqrPMhlOVdNBp0ZRabWIq7iwmj+ilr7YBpCPfkXY0V6yBry8pRLnfJyVcbqbMkdzQaprmrccvhun9FCsDaxhapVEZOhciUnJysShEsAEVFhUTfvEZM9A1W/vQlABqNGo1GwxMju/PWkq9p0aY9trYOlaJdcrMzjeZ5P2xtrJBJpZWiXbJy8ipFxVRHy6aN2X2s6i+fSKVSmjfxIT659i87VtbGyzEvJwsbZfXn7OSiXQPNw9uf3OxMtq9dVskBU1JSxLkTe3ls0rO11nYvdlYWyKQSMnINBwwy8wpwsDG+PpqjjRXOttY65wtAY1dH7fOcnYe3s/b8pFIJXnf+H+Dpyq2kdH7bfbLWDhhzSzskUhmFuYbRIoX5GVhYV/81yIgL/7DvrwUMm/kN3s30U8mz0+PJzUxg6/LndNs0Gu0z9fXLgcxYsBtbp9pPl6oNJSnplSJZTJ3sUZeVUZqRrbVJTkfhaniOCmf7SpEzNSW/8E4/w8qwn2xtKa26rixQV6pbrS0llJdryL9TV+YXafhxUz5yGViZS8jO1zCmtznpRhZpN8bxs5mER1zQ/V1Vn9JWWTnC5V4ys0t10TN3satpn7LR/fuUx89mEH7jvO5v07s67UzJyNIfw05pUikqpqLOin1fO1tDnRlZpZW++BQbX0jvrnWLfnoUUTeQtVjqi0cn9l0guA8BAQGcO3fOYNv58+ersK4aU1NTymvw9iyRSOjWrRuLFy8mNDQUU1NTNm/ejIuLC+7u7kRHR+Pn52fwa9y48X3znTJlCrt37yYsLIxDhw4xZcqUKm1bt27NsWPHKCur3CjVVYdCocDGxsbgd+8UpKLichKSi3W/mPhCMjJLad/GVmcjl0to00LJ1etVh+yHReTR4Z40AB2CbLkaUXUaE7kEbw8Lg8bufpSXQ0xiGS2bGI7GtGxiWuVnam/Gl9GyiWED2dJPQUxCGXc/9nAjrgxne5nBwJyrg4ys3PJaOV8AytUQn6qmmZfhi2szLxm3kv6l1XP/BcrVEJukooWvYdkE+ppW+RnLqAQVgRXsW/iaEpukorxCn69DoAITuYRTV+q+0Fx5OUTfLqV1U8MQ4NZNzYiIMZ5vZGxJJfs2zcyIji+hXA2JqWW89lkC879M1P1CwosIiypm/peJpGfXzsGhKoebscUENTd8yQkKtOJ6lPGvFV2PLiIo0HAdqOBAS27GFunut+vRhQQHWlawseJaFXnej4dRllUhAUxktY+IaBD3pBpiE40f8+Zt43VQ1O2ySufUookpMYlGNLYw02q8/GALNMpNTGjs14wroYbt6NWLZ2navFUle3MLSz75/g8++naV7tdv8Gjc3L346NtVNLnzhSP/gJZcuWiY55XQs/gbyfN+mMjlNPP14uzlcIPtZy9fo1Wzmn9h58ateByrWWRXo9EQGVu9TVXITUzwbtKca5cMHTzhl07TJKBNzTPSaFCVVW7rzp/YR1lZKZ17Da21tnsxkcto7uXGqWu3DLafuXaLNr4eRtMENfEkLTuPwmK9rtjUDKQSCS62Va/5pkFDqar2jmCZ3BQXzxbERhiulxJ3/SSNGle9Fsr1kB3s+fNNhkz/At8WvQ322bv4MvXN7Twxf4vu16RlXzz9O/HE/C1Y2z38tTayT1/EsZ/h+oJOA7qTE3IVzZ1yyjp9Ecd+3QxsHPt3J+tUzda+qUi5GuKSy2nuY+ikaO5jQlSC8WsTnaCqZB/oY0JscnmlrwepyiE7X4NUCsHNTLkUWbPFqIqKjPcpOwTZ6WzkcglBLZRcvV71FMurEXm0b2NnsK1DkF21aWrTpywqKichqVj3uxVXSHpmSWWdLW2r13k91yANQMdge65e06e5ci0HL3cLAxtPdwuSU///WYRXUD3CASNoMDzzzDNcv36dN954gxs3brBu3TpWrlwJ1C7U2cfHh8uXLxMREUF6erpR58aZM2f48MMPOX/+PHFxcWzatIm0tDSaN28OaL+m9NFHH/HNN99w48YNrly5wooVK/jyyy/ve/xevXrh4uLClClT8PHxoXPnzlXavvDCC+Tm5jJp0iTOnz9PZGQkq1evJiIi4oF11Ib1OxJ4YpwnPTo50NjLgrde9KekpJx9R/VztN+e25Snn/DW/b1hRyLtg+yYPNodL3dzJo92p31rW9Zv14eBzpnuQ5sWNrg5K2jub8WS+c2xtJCx+1DtpoztPllAr3YW9GxrTiMnOZOHWOOglHHwrHaEYfwAa54eq+9oHzxbiKOtjMmDrWnkJKdnW3N6tbXgnxMF99gUYGUh5YmhNrg6yGjTVMGIXlbsP1u3kfLDF0rp3MKEToFyXOykjO6pwM5ayokr2vtveFdTpgw0fLF1d5Ti7ihFYaKdj+3uKMXFXl9ty6R6G7lUu66Eu6MUR2XdQ//3ni6iR7AZ3duY4eYoY+IAS+yVMo6EaF/yx/S15KmR+o744ZAiHJRaOzdHGd3bmNEj2Iw9pyqXU/dgc0IjSipFIdSWHUdz6NfJmj4drXB3NmH6Y3Y42snZd0rr3Ht8qC3PP64fWdx7Kg9HOznTHrPD3dmEPh2t6NvRmu2HtR2iMpWG+OQyg19BkZriEu322jrcALbsy2BgDzsGdLPFw9WUWRNccLI34Z8j2hDp6aOdeXWm/usNu45k4exgwqwJLni4mjKgmy0Dutuxaa9+lH3bgUyCA60YO9gBD1dTxg52IKi5JVv3G1+/oyb822UJMKqvklZNzXC2l9PI2YRhPW3o2d6KYxfqNnWvIdyTe04X0rOtOd2DtBonDbLCXinl8HmtxrH9LJk16h6N5+9oHGil1RhkRo9gc6MaewSbceH6g2sEGDrqcQ7t28bhfdtJiI9h9c9fk56WQr8h2rVI1qxaytIvtVNUpVIpnt5NDH42tnaYmirw9G6C2Z3FYQc/NoEroWfZtmE1CfExbNuwmquXzjHksYl10vj48AFsO3Cc7QePc+t2El+vXEtKeiajB/QCYOlfm1j8/W86+zU793PkbChxSSlExyey9K9NHDpzgXGD++hsflm/ndMXw0hISeNGTDwf/LiKGzHxjB7Yq04aB4yYwrEDmzl+YAtJt6NZ+9vnZKYn0+vOJ6U3/fEdv37zjs7+0K61XDp3hJTEOFIS4zhxYCt7t62mkxEny/EDWwju2Bsra9s6abuXqf06sflEKFtOXiQ6KZ3P1u8lKSuHcT3aAvDtloP8b+VWnf3QDi1RWpnz7urtRCWlERIZy1ebDjCyaxvd9KNfd5/g1LVobqdlcSs5ndX7T7Pj9BWGday9ww2gbZ8nuXpqA1dPbSAjOYrDmz4kLyuJ1t21U8OOb/uC3avn6+yvh+xgz+o36DXqDdx82lCQm0ZBbholRdo6S26iwLFRU4OfwtwGU4Uljo2aIpObGtVRHTJLC2zaBGDTJgAAi8Ye2LQJwMxT+8nxZu+/SpsVn+jsY5evwdy7Ec0/exOrAF88ZozF88mxRH+pv29jvv8dxwHd8J03G8tmvvjOm41jvy7EfFf3jyjsP1tM9zYKurY2xdVByvh+FtjbSDkaql3zblQvc2YM1zvxj4SW4GAjZXxfC1wdpHRtbUq3Ngr2ntU79X3cZAQ3NcFRKcXPQ85LE6yRSGDPmbo7C9Ztv9On7KztU749tyklpYZ9ygUvN+WZqT66vzdsT6BDsB2Tx3ho+5RjPGjfxpb12/XT1efMaExQCyVuzgoCm1rz3hvaPuWug3Wb1rN+WwJTx3vR847OBS83o6SknL1H9H3U/73SjGemNTZI0yHYniljPfHyMGfKWE/at7Fl3Tb9wtdrtybQopk1U8d74e5mxoBezjw2yI1NOx98DTpBw0BMQRI0GBo3bsyGDRt47bXX+Oabb+jSpQsLFizgueeeq3YR2YrMnj2bw4cP0759e/Lz8zl06BC9e/c2sLGxseHo0aN8/fXX5Obm4u3tzRdffMGQIdpF3mbNmoWFhQWfffYZ8+fPx9LSklatWvHyyy/f9/gSiYTHH3+czz77jHffrX6BPQcHBw4ePMjrr79Or169kMlkBAUF0a1btwfWURv+2pyAwlTGq083wcpKzrXIPF5bHEZRsf7N1MVJYTDV62pEHou/uM6syd489bg3iSnFLPoigmuR+pcwJwcFC19thtLahOzcMsJv5PHsG5dISavdp2DPXC3GyiKXkb2tsLWWcTtFxRers8jI0eqztZLioNRHn6Rnl/P56iymDLGhXydLsvPKWf1PLufv+bxrZq6az1ZlMnmIDe8/70RWXjl7TxWw41jdpgGERqqwNC9hUCcFSgsJSRlqlm0tIitPW2Y2llLsrA0dJ/On6DtKXi4y2geYkJGrZskKrQalpcTApl87U/q1MyXytorvN9YtKuJceAlW5hJG9LRAaSUlIU3FN3/nkJGjHQ6ztZJib6N3AqVnq/n67xwmDbSkT3tzsvPU/LU7n5DrhiNOLvYymnqZ8MUfDzaNAuDUxUKsLTIZO8AWOxsZ8UmlfPRLCulZ2uttZyPH0VbfvKVlqvjolxSmj7RnUDcbsnJUrNiSyZkrdZ92cj+Onc/F2krGpOGO2CvlxCaWsOjbONIytQ43O1s5Tvb6kceU9DIWfRvHrAkuDOttR0aOiuVrkjl5QR8xdj2qiE+X3+aJUc48MdKZ5LRSPll+mxu36nat4eGUpcJUwqwxDjjYyigt05CQWsZ3f6Vx6mLdyrsh3JPnwkqwMs/nsV6WWo2pKr7+U69RaSXF3qAOUvPVX9k8PsiKvh3uaNyVR0iFz2C72Mto6m3K56sNv/5RV7r06E9+bg6b1vxGdmYGHt6+zF/4BU7O2hfJ7MwMMtJq97LStHlrXpy/hHWrl7H+z+W4uLrz4vz38bsTIVNbBnTtQE5eAb9u3ElGVg6+no348q0XcXPSrvGRnpVDcrre6VimUvHd6g2kZWajMDWhsWcjvnzzRbq21TsE8gsK+Xj5ajKyc7GyMKdpY09+Wvw6LfzuH7VqjA7dB5Gfl8OOdT+Tk5VOI68mzF3wLQ7OWqdqdlY6menJOnu1WsOmP74nPTUBmUyOk4sHY554kZ53HDZ3SU6M5ea1i7zy7tI66arIoPYtyC4oYtnOY6Tn5uPn5sT3z0+ikYMtAGk5+SRl5ujsLcxM+WnuFD5eu4cpH/2K0sqcgW0Def6x3jqbopJSPvx7F6nZeShM5Pi4OvLBkyMZ1L5u17tZ26EUF2RxZs9SCnJScXBryqhnl2Njr52uVZCbRl5Wks7+yom1qNUqDq5fwsH1S3TbAzuOZtATH9dJw/1QtmtJlwOr9cf6/G0A4n/fxOWn3kLh5oT5HWcMQFHMbc6NeJrAL97C+7kplCSmEvbKByRv3quzyToVSuiUV2m2+GWaLZ5LYVQ8oZNfIfvs5TrrPH+9FEtzCcO6maO0lJKYXs736/PIzL2nHrqnrszIUfPd+jwm9LOgV1slOflq1u4rJDRCPzBpIpfwWE8LnGyllJRquBJdxm878ikqqbtD+K9Nt1GYSnntGT9tn/JGHq8uvEpR0T19SkcFmnuicK5ez2Px59eZNcWbWZO9SUguZuFn1wm/oW8jnR0VLJyn71OGReTx7Pza9ynv8ufGeBSmUl59zh9rKxPCb+TyyruXDXU6mXHvbJur13NZ9Gk4s6c2ZtYUHxKSi3j302sGOq9H5vH2h2E8M60xMyZ5k5RSxLc/32Tfkbqvk/moUdulH/6vIdGIEhI0YD744AN++ukn4uPj61tKg6fn6OP3N6pHjm7uzrR3ku5vWI/8/p4bL31Tty+p/Jd885I1T71Xsy9M1Be/vuPEhNdi6ltGtaz7wofhs8Pvb1jP7Pg5sEGUZUO4J2cufvQ7yL8tdCbkRt2jov4L2jW1J+vSkfqWUS12bXpxNOzBnXMPm54tLCk6uPr+hvWIed+p/LSnvlVUz7ODYKdJs/qWcV+GlUXwzMeP9vO97E17eow8Vt8yquXY1h50H/Fo10EAx7fXLUqvvnljed0Hhh6UT56u+TqS9YWIgBE0KJYuXUqHDh1wcHDgxIkTfPbZZ7zwwgv1LUsgEAgEAoFAIBAI/s+jqWZNOIFwwAgaGJGRkbz//vtkZmbi5eXFa6+9xltvvVXfsgQCgUAgEAgEAoFAIKgW4YARNCi++uorvvrqq/qWIRAIBAKBQCAQCAQCQa0QDhiBQCAQCAQCgUAgEAgED4xaLDFbLeIz1AKBQCAQCAQCgUAgEAgEDxkRASMQCAQCgUAgEAgEAoHggREfWa4eEQEjEAgEAoFAIBAIBAKBQPCQEQ4YgUAgEAgEAoFAIBAIBIKHjJiCJBAIBAKBQCAQCAQCgeCBUavFFKTqEBEwAoFAIBAIBAKBQCAQCAQPGREBIxAIBAKBQCAQCAQCgeCBEWvwVo9EI5YpFggEAoFAIBAIBAKBQPCAvPxdfr0d++sXrert2DVFRMAIBAIAnliQWN8SquWPDxrx7CdZ9S2jWn56w475PxXVt4z78umz5oyac6O+ZVTLlqVNGf1CZH3LqJbN3/szbNbV+pZxX3b+0pLinT/Vt4xqMRv2LLtCy+pbRrUMCTaheNM39S3jvpiNeYnidZ/Xt4xqMZswj9eWFtS3jGr5Yo4lz32WXd8y7suPr9s+8jp/fN2WD9aU17eMalkwScYzH2fWt4z7suxNe3aaNKtvGdUyrCyCQdMv1reMatmzKuiR1whanQ0RjVgDplrEGjACgUAgEAgEAoFAIBAIBA8Z4YARCAQCgUAgEAgEAoFAIHjIiClIAoFAIBAIBAKBQCAQCB4YtVhitlpEBIxAIBAIBAKBQCAQCAQCwUNGRMAIBAKBQCAQCAQCgUAgeGDEIrzVIyJgBAKBQCAQCAQCgUAgEAgeMsIBIxAIBAKBQCAQCAQCgUDwkBFTkAQCgUAgEAgEAoFAIBA8MGIKUvWICBiBQCAQCAQCgUAgEAgEgoeMcMAI/r9CIpGwZcuW//SYhw8fRiKRkJ2dDcDKlSuxtbX9TzUIBAKBQCAQCAQCQX2j1tTfryEgpiAJGhTJycl88MEH7Ny5k4SEBJydnQkKCuLll1+mX79+9S0PgIkTJzJ06ND6lvGv0r+TBUO7W2FrLSMhtYw/duYSEVtapX2AjylThtrg7mxCdl45O47lc/BsoW5/j2BznhlnVyndkwsTKVPVTWOvYAUDOipQWklJTC9n/YEibt6uOjN/Tznj+prTyFFGdr6avWeKOXZRf05SKQzubEaXlqbYWktJySxn0+Eiwm/VUSDQpYWMXm3kWFtISMnSsO1EGTHJaqO21hYwvIsJHk5SHJQSTlwpZ/vJMgOblo2l9A02wUEpQSaF9BwNRy+puBBZXmeNAEN6KhnV3x47pYz4pFJ+XZ9GeFRRlfYt/M2ZOdYJTzdTMnNUbN6XxZ5jObr9nm6mTB7uQBMvM5wdTPh1fSrbD2U/kMbBPZSM6men17gxjWtRxVVr9DPnyTGOdzSWs2V/FnuO6zUO6GpD7442eDUyBSAqroQ/t6cTGVvyQDoBJj/mzOCedlhZyIi4VcSPfyYSl1h9vl3b2jB1lDNuTqYkpZXy++YUToXmGdgM623PmEGO2NvKiUssYfmaJMIiC6vIsWrWnrjEykPnSc8toImrA/NH9aKtr0eV9qUqFcv2nmFnyDXScwtxsbViVv+OjO7UUmeTW1TM9/+c5MDlSHKLSnC3V/LaYz3pEdi41voAju9dw8HtK8jNTsPVw4/R096gSfN2Rm2jr19g+19fkpJ4i7KSYuycGtG133h6D5ums7l0dh/7t/xMWnI86nIVjq5e9Bk2nQ49H6uTPoC1p66y8lgo6XmFNHG2Z/7wbrRt3KhK+1JVOcsOnGPnxRuk5xXiorRiVp92jG7fXGfzx/FLrDsTRnJ2HraWZgxo2YS5gzqjMKl7923tmXBWHr9Een4RTZztmD+kM2193KrXeegCOy/dJD2/EBcbS2b1CmZ0u2YAlJWr+fXoRbaH3iA1rxAfByUvD+pIN3/POmvs2kJO72ATbCwkJGeq2XqilFtJVdWVEh7raoqHkxRHWwnHL6vYesKwferUXE77ZnJc7bXjjrfT1PxzppT4VON51oSeQaYM6KBtc5LSy1l/sIibCcbrXhtLCeN6m+PlKsPJTsrhkFLWH6pcpwY3NWFENzMcbaWkZ6vZeryYS5FlRnL8/0tnOz8JnQMkWJlDWg7sC1UTn2bc1soM+gVLcLOTYG8N525o2Bda+a2rQ1MJ7fwk2FhAUSlci9dw6JKG8jpe8l7BCgZ2MtP1MdbtL7xvH2N8Pwt9H+N0MUcv6ut9qRSGdDGjS0sFttZSkjPL2XyoiLBbdStH++7t8X3tKZRtW2LWyJnzY+eQsu1A9Wl6dCDw8zexCvSnJDGVqC9+IW75GgMb19EDabroJSyaeFEYFUfEu1+RsnV/nTTeyxOjXBna2wErSxnXowr5YfVtYhOqbsMBurdXMm2MG27OpiSllrJyYxInQ/TteMtmlowf4oy/jwUOdiYs+uYWpy7kVJNj/eicONyZbu1s8XRTUFqmJjyykF/XJXI7+cH7G4KGgXDACBoMMTExdOvWDVtbWz799FNat25NWVkZe/bs4fnnn+f69ev1LREAc3NzzM3N61vGv0anVmY8MVTJyu053IgtpW8HC16fbs8b36SRkVO5E+dkJ2PedHsOnyvkx/XZNPU2ZcYIJXkFas6F6RutwmI1r3+VapC2rs6XdgEmjO9nzt97C4lKUNEjSMEL461Y/EsOWXmVO2YOSikvjLPi+OUSVuwooIm7nMcHWpBfqCH0hrbzM7KHOZ1amPLH7gKSM9QENpbz7GgrPvsjj/jU2js42jSRMaKrCVuOaZ0unQLlPDXMlC/WlpCdX1mjXCahoBgOXFDRo7XxqrqwBA5cKCMtW4NKDc29pYzvY0J+kYYbt+vWy+zWzoqZ45xZtiaF69HFDOqu5J3n3XnxvRjSsypfIGcHOe/McWffiRy+WplMgK8Zz0xyITevnFMX8wFQmEpITi/jxIV8Zo5zqpMuA41trZg51onla1O5Hl3EwO5K3pnjztz3Y6vU+L/nGrHvZA5fr0omwNecpyc6k5Nfzuk7Glv4m3MsJI/r64soU2kY3d+Ohc+7M/eDWDKN3Oc1ZdxgR0YPcOCrFQkkJJcwcbgT77/qwzMLIikqMX6NAnzNefMZT1ZvSeFUaC5dgm148xkv5n8STcQt7ctQjw42zJ7kytI/k7h2s5DBPe1Y/JI3z717k7TMmnfgd4dG8OmWwywY25egxo3YcPIKc5ZvYfMb03CzszGa5vVVO8nIK2TRxAF4OtqSmVdEuVp/LmWqcp79aRP2VhZ8PmM4LkprkrPzsFSY1qLk9Fw4uYvNqz5m3FP/o3GzYE7uX8+yj5/lrS+2YedY2XFgqjCn+6DJNPJqiqnCnFsRF1j3yxJMFeZ07T8eAAtLJQNGPY2ze2PkMhPCLhzh75/ewUrpQPM23WqtcfflSD7deZwFI3sS5O3KhjPhzFm5g82vPI6brbXRNK//tYeM/CIWje2Dp4OSzHzDctwZeoNv9pxm8dg+tPF2JTYtm3c3HNSmHd691hoBdl+J4tNdp1gwvBtBXi5sOH+dOat3s/nF8bjZWhnXufaAVufonnja25BZUET5PcOM3+8/x85LN1k4qgeNHW05efM2r/y1j1WzH6N5I8daawzykzGyuymbjpZyK7mcLoEmzB5uxqd/F1VRV0J+sYb9F8roVUVd6ecuIzRSRUyyGlW5hj7BJjwzwoxP1xSRW1D7IdN2zUwY39ecNfuKtG1OGwXPj7NiyW+5RtscuUxCXpGGXaeL6ddOYTTPxo1kPDXCgu3Hi7kYWUaQvwmzR1jw+d/5xCTVrQ5qCDqbe0oYECxhd4iG+HQNbZtImNRTyrJdanKN+JNlMigshhPhGjo2kxjNs4W3hL5tJOw4q+F2ugZ7axjRSet822/EWXM/2geYMqG/BX/tKSQqoYyeQWa8OMGaRb/kkJVbuR53UEp5cbw1xy+V8Nv2fJq4mzB5kAV5RWpCI7T186ie5nRsoeCPXQUkZ5QT6GvCs2Os+PSPXOJTal+OMksLci9HcHvVJtqt//6+9uY+HnTYvpz4X9dzcfrr2HVtS8vvFlKalkny5r0A2HYOIvivr7ix8BuSt+7HdWR/2v79Nad6Tyb77OVaa7zLhKHOjBnsxBc/x3E7uYTJj7nw0etNeOrNaxQVG28Xmzex4O05PqzapHVmdG2nZMEcH179IJKIaO2NYqaQEh1fxN5jmbw7t27O/v9CZ+tmVmw/kM6NW4XIpDBjnBsfvt6E2W9dp6S07k7hRwmxBkz1iClIggbDnDlzkEgknD17lnHjxtG0aVNatGjBq6++yunTp42mSUhIYOLEidjZ2eHg4MDIkSOJiYnR7T937hwDBgzA0dERpVJJr169uHDhgkEeEomEX375hdGjR2NhYYG/vz/btm2rUmfFKUiLFi0iKCiI1atX4+Pjg1KpZNKkSeTl6UezNRoNn376Kb6+vpibm9OmTRs2bNig25+VlcWUKVNwcnLC3Nwcf39/VqxYAUBpaSkvvPACbm5umJmZ4ePjw0cffVSboq2WId2sOBxSyOHzhSSmqfjjn1wycsrp18nCqH3fjhZkZJfzxz+5JKapOHy+kCMXChna3bBzr9FATr7a4FdX+ncw48TlUk5cLiU5Q836A0Vk5anpFWy8A9kzSEFmntYuOUPNiculnLxcyoCOZjqbTi1M2XWqmKvRKtJz1By9WEr4rTL6dzSe5/3o0VrOuevlnL1eTmq2hu0ny8jO19A5UGbUPitPGyFz4UY5xaXGG7LoRDVhMWpSszVk5mo4caWc5AwNPm51r9pH9rVj/8kc9p/M5XZyKb9uSCM9u4zBPW2N2g/uYUtaVhm/bkjjdnIp+0/mcuBUDiP76yOcbsaWsGpzOsdD8lCpHrxRfqyvHQdO5bD/VC63U8r4bWM6GVkqBvdQGrUf1F1JepaK3zamczuljP2ncjl4OpdR/fTn9PWqFHYfyyEmoZSElDKW/pWKRAKtmxm/z2vKyP4OrN2ZxskLucQmlvDlbwkoTKX06mRcK8DIAY6Ehuezflc6t5NLWb8rnUvX8xnZ30FnM3qAI3uPZ7H3WBbxSSX8vDaZ9Kwyhva2r5W+1UcuMLpTS8Z0boWviwPzR/fG1daadSeMd65PXIshJCqBH2aPpnNTb9ztlbTydiXonkiPzWevklNYzFczRxDc2J1G9ja09XWnmXvdnG+Hd/5Opz5j6NJ3HK7uTRgz/U1sHVw5vm+NUXuPxs1p120obp5+ODi7077HCAJadyX6eojOxr9FR1p37I+rexMcXb3oNXQqjbyacuv6BaN53o/Vxy4xun1zxnQIxNfZnvkjuuOqtGLd6atG7U9ExBFyK5EfZgyjs58n7nY2tPJ0Ichb71C6FJdMkLcrQ4Oa4m5nQ9emXgxu409YQhWhATXRefIKo9s2Y0z7AHyd7Zg/tAuuNlasOxtuXGdkPCExSfwwdRCdm7jjbmdNKw9ngrxcdDY7L91kVq8gejT1wsPehgkdA+nq58HvJ67USWPPNiacvabizDUVqVkatp4oJTtfQ9eWxp0rWXkath4vJSRCRVEVgZl/7i/hZJiKxAxtfbnucCkSCfh7GK9/70e/9gpOXinlxJVSkjPVrD+kbXN6BhlvHzJz1aw/WMSZsDKKqhjk7ttOwfUYFXvOlJCSqWbPmRKux6noW4Uj5P8XnZ0CJFyM1nAxWkNGLuwL1ZBbCG39jDtXcgq0NldiNJRU4Wv2cID4dAiL1ZBTALeStf93szee5/3o39GME5dKOHG5hOQMNesOFJKVW3Ufo1ewgsxcrZ22j6FNO7CjfnCuUwsFu08VcTW6TNvHCC0h/FYZAzqYGc3zfqTtOcqNhV+TvGVfjey9n55EcVwS4a99SP71aOJ/20D8yk34vjpTZ9P4xemk7z9J1KfLKYiIJurT5aQfPI3Pi9PrpPEuowY5sWZbCidCcohNKObzn+NQmErp07lyZPRdRg9y4kJYHmt3pBKfVMLaHalcDM9j9CB9u3L+ch6rNiZzIuTBol4ets4FX0Sz73gmsQnFRMcX88Uvcbg4muLf+P+fwVtB9QgHjKBBkJmZye7du3n++eextLSstN/YmiuFhYX06dMHKysrjh49yvHjx7GysmLw4MGUlmp7aXl5eUyfPp1jx45x+vRp/P39GTp0qIFzBGDx4sVMmDCBy5cvM3ToUKZMmUJmZmaN9UdFRbFlyxZ27NjBjh07OHLkCB9//LFu///+9z9WrFjBjz/+SFhYGK+88gpPPPEER44cAeCdd94hPDycXbt2ce3aNX788UccHbUji99++y3btm1j3bp1RERE8Mcff+Dj41NjbdUhk0HjRiZcvWnYE7t6swR/L+Oj2f6eppXsr0SW0NjdBNk9NY6ZqYSv5znz7XwXXptqj7db3QLyZFLwcpVxrULY7rVbZfi6G8/T172yffitMrxdZUjvaJTLoazc0FlQpgI/j9rrlEnB3UnCjXjDUa3I22p8XP+9atjPXYqTraTKUP37IZdBEy8zLl4zHHa8eK2QAF/jncJmjSvbh4YX4udtZnC9/y3kMmjiqTCisYCAxlVpNOfitYIKGgto4lW1RlNTCTKZhPzCujsGXR1NsLc14UJYvm6bSqXhakQBzf2qduwE+JoTGp5vsO1CWL4ujVwmwc/bnNAwIzZNau4wKlOVc+12Cl2aehts79LMi0sxiUbTHA6LItDTmRWHztF/0XJGfLSCL7YdpbhUH3l05Go0rb3d+GjjQfq8u4wxn/7OL/vPGkR31BSVqozbt8IJaN3VYHtA667E3LhUozxu37rGrRsXaRLY3uh+jUbDjSunSU2KqXJaU3WUqcq5lphGlwpTbrr4e3IpLsVomsPXbhHo7syKo6H0/2gVIz7/ky/+OUHxPWGAwT5uXEtI40q8No/bmTkcj4ilRzNvo3nWTGc6XfzcDXX6uXMpvgqd12MJbOTIiuOX6f/pn4z4ei1f7D5toLNUVY6p3NCRoTCRczEuudYaZVLwcJISUaGujIgvx8elbs4SY5jKtccqLK69Q/humxMeYxhtdy1GVWWbUxN8G8kr5Rl+S4VvowdrGx9lnVIpuNnBrWTD6xCdrMHDsW7OEtA6X9zsoNEdf7StJfi5SbiZ+CDXu0KfIaaMJlX2MeSV7Y31MSoMSJSqNDTx/G8mJ9h2DiJt/wmDbWl7j6Fs1xKJXKvBrnMQ6fuPG9ik7zuGXZfgOh/X1ckUB1sTQq7q+9llKg1XIvIJ9K/cv79Lcz9LgzQA56/mEehXdZoH4b/UaWmurdvy8h9s+rig4SCmIAkaBDdv3kSj0RAQEFDjNGvWrEEqlfLLL78gkWgb8hUrVmBra8vhw4cZOHAgffv2NUizbNky7OzsOHLkCMOHD9dtnzFjBo8//jgAH374Id999x1nz55l8ODBNdKiVqtZuXIl1tbaUPSpU6dy4MABPvjgAwoKCvjyyy85ePAgXbp0AcDX15fjx4+zbNkyevXqRVxcHMHBwbRvr32BuNfBEhcXh7+/P927d0cikeDtXX3nvKSkhJISQweJQmF8FMfaQopMJiGnQqOQk6/G1sp4Z1hpLSMnsqSCfTlymQRrSynZeWoS01Us35hNfEoZ5gopg7pa8u7Tjrz9fRopGbVrgKwsJMikEnIrvCjnFmiwsTT+dm1jKSW3wLADmVuoRiaTYGUuIbdAQ/gtFf07mHEzXkValpoAHzlt/E2Q1KFPaGkGMqmE/ApT6fMKNVh7PpiXwswUFkw1Qy7VLj62+VgZkXWcfmRtJUMmk5CdZ1g2Obnl2NkYby5sbeTkVIgTz85TIZdJsLGSkZX773Yo9BoN883OK8e2Co12NjJCjdhXp3HaSEcyc1Rcul77NVV0x1Vq9WTnGpZndq4KJweTatNl5RimycpR6a6Bzd0yqJRvue6YNSHrzlQSB2tDp42DtSXpebFG09zOyCH0ViKmJnK+evIxsguK+HDjQXIKi1kyaaDWJjOHxJvxDG0bwA+zRxGbns1HGw+iKlfz7KDONdYHUJCbhVpdjrXSwWC7tdKB3Oz0atMunNOP/NxM1OXlDB43hy59xxnsLyrMY+FzfVGpypBKpYyb+T+aVXD01ISswmJtOVoZjl46WFmQnhdvNM3tzFxCY5Mwlcv46onBZBcU8+HWo+QUlrBknLZdGtLGn6yCImYs2wwaUKnVTOjUgqd6t621RkOdFa63lTnpecbXeLqdmUdoXIpW5+QBZBcW8+H2E+QUlbBkdC8Auvp5sPrEFdr5uOFpZ8OZ6AQOX48xmKZUUyzNJHfqSsO0+YUarD3r/kJekWGdTckp0BB5u/b1k5W5VmNegWE9m1egRmlZ9261jaWEvArtWF6hGhvLup13Q9BpYQpSqYT8CktqFJRo13qpK+FxGiwUMK2fFCTa9jckUs2pa7W/J3V9jApT1fIK1NhYGq/HbSyl5BUYOmByCzSGfYzoMvp3MCPynj5GkL9pnfoYdUHh4khJimEdWpqagdTEBFNHO0qS01C4OlKSkmFgU5KSgcK17lOJ7e+0UVm5huWTlVuGs0PV01TtlHKycwzTZOeU1arNqw3/pc6nJ7tzNSL/vmvLNCQ0GjEFqTqEA0bQILj7IEtq0TKFhIRw8+ZNndPjLsXFxURFRQGQmprKu+++y8GDB0lJSaG8vJzCwkLi4uIM0rRu3Vr3f0tLS6ytrUlNNVy/pDp8fHwMdLi5uenSh4eHU1xczIABAwzSlJaWEhysHWV47rnnGDt2LBcuXGDgwIGMGjWKrl21LwozZsxgwIABNGvWjMGDBzN8+HAGDhxYpZaPPvqIxYsXG2xbuHAh8HSVaSrVoxLQUHXlWrnelRhsj4ovIype30DdiCvl/eedGNjZktU7c6vMtzoqHvN+t4qRUzJg3f5CnhhswaJZNmiAtCw1J6+U0LVV3cPBKx1TYqysakdJKXy9vgRTE/B3164zk5mnITrxAeYRG7ve1eiseC9IdNv/O+5XlsbKHoynGdXfju7trHnnm9uVRiiro3cnJS9M1U/FWfRtrNFjV7rZaoBEUjkfY/d8Xe6nis+KRqOp8vlRazRIgI+mDMHaXPssvKbqybxVO3h7TF/MTOWoNRrsrSx4d0J/ZFIpgZ4upOXks+rQ+Vo7YKoSqUFz3/Zg7qJVlBQXEht5me1/f4WjqxftuukXSFeYWfL6JxspKS4k8upptqz+DAdnD/xbdKybRIxpNG6rK8dJ/bE2u1uOXZn31x7eHtkTMxM556IT+OVQCAtG9qSVpwtxGTl8uv04jgfO80w/49E8NdNpiEZTdX2p0zm+L9Zm2peO1waXM2/tft4e3g0zEznzh3VhyZZjjPpmPRIJeNjZMDK4GVtDI+qs0Vib82/RJ8iEYH85S7cWoXoA/7Cx5/pB6/OH8c7SUHTei4QHaz+8nKFboHZdmYQMDfZWMKCtlO7FcDysjjnXMlml+rnC/rX7C5k6xJLFs5X6PsblErq2rnsfo9ZU1XG6d/sDNjR9utjx0gz9ou7vfBl9J98K2WKkkasot+IGYw1jHakvnc9PdaexhzmvfRBZK72Cho1wwAgaBP7+/kgkEq5du8aoUaNqlEatVtOuXTv+/PPPSvucnLTe+xkzZpCWlsbXX3+Nt7c3CoWCLl266KYo3cXExHCUQyKRoK5FOH116e/+u3PnTtzdDUPD70amDBkyhNjYWHbu3Mn+/fvp168fzz//PJ9//jlt27bl1q1b7Nq1i/379zNhwgT69+9vsIbMvbz11lu8+uqrlY7z1JKMSrZ5hWrKyzXYWssAvcNEaSmtcs2WnLxybK0NozqUVlJU5Zoqp3NoNBB9uxRXx9pXSfmFGsrVGpSWUkDfm7a2kJBbYPx4uQVqlBVG66wtpJSXa3Qjr/lFGn7aXIBcph1JzM7XMLqXOek5tXdsFBRDuVqDdYXpvVbmlUd6a4sGyMjV5pGUocLZTkKfYDnRiVV/paoq8vLLtde7QiSJ0lpWKSrmLtm5KiP2clTlmocSTqvTaG0YgaW0kpFThcas3HLsjNiryjXkFRhqHNnPlnED7Vj4fQKxtSzDMxfziLgVpfvbRK69x+xsDCNabK3lZOVWveJ0Vo6q0miZrY1cF/GSe6cMKtoorWWVomKqw87SHJlUQnqFCKbM/MJKURJ3cbKxxFlppXO+APi62KPRQEpOHt5OdjhZWyKXSZFJpQY26XmFlKnKMZHXfCqJpY0dUqmMvArRLvk5mZWiYiri4KztTDfyakpeTga7Nyw1cMBIpVKcXL0A8PAJICUhmv1bf6m1A8bOwkxbjvkVy7Go6nK0tsTZxlLnfAHwdba7U475eDva8sO+swwPbsaYDoEA+Ls6UFRaxnubjzC7Tzuk0tp5JarUWVBUKXpHr9Pijk79iK+vk61WZ24B3g5K7C3N+XrKQErKVGQXleBsbcHXe8/SqIrFh6ujoFhbn1tbGJ6blbmEvMIHf9PqHSSnXzsTftpWTFJG3fLLL9JqtKnU5kjJfQCNxqI2rS2kdVokuKHoLCwFtVpTKdrFQqFtN+tKr1ZSrsRo15UB7ZeVTOQahnaQ1NoBc7ePYWNVoc9gKa22j2FjVaGMLCWV+hg/bso36GOM6W1OevZ/Mw2lJCW9UiSLqZM96rIySjOytTbJ6ShcDRfSVjjbV4qcqY7ToTlEROmnAJuYaMvFTmlC5r3tok1N2kXDvvT90tSG+tA55wl3ugQree3Dm6RnPdjXzh411GIR3moRa8AIGgT29vYMGjSIH374gYKCgkr7s7OzK21r27YtkZGRODs74+fnZ/BTKrULYB47doy5c+cydOhQWrRogUKhID295g3Lv0FgYCAKhYK4uLhKOj099WsKODk5MWPGDP744w++/vprli9frttnY2PDxIkT+fnnn1m7di0bN26sco0ahUKBjY2Nwa+qKUjl5XArsYyWfob7W/opiIwz/nIaGV9q1P5WQlm1n3/0djMhO6/2zo1yNcQll9Pcx/BltLmPCdEJxhvJ6IRymvsYNpDNG5sQm1xORb+aqhyy8zVIpRDczIRLkbV3bJSrISFNg7+n4Yunv7u0ys9QPwi1eL81QFUOUXHFBDU3fGkMCrDgerTx3nDErWKCAirYN7fgZmxxnT/3eV+N8SW0qXDMNgEWXL9VlcaiSvZBzS2IijPUOKqfLeMH27NkaSJRcbX/HGRRiZqk1FLdLy6xhMzsMoJb6BeglssktGxmybWbVU9tuh5dRFCg4aLVwYFWujSqcg03Y4sINmYTVfMpUyZyGc09XDh9w3C60ekbcbTxMf755KDGjUjLLaCwRP8cxKZlI5VIcFFa62zi03MMOmCxaVk42VjWyvkCIJeb4NE4kIgrpwy2R1w5hU/TNjXOR6PRoCqr/tmtiY0xTOQymjdy4nSk4XSj0zdv0+aexWrvJcjHlbS8QgrvWUU0Nj3nTjlqr2txqapSlI9MIkWj0VQbgVi9TkdORyUY6oxKoI1nFTq9XEjLKzDUmXFHp43hmgYKEzkuNpao1BoOhMfQp7lPrTWWq7WfiG5aoa5s6iEjpg5fhrmX3kEm9G9nyvIdxdxOq3vlpGtzvCu0Od7yKtucmhCdqKrUjgX6yIlOrFueDUGnWg1JWdDY1fA+b+wq4XZ63V/gTGSVAw7uVke1neKj72NU6DP4mBBVZR9DVck+0KcmfQzTB/7seE3JPn0Rx36GUy6dBnQnJ+QqGpX2vLJOX8Sxn+FX4Rz7dyfrVGiNj1NUrCYxtVT3i00oJiO7jLYt9Q5auUxCq2ZWhEdW7t/f5drNAtq2MHTqtmtpTfjNqtPUhv9a5/NT3enWXsn8T26Skl77dkfQsBEOGEGDYenSpZSXl9OxY0c2btxIZGQk165d49tvv9WtnXIvU6ZMwdHRkZEjR3Ls2DFu3brFkSNHeOmll7h9+zYAfn5+rF69mmvXrnHmzBmmTJnyn39C2tramnnz5vHKK6+watUqoqKiCA0N5YcffmDVqlUAvPvuu2zdupWbN28SFhbGjh07aN68OQBfffUVa9as4fr169y4cYP169fj6upqdGHiurDrRD6921nQs505jZzkTBlqg4NSxoGz2he9CQOteWac/lgHzxbiYCtjyhAbGjnJ6dnOnN7tLPjnuH7B0NF9rWjlp8DJToaXm5zZY2zxcjPhwNm6NaT7zxXTrY2Crq1McXWQMr6vOXY2Uo5e1DZqo3qaMWOY/gX86MUS7G2kjOtrjquDlK6tTOnW2pR9Z/Uv8D5uMoKamuColOLnIWfueCskEth7pvYv5gDHLqvoGCCjfTMZzrYSRnQ1wdZawulw7UvF4I5yJvYx7LC5OUhwc5CgkEuwMtf+7Wyn7z32CZbj7yHF3lqCk62EHq3ltGsqI/RG3V9Uth7Mon9XJf262ODhasrMsU442pmw51g2AE+MdOSl6a46+93HsnGyN+HJsU54uJrSr4sN/bsq2bo/S2cjl0FjDwWNPRTIZRLsbeU09lDg6lT1OijVse2uxs42eLiY8OQYRxztTdhzTPvlgycec2DuVP0L5Z7jOVqNYxzxcDGhX2cb+nVRsuVAts5mVH87Jg934Ps/U0nNKMPWWoattQwz0web+7B1fwYThjrRJdga70YKXpnpTkmpmiNn9F9peHWmO9PH6PVu259O20Arxg12xMPVlHGDHQlqbsXW/footc370hnYw44B3WzxdFMwe6IrTvYm/HO45ouDA0zt1ZZNZ66y+cxVolMy+GzLYZKy8hjfVTvt8psdx1nw126d/dC2ASgtzXh3zV6ikjMIibrNl9uPMqpjC8xMtS9lE7q2IbuwiE+2HCYmNYuj4dH8sv8cE7vV3GFyL72HTeP0wY2cPrSJ5IQoNq/6hKz0JLr1nwjA9r+/4o8f3tLZH9vzN1dDDpOWFEtaUixnDm/m0I6VtO+hX9dr35afibh8kvSUeFISojm0cxXnjm03sKkNU3u0YdP5a2w+f43o1Ew+23GcpOw8xndqCcA3u0+xYN1+nf3QNk1RWih4d8NBolIyCbmVyJf/nGRU+wDMTLTl2Ku5N+vPXGXXpUhuZ+ZyKjKeH/adoVdzH4Poolrp7NqKTSERbA6JIDo1i8/+OUVSTj7jO2rbk2/2nmXBhkN6na39UJqb8e7mI0SlZhESk8SXe84wqm1Tnc7L8ansD7vF7cxcLsQkMef3Xag1GmZ0b21Uw/04eqmMTs3ldAyQ42wn4bFupthZSzh1VftSOLSzCY/3M1yDoZGDlEYOUhQm2miCRg5SXO6tK4NMGNLJhLWHSsjK1WBtLsHaXIJpHePAD5wvoVtrU7q0NMXVXsq4PmbY2Ug5dknbPozsYcb0oYZOXw9nGR7OMhSm2nVFPJxluDror+OhkBKa+8gZ2FGBi72UgR0VBHjLORhStzanoeg8c11DkK+ENo0lONhA/2AJSgu4cFPrMendWsKITob1sIut9mcq10bLuNiCo41+f2SihnZ+EgK9JCgtobEL9GolITJRU6fpU/vPFtO9jYKure/0MfpZYG8j5Wio9pxH9TJnxnC9Q/JIaAkONlLG97XQ9jFam9KtjYK9Z/VrLfm4yQi+p4/x0gRrJBLYc6ZuoT8ySwts2gRg00a7VqJFYw9s2gRg5qn9slqz91+lzYpPdPaxy9dg7t2I5p+9iVWALx4zxuL55Fiiv/xNZxPz/e84DuiG77zZWDbzxXfebBz7dSHmu1V10niXLXvSmDTcha7tlHi7mzFvthclpWoOndb3G15/2osnx+u/CrdlbxrtWlozYagznm4KJgx1JjjQms179F+FM1NI8fUyx9dL2493dTLF18scJ/u69TUels4XpnnQt4s9H/8YS1GxGjulHDulHFOT/2gBIEG9I6YgCRoMjRs35sKFC3zwwQe89tprJCUl4eTkRLt27fjxxx8r2VtYWHD06FHeeOMNxowZQ15eHu7u7vTr1w8bG21L/dtvv/H0008THByMl5cXH374IfPmzfuvT4333nsPZ2dnPvroI6Kjo7G1taVt27a8/fbbAJiamvLWW28RExODubk5PXr0YM0a7SdYrays+OSTT4iMjEQmk9GhQwf++ecfpHXsoFfkzJVirC1yGN3HGltrGbdTyvjs90wy7oTJ2lrLcFTqRyvTssr5fFUmTwyzoX9nS7Jyy/l9Zw7nwvSdCgszKU+NUqK0llFYrCY2qYz3f04n+nbdRn5CrpdhZV7EsG5m2FhKSUwv5/v1+WTmaoealFZS7G305ZGRo+b7DfmM72tOr2AFOflq1u4vJPSG/vgmcgkje5jjaCulpFTD1egyVuwsoKikbqNyl6LKsTCD/u3l2FhISM7U8Ns/2s+rgnZhQ1trw8b3lfH6uGwPZynB/nIy89R8/Ke202cqh9E9TFBaSihTQWq2mjUHy7gUVXcHzImQfGwsU5k41AE7GxlxSaW8tzSBtEzty4+9jQwnO33TkZqh4r2lCcwc68TQnkoyc8r5ZX0qpy7qHW72Sjlfva1fHHr0AHtGD7Dn6o1C/vf17dprvJCPtWUaE4bY6zS+vzSBtCytRjsbOU72hhrf/zGRJ8c6MqSHVuOvG9I4fY/GIT2UmJhIeWOWm8Gx1vyTwdp/aufUuJcNu9MxNZUyZ0ojrCxlREQX8c6XMRSV6IdBnRxMDV4KrkUV8cnyeKaOcuGJUc4kp5XyyfJ4Im7pO+/HzuViY5nM4yOcsVfKiU0sYeE3saRl1u4ZGhzcjJzCYpbvPUNabgF+bg78MHsUjey1dWR6XgHJWfovOlgoTFn2zFg+3nyIyV/9hdLSjIFtmvLCEP0oqaudNT89M4bPthxh/OercVZaMaVnME/2rdu6JW27DqEwP4c9G38iNzsNN09/nnnzR+ydtFE6uVnpZKUn6ew1GjU7/v6azLQEpFIZji6eDH/8Zbr2n6CzKS0pYv1v75OTkYKJqQLnRo154vmPaNt1SJ00Dm7tT05BCcsPnCctrwA/Fwd+mDGcRnbakdD0vEKSs/X3m4XChGUzH+Pj7ceY/MMGlBYKBrby44WBnXQ2s/u0R4KEH/aeITW3ADtLc3o19zGwqbXOVk3IKSxh+eELpOUV4udizw9TB+umC6XnF5Kco3eEWyhMWDZjKB/vPMnknzajNDdjYEtfXuivv5alqnJ+OHCe21l5WJjK6e7vyQdje2NjXre1LC7eLMdCUcqA9ibYWJqSlKHmlx3FZN2tKy0k2FaY3vHaRP3AiacztG0qJzNXzQd/aJ+Zri3lyGUSZgw2nOuy51wpe8/Vvt0JiSjD0ryIYV3NsLGUkJRezg8b88m8Mx1UaSXFvsJU3AXT9aPi3q7QMdCUjBw1/1uuXfcsOrGcX7cX8lh3M0Z0NyMtW80v2wuJSap7fd4QdF6L1y6Y272lBCszCWk5sOaomrszI63MuTNlWF9Jzhqs73O42Uto6QPZBRp+2K6tV4+HaUCjdbpYm0soLNE6ZQ5frlv7ff56KZbmEoZ1M0ep62PkVdvH+G59HhP6WdCrrVLbx9hXSGiEYR/jsZ4WON3pY1yJLuO3Hfl17mMo27Wky4HVur8DP9f2H+N/38Tlp95C4eaEuae+fSuKuc25EU8T+MVbeD83hZLEVMJe+YDkzXt1NlmnQgmd8irNFr9Ms8VzKYyKJ3TyK2SfvVwnjXdZ908qpqZSXpjmgbWFjOvRhbz1WRRFxfe0i/amBtFC4TcL+XBpDDPGujFtrCtJqaV8uDSGiGh91GfTxhZ89paf7u9nJ2un9e89lskXvxiu7VifOkf0007r+vxtf4Pjff5zHPuO172/8SghFuGtHolGlJBAIACeWGD8s7OPCn980IhnP8m6v2E98tMbdsz/yfjXRB4lPn3WnFFzbtS3jGrZsrQpo194tBel2/y9P8NmXa1vGfdl5y8tKd75U33LqBazYc+yK/TRngM/JNiE4k3f1LeM+2I25iWK131e3zKqxWzCPF5b+u9MHXhYfDHHkuc+y65vGfflx9dtH3mdP75uywdrHu1P7C6YJOOZjx/9l99lb9qz06RZfcuolmFlEQyafrG+ZVTLnlVBj7xG0OpsiMz64L9dzuFeflngeH+jekZEwAgEAoFAIBAIBAKBQCB4YDRiEd5qEWvACAQCgUAgEAgEAoFAIBA8ZEQEjEAgEAgEAoFAIBAIBIIHRkTAVI+IgBEIBAKBQCAQCAQCgUAgeMgIB4xAIBAIBAKBQCAQCAQCwUNGTEESCAQCgUAgEAgEAoFA8MCoxUeWq0VEwAgEAoFAIBAIBAKBQCAQPGREBIxAIBAIBAKBQCAQCASCB0Yswls9IgJGIBAIBAKBQCAQCAQCgeAhIxwwAoFAIBAIBAKBQCAQCAQPGTEFSSAQCAQCgUAgEAgEAsEDoxGL8FaLRCNKSCAQCAQCgUAgEAgEAsEDMu2dpHo79u/vudXbsWuKiIARCAQADJlxub4lVMuula0ZPju8vmVUy46fAxk0/WJ9y7gve1YFNYiyHDrzSn3LqJZ/fmvFiGeu1beM+7J9WXP6P36+vmVUy/6/2zNwamh9y6iWvauDH/lyBG1ZPuo69//dnn6Tzta3jGo5sKYjo+bcqG8Z92XL0qYNoq5sCM93j5HH6lvGfTm2tccj38/YsyqInSbN6ltGtQwri+BI86D6lnFfel27WN8S6oRaLMJbLWINGIFAIBAIBAKBQCAQCASCh4yIgBEIBAKBQCAQCAQCgUDwwIjPUFePiIARCAQCgUAgEAgEAoFAIHjICAeMQCAQCAQCgUAgEAgEAsFDRkxBEggEAoFAIBAIBAKBQPDAiI8sV4+IgBEIBAKBQCAQCAQCgUAgeMiICBiBQCAQCAQCgUAgEAgED4xGra5vCY80IgJGIBAIBAKBQCAQCAQCgeAhIxwwAoFAIBAIBAKBQCAQCAQPGeGAETxUVq5cia2t7UM9xuHDh5FIJGRnZz/U49T3MQUCgUAgEAgEAoHgUUat1tTtzdiOAAD9aElEQVTbryHwf2YNmBkzZrBq1SoA5HI59vb2tG7dmscff5wZM2YglT4avqjDhw/Tp08fsrKyHrrjoioWLVrE4sWLAZDJZNja2hIYGMiYMWN47rnnUCgU9aKrKrp27UpSUhJKpbLOecTExNC4cWNkMhmxsbG4u7vr9iUlJeHp6Ul5eTm3bt3Cx8fnXzmmMXx8fHj55Zd5+eWX/9V8/w2mjHJhSC97rCxlREQX8sPvCcQlllSbplt7G6aNdsXN2ZSk1FJWbUzm5IVc3f6WTS0ZN9QJP29zHOxMWPJtDKfu2V8bhva2Y8wgB+yVcuISS/h5bQphkYVV2rdsasGsCS54NVKQma1i454Mdh3JMrDp2taaJ0Y64+ZkQlJaGau3pHIqNK9O+u7liVGuDO3tgJWljOtRhfyw+jaxCcXVpuneXsm0MW66sly5MYmTITm6/ROHO9OtnS2ebgpKy9SERxby67pEbidXf42M0VDKcspIZwb3ssfKQntPLv0j8f73ZDsbpo52wc3JlKS0UlZtSjG451o2tWDsYCf8fMxxsDXhve9iORVax3uylx1jBtpjd7cc16UQfrOoSvuW/hY8Nd5ZX457M9h9NFu338vNlCmPOdHEywwXR1N+XpfMtgNZVeZXG6aNbcTQfo5YW8q5frOAb1fEEnu7+nuyR0dbZox3x81FQVJKCb+tTeDEeb3eEf2dGDHACRdHbZsRe7uI1ZsSOXepbuU5dbQrQ/s43nluCvh+Vc2em+nj3HBzVpCUWsLK9UmcuOe5mTTChW7tlXi6md15bgr4ZU3dnpu7NISybBAax7kzrK8T1lZyrt3M59vfYom9XfXzo9Vox5MTPHQaf117mxPn9M/IiAHOPNbfGRenezUmcPZiTlVZVsmQnkpG9bfHTikjPqmUX9enER5Vtb4W/ubMHOuEp5spmTkqNu/LYs8x/XE93UyZPNyBJl5mODuY8Ov6VLYfyq61LmM86nUlNJzn+8lJXjw2yBVrSznhN/L4clkUMfFVt48Avbo4MGuKD41czUhMLmb5HzEcO51hkOfMx70N0mRklTJqxpk6aXwYfYyWzSwZP8QZfx8LHOxMWPTNLU5dqP1zY9+9Pb6vPYWybUvMGjlzfuwcUrYdqD5Njw4Efv4mVoH+lCSmEvXFL8QtX2Ng4zp6IE0XvYRFEy8Ko+KIePcrUrbur7W+uzR6fAIeM6ejcHKk4GYUUR99Rk5IaNX2kyfSaPJEzNwbUZKUTNyyX0jZukO3v82qX7Dt2L5Suowjx7j67It11ilomDwaXof/iMGDB5OUlERMTAy7du2iT58+vPTSSwwfPhyVSlXf8igrK3tk8mvRogVJSUnExcVx6NAhxo8fz0cffUTXrl3Jy3vwF9B/E1NTU1xdXZFIJA+cV6NGjfj9998Ntq1atcrAIfNvH7MhMH6oE2MGObL0jwReWhxJVo6KD1/3xdys6iokoIkFbz3nzYGTWcx5N5IDJ7N4a443zXzNdTZmCinRcUUs/SPhgfT1aG/D7ImurNuZztwl0YRFFrJorhdO9sZ9zC6OJiya60VYZCFzl0Sz7p90np7kSte21nr9vua88bQHh05n8+KSaA6dzuaNpz1o2tjcaJ41ZcJQZ8YMduKH1bd5cdENsnLK+Oj1JtWWZfMmFrw9x4cDJzOZ804EB05msmCOD818LXQ2rZtZsf1AOi+/F8lbn0Yhk8GHrzdBYVq7ar6hlOW4IY6MHujIj38k8vJ7N8nKUfHBvMb3vSfffNaLgyezeX7hTQ6ezOatZ70q3ZO34ov58Y/EOmsD6N7emlkTXFj3TwYvvX+LsJtFLHrRCye7KsrRwYSFL3oSdrOIl96/xfpdGTw90ZWuwfpyVJhKSU4vY9XmNDJz/r02a+IIV8YOdeH7FXE8vyCczOwyPnm7afX3pL8l/5vbhP3HM3jmzXD2H8/gnZd8CWhiqbNJyyzll78TmLMgnDkLwgkNy2PJPD+8PcxqrXHCMGfGDHHm+9/jeXFhBFk5Kj5+w696jX4WLHihMQdOZPHcguscOJHFghcaE9BE/9y0CrBi2/50Xlp8gzc/iUIqlfDRG36YKerWPWoIZdkQNE56zI1xQ135bkUsc94OIyu7jE/fblatxkB/K955yY99x9J5+o2r7DuWzrsvNSHAT68xPaOUn/+OZ86CMOYsCCM0LJcl8/zx9qhdXdStnRUzxzmzfncGr34UR/jNIt553h3HKp5vZwc578xxJ/xmEa9+FMeG3ZnMGu9MlyArnY3CVEJyehm/b0n/V5/vR72uhIbzfE8e48HEke58tSyK2fMukpldxldLWmJuLqsyTYtm1ix6vTl7DqXw5EsX2HMohSWvBxDY1NrALjq2gJHTT+t+M+ZeqJPGh9XHMFNIiY4v4ofVt+uk6y4ySwtyL0cQ9tKSGtmb+3jQYftyMo+HcLzDKG5+8hMtvlqA6+iBOhvbzkEE//UVCX9u5Vi7kST8uZW2f3+NbcfWddLoNGQgTd58nbhlvxAyZhI5IaG0WvYDCjdXo/Zuk8bT+JUXif3hJ86PGEvM9z/i985bOPTuqbMJm/sqJ3v00/3OjRiLRqUibfe+Oml81NFoNPX2awj8n3LAKBQKXF1dcXd3p23btrz99tts3bqVXbt2sXLlSp1dTk4OTz/9NM7OztjY2NC3b18uXbqk279o0SKCgoJYtmwZnp6eWFhYMH78eIPpKOfOnWPAgAE4OjqiVCrp1asXFy4YVqYSiYSffvqJkSNHYmlpyaxZs+jTpw8AdnZ2SCQSZsyYAWgjI77++muD9EFBQSxatKjK/N5//30Atm/fTrt27TAzM8PX15fFixff1+Ekl8txdXWlUaNGtGrVihdffJEjR45w9epVPvnkE51daWkp8+fPx93dHUtLSzp16sThw4erzDcqKoqRI0fi4uKClZUVHTp0YP9+vYd6yZIltGrVqlK6du3a8e677xrNs+J0oLvTnvbs2UPz5s2xsrLSOd/ux/Tp01mxYoXBtpUrVzJ9+vQHPmbv3r0rRbaMGjVKd4179+5NbGwsr7zyChKJxMC5c/LkSXr27Im5uTmenp7MnTuXgoIC3f6lS5fi7++PmZkZLi4ujBs37r7nWhtGDXRkzfZUTobkEptQwhc/x6NQSOnd2bbaNBfC8li3M43bSSWs25nGxWv5jBropLM5fyWP3zelcDKk7qNmAKMGOLDveBZ7j2dzO7mUn9emkJ5VxtBe9kbth/SyIy2zjJ/XpnA7uZS9x7PZfyKLMQMddDaP9bcnNLyA9bsyuJ1cyvpdGVy6XsDI/sbzrLHWQU6s2ZbCiZAcYhOK+fznOBSmUvp0tqsyzehBTlwIy2PtjlTik0pYuyOVi+F5jB6kL8sFX0Sz73gmsQnFRMcX88Uvcbg4muJfSydHQynLUQMcWbMjlZMX7tyTv95GYSqldyfbas8tNDyfdf+kcTu5hHX/aO/JkQMcdTbnr+Tz++YUg0itOunr78C+E9nsPaEtx1/WactxSC/j13lwL1vSMsv4Zd2dcjyRzf4T2YweqC+jyNhiVmxM5dj5XMrK/r0vDIwZ4sxfW5I4fi6bmNvFfPrjLcxMpfTtVvX1GTvEhZArufy9NZn4xGL+3ppMaFgeY4Y662xOX8jh7MUcEpJLSEguYcW6BIqK1TT3s6oy36oYPdiZv7cmc+J8DjG3i/lsWSwKUwl9u1T33Dhz4Woea7anEJ9UwprtKYSG5zF6kF7jgs+i2HfsznMTV8QXP995bnzq5hxsCGXZMDS68NeWRI6fyyLmdhGfLI3GTCGlXzeHqtMMdSHkSg5/b026ozGJC1dzGTtE/9J06kI2Zy/mcDupmNtJxfy29jZFxWoC/S2rzNcYI/vasf9kDvtP5nI7uZRfN6SRnl3G4J62Ru0H97AlLauMXzekcTu5lP0nczlwKoeR/fX3783YElZtTud4SB4q1b/3EvGo15XQcJ7vCSPc+X19PEdPZ3ArrpAPvo5AYSpjQE+nKtOMf8yd8xez+GPjbeISivhj421CLmczfkQjA7vycg2Z2WW6X3Zu3QZRH1Yf4/zlPFZtTDaIMKoLaXuOcmPh1yRvqZnjwfvpSRTHJRH+2ofkX48m/rcNxK/chO+rM3U2jV+cTvr+k0R9upyCiGiiPl1O+sHT+Lw4vZqcq8Zj+lSSN20mecNmCqNvEfXRZxQnJ9No0nij9i6PDSdp7UbSdu2l+HYCaf/sIXnjFjxnPamzUeXkUpaeofvZde1MeXExaXv21kmjoGHzf8oBY4y+ffvSpk0bNm3aBGg9dsOGDSM5OZl//vmHkJAQ2rZtS79+/cjMzNSlu3nzJuvWrWP79u3s3r2bixcv8vzzz+v25+XlMX36dI4dO8bp06fx9/dn6NChlaJHFi5cyMiRI7ly5QpLlixh48aNAERERJCUlMQ333xTq/O5N7+ZM2eyZ88ennjiCebOnUt4eDjLli1j5cqVfPDBB7Uuq4CAAIYMGaIrK4Ann3ySEydOsGbNGi5fvsz48eMZPHgwkZGRRvPIz89n6NCh7N+/n9DQUAYNGsSIESOIi4sDYObMmYSHh3Pu3DldmsuXLxMaGqpzVNSEwsJCPv/8c1avXs3Ro0eJi4tj3rx590332GOPkZWVxfHjxwE4fvw4mZmZjBgx4qEd8y6bNm3Cw8ODJUuWkJSUpHPeXLlyhUGDBjFmzBguX77M2rVrOX78OC+88AIA58+fZ+7cuSxZsoSIiAh2795Nz549qztUrXB1MsXe1oQLV/X3bplKw5Xr+QT6WVSZrrmfBReu5htsC7mSR/Nq0tQFuQz8vM0IDS8w2B4alk9AE+OdrABfc0LDDLVdCCvAz9scmeyujQWh4RVt8mleRZ41wdXJFAdbE0IqlmVEfrUvAM39LA3SAJy/mkegX9VpLO+MyOXll9dYX0MpS1cnE+09ec9xVSoNVyIKqr2/AppYGNzHABeu5hHY5CHck15GyjG8oMpz1paRof2F8Dvl+BBbajdnUxzsTAm5ou9Ul6k0XL6WR4umVb84B/pbEnLZ8MXr/KVcWvgbTyOVQO8udpgppIRH5hu1qYqqnpvL16t/bgL9LAm5aqgx5EputWkszbWFnVdQ8+fmLg2hLBuGRgUOdqacv2yo8dK1PFpUiBow1GhlkAbg/OWcKs9LKoE+Xey1Gm/UXKNcBk28zLh4zXDaycVrhQT4Go/2ada4sn1oeCF+3mYP9fl+1OtKrcYG8ny7mOFgb8q5UP2UtjKVhothObQMsKkyXctm1py7aDhV9GxoVqU0Ho3M2byiI2uXd2DRvADcXGofOfZf9jH+K2w7B5G2/4TBtrS9x1C2a4lEro04s+scRPr+4wY26fuOYdcluNbHk5jIsW7RnMwTpwy2Z504jU1wG6NppKYmqEsNp7Wpi4uxbqXXWBHXsaNI/WcP6qLqp4Y1VDRqTb39GgL/Z9aAqY6AgAAuX74MwKFDh7hy5Qqpqam6tU4+//xztmzZwoYNG3j66acBKC4uZtWqVXh4eADw3XffMWzYML744gtcXV3p27evwTGWLVuGnZ0dR44cYfjw4brtkydPZuZMvRf31q1bADg7O9dpDZiK+U2dOpU333xTF8Hh6+vLe++9x/z581m4cGGt8w8ICGDvXq23Nioqir///pvbt2/TqJHWkz9v3jx2797NihUr+PDDDyulb9OmDW3a6Cuw999/n82bN7Nt2zZeeOEFPDw8GDRoECtWrKBDhw4ArFixgl69euHr61tjnWVlZfz00080adIEgBdeeIElS+4f7mhiYsITTzzBb7/9Rvfu3fntt9944oknMDExeWjHvIu9vT0ymQxra2tcXfUjdp999hmTJ0/WRc/4+/vz7bff0qtXL3788Ufi4uKwtLRk+PDhWFtb4+3tTXBw1Y1OSUkJJSWGDUV16/rYKbXVRFauYdRUdq4KZwfTatNlG0ljr/x3qx0bKzkymaSSvqy8ctpWcSw7pZysPMMOWFauCrlcgo2VnKwcVZX67Wzqrt9eV5aGI1tZuWX3L8scwzTZOWW6a2OMpye7czUi/77zvu+loZSlnY2JLo+KeTo7VP2sVqnjId2TlY6Vp8LWxniH1s5GRnZeZW1y2Z1yzH0402TtlNryyqow5SErR4WLYzX3pK0JWRXuyaycMuxsDcu/sac53y4JwNRESlFxOYu+jCKuFvckgL3tXY0VnoH71UG2cqPnVd31fmaKB1ci8om5z3ooRo/XAMqyQWis4npn5ZTp1pcxhr2tifHrbUTjd+8F6jQu/CKyVvWktZVM+3xXeF5zcsurrNNsbeTk5Bo6YLLz7j7fMrJya+8QqAmPel0JDef5drDT6syseF9ml+LqXLWzxN7WlMxswzSZ2WXY2+nPLfxGHh98HUF8YhF2tqZMH+/Jj5+0YdqLIeTm1bzu/y/7GP8VChdHSlLSDbaVpmYgNTHB1NGOkuQ0FK6OlKRkGNiUpGSgcK06MqkqTGztkMjllKVnGmwvy8jA1NHRaJqs46dwHTea9P2HyA+/hlWLQFzHjEJqaoKJnS2laYb6rVu1xKqpPzf+t7jW+gT/f1D/T9YjgEaj0U33CAkJIT8/HwcHwzDXoqIioqKidH97eXnpnC8AXbp0Qa1WExERgaurK6mpqbz77rscPHiQlJQUysvLKSws1EV63KV9+8oLMj0IFfMLCQnh3LlzBhEv5eXlFBcXU1hYiIVF7UYz7i2rCxcuoNFoaNq0qYFNSUlJpfK7S0FBAYsXL2bHjh0kJiaiUqkoKioyKJfZs2czc+ZMvvzyS2QyGX/++SdffPFFrXRaWFjoHCEAbm5upKam1ijtU089RZcuXfjwww9Zv349p06dqtEaQQ9yzOoICQnh5s2b/Pnnn7ptGo0GtVrNrVu3GDBgAN7e3vj6+jJ48GAGDx7M6NGjq7y2H330kW6R5btonXFjAOjTxZYXp+vXvFn4VcydY1bISAL38zNXTCOpQZo6U/FYRo5vaG+4U6LbrN9e6ZRrqb9PFztemqGvJ975MroKrffPuNLuasQ8P9Wdxh7mvPaB8Ui0+/KIlWXvzra8OE0frr3w61hjh72/TiM6kEge2j1p5JGp3t7I86LN599T2LebPa/M0i/2uODTyCqPfd/nu+IGSeWN8YnFPPNmOFaWMnp0tGP+cz68uiSi2pfyvl3teOlJT93f//vC+HNTxSbD/cbKtIpEL0z3oLGnGa++V7PnpkGUZQPQ2K+bA6/M9tH9/fYnN4xrhPvO76+4X2JEeHxiMU+/cRUrSzk9OtrxxhxfXl18rVZOGIzki6T6+qfic6yrJ2t31GppCHVlQ3m+B/RyYt5z/rq/33gvzOhBJZKa3JeVdd677cyFeyJkYgsJu57LmmUdGNLHhbXbql4jr776GP85VTaOmuptHmg9kJrnF/vjckwcHQhe8zsSiYTSjEySt2zDa9aTaMorO1ddx44i/0YkeVeuPoA+QUNGOGCAa9eu0bhxYwDUajVubm5G1zGpLiLlrlPi7r8zZswgLS2Nr7/+Gm9vbxQKBV26dKG0tNQgnaVlzcL7pFJppQre2CK7FfNTq9UsXryYMWPGVLI1M6t9eGPFspLJZISEhCCTGS5AZmVlPOT39ddfZ8+ePXz++ef4+flhbm7OuHHjDMplxIgRKBQKNm/ejEKhoKSkhLFjx9ZKZ8WIFYlEUuOFmVq2bElAQACPP/44zZs3p2XLlly8ePGBj1nTa1gRtVrNM888w9y5cyvt8/LywtTUlAsXLnD48GH27t3Lu+++y6JFizh37pzRe/att97i1VdfNdimUCgY9UwEAKdDc7kepR+pM5Fr72l7peFok6115RGTezE2EqW0rjxi9aDk5qsoL9dUOpattazSCJ6BtgojlbY2clQqjS402ZiN0rryqGB1nA7NISJKP63ExEQb/mynNDFYZNHWpvoIB21ZGt5fVaWZ84Q7XYKVvPbhTdKzajeH/FEtyzMXc4mIrnxP2lW4J5U21edpVKu1jOyHdU/W4pyzjIyeK63lqMo1tZpGdj9OhWRz/ea99+Sd59tWbjBKa2sjrzQibaA3uwz7CveknU3lKAlVuYbEFG3E3Y3oQpr5WjJmsAtf/xpbtcYLORU03nlubCs/N9XWQdkq7G0r35tGn5upHtrn5oPIGj83DaIsG4DGkyFZXLupnyJz93rb25oYalSaVPusZmaX6aIp9Gkqn5deYwk3ogto1sSSMUNc+eqXmCrzvpe8/HLKyzXYVnpeK0ex3SU7V2XE/t9/vhtCXdlQnu/jZzMJj9Cv3ai/L03JyLr3vqwc4XIvmdmluuiZu9gpTcjKLq0iBRSXqImOLcCjUfXTdOujj/FfU5KSXimSxdTJHnVZGaUZ2Vqb5HQUrobRKQpn+0qRMzWhLDsLjUqFiaPhQLKJvT2lGRlG06hLSrjxv0VELnofEwd7StPScZswFlV+PmVZ2Qa2UjMznIcOIua7H2utrSHRUKYC1Rf/59eAOXjwIFeuXNG94Ldt25bk5GTkcjl+fn4GP8d7Qs/i4uJITNSv/H7q1CmkUqkuGuTYsWPMnTuXoUOH0qJFCxQKBenp968ITE21IYLlFTymTk5OBgu65ubm6qYrVUfbtm2JiIiodC5+fn61/vT29evX2b17t66sgoODKS8vJzU1tVLe906huZdjx44xY8YMRo8eTatWrXB1dSUmJsbARi6X6xbDXbFiBZMmTap1pM6DMnPmTA4fPmwwnetBqXgNy8vLuXrV0Pttampa6dq3bduWsLAwo9fw7v0il8vp378/n376KZcvXyYmJoaDBw8a1aFQKLCxsTH43TsFqahYTVJqqe4Xl1hCZnYZwS30c+/lMgmtAqwIv1n1pxev3SykbQtDR1zbllZcqyZNXVCVw83YYoKaGzofgwKtuF7FJ0GvRxcRFGioLTjQkpuxRdwt/uvRhQQHWlawseJaNZ8ZrUhRsZrE1FLdLzahmIzsMtq2rFCWzawIjyyoMp9rNwto28Jw7YN2La0Jv2mY5vmp7nRrr2T+JzdJSa+6c1cVj2pZVnVPtr3nuNpytKz2/roeVWhwHwO0bWlNeNRDuCfjigmuWI7NLas85+vRhZXKXVeO/956u9p7MqVE94u9XUxGViltWyl1NnKZhNbNrQmrZl2M8MgC2rYyXMOgXWsbwu633odE7wSoVmMNnpvWAdU/N+E3CwzSALRraVMpzfPTPOjeXsnrH90kOa3mz02DKcsGp7GIjKxS2t1zPLlMQpvm1oTdqPorjOGR+bS757wA2rdWVnteoB3Yvp/Ge1GVQ1RcMUHNDfslQQEWXI82HkUTcauYoIAK9s0tuBlb/K8/3496Xdlgnu+ichKSi3W/mPhCMjJL6RCkX8xWLpcQ1ELJ1etVL0R8NSKP9m0MF8DtEGRXbRoTuQRvDwsysqrX+1/3MeqD7NMXcezX1WCb04Du5IRcRXMnOj3r9EUc+3UzsHHs352sU1V/NroqNGUq8sKuYde1i8F2u66dyA29VEWqO2lVKkpTUkGtxnnoIDIOH6sUNeM0eCBSU1NStu+stTbB/z/8n3LAlJSUkJycTEJCAhcuXODDDz9k5MiRDB8+nGnTpgHQv39/unTpwqhRo9izZw8xMTGcPHmS//3vf5w/f16Xl5mZGdOnT+fSpUs6Z8uECRN0jgc/Pz9Wr17NtWvXOHPmDFOmTMHc/P4LTnp7eyORSNixYwdpaWnk52s7Dn379mX16tUcO3aMq1evMn369EpRJ8Z49913+f3331m0aBFhYWFcu3aNtWvX8r///a/adCqViuTkZBITE7ly5QrfffcdvXr1IigoiNdffx2Apk2bMmXKFKZNm8amTZu4desW586d45NPPuGff/4xmq+fnx+bNm3i4sWLXLp0icmTJ6NWV+59zJo1i4MHD7Jr165/1QlSU2bPnk1aWhqzZs361/Ls27cvO3fuZOfOnVy/fp05c+YYfDkLtF+7Onr0KAkJCTqH3RtvvMGpU6d4/vnnuXjxIpGRkWzbto0XX3wRgB07dvDtt99y8eJFYmNj+f3331Gr1TRr1uxf075lbzoTRzjTta0N3u4KXp3lQUmJmsOn9fpfm+3JjHF6x9vWfem0bWnN+KFOeLgpGD/UieBAa7bsTdPZmCmk+HqZ4euljcZycTTF18sMJ/v7r7ljoG9fBgN72DGgmy0erqbMmuCCk70J/xzRhvVOH+3MqzP1Ydm7jmTh7GDCrAkueLiaMqCbLQO627Fpr350Y9uBTIIDrRg72AEPV1PGDnYgqLklW/dnVjp+rbTuSWPScBe6tlPi7W7GvNlelJSqOXRaH4L8+tNePDneTZ9mbxrtWlozYagznm4KJgx1JjjQms179GX5wjQP+nax5+MfYykqVmOnlGOnlGNaixcLaDhluWVfOhOGO9Pl7j35lAclpWoOn8nW2bw2y4MZY110f2/dl0HbFlaMG+KIh6uCcUMcCWpuxdZ9eue4mUKKr6cZvp5370kTfD3rcE/uz2BAd1v6d1Vqy3G8M072Juw6qi3HaaOceGWG/hrvPpKNs4MJT413xsPVlP5dlQzoZsvmvfoyksugsYeCxh4K5HIJDrYmNPZQ4OZUO20V2bQrlckjXenW3hYfDzPmP+dDcamagyf0x37jOR+emuR+T5oU2re2YeIIVzwbmTFxhCttW1qz6R/9tMuZE91p2cwKF0dTGnua8+QEd9oEWnPgRO2v++bdqTw+woVu7ZT4eJgx72kvSko1HDx1z3PzjDczJ1R8bmyYMOzOczPMmeAW1mzeo9f44nQP+nW146MfYykqLq/zc6Mvl0e/LBuGxhQmj2pEtw52+HiYM3+OL8Ulag6c0Ncrb8zx5alJHgZp2rdWMukxNzwbmTHpMTfatrRh465knc1TkzxoFWCFi5NW48yJHrQJtOHAceMj21Wx9WAW/bsq6dfFBg9XU2aOdcLRzoQ9x7IBeGKkIy9N17eHu49l42RvwpNjnfBwNaVfFxv6d1Wydb/+/jV4vmUS7G3lNPZQ4PqAz/ejXldCw3m+121P4IlxnvTo7EBjLwventuUktJy9h3Vt8ULXm7KM1N9dH9v2J5Ah2A7Jo/xwMvdnMljPGjfxpb12/WDuHNmNCaohRI3ZwWBTa15743mWFrI2HUwpdYaH1YfQ9tfM8fXS/su4+pkiq+Xea2vt8zSAps2Adi0CQDAorEHNm0CMPPU6mn2/qu0WaH/2mrs8jWYezei+WdvYhXgi8eMsXg+OZboL3/T2cR8/zuOA7rhO282ls188Z03G8d+XYj5blWttN3l9qrVuI0djeuYkVj4NqbJm/Mwc3Mjce0GABq/8iLNPn5PZ2/u44XziKGYe3th3aolzb/4GEt/P2599V2lvN3GjiL9wCFU2Q/2NalHHbVGXW+/hsD/qSlIu3fvxs3NDblcjp2dHW3atOHbb79l+vTpumgQiUTCP//8w4IFC5g5cyZpaWm4urrSs2dPXFz0jZOfnx9jxoxh6NChZGZmMnToUJYuXarb/9tvv/H0008THByMl5cXH374YY2+iOPu7s7ixYt58803efLJJ5k2bRorV67krbfeIjo6muHDh6NUKnnvvfdqFAEzaNAgduzYwZIlS/j0008xMTEhICDgvo6FsLAw3NzckMlkKJVKAgMDeeutt3juuecMoiVWrFjB+++/z2uvvUZCQgIODg506dKFoUOHGs33q6++YubMmXTt2hVHR0feeOMNcnMrjwL4+/vTtWtXMjIy6NSp033P899GLpcbRDz9G8ycOZNLly4xbdo05HI5r7zyiu6z43dZsmQJzzzzDE2aNKGkpASNRkPr1q05cuQICxYsoEePHmg0Gpo0acLEiRMB7dS4TZs2sWjRIoqLi/H39+fvv/+mRYsW/5r29f+kYWoq5flp7lhZyoiIKmTB59EUFesrOmcHE4MpVtduFvLxj3FMG+vC1DEuJKWW8tGPsURE6yMA/Bub8+mb+nVznpmsfbHfdzyTL3+5XWN9x87nYm0lY9JwR+yVcmITS1j0bRxpmdqwYDtbuUEnISW9jEXfxjFrggvDetuRkaNi+f9j7z6jmsgaMAC/offei1RFo6ioa4HProiyCgtWQER01bWAYte117Wi7tpWUbCAvTcUFQWxgqD0XhSkCCK9zfcjSyAmFOtMdu9zTs6BySR5czMzmdy5JSAHj8Ibrq7GJZdjy8EsuNhrwMVOAzl5VfjjYBYSUlvfAkaQ09dzISEhgtmuepCXEUVcShmWbk3mKUt1FQk0rpeMSSrDxr1pcHPUhqujFrJzq7BxbxpPU/ORgznb67ZlDX3WAWDb3xm4HdL6H0DCUpZnb+RDUkIEs1x0ONtkShl+3576STmK85RjbHIZNu/PgKuDJib+wtkmN+/P4N0mDaXxx+KGAb+nTajfJgux06f122TI849QkH2H8bYN5bjmzwzkvedcsVNR/KQcC6qxZk8mpxz7K+P9hxocPJWDRxEN5aiiJI7dKxqyOVirwsFaFa/iS7FsB+/4Yp/j1JUcSEqIwMO9DeRlxRCbXIolGxN49281STRuURyTWIr1u1MweawO3Mbq4O27SqzfnYK4Rs3hlRXFsGSWEVSUxFFaVovUjHIs3ZyI8FefP23t6Wu5kJQQwWw3/X/2m1Is3ZLU7DEoJrEUG/9Kg9tobUwarY3sd1XY8FcqTxfLkUM4Tdu3L+fdb7YeTMfth59fcSAMZSkMGQMuZ0NCQgSe7gacjEklWLwx/pOMEryfd0IJ1u9OwuSxenAbq4u37yqxblcyT3cXZUVxLJllws2YklGGpZvi8eIzM4a+KIGCbC7GjVCFsoIoMrKrsG7vm4b9W0EU6soNp9i5BTVYt/cN3B3VMaKfIt5/qMWhM7kIe9nQOkdFUQw7lzWM1/PLUBX8MlQFrxPK8Lt36489n2L6sRIQnv375HnOFN7zp5tCTk4MsQkf4bXqNcrLG1oua6pJovFvwNdxH7FmWxymOhtgqpMB3uRUYNXWOMQ0as2loSaJVQvMoCgvjqLiakTHf8SMRZF4l8c7YUJrfK9zjHZGMti61JT7/wwnTgVt4MP32H6o9d8/it07oU/QMe7/7G3LAACZfucRNWUpJLXVIa3fUDlUnpaFZyOngb19KQx+c0bl21xEz9uAnAsN0zcXhkUgwtkLZmvmwmyNB8qSMxHhNA9FT6NanauxvBuBEFdSgsHM6ZBQV0NpYhJezZiNyrecVuwS6uqQ0m7IyBIRhZ6bK2SMDEDV1KDoyXNETJiEykY9JQBORY1ij26ImjLji3IR/x4sqrUDYxBcq1evxsWLF1s1LgjxZSiKQvv27TF9+nS+8UqI72O425d9Uf0oN452xs+/xtAdo1lX/2Zj2KSXdMdo0S3frkJRliPcX9Edo1nXfcwxcnos3TFadOVABwyZ8LzlFWl0x78HrCd+fnPxHynwmAXjyxHglCXTc97x74HB45/SHaNZQQE9YT8zge4YLbq4t51QHCuFYf/ua/eQ7hgtenipL+PPM275dsU18W/XCvt7sK2OR3CHrnTHaFH/2Jd0R/giDh5JtL32+d2mLa9Es/9UCxhCOOTm5uLYsWN48+YNJk+eTHccgiAIgiAIgiAIohXIILzNIxUwBONoampCTU0NBw8ehLKycssPIAiCIAiCIAiCIAiGIxUwX2D16tVYvXo13TH+tUivOIIgCIIgCIIgCOFDWsA07z81CxJBEARBEARBEARBEAQdSAsYgiAIgiAIgiAIgiC+GunN0DzSAoYgCIIgCIIgCIIgCOI7IxUwBEEQBEEQBEEQBEEQ3xmpgCEIgiAIgiAIgiAI4qvV1dXRdvtce/fuhZGREaSkpNC9e3c8fPiw2fWDg4PRvXt3SElJwdjYGPv37//s1yQVMARBEARBEARBEARB/GecOnUKc+fOxfLlyxEREYG+ffti+PDhyMjIELh+amoqRowYgb59+yIiIgLLli2Dh4cHzp0791mvSypgCIIgCIIgCIIgCIL4alQdRdvtc+zYsQNTpkzB1KlT0aFDB3h7e0NfXx/79u0TuP7+/fvRpk0beHt7o0OHDpg6dSrc3d2xbdu2z3pdUgFDEARBEARBEARBEIRQq6ysRHFxMc+tsrKSb72qqiq8ePEC1tbWPMutra3x6NEjgc8dFhbGt/6wYcPw/PlzVFdXtzojiyLzRBEEQRAEQRAEQRAE8ZV+/jWGttfuoXsaa9as4Vm2atUqrF69mmfZ27dvoauri9DQUFhaWnKXb9y4Eb6+voiPj+d77nbt2sHNzQ3Lli3jLnv06BGsrKzw9u1baGtrtyqj2Ge8H4Ig/sWGu0XRHaFZN452hu3U13THaNa1Q51gPTGC7hgtCjxmQeuXY2tc/ZuNEe6v6I7RrOs+5hg5PZbuGC26cqADBo9/SneMZgUF9GT8vhN4zAJDJjynO0aL7vj3EIrPe+DYJ3THaNa9071gPzOB7hgturi3nVAcK4Vh//7fyGC6Y7Qo5Ep/DJv0ku4Yzbrl2xXBHbrSHaNZ/WNf4pq4Gd0xWmRbzV8JIAwo6vMHw/1Wli5dCi8vL55lkpKSTa7PYrF4/qcoim9ZS+sLWt4cUgFDEARBEARBEARBEIRQk5SUbLbCpZ6amhpERUWRk5PDszw3NxeampoCH6OlpSVwfTExMaiqqrY6IxkDhiAIgiAIgiAIgiCIryYMg/BKSEige/fuuH37Ns/y27dv83RJaqxPnz586wcGBqJHjx4QFxdv9WuTChiCIAiCIAiCIAiCIP4zvLy8cOjQIfj4+CA2Nhbz5s1DRkYGZsyYAYDTncnV1ZW7/owZM5Ceng4vLy/ExsbCx8cHhw8fxoIFCz7rdUkXJIIgCIIgCIIgCIIg/jPGjRuHgoICrF27FtnZ2ejUqROuX78OAwMDAEB2djYyMjK46xsZGeH69euYN28e/vrrL+jo6GD37t1wdHT8rNclFTAEQRAEQRAEQRAEQXy1z+kKRLeZM2di5syZAu87evQo37L+/fsjPDz8q16TdEEiCIIgCIIgCIIgCIL4zkgLGIIgCIIgCIIgCIIgvlodjdNQCwPSAoYgCIIgCIIgCIIgCOI7Iy1gCIIgCIIgCIIgCIL4asI0BgwdSAsYhmOxWLh48eI3e7779++DxWKhqKjomz1ncwYMGIC5c+d+19dwc3ODvb39d30NJrwmQRAEQRAEQRAEIbxIC5jv4NGjR+jbty+GDh2KmzdvftVzZWdnQ1lZ+Rslax1DQ0Okp6cDAKSkpKCpqYmePXtixowZGDRo0A/N0hq7du0CRX1dTevq1auxZs0aDBs2jO8z27JlCxYvXoz+/fvj/v373+w1P3X//n0MHDgQhYWFUFJS+qbP/S0422tieH8VyMmKIj6lDH/5vUHG28pmH2PVQwGuv2hBW0MC2blV8D2Xg0fhxdz7O7WTxegR6jA1kIaqsjjW7k5DWKP7P5fTKA3Y9FOGnIwo4lPLse/E2xYzWnZTwER7DWirSyA7rwp+F94hLOIjzzq2A1TgMEwNKkpiyHhbiYMB2YhOLPvinBN/0cKIgWqQkxVFXHIp/vTNQvqbimYf878eipg0WhvaGpLIzq3E0TPZCH3xgXv/+JGasOqhCH1tKVRV1yEmsRSHAt4iK6f5998Up5HqGNZPCXIyokhILce+kzmtKEt5uNhpQFtdHNl51Th2MZevLEcMUIbDMFWoKHLK8u9T7764LJ3tNGDTX4XzeaeUYe/xlj9vq+4KmPiLJvfz9j3/jmeb69ROBo426jA1lIaqkjjW7UlHWMSXbZMj+ivDwVoFyvXv9fQ7xCSVN7l+p7YymDJGA210JPG+qAbnAgtw80ER9/422hJwHqUOkzZS0FSTwN+nc3A5qPCLsn3KdbQubAepQ15ODLFJJdjtk470rKazAkDfnsqYPFYP2pqSyH5XicOnshD6rCHPyKEaGDVEA5rqkgCA9KxyHDv/Bk9ffmjqKZslDPsNALg66mDEYDXIy4ohLqkUu4+kIz2r+Zx9eyrBbYwutyx9Tr1B6PMi7v0jh6hj5FB1aKo1Lsu3eBb5ZdumMHzek8bo4ufBGpyMiSXYdTgNaS1k7NdLGZPH6UNHUxJv31XisH8mQp4J3kec7HXwq5M+zl7Lxl++GQLXac7wfoqwH6ICZUVRZGZX4fCZPMQkN52vY1tpuDuqQ19bAu8/1ODC7ULcethQNvraEnD6WRUmbaSgoSqOw2dyceVe0WfnEoTpx0pAePZv9wkGGDVMG/JyYohJ+Igd+xORmtH8d1h/SzVMdTaErrY03mSX4+9jqXjwuIBnHTUVCfzmZoze3VUgKSmCzDfl2Lw7HvHJJZ+d0cVeCyMGqP5TlmX461jrytLVQZt7vnb0XDYeNSrLcT9rwKq7EvS1Jf8pyzIcPv1lZakzYSz03CdBUl0NpUnJSN60FR9eRDS9vtM46DiNg5SuDiqzc5Bx4BDeXbrKvb+L7yEo9ezB97iC4Id4PWPOZ+dT+V8PGM+fAsVunSClo4HnjjPx7nJQ84/p+xPY25ZAjt0WlW9zkbz9EDIOBvCso/WLNdqt9oSMSRuUJWcgfuVOvLt057PzEcKPtID5Dnx8fDBnzhyEhITwzB0uCEVRqKmp4VteVVUFANDS0oKkpOR3ydmc+vnQ4+Pj4efnByUlJQwZMgQbNmz44Vlaoqio+E0qLLS1tXHv3j1kZWXxLD9y5AjatGnzXV5TWIwZoQ6HYWrYe/wNPNckovBDDTYuNIa0VNOHkPYmMlj6mwGCHhVi5spEBD0qxNKZBjAzluauIyUpgpSMcuw9/uarM462UcMvQ1Wx/2Q25q1PRuGHaqz3MoS0ZDMZjaWxZLo+7oYVYfaaJNwNK8KS6W1gZtSQse9PCvh1vBZOXc+Dx9pkvE4oxRpPA6iriH9RzrG2GnAYroE//TIxZ1U8Cj/UYPNi02bLsoOpDJbPNkJQaCF+Wx6HoNBCLJ9thPYmMtx1zNvL4fKdfHiuScCSP5IhIsLCpsWmkGrm/TfF0UYV9kNVsP9kDrw2pKLwQw3WzWvTYlkunqaHe4+LMGdtCu49LsLiaXpo17gseyjg13FaOH0tHx5rUxCdWIbVHm2grvL51wJGD1fDL9Zq2Hf8LeauS0LhhxpsWGDU4ja5ZEYb3H1UhFmrknD3URGWzmjDt02mZlZg3/G3n52psf/1kMfUsZo4fb0AnutTEZ1UjtVz2kBdWfB71VQVx6o5+ohOKofn+lScuVGAaeO0YGkhz11HUkIEOfnV8L2Qh/cf+L83vtT4UdoYPUILe46kY+ayaBQWVWPLMrNmy5LdVg4rPE1x+2E+pi1+jdsP87HS0wTtTWW56+QXVOFv/0zMXB6NmcujERFdjLUL2sJAT7rJ522KMOw3ADBupBYcR2jizyMZmLU8Bu+LqvHHsnbN52wri989THAnpADTl8TgTkgBVngao71JQ1nmva/CIf83mLk8BjOXxyAi+iPWLjCFgZ7UZ2cUhs97vJ02xthqY7dPGmYsfY33RdXY+nv7FjOunNsWtx/kY+rCV7j9IB+r5pmiQ6OM9cxMZPHzEHUkp5V+djYAsOouB/fRGjhzswBemzIQk1SOFbN0odbE/q2hKoYVM3URk1QOr00ZOHvzPaaO0UCfrnLcdSQlWMjJr4bfxfxvun8z/VgJCM/+7eyoj3H2ethxIAlTvcJRUFiFnWs7Q1patMnHdDRTwJpFbNy69w5uHs9x6947rF3MBrtdw7FdXlYM+7ZYoKaWwoLVr+Ay8xn+PJyMj6Wfvx2MHaEBBxt1/HUsC3NWJ6DwQzU2LTRpvixNZLBspiGCHr3HzBXxCHr0HstnGsLMuKEsO5vJ4UpQPuauS8TSLckQFQU2LjSBpMTnlaX6cGuYLFmIjAOH8MJhPD68iID5gb8gqa0lcH3t8WNgNG8O0v/aj+cjHZH25z6YrlgK1QH9uOtEe3jhUd/B3NuzkY6gamqQd/P2Z2WrJyorg+KoeER7rm3V+tKGevjpykG8D3mBkJ/skfTHfnTcuRxav1hz11Hq3RUWJ3fizYlLeNjdDm9OXEI3f28o9ez8RRmZjqqro+0mDEgFzDdWWlqK06dP47fffsPPP//MN394fRegW7duoUePHpCUlMTDhw8xYMAAzJ49G15eXlBTU8PQoUMB8HZB6tOnD5YsWcLzfHl5eRAXF8e9e/cAAMePH0ePHj0gLy8PLS0tODk5ITc397PfR/3j27Rpg379+uHgwYNYsWIFVq5cifj4eO56MTExGDFiBOTk5KCpqYmJEyciPz+/yedtLh9FUTA1NcW2bdt4HvP69WuIiIggOTlZ4HN+2h1owIAB8PDwwKJFi6CiogItLS2sXr26xfesoaEBa2tr+Pr6cpc9evQI+fn5sLW1/arXTEtLA4vFwsuXL7nLioqKwGKxcP/+faSlpWHgwIEAAGVlZbBYLLi5uXHLZcuWLTA2Noa0tDS6dOmCs2fPcp+nsLAQzs7OUFdXh7S0NNq2bYsjR460+H4/h721GgKu5OLRi2Kkv6nE9r8zISkpggG9lZp9THj0R5y+loes7EqcvpaHl7ElsLdW567z/NVH+J1/h0cvvvyqWT27Iao4dS0Pj8KLkf62Ejt83kBSQgT9eyk2/ZihaoiIKcGZG/nIyqnCmRv5iIwrgd0QVe46vwxVQ2BIIQIfFiIzuxJ/n8pBfmE1RgxQ+aKcv9howP9SDkKff0BaVgW2HkiHpAQLg/o03dLtl2EaCH/9EQFX3iEzuxIBV94hIuYjfhmmwV1n+dZk3H74HulvKpCSUY7tf2dAU00CbQ0//8eP3WAVnLqej7CIj5yyPPL2n7JUaPIxo4aoICKmFGduFPxTlgWIjCuF3ZCGcrIfqorbIYUIDClCVk4V/j71jlOW/T+/LO2HqiHgai7n835Tie2HsyApIYIBvZSaeYwqImJKcPp6HrJyKnH6OmebtBuqxl3n+asS+F14x9NS60vYD1HF7dAiBIZy3uuh05z3Ory/4M/Zpr8S8t5X49Dpd8jKqUJgaBHuhBbhF+uGsklMr8CRc7l4+LwY1dXf7iTDYbgmTl58i5BnhUjLKscfe1MgJSmCwVaqTT9mhCZevPoA/0vZyHxbAf9L2Qh/XQzH4Q0n0WHhRXj68gOysiuQlV0Bn1NZKK+oA7st/w/ilgjDfgMADsM1cPJiNkKeFSEtqwJb9qVCSkIEg6ya3sYdh2vixati+F/K+acscxAR/REOIxpyPg7/gKcvP+BNTiXe5FTiyOk3KK+oQwdTuSaft+mMzP+8R4/QwvELb/DwaSHSMsux+a9kSEmKYMj/1Jp+jK0Wnkd9wMmLb5H5tgInL77lZLTl/WEnJSmC5XNMsO1AKj6W1n52NgCwG6SMO48+4M6jYmTlVOHw2TzkF1XDpp+SwPVt+iohr7Aah8/mISunCnceFSMo7APshjRsv0nplfC9kI+QFx9RU/PtWtgy/VgJCM/+PWaULvxOZ+BBWD5SM8qwYWccJCVFYd1fo8nHjLXTxfOXhTh+NhMZWeU4fjYTLyKLMHaUHncd59H6yM2vxKZd8YhN/Iic3Eq8iCrC25zmW60IYj9MHQGX3yH0xQekv6nAtr8zICkhgoG9mytLdYRHf8Spq7nIzK7Eqau5eBnzEb8MazhfW749BbdD/inLzApsP/RPWRp9XlnqTZqInPMXkHP2AspSUpG8aSsqcnKgM36MwPU1R/2M7FPnkHcjEBVZb5B3/RZyzl2E/tTJ3HVqPhSjOr+Ae1O27I3aigrk3Qr8rGz18m49QMIqb+RcbF0FjsG08ajIyEbM/I0oiUtBps9ZZB49D2Mvd+46RnMmIf/OIyRvOYjS+BQkbzmI/LuPYThn0hdlJIQbqYD5xk6dOgUzMzOYmZnBxcUFR44cEdhVZdGiRdi0aRNiY2PRuTOn9tPX1xdiYmIIDQ3FgQMH+B7j7OwMf39/nuc7deoUNDU10b9/fwCcljPr1q1DZGQkLl68iNTUVO4P+a/l6ekJiqJw6dIlAJzuUf3790fXrl3x/Plz3Lx5E+/evcPYsWObfI7m8rFYLLi7u/NVHvj4+KBv374wMTFpdVZfX1/IysriyZMn2LJlC9auXYvbt1s+kLq7u/NUmvn4+MDZ2RkSEhLf7TUBQF9fH+fOnQMAxMfHIzs7G7t27QIA/P777zhy5Aj27duH6OhozJs3Dy4uLggODgYArFixAjExMbhx4wZiY2Oxb98+qKk1fZL6ubTUJaCiJI7w1w1dSaprKLyKKwHbVKbJx3UwlUH4a96msy9efUSHZh7zxRnVxDkZoxter6aGwuv40mZfr72xNCJieDOGR5dwHyMmyoKpgTQiogWsY/L570NLXQKqSuJ48UlZRsWVNPsjhW0qixeveU9yX7wqbvYxstKcw/vn/sDQ/KcsI6IbrgzX1FB4nVDW7HtubywjuCxNOCdnYqKAqYEUImJ4rzhHRJegvcnnncBpqQv+vF+19HmbyPBsxwAQ/voj2F/wWTZHTBQwbSPgvcaUcsuDL5uxDN/64TGlMDWQhuh3/KbW1pCEqrIEnkc1NDWvrqEQGfsRHRtdof0Uu60cz2MA4HnUB3RsJ7hCQIQFDOyjAilJEcQkfF6TemHYbwBAW0MCqsoSePGKtyyjYj82WS4AwG4rixdRvDmfRxajY9umy3JAH2VOWSZ+XlkKw+fNzRj5ScaYj+ho1kw5tuPP+CzyA9/7mjvVEI8jihD+6ssqDsREAZM2UngZy9vt5GVsGdobC26RZGbEv35ETBlMDaS+6/7N9GMlJ6Nw7N86mlJQU5HE04iGLm3VNRRevi5Cp/ZNX5zo1F4BTyPe8yx7EvEenTo0PMaqpyrikj5i3WI2rhzrAx/vbhhpLbhFSHOaKstX8c2XZQdTWZ7HAMDz1x/BFtB6rJ7sP61+Ppa0vixZ4mKQ79gB70PDeJYXhj6GgkUXgY8RkRBHXRVvN6e6igrIm3cCS0xwizMtR3vkXr+FuvLPr8D6Ekq9uyLvTijPsrzAh1Ds3pBRuXdX5N8J4Vkn//ZDKPex+CEZfzSqjqLtJgzIGDDf2OHDh+Hi4gIAsLGxQUlJCYKCgjBkyBCe9dauXctt5VLP1NQUW7ZsafK5x40bh3nz5iEkJAR9+/YFAJw8eRJOTk4QEeF8qbi7N9S2GhsbY/fu3ejZsydKSkogJ/f5V8oaU1FRgYaGBtLS0gAA+/btQ7du3bBx40buOj4+PtDX10dCQgLatWvH9xwt5Zs8eTJWrlyJp0+fomfPnqiursbx48exdevWz8rauXNnrFq1CgDQtm1b/PnnnwgKCuIr80/9/PPPmDFjBh48eIDu3bvj9OnTCAkJgY+Pz3d7TQAQFRWFigrnCqmGhga3e1NpaSl27NiBu3fvok+fPgA45RYSEoIDBw6gf//+yMjIgIWFBXr04PR/NTQ0bPa1KisrUVnJ+2XWXDc3ZUXOYaKwmLcpbFFxDTRUm66YUlYUQ5GAx6gofvvDTn1GQa+nrtp0VyFlRTEUftLUu/BDDZQVOM+nICcKUVGWgOet5b7m51BREv/nNar5cjZblkpN5Gwmw3RnPbyKL0FaC2NP8L1WM2Wp0UJZCnpMQ1mKQVSUxbcdFX6sRbfPLEtlBfFvm/Ebb5P175XvtT7WQElB8AmtsoIoij7yZxMTZUFBToyv3L4V5Sa2ycIP1dzxRgRRURIXvE0q8Za/kb409qxjQ0JcBOUVtVi1PbHFsQgEvZagjEzabwBAWbE+J/9raqo1l1NcYPkLKsvda9tzy3L1jmRkfGZZCvPnzcnYdDmqKImjsOiTxxRVc58PAAZaqqCtkSxmLH39WZkak6//Xvhkf/1QXMs93n1KSUEMH4p5K2CKPtbv36IoLP6yljgtYfqxEhCe/VtFmZPlfVEV72sWVUFTo+mugCpKEoK3S+WG96ajJQ374dI4dTELfmcywG4nj7nTTFFdTeHmvXetz8g9X/vk9YqrWz5f+7T8P1Q3W5bTnHTxOr7ks/ZvcSVlsMTEUJ3PWyFVXVAAiSYuHBaGhEFr9C/Iv3MPJTGxkOvIhpaDPUQkxCGurISqPN5W9/LmnSDXri0Sfl/T6lxfS1JTDZXveHNU5RZARFwcEmrKqMzJg6SWGirf8Y77U/muAJJa6iD+e0gFzDcUHx+Pp0+f4vz58wAAMTExjBs3Dj4+PnwVMPU/llta1pi6ujqGDh2KEydOoG/fvkhNTUVYWBj27dvHXSciIgKrV6/Gy5cv8f79e9T90xcuIyMDbDb7a98iKIoCi8UCALx48QL37t0TWLGTnJwssAKmpXza2tqwtbWFj48PevbsiatXr6KiogJjxghumtiU+lZF9bS1tVvVFUtcXJzbciklJQXt2rXje65v/ZrNiYmJQUVFBV8lTlVVFSwsOLXmv/32GxwdHREeHg5ra2vY29vD0tKyyefctGkT1qzh/WLiVBw5AAAG9lHCnEm6DfftTAMA8DXkYgEt1TN/+hhWKx7TGgN6KWL2RB3u/6t3cwaN5ntu1uc/t6CMAt9HK97IIEtleE7W5/7/+/aUf56Qf90vKcumHjR7kh6M9KXgtS6xxYwDeilglktDWa7ZkyEwD0tABr6Mnz5G0Of96ftoxfMO6K2EOa4NGVd5//N5f8Fz8W8jrG+yTbbmtVraHAV+xgCob5hwsJUq5v1qyP1/2R8Jgl8baHGg8U/vZwF8bzrzbQWmLX4NOVkx9O2pjMUzjeG1JrbZk3Zh2G8AYJCVCuZNNeD+v3xLYpOv2WLOTxcIyJn5tgLTl8RATlYUfXsqY9FvhvBaG99sJYwwfN5D/qcKr2lG3P+XbooXmLFV3zmfPqRROaqrSmC2myEWbYhDdfU32KcE5WvmaT/dj1nc5d+OMBwrhWX/HtpfAwtnNZzHLlr7SnCoVuzggvatxotEWEBc0kccPJYKAEhMKYFhGxnYj9BptgJmYB9leLo1dGVasUNwWbJasfMI+rybesysibow0pPG/A2tK8sWX62Zk6r0fQchrqYKiwA/sFgsVBW8R87Fy2gzdTKoWv6KSy1He5QkJOLjqy+vZP0iTX6BU82v840n9CCEA6mA+YYOHz6Mmpoa6Oo2/HilKAri4uIoLCzkmc1IVpb/KqigZZ9ydnaGp6cn9uzZg5MnT6Jjx47o0oXTbK+0tBTW1tawtrbG8ePHoa6ujoyMDAwbNow7qO/XKCgoQF5eHoyMOCdKdXV1GDlyJP744w++dbW1tfmWtTbf1KlTMXHiROzcuRNHjhzBuHHjICPzec1excV5r+ywWCxuZU9L3N3d0atXL7x+/Zqnxc7XvGZ9C6XGX8LV1bxXGwSpf/y1a9d4tiugodXK8OHDkZ6ejmvXruHOnTsYPHgwZs2axTeWTr2lS5fCy8uL77nsp3NOeh9HFCMuueFKnbgY50tE5ZPWIkry/FdMGhN0JUpRnv+K1Zd48vIj4lMbxgSqz6iswJ+xuZYDgjIqKTRc+SsuqUVtLSXgfYjyXR0UJCz8A+KSGrqViItztgNlJXGeQRaVFFooy6IaqCjx5xT03mZO1EMfC0XM35CI/MKWt7EnL0sQn9KoLOszflKWigr8V0R5MjZqOcR9jHzjsqwRWJZKrSjLJy+LEZ/Cv01+2oLpSzIqyYui6BsOeAk0eq/NlAdfNgFXzxXlxVBTS31WE++WPHpRiNikhu4I9Z+3ipI43je6SqukKN5subz/pGUB5zFifFexa2opvH1XCaASCSmlMDORhcNwLew8lNbkcwvDfgMAYS+KPsn5z7FSSYy3LBX4y4U3ZzVUFHnLUlmBv1VMQ1kCCSllMDOWhYONJrwPpzf53MLweYc+L+TpSiXRREZBZdJyRnG8/+cx7YxloaIkjgObO3HvFxVloXMHefxiowVrp6doTev1j/98Lyjx7a/8rdjqFRXXCFj/2+/fwnCsFJb9O+RpAWISnnP/526XyhIoKGw4Z1VWFOdrFdPY+6IqntYuwD+t3ho9pqCwCmmZvC2k0jPLMMCy+dYRjyM+ID5ZQFkq8pdly+dCn+w7TZWliy6nLDcmtbos61UXFYKqqYG4Gu94U+IqKqgqKBD4mLrKSiT8vhqJq9dDXFUFVXn50B7riJqSElQXFvGsKyIlBY0Rw5C2Z5/A5/peKt/l87VkkVBXQV11NaoKijjr5ORDUou3lY+khgpfy5l/C4oSjsFw6ULGgPlGampq4Ofnh+3bt+Ply5fcW2RkJAwMDHDixIlv8jr29vaoqKjAzZs3cfLkSW53JwCIi4tDfn4+Nm/ejL59+6J9+/Zf3QKjsV27dkFERIQ7+Gy3bt0QHR0NQ0NDmJqa8twEVSa1Nt+IESMgKyuLffv24caNG59VCfItdOzYER07dsTr16/h5OT0TZ5TXZ1zYM7OzuYuazwgLwDuODO1jWr02Ww2JCUlkZGRwVfG+voNV5DU1dXh5uaG48ePw9vbGwcPHmwyi6SkJBQUFHhujbsglVfUITu3invLeFuJ90XVsOjY0I9eTJQF8/ZyiElqeurF2KQydOvI2zqqWyc5xDbzmNYqr2wqY8PriYmy0MlMttnXi0spR1c2b0YLdkPGmloKSenlsBC0TnLL76O8og5vc6u4t/Q3FSgoqka3Trxl2bm9HGISm56NIyaplOcxANC9kwLfY2a56uF/PRSxcFMScvJaV+laXlmH7Lxq7o1bluyGfVhMlDPlaHPvOS6ljOcxQH05caZlrakFktIr0LUD7zpd2XKIa2bqVqDpbbIbm/fzNm/p804u49mOAaBbJ3nEtOKz/Bw1tUBSRgUsPn2vHWS55cGXLaWMr2ws2LJISi9H7Tc8jymvqMPbd5XcW3pWOQoKq9DdvGE8AjFRFrp0kEd0wscmnycmsQTdzXkHuO7RWRHRLYz3wWI1VFQ0m5Hh+w03J09ZVqCgsArdGpWL2D8/8Jsrl5jEUnQz5x1DontnBUS3NL5La8tSGD7vRhnT/snYozNvOXZhyyM6vplyTGgqI+d9hb/6gMnzozB10SvuLS6pBHdCCjB10atWVb4AnP07OaMCXTvwXhjq2l4GcSmCW/rEp1aga/tP1u8gg6T0im++fzP9WCk0+3d5Ld5kV3BvqRllyH9fiZ+6NlxMFRNjoWsnJbyOa3o8oddxxTyPAYCeFip4HdvwmFexH9BGl3f70NeVQU5u8917WluW5mbNl2VsUim6dfy0LOURk/RJWU7UhVUPRSz6Iwnv8j//wi5VXYOP0bFQtuzDs1zZsheKIyKbf2xNDare5QJ1ddAYMQwF9x/ytR5Rt7GGiIQE3l259tnZvkbR45dQG8zb8lx96P/w4cVrUP/MdFv4+CXUBlvxrKM25H8oDGt6+m3i34tUwHwjV69eRWFhIaZMmYJOnTrx3EaPHo3Dhw9/k9eRlZWFnZ0dVqxYgdjYWJ4KgjZt2kBCQgJ79uxBSkoKLl++jHXr1n3R63z8+BE5OTnIzMzEgwcPMG3aNKxfvx4bNmyAqakpAGDWrFl4//49JkyYgKdPnyIlJQWBgYFwd3fnqUT43HyioqJwc3PD0qVLYWpqyh375Ee6e/cusrOzv9lU09LS0ujduzc2b96MmJgYPHjwAL///jvPOgYGBmCxWLh69Sry8vJQUlICeXl5LFiwAPPmzYOvry+Sk5MRERGBv/76iztb08qVK3Hp0iUkJSUhOjoaV69eRYcOHb5J7noXA/MxbqQGLLspwEBXEl5T9VBZWYf7j4u468z/VR9uoxsGjbt0Ox/dOsljzAh16GlLYswIdViw5XExMI+7jpSkCIzbSMG4Daf/tKaaBIzbSH3RFM+X7hRg7Ah19LGQh4GOJOa566Kyqg7BTxoGZfRy18UkB03u/5fv5KMbWw6jbdSgpyWB0TZq6NpBDpfuNFyJuXA7H9Z9lTHUSgn62pL4dZwW1FXEcf0+bx/m1rpwMxcTRmrCqrsiDPWksGBaG1RWUbgb1jCw38LpBnAf29CK7GJgHrp3UsBYWw3oa0tirK0GLDrK48KthgrMOZP0MNhSGZv2paO8gjNGjbKiGCRa+PEjyKWg9xgzQo1blnMn15dlwwmjl7sOJv3SMPPD5aD3sGDLwdFGFXpaEnC0UUXXDrK4dKehnC7eLuCWpZ6WBKaO1eSUZXAhPtfF2/kY+7MG+tRvk1P0UFlVh/tPirjrzJ+qBzfHhs/70u0CdOsoh9HD1aCnJYnRw//5vG83XIGSkhSBsb4UjPXrt0lxGOt//jZ58U4Bhv5PCUMsFTnvdYwG1FXEceMB57262qtjnlvDZ3wzuAgaquKYMkYDeloSGGKpiKFWSrgQ2FB+YqKAkZ4kjPQkISbGgqqSOIz0JKGt/mVTotc7f+MdnOx1YPWTMgz1pLFopjEqKusQFNqwHyyeaYwp4/V4HtOjsyLGj9KGvo4Uxo/SRrdOCjh3I4e7zpTxejBvLwdNdQkY6UvDfZweurAVEBQi+Epnc4Rhv+GUSy6c7LRg1UMJhnpSWPSbISqq6nA3tOFzXPybIaaM1230mHfo0VkB40ZqQV9HCuNGaqFbJ3mcv96Q032cLjqZyUFTjVOWk8fqogtbHkGhn38cEobP++z1HDj/ooP//aQMQ31pLJnFyXgnpGFfXTrLGFMnNFyIOHc9Bz91UcR4u38y2mmju7kCzl3jZCyvqENaZjnPraKyDsUfq5GW2Xwl8Kcu3S3EEEtFDO6jAD0tCbg7qkNNWRy3HhYBAFzs1OA5qeH78ObDIqiriGOyozr0tCQwuI8Chlgq4tKdhu2XZ/8WZUFFSQxGepLQ+sr9m+nHSkB49u8zl99g4pg26NdbFUZtZLB8rhkqK2sRGNzwmr/PM8N0VyOex/xkoQJnR3200ZOGs6M+enRRwunLWdx1Tl16g45m8pg4pg10taUwtL8GRg3Txvlrnz/F98VbeRj/syYsuyvCQFcKC35tg8qqOtx73Kgsp7XB5DGflqU8xo74pyxHaMCCLY8LtxrO12a76mFQHxVs3peO8oq6Ly7LLN9j0Hb8BVoOdpAxNoLJkgWQ0tbG21Oc2T2N5s2B2eaG3wbShm2gMXIEpA3aQN68Ezps3wzZtqZI3bmH77m1He2RH3QPNUUf+O77HKKyMlDo0h4KXdoDAGSM9KDQpT2k9DllZrbeC12ONLT+Tz8YAGkDHXTYugRy7Y2h5+YI/cmOSNnRMH5k2p9+UBtqBeMFv0LWzBjGC36F2uA+SNvji3+jujqKtpswIF2QvpHDhw9jyJAhUFTkn/LW0dERGzduRHh4+Dd5LWdnZ9ja2qJfv35o06YNd7m6ujqOHj2KZcuWYffu3ejWrRu2bduGUaNGffZrrFy5EitXroSEhAS0tLTQu3dvBAUFcadKBgAdHR2EhoZi8eLFGDZsGCorK2FgYAAbGxtul5vGPifflClTsHHjxh/e+qVea7qDfS4fHx+4u7ujR48eMDMzw5YtW2Btbc29X1dXF2vWrMGSJUswefJkuLq64ujRo1i3bh00NDSwadMmpKSkQElJCd26dcOyZcsAcFrOLF26FGlpaZCWlkbfvn0REBDwTbOfuZ4HCQkRzHLVhZysKOKTy7B8WwrKKxou3WmoivN0sYpNKsPmfRlwddTERAdNZOdWYdO+dMSnNJzotjWSxpYlDbNbTXfi9F2/HfIeOw41nJy0xtmb+ZCQEMFMZx1OxpRyrNiRhvLKhozqqhI8F0xik8vxx8FMTLTXhIu9BnLyqvDHwUzEpzZkfPisGAqyOZgwUgMqimJIf1uJVbvSkff+85re1jt9LReSEiKY7aYPeRlRxKWUYumWpGbLMiaxFBv/SoPbaG1MGq2N7HdV2PBXKk9XsZFDOK2sti9vy/N6Ww+m4/bDz/uRdu5mASTFRfCbkxa3LFfuzOAtSxVxnivGccnl2HIwCy72GnCxqy/LLCQ0LsvnxZCXE8X4n9W4Zbl6d8YXleXZG/mQlBDBLJf6z7sMv29P5SlHdRVxNO55GJtchs37M+DqoImJv3C2yc37M3i3SUNp/LHYmPv/tAn122Qhdvq0fpsMef4RCrLvMN624b2u+TMDee85V8NUFMV4fqi8K6jGmj2ZmDpWE7b9lfH+Qw0OnsrBo4iGVgkqSuLYvaIhm4O1KhysVfEqvhTLdmS0OtunAi5nQ0JCBJ7uBpCXFUNsUgkWb4zn3SbVJHi3yYQSrN+dhMlj9eA2Vhdv31Vi3a5knq4FyoriWDLLBCpK4igtq0VKRhmWborHiy+YfUYY9hsAOHUlB5ISIvBwb8Mpy+RSLNmY8ElZSvLsOzGJpVi/OwWTx+rAbawO3r6rxPrdKYhLblyWYlgyy4hblqkZ5Vi6OfGLZvIRhs874FI2JCVEMHeqITfjwg1xzZZjdEIJ1nonYcp4PbiP08PbnEqs9U5CbFLTV/6/VOiLEijI5mLcCFUoK4giI7sK6/a+adi/FUShrtxwip1bUIN1e9/A3VEdI/op4v2HWhw6k4uwlw0telQUxbBzWcOYQr8MVcEvQ1XwOqEMv3t/3vdhY0w/VgLCs3+fOJcJSQkReP3WFvJy4ohJKMa8lVEoL2+46KipLsWzXb6OK8bqLTH4daIRpjob4k1OOVZuiUVMoxZncYkfsWxjNKa7GsFtvAGy35Vj999JuB38+a3YT1/PhYSECGa76v1TlmVYujX5k89bgufzjkkqw8a9aXBz1Iaroxayc6uwcW8aT3e2kYM53We2LeMty21/Z+B2SOvLMu9GIMSVlGAwczok1NVQmpiEVzNmo/Itp4W4hLo6pBoNY8ASEYWemytkjAxA1dSg6MlzREyYhMq3vJVT0oZtoNijG6KmzGh1lqYodu+EPkHHuP+zt3HOtzP9ziNqylJIaqtDWr8hY3laFp6NnAb29qUw+M0ZlW9zET1vA3IuNEyDXRgWgQhnL5itmQuzNR4oS85EhNM8FD2N+uq8hPBhUS2NukYQNAgNDcWAAQOQlZUFTU3Nlh9AfLXhbsz+ErhxtDNsp/7gQdU+07VDnWA9kfnNSQOPWeDnX2PojtGsq3+zMcL9Fd0xmnXdxxwjp8fSHaNFVw50wODxT+mO0ayggJ6M33cCj1lgyITnLa9Iszv+PYTi8x449gndMZp173Qv2M9MoDtGiy7ubScUx0ph2L//NzKY7hgtCrnSH8MmvaQ7RrNu+XZFcIeudMdoVv/Yl7gmbkZ3jBbZVsfTHeGLDBgd1vJK38n9sz++58TnIi1gCEaprKxEZmYmVqxYgbFjx5LKF4IgCIIgCIIgCOJfgYwBQzCKv78/zMzM8OHDB2zZsoXuOARBEARBEARBEATxTZAWMASjuLm5wc3Nje4YBEEQBEEQBEEQxGeihGQwXLqQFjAEQRAEQRAEQRAEQRDfGWkBQxAEQRAEQRAEQRDEV6OoupZX+g8jLWAIgiAIgiAIgiAIgiC+M1IBQxAEQRAEQRAEQRAE8Z2RLkgEQRAEQRAEQRAEQXw1Mghv80gLGIIgCIIgCIIgCIIgiO+MtIAhCIIgCIIgCIIgCOKrUXVkEN7mkBYwBEEQBEEQBEEQBEEQ3xtFEATxDVVUVFCrVq2iKioq6I7SLGHISTJ+O8KQk2T8doQhJ8n47QhDTpLx2xGGnCTjtyMMOYUhI8EcLIqiyCg5BEF8M8XFxVBUVMSHDx+goKBAd5wmCUNOkvHbEYacJOO3Iww5ScZvRxhykozfjjDkJBm/HWHIKQwZCeYgXZAIgiAIgiAIgiAIgiC+M1IBQxAEQRAEQRAEQRAE8Z2RChiCIAiCIAiCIAiCIIjvjFTAEATxTUlKSmLVqlWQlJSkO0qzhCEnyfjtCENOkvHbEYacJOO3Iww5ScZvRxhykozfjjDkFIaMBHOQQXgJgiAIgiAIgiAIgiC+M9IChiAIgiAIgiAIgiAI4jsjFTAEQRAEQRAEQRAEQRDfGamAIQiCIAiCIAiCIAiC+M5IBQxBEARBEARBEARBEMR3RipgCIIgCIIgCIIgCIIgvjNSAUMQxH9KUlISbt26hfLycgAA0yaCq6mpwZ07d3DgwAF8/PgRAPD27VuUlJTQnIxj7dq1KCsr41teXl6OtWvX0pCI+J4yMzObvO/x48c/MInwGzRoEIqKiviWFxcXY9CgQT8+kADu7u7c405jpaWlcHd3pyFR86qqqhAfH4+amhq6owhUVFSEQ4cOYenSpXj//j0AIDw8HG/evKE5mfBJTk7G77//jgkTJiA3NxcAcPPmTURHR9OcjPjeiouLcfHiRcTGxtIdhSC+CTINNUEQ30RVVRVSU1NhYmICMTExuuPwKSgowLhx43D37l2wWCwkJibC2NgYU6ZMgZKSErZv3053RKSnp8PGxgYZGRmorKxEQkICjI2NMXfuXFRUVGD//v10R4SoqCiys7OhoaHBs7ygoAAaGhqora2lKRmv3bt3C1zOYrEgJSUFU1NT9OvXD6Kioj84WYPS0lJs3rwZQUFByM3NRV1dHc/9KSkpNCVr0L59e4SGhkJVVZVneWhoKGxtbQVWKNDBy8tL4PLGn7ednR1UVFR+cLIGIiIiyMnJ4dt3cnNzoauri+rqapqSNWhq/87Pz4eWlhZjKjrKysowZ84c+Pr6AgD3WOnh4QEdHR0sWbKE5oRAVFQUhgwZAkVFRaSlpSE+Ph7GxsZYsWIF0tPT4efnR3dEoThOAkBwcDCGDx8OKysrPHjwALGxsTA2NsaWLVvw9OlTnD17ltZ89Y4dO4b9+/cjNTUVYWFhMDAwgLe3N4yMjGBnZ0d3vCYVFRVBSUmJ7hhcY8eORb9+/TB79myUl5ejS5cuSEtLA0VRCAgIgKOjI90R4evrCzU1Ndja2gIAFi1ahIMHD4LNZsPf3x8GBgY0JyQYjSIIgvgKpaWllLu7OyUqKkqJiopSycnJFEVR1Jw5c6hNmzbRnK7BxIkTqWHDhlGZmZmUnJwcN+etW7coNptNczoOOzs7ysXFhaqsrOTJeP/+fcrU1JTmdBwsFovKzc3lWx4UFESpqanRkEgwQ0NDSlZWlmKxWJSKigqlrKxMsVgsSlZWltLU1KRYLBZlYmJCZWRk0JZx/PjxlLa2NrVo0SJq586dlLe3N8+NCaZOnUp169aNKi4u5i4LDg6mFBQUqB07dtCYjNeAAQMoBQUFSlZWlurWrRtlYWFBycnJUYqKilSvXr0oJSUlSllZmYqOjv7h2SIjI6nIyEiKxWJR9+7d4/4fGRlJhYeHUxs3bqQMDAx+eK7GPnz4QBUVFVEsFotKSkqiPnz4wL29f/+e8vX1pbS1tWnN2JiHhwfVvXt36uHDh5SsrCz3WHnp0iWqa9euNKfjGDx4MLVw4UKKoiie43loaCjtn3c9YThOUhRF9e7dm9q+fTtFUbxl+fTpU0pHR4fOaFx79+6l1NTUqPXr11PS0tLcjEeOHKEGDBhAc7oGmzdvpgICArj/jxkzhhIREaF0dHSoly9f0pisgaamJjfLiRMnKFNTU6q0tJTau3cvY/bvdu3aUUFBQRRFUdSjR48oaWlp6sCBA9TIkSOpX375heZ0BNORChiCIL6KMJwIUxTvF3rjE7iUlBRKVlaWzmhcqqqqVFxcHEVRvBlTU1MpaWlpOqNxf8CKiIhw/66/KSgoUCIiItTMmTNpzdjYyZMnqQEDBlBJSUncZYmJidSgQYOogIAAKjMzk7KysqIcHR1py6ioqEiFhITQ9vqtUVdXRzk6OlJ9+/alysvLqbt371JycnKMqSCqt3PnTsrBwYH68OEDd9mHDx+o0aNHU97e3lRpaSllZ2dHWVtb//BsLBaLEhERoURERCgWi8V3k5GRoQ4fPvzDczWVUdBNVFSUWr9+Pa0ZG2vTpg0VFhZGURTvsTIxMZGSl5enMxqXgoIC9/jTOGNaWholKSlJZzQuYThOUhRFycrKUikpKRRF8X83MqUsO3ToQF24cIGiKN6Mr169olRVVWlMxsvIyIgKDQ2lKIqiAgMDKSUlJerWrVvUlClTqKFDh9KcjkNKSopb6Tdx4kRq8eLFFEVRVHp6OmPO16Slpan09HSKoihq0aJF1MSJEymKoqjXr18z6mIUwUzM6ydAEIRQuXjxIk6dOoXevXuDxWJxl7PZbCQnJ9OYjFdpaSlkZGT4lufn50NSUpKGRPzq6uoEduHJysqCvLw8DYkaeHt7g6IouLu7Y82aNVBUVOTeJyEhAUNDQ/Tp04fGhLx+//13nDt3DiYmJtxlpqam2LZtGxwdHZGSkoItW7bQ2pRZWVmZ1i4xrcFiseDv7w9bW1sMHjwYUVFR2LRpE2bPnk13NB5bt27F7du3oaCgwF2moKCA1atXw9raGp6enli5ciWsra1/eLbU1FRQFAVjY2M8ffoU6urq3PskJCSgoaFBexePe/fugaIoDBo0COfOnePZLiUkJGBgYAAdHR0aE/LKy8vj6yYFcI7zjb+H6CQlJYXi4mK+5fHx8TzbAJ2E4TgJAEpKSsjOzoaRkRHP8oiICOjq6tKUildqaiosLCz4lktKSqK0tJSGRIJlZ2dDX18fAHD16lWMHTsW1tbWMDQ0RK9evWhOx6Gvr4+wsDCoqKjg5s2bCAgIAAAUFhZCSkqK5nQccnJyKCgoQJs2bRAYGIh58+YB4Oz39WMMEkRTSAUMQRBfRRhOhAGgX79+8PPzw7p16wBwfljW1dVh69atGDhwIM3pOIYOHQpvb28cPHgQACdjSUkJVq1ahREjRtCabdKkSQAAIyMjWFpaQlxcnNY8LcnOzhY4XkVNTQ1ycnIAADo6OgIHHP1R1q1bh5UrV8LX11dg5SBdoqKi+JatWrUKEyZMgIuLC/r168ddp3Pnzj86nkAfPnxAbm4u2Gw2z/K8vDzuj2AlJSVUVVX98GwGBgaorq6Gq6srVFRUGDk2QP/+/QFwfkTq6+tDRITZczT89NNPuHbtGubMmQMA3O+av//+mzEVwXZ2dli7di1Onz4NgJMxIyMDS5Ysob1Co54wHCcBwMnJCYsXL8aZM2e4392hoaFYsGABXF1dac1Wz8jICC9fvuTbv2/cuMF3XKKTsrIyMjMzoa+vj5s3b2L9+vUAOBMSMGUMt7lz58LZ2RlycnJo06YNBgwYAAB48OABzM3N6Q33j6FDh2Lq1KmwsLBAQkICdyyY6OhoGBoa0huOYD56G+AQBCHs+vXrR+3evZuiKE6z2/pmwrNmzaKGDRtGZzQe0dHRlLq6OmVjY0NJSEhQo0ePpjp06EBpamryNL+m05s3b6h27dpRHTp0oMTExKjevXtTqqqqlJmZGfXu3Tu643HV1tZS8fHx1MOHD6ng4GCeG1OMGDGC6tatGxUeHs5dFh4eTnXv3p2ytbWlKIqiLl++THXq1ImuiFTXrl0peXl5Sk5OjurUqRNlYWHBc6NLfXeUxt1kGv9f/7eIiAhtGT/l5OREGRkZUefPn6cyMzOprKws6vz585SxsTHl4uJCURRF+fv7U927d6cto5KSErdbApMVFhZSt27doo4dO0b5+vry3JgiNDSUkpeXp2bMmEFJSUlRnp6e1JAhQyhZWVnq+fPndMejKIrTBc7KyopSUlKiREVFKX19fUpcXJzq168fVVJSQnc8iqKE4zhJURRVVVVFOTk5cY894uLilIiICOXi4kLV1NTQmq2ej48PpaurSwUEBFCysrKUv78/tX79eu7fTDFr1izKwMCAGjJkCKWqqkp9/PiRoiiKCggIoPV751PPnj2jzp8/z81HURR19epVxnTbLSwspGbNmkWNGjWKunHjBnf5ypUrGdVdk2AmMgsSQRBf5dGjR7CxsYGzszOOHj2K6dOnIzo6GmFhYQgODkb37t3pjsiVk5ODffv24cWLF6irq0O3bt0wa9YsaGtr0x2Nq7y8HAEBATwZnZ2dIS0tTXc0AJyph52cnJCens43hTeLxWLMFbScnBxMnDgRQUFB3NY6NTU1GDx4MI4dOwZNTU3cu3cP1dXVtHRLAYA1a9Y0e/+qVat+UBJe6enprV6XKa05SkpKMG/ePPj5+XGv6IuJiWHSpEnYuXMnZGVl8fLlSwBA165dack4efJkmJubNzljExNcuXIFzs7OKC0thby8PE8rRhaLxZ1KmQlevXqFbdu28RwrFy9ezJgr5PXu3r2L8PBwbsYhQ4bQHYlLGI6TjaWkpHDL0sLCAm3btqU7Eo+///4b69evR2ZmJgBAV1cXq1evxpQpU2hO1qC6uhq7du1CZmYm3NzcuN2mvL29IScnh6lTp9KcsAHTZ9ckiC9FKmAIgvhqwnIiTHy9rl27ol27dlizZg20tbX5upk1HhuGCeLi4pCQkACKotC+fXuYmZnRHYn4jkpKSpCSkgKKomBiYgI5OTm6I3Ft2LAB27Ztw+DBg9G9e3fIysry3O/h4UFTsgbt2rXDiBEjsHHjRkZ1iyO+L3Kc/Lby8/NRV1cnsHs20TJhmGYeAB4+fIgDBw4gJSUFZ86cga6uLo4dOwYjIyP873//ozsewWCkAoYgiP+EI0eOQE5ODmPGjOFZfubMGZSVlXHHOKHTpk2boKmpCXd3d57lPj4+yMvLw+LFi2lK1kBWVhaRkZEwNTWlO8q/xosXLxAbGwsWiwU2my1wIEc6JSQk4P79+8jNzUVdXR3PfStXrqQplfD5dADRxlgsFlJSUn5gGsFkZWXx6tUrGBsb0x2lWdevX4eoqCiGDRvGs/zWrVuoq6vD8OHDaUrWwMPDA6ampnwVa3/++SeSkpLg7e1NTzAhNHr0aPTo0YPvh/fWrVvx9OlTnDlzhqZkDVJTU1FTU8PXKicxMRHi4uKMGRfE19cXampq3DFLFi1ahIMHD4LNZsPf358RrRo9PT0RGhoKb29v2NjYICoqCsbGxrh8+TJWrVqFiIgIuiPi3LlzmDhxIpydnXHs2DHExMTA2NgYe/fuxdWrV3H9+nW6IxIMRipgCIL4KoJmeQA4PygkJSUhISHxgxMJZmZmhv379/MNuBscHIxp06YhPj6epmQNDA0NcfLkSVhaWvIsf/LkCcaPH4/U1FSakjUYNGgQFi1aBBsbG7qjNKu2thZHjx5FUFCQwIqDu3fv0pSsQW5uLsaPH4/79+9DSUkJFEXhw4cPGDhwIAICAhgxU8rff/+N3377DWpqatDS0uLrkhIeHk5jugalpaXYvHlzk583Eyo3hIGDgwPGjx+PsWPH0h2lWZ07d8bmzZv5Bie/efMmFi9ejMjISJqSNdDV1cXly5f5uuGGh4dj1KhRyMrKoilZA2E4TgKAuro67t69y9eq9tWrVxgyZAjevXtHU7IG/fv3h7u7O9/FnOPHj+PQoUO4f/8+PcE+YWZmhn379mHQoEEICwvD4MGD4e3tjatXr0JMTAznz5+nOyIMDAy4s2vKy8sjMjISxsbGSEpKQrdu3Zo87/yRLCwsMG/ePLi6uvJkfPnyJWxsbLiDWBOEIKRDHUEQX0VJSanZ2Y709PTg5uaGVatW0TqzRnp6usAr0AYGBsjIyKAhEb+cnByB49Goq6sjOzubhkT85syZg/nz5yMnJwfm5uZ8syExZVYcT09PHD16FLa2tujUqROjZuSqN2fOHBQXFyM6OhodOnQAAMTExGDSpEnw8PCAv78/zQmB9evXY8OGDYxofdWcqVOnIjg4GBMnThTYNY5p6q99MS2nra0tFi5ciJiYGIH796hRo2hKxisxMVHgzDLt27dHUlISDYn4FRQUCOySqaCggPz8fBoS8ROG4yTA6Voo6GKOuLg4I36MA5wpsa2srPiW9+7dG7Nnz6YhkWCZmZncFqwXL17E6NGjMW3aNFhZWXFnG6KbMMyuGR8fj379+vEtV1BQQFFR0Y8PRAgVUgFDEMRXOXr0KJYvXw43Nzf07NkTFEXh2bNn8PX1xe+//468vDxs27YNkpKSWLZsGW05NTQ0EBUVxdcMODIyEqqqqvSE+oS+vj5CQ0P5KopCQ0Oho6NDUype9dOnNu4mxWKxQFEUowbhDQgIwOnTp2mfvrs5N2/exJ07d7iVLwDAZrPx119/MWLASwAoLCzk67bHRDdu3MC1a9cE/gBiEj8/P2zduhWJiYkAOGOuLFy4EBMnTqQ5Gcevv/4KAFi7di3ffUzavxUVFZGSksJ3PE9KSuIbW4cupqamuHnzJt+P7xs3bjCmi5cwHCcBoFOnTjh16hRfl8eAgADGTPHMYrEETtf94cMHxuw3ACAnJ4eCggK0adMGgYGBmDdvHgBASkoK5eXlNKfjEIZp5rW1tZGUlMR3DAoJCWHM/k0wF6mAIQjiq/j6+mL79u08TdZHjRoFc3NzHDhwAEFBQWjTpg02bNhAawXM+PHj4eHhAXl5ee5Vi+DgYHh6emL8+PG05Wps6tSpmDt3LqqrqzFo0CAAQFBQEBYtWoT58+fTnI6DCd2gWkNCQoLx49TU1dXxtTAAOFd1P+0KQJcxY8YgMDAQM2bMoDtKs5SVlaGiokJ3jGbt2LEDK1aswOzZs2FlZQWKohAaGooZM2YgPz+f+0OITkzZ7loyatQozJ07FxcuXICJiQkATuXL/PnzGdNKx8vLC7Nnz0ZeXh7P8Xz79u2MGf9FGI6TALBixQo4OjoiOTmZpyz9/f0ZMf4LAPTt2xebNm2Cv78/REVFAXC6eG3atIlRA7IOHToUU6dOhYWFBRISErhjwURHRzNmnJpNmzbBxsYGMTExqKmpwa5du3hm12SC6dOnw9PTEz4+PmCxWHj79i3CwsKwYMECMjYa0bIfPvE1QRD/KtLS0lRCQgLf8oSEBEpaWpqiKIpKSUnh/k2XyspKauzYsRSLxaLExcUpcXFxSlRUlJo8eTJVWVlJa7Z6dXV11KJFiygpKSlKRESEEhERoWRkZKg1a9bQHU3obNu2jZo5cyZVV1dHd5QmjRo1iurXrx/15s0b7rKsrCyqf//+lL29PY3JGmzcuJFSU1OjJk2aRG3bto3atWsXz40pjh07Ro0ePZoqLS2lO0qTDA0NKV9fX77lR48epQwNDWlI1Lzy8nK6IzSpqKiI6t27NyUmJkYZGhpShoaGlJiYGDVw4ECqsLCQ7nhce/fupXR1dSkWi0WxWCzKyMhI4DZAF2E4Tta7evUqZWlpScnIyFCqqqrUwIEDqfv379Mdiys6OppSVVWlTExMKDc3N8rNzY0yMTGh1NXVqVevXtEdj6uwsJCaNWsWNWrUKOrGjRvc5StXrqTWr19PYzJeUVFRlKurK9WxY0eqQ4cOlLOzMxUVFUV3LB7Lli2jpKWlufu3lJQU9fvvv9MdixACZBBegiC+Srt27eDg4IDNmzfzLF+yZAkuXLiA+Ph4PH/+HHZ2dnjz5g1NKRskJCQgMjIS0tLSMDc3Z8SI/58qKSlBbGwspKWl0bZtW0hKStIdicexY8ewf/9+pKamIiwsDAYGBvD29oaRkRHs7OzojgcA+OWXX3Dv3j2oqKigY8eOfC1NmDDQYGZmJuzs7PD69Wvo6+uDxWIhIyMD5ubmuHTpEvT09OiOKBQz9wCcARGTk5NBURQMDQ35Pm8mDBYsJSWF169f87U4SExMhLm5OSoqKmhK1qC2thYbN27E/v378e7dO+70rytWrIChoSGmTJlCd0QuiqJw+/Zt7vG8c+fOAsdkYIK8vDxIS0szalp0QDiOk8Lk7du3+PPPP3m2ydmzZzO+dR7x5crKyhATE4O6ujqw2WzG7eMEM5EuSARBfJVt27ZhzJgxuHHjBn766SewWCw8e/YMsbGxOHfuHADg2bNnGDduHM1JOdq1a4d27drRHaNZcnJy+Omnn+iOIdC+ffuwcuVKzJ07Fxs2bOD2bVdSUoK3tzdjKmCUlJTwyy+/0B2jWfr6+ggPD8ft27cRFxcHiqLAZrMxZMgQuqNxCUuXM3t7e7ojtMjU1BSnT5/m64p56tQpvqlr6bJhwwb4+vpiy5Yt3PFgAMDc3Bw7d+5kVAUMi8WCtbU1Y8ZLag4TZjQTRBiOk8JER0cHGzdupDtGix4+fIgDBw4gJSUFZ86cga6uLo4dOwYjIyNGdJcSFRVFdnY230C8BQUF0NDQYMSYOu7u7ti1axfk5eXRo0cP7vLS0lLMmTMHPj4+NKYjmI60gCEI4qulp6dj3759SEhIAEVRaN++PaZPn46ioiJ07dqV7ngAmDvdpoODA44ePQoFBQU4ODg0uy4Trkay2Wxs3LgR9vb2PFMvvn79GgMGDGDM7B4EwTTnzp3DuHHjMGTIEFhZWYHFYiEkJARBQUE4ffo0I34Im5qa4sCBAxg8eDDP/h0XF4c+ffqgsLCQtmy7d+/GtGnTICUlhd27dze7roeHxw9Kxatbt24ICgqCsrIyLCwsmp2xhQmtsphMRUUFCQkJUFNTg7KycrNl+f79+x+YrEFUVBQ6deoEERERREVFNbsuU2YIPHfuHCZOnAhnZ2ccO3YMMTExMDY2xt69e3H16lVcv36d7ogQERFBTk4OXwXM27dvYWJiwojBgpuqJMrPz4eWlhZqampoSkYIA9IChiCIr2ZgYMDtglRUVIQTJ07A0dERL1++ZMSVCoC5020qKipyswiaspRpUlNTYWFhwbdcUlISpaWlNCQSLsLwI9LLywvr1q2DrKwsvLy8ml13x44dPyiV8HN0dMSTJ0+wc+dOXLx4kdvi6enTpwL3KTq8efNG4KCsdXV1qK6upiFRg507d8LZ2RlSUlLYuXNnk+uxWCza9h07Oztul1E7OzvGfM8Io507d0JeXp77NxPLsmvXrtyKgq5du3JnBPwUk2YQW79+Pfbv3w9XV1cEBARwl1taWgqc/exHqv9OZLFYOHToEE93ntraWjx48ADt27enKx4AoLi4GBRFgaIofPz4EVJSUtz7amtrcf36dYFTaBNEY6QFDEEQ38Tdu3fh4+OD8+fPw8DAAI6OjnB0dGTMDws1NTX4+fkxfrpNpmOz2di0aRPs7Ox4rpDv3r0bvr6+ePHiBW3ZhOHqs5GREZ4/fw5VVVXGjq8ycOBAXLhwAUpKShgwYECT5chisWhrOQYIxxXyxpVZDx48gKWlJcTEmHvtq0ePHpg7dy5cXFx49u81a9bgzp07ePjwId0Ria8kDMdJYZGeno42bdqAxWIhPT292XWZMt6cjIwMYmJiYGhoyLOPp6SkgM1m0zoWVf13Ynp6OvT09LizSQGcGbsMDQ2xdu1a9OrVi66IEBERaXafYbFYWLNmDZYvX/4DUxHChrlnAQRBMF5WVhaOHj0KHx8flJaWYuzYsaiursa5c+fAZrPpjsdDGKbbXLNmDVxcXLjTqjLRwoULMWvWLFRUVICiKDx9+hT+/v7YtGkTDh06RGs2Ybj63HhMFaaOr3Lv3j3u3/fv36cvSAsaXyFnyrS+n9qzZw8WL14MWVlZDBw4UGCTdSZZtWoVJk6ciDdv3qCurg7nz59HfHw8/Pz8cPXqVbrjcQUHB6N///50x2jW5MmT4eLigkGDBjHqWNT4OCkMYycBnEphFxcXjB49mlEtRRtXqqirq0NGRobGNK2jra2NpKQkvimnQ0JCYGxsTE+of9R/Jw4cOBDnz5+HsrIyrXkEuXfvHiiKwqBBg3Du3DmeAZYlJCRgYGAAHR0dGhMSQuHHT7xEEMS/wfDhwyl5eXlqwoQJ1NWrV6mamhqKoihKTEyMio6OpjkdP2GYbtPc3JwSERGhevXqRe3Zs4fKzc2lO5JABw8epNq0acOdelFPT486dOgQ3bFajSnbwJo1awROm1xWVsaIqcerq6spUVFRRk2hKmxMTU2pZcuWUffv36dYLBZ18eJFKjg4WOCNKW7evEn169ePkpWVpaSlpSkrKyvq1q1bdMfiIS4uTunr61OLFy9m3NS09UaOHElJSkpSOjo6lJeXFxUREUF3JKE1Z84cSktLi5KSkqIcHByoCxcuUJWVlXTH4iErK0s5OztTN2/epGpra+mO06Q//viDYrPZ1OPHjyl5eXnq4cOH1PHjxyl1dXVqz549dMcTGmlpaYw5lyCED+mCRBDEFxETE4OHhwd+++03nhk8xMXFERkZybgWMMIy3WZ0dDROnDiBgIAAZGVlYciQIXBxcYG9vT3jrq7l5+ejrq6OkVf0N23ahKVLl/Itr62thYuLC/z9/WlIxUsYZnowMTHB+fPn0aVLF7qj8CkuLm71ugoKCt8xSdMuXryIGTNmIDc3t8nxIQBmjREhDPLz8xEQEAB/f3+EhYWhU6dOcHFxgZOTEyOmb69XVFSE06dP4+TJk3j48CHMzMy4OT9tgUA0r66uDnfu3MHJkydx4cIFiIqKYvTo0XB2dmZEa6jz58/D398f165dg4KCAsaNGwcXFxdGzmi4fPly7Ny5k9vdSFJSEgsWLMC6detoTsbh7u7e7P1MmGHowYMHzd7fr1+/H5SEEEakAoYgiC8SFhYGHx8fnD59Gu3bt8fEiRMxbtw46OjoMLICZvLkyc3ef+TIkR+UpPVCQ0Nx8uRJnDlzBhUVFZ/1g/O/TlNTE+vWrcO0adO4y2prazF+/Hi8fv0asbGxNKbjEBERwbt37/imqL179y7GjRuHvLw8mpI1OHLkCM6cOYPjx4/zNLVmgpb64jdGd+VGSUkJFBQUEB8f32SFJZO6VgCczJ/OFkdXRVZzUlNTcfLkSfj7+yMuLg79+vWjdWyipmRlZcHf3x8+Pj5ITEykbZaUlsZLaoyusZNaUlFRgStXrmDDhg149eoV7ft3Yx8/fsTZs2fh7++Pe/fuwcjICC4uLli5ciXd0XiUlZUhJiYGdXV1YLPZPAPe0u3TGeGqq6vx+vVrFBUVYdCgQYy4YCYiIsK3rPF+xaRtkmAeUgFDEMRXKSsrQ0BAAHx8fPD06VPU1tZix44dcHd3547PQHyZly9f4vjx4wgICEBBQQFtUy8K46CNL168wJAhQ3DgwAHu2ETjxo1DXFwc7t69Cy0tLdqy1f8A+vDhAxQUFPhO2kpKSjBjxgz89ddftGWsZ2FhgaSkJFRXV8PAwACysrI899P5eQcHB3P/TktLw5IlS+Dm5oY+ffoA4FQS+/r6YtOmTZg0aRJdMbmCg4NhZWXF6EF4U1NTMXv2bNy/f59nME6KohjdSqe2thY3btzAihUrEBUVxbic1dXVuHbtGo4fP45r165BRUUFb968oSWLr69vq9dlwn7zqZycHAQEBOD48eMIDw/HTz/9hCdPntAdS6CYmBg4OzszcpsUNnV1dZg5cyaMjY2xaNEiuuPgw4cPPP9XV1cjIiICK1aswIYNGzB48GCakhHCgFTAEATxzcTHx+Pw4cM4duwYioqKMHToUFy+fJnuWEKl/mruiRMnkJCQgH79+sHJyQljxoyh7Qr5mjVrsHDhQsjIyGDNmjXNrrtq1aoflKpl9+/fh52dHfz8/HD48GEkJyfj7t270NTUpDWXr68vKIqCu7s7vL29eT7X+pke6isR6CYsn/fgwYMxdepUTJgwgWf5yZMncfDgQUYNJpybm4vc3Fy+1iWdO3emKVEDS0tLAICnpyc0NTX5KluZ0NWjsdDQUJw4cQJnz55FRUUFRo0aBWdnZwwfPpzuaAA4A3aePHkS586dQ21tLRwcHODs7IxBgwYJvIJOCFZcXIxz587h5MmTuH//PoyNjeHk5ARnZ2fGDa5fUVGBy5cv4+TJk7h58yY0NDQwYcIE/PHHH3RHAwCUlpZi8+bNCAoKEngcomv2vdaIj4/HgAEDkJ2dTXeUJj148ADz5s2jdUZIgvlIBQxBEN9cbW0trly5Ah8fH0ZVwJw9exanT59GRkYGqqqqeO5jQsuNPn364OnTpzA3N4ezszOcnJygq6tLdyyhdvnyZTg6OqJDhw64e/cu1NTU6I7EFRwcDEtLS77xiIjPJyMjg8jISJ7xqAAgISEBXbt2RVlZGU3JGoSHh8PV1RWxsbF8Y8EwpXWJnJwcXrx4ATMzM7qjNGvp0qUICAjA27dvMWTIEDg7OzNunCw9PT0UFBRg2LBhcHZ2xsiRIyElJUV3LKEYO+lT0tLSUFZWxtixY+Hs7MzIcVUCAwNx4sQJXLx4kXHj0zQ2YcIEBAcHY+LEidDW1uarZPX09KQpWcuuX7+OSZMmMaJ7blNiY2Px008/oaSkhO4oBIMxtx0sQRBCS1RUFPb29oya4nL37t1Yvnw5Jk2ahEuXLmHy5MlITk7Gs2fPMGvWLLrjAeBMvXjo0CF07NiR7igtqqqqEnj1rE2bNjQlAhwcHAQuV1dXh5KSEs94MEzoQ974xLy8vBzV1dU89zPlx48w0NfXx/79+7F9+3ae5QcOHIC+vj5NqXi5ubmhXbt2OHz4sMDWJUzw008/ITMzk/EVMMHBwViwYAHGjRvHqErVxlauXInRo0czbuwkJSUloRk7CeB0f9u1axdcXFwYVcH2KXt7e/z888/w9fWFra0tYyvWb9y4gWvXrsHKyoruKE3y8vLi+Z+iKGRnZ+PatWuM6RYXFRXF8399xs2bNzNy0HqCWUgFDEEQ/wl79+7FwYMHMWHCBPj6+mLRokUwNjbGypUrGTHQYHV1NQICAuDi4kJ3lGYlJCRgypQpePToEc9yJowR0VQXrWHDhv3gJK1TVlaGRYsW4fTp0ygoKOC7n66yFMZBOnfu3AlHR0fcunULvXv3BgA8fvwYycnJOHfuHM3pOFJTU3H+/HnGdZlo7NChQ5gxYwbevHmDTp068f2IZEI3qerqapiZmWH48OGMrXypqanBzJkzYWlpybgKmHv37nH/bmnsJCagKAqzZ8/GwIED+Vq4MUVNTQ02b96MMWPGQFtbm+44zVJWVmbcNvmpiIgInv9FRESgrq6O7du3tzhD0o/StWtXgTPb9e7dmxGzNBHMRrogEQTxnyAjI4PY2FgYGBhAQ0MDt2/fRpcuXZCYmIjevXsL/AH8o+nq6uLOnTvo0KED3VGaVD+I6JIlSwQ2XyZXflpv1qxZuHfvHtauXQtXV1f89ddfePPmDQ4cOIDNmzfD2dmZllyNB+ksKCjA+vXrMWzYMJ4faLdu3cKKFSswb948WjIKkpWVhX379nG7+LDZbMyYMYMxLWDs7e0xceJEODo60h2lSY8fP4aTkxPS0tK4y+p/ZNBdwdqYkpISwsPDYWxsTHeUJjF5Cvd6wjJ2UseOHXH48GFu5SoTNT7HYLLjx4/j0qVL8PX1ZXSLIqZLT0/n+b++kogJ3QwJ5iMVMARB/CcYGxvj7Nmz6NatG3766SdMnToV06dPR2BgIMaPH8+IK/mbN29GXFwcDh06xNiZUmRlZfHixQu0b9+e7iitkpeXh/j4eLBYLLRr145vymc6tWnTBn5+fhgwYAAUFBQQHh4OU1NTHDt2DP7+/rh+/TrdEeHo6IiBAwdi9uzZPMv//PNP3LlzBxcvXqQnWCPV1dWwtrbGgQMH0K5dO7rjNCk/Px+TJk1Cz549BbYuGTVqFE3JGrDZbHTo0AGLFi0S2E2KKT8uJ0+eDHNzc76uCkzC5Cnc6wnD2EkAcO3aNWzevBn79u1Dp06d6I4j0MCBA+Hp6cmorteCWFhYIDk5GRRFwdDQkO84xITx8Aji346ZZ/gEQRDf2KBBg3DlyhV069YNU6ZMwbx583D27Fk8f/68ybFDfrQnT54gKCgIgYGBMDc355vylwnjlrDZbOTn59Mdo0WlpaWYM2cO/Pz8uOPUiIqKwtXVFXv27GHElb/379/DyMgIAGe8l/pKwP/973/47bff6IzGdevWLYGzdwwbNgxLliyhIRE/cXFxvH79mpFjqjT26NEjhISE4MaNG3z3MaV1SXp6Oi5fvszoblIAYGpqinXr1uHRo0fo3r0737HSw8ODpmQNdu/ejaSkJOjo6DBuCvd6wjB2EgC4uLigrKwMXbp0gYSEBKSlpXnuZ8IFlJkzZ2L+/PnIysoSuE0yofseAMZXEAHAu3fvsGDBAu5MTZ+2FWDCsRIAgoKCmpxNinRDIppDKmAIgvhPOHjwIPcLcsaMGVBRUUFISAhGjhyJGTNm0JyOQ0lJidHdEwDgjz/+wKJFi7Bx40aYm5vzXT1jysCxXl5eCA4OxpUrV7iDDYaEhMDDwwPz58/Hvn37aE7IaZWVlpYGAwMDsNlsnD59Gj179sSVK1egpKREdzwAgKqqKi5cuICFCxfyLL948SJUVVVpSsXP1dUVhw8fxubNm+mO0iQPDw9MnDgRK1asoH0q9KYMGjQIkZGRjK+AOXToEJSUlPDixQu+6V5ZLBYjKmCE4YeuMIydBADe3t50R2jRuHHjAPBW/jGx+96qVavojtAiNzc3ZGRkYMWKFQK7OjPBmjVrsHbtWvTo0YOxGQnmIl2QCIL4T8jIyIC+vj7flyRFUcjMzKR19h5hIiIiAgACy5FJJ5lqamo4e/YsBgwYwLP83r17GDt2LCOmsdy5cydERUXh4eGBe/fuwdbWFrW1taipqcGOHTsYMR3o0aNHMWXKFNjY2HDHgHn8+DFu3ryJQ4cOwc3Njd6A/6hv7WRqaooePXrwXX3esWMHTckayMvL4+XLlzAxMaE7SpMOHjyI9evXw93dXWAFKxO6SRHfVlZWFvbu3Yu4uDhGjp0kLD4dE+RTTOm+Jwzk5eXx8OFDdO3ale4oTdLW1saWLVswceJEuqMQQohUwBAE8Z8gKiqK7OxsaGho8CwvKCiAhoYGYyoOampqcP/+fSQnJ8PJyQny8vJ4+/YtFBQUICcnR3c8BAcHN3t/46mV6SQjI4MXL17wDWgcHR2Nnj17orS0lKZkTcvIyMDz589hYmLCqIE7nzx5gt27d/MMbuvh4YFevXrRHY1r4MCBTd7HYrFw9+7dH5hGsEmTJqFv376YOnUq3VGaVF/BKgiTKljrVVVVITU1FSYmJowcN6uoqAhnz55FcnIyFi5cCBUVFYSHh0NTUxO6urp0xxMqycnJOHLkCJKTk7Fr1y5oaGjg5s2b0NfXR8eOHemOx2gqKipISEiAmppai7PcMaE7F5vNxokTJ2BhYUF3lCapqqri6dOnjK5QJ5iLVMAQBPGfICIignfv3vENwpqeng42m82IH+Tp6emwsbFBRkYGKisrkZCQAGNjY8ydOxcVFRXYv38/3RGFxuDBg6Gqqgo/Pz/urATl5eWYNGkS3r9/jzt37tCckPiv2bBhA7y9vWFrayuwdQkTus0Ii7KyMsyZM4c7Y1f9sdLDwwM6OjqMGJ8oKioKQ4YMgaKiItLS0hAfHw9jY2OsWLEC6enp8PPzozsiAE4l0dOnTwWOY+Hq6kpTKl7BwcEYPnw4rKys8ODBA8TGxsLY2BhbtmzB06dPcfbsWbojAgCOHTuG/fv3IzU1FWFhYTAwMIC3tzeMjIxgZ2dHWy5fX1+MHz8ekpKSPLPcCTJp0qQflKppgYGB2L59Ow4cOABDQ0O64wi0ePFiyMnJYcWKFXRHIYQQqYAhCOJfrX6WjF27duHXX3/lGXy1trYWT548gaioKEJDQ+mKyGVvbw95eXkcPnwYqqqqiIyMhLGxMYKDgzF16lQkJibSHREA8PDhQxw4cAApKSk4c+YMdHV1cezYMRgZGeF///sf3fEAAK9fv4aNjQ0qKirQpUsXsFgsvHz5ElJSUrh16xYjrph6eHjA1NSU74f3n3/+iaSkJKEY94BovfoBlwVhsVhISUn5gWmEm6enJ0JDQ+Ht7Q0bGxtERUXB2NgYly9fxqpVqxAREUF3RAwZMgTdunXDli1bIC8vzz2eP3r0iG+qb7pcuXIFzs7OKC0thby8PE/LCBaLxYjWEADQp08fjBkzBl5eXjxl+ezZM9jb2+PNmzd0R8S+ffuwcuVKzJ07Fxs2bMDr169hbGyMo0ePwtfXF/fu3aM7otBQVlZGWVkZampqICMjw1dZzYTt0tPTE35+fujcuTM6d+7Ml5EJ3V4J5mJee02CIIhvqP5EnKIovHr1ChISEtz7JCQk0KVLFyxYsICueDxCQkIQGhrKkxHg9B1nwgkmAJw7dw4TJ06Es7MzwsPDUVlZCQD4+PEjNm7cyIipkwGgU6dOSExMxPHjx7ljG4wfPx7Ozs58M2jQ5dy5c7h8+TLfcktLS2zevJlUwHymZ8+e4cyZM8jIyEBVVRXPfUyYQSw1NZXuCK0iDDN7XLx4EadOnULv3r15Kg3YbDaSk5NpTNbg2bNnOHDgAN9yXV1d5OTk0JCI3/z58+Hu7o6NGzcyYma4prx69QonT57kW66uro6CggIaEvHbs2cP/v77b9jb2/MMBt6jRw/azzGKi4tbvS4TBtIXhu++qKgo7hg1r1+/5rmPDMhLtIRUwBAE8a9Wf9Vp8uTJ2LVrFyNOLppSV1cncIyFrKwsyMvL05CI3/r167F//364uroiICCAu9zS0hJr166lMRk/aWlp/Prrr3THaFJBQQEUFRX5lisoKAjFVN9MEhAQAFdXV1hbW+P27duwtrZGYmIicnJy8Msvv9Adj09942OmnagLy8weeXl5fON5AZzp55mSWUpKSuAP3/j4eL6usHR58+YNPDw8GF35AnBmCMzOzuZrRRYREcGYsXRSU1MFjlkiKSlJexdnJSWlFvcLJg2kz4RuUC0hLZqIr0EqYAiC+E84cuQIz//FxcW4e/cu2rdvj/bt29OUitfQoUPh7e2NgwcPAuD8OCspKcGqVaswYsQImtNxxMfHo1+/fnzLFRQUUFRU9OMDNSM5ORne3t6IjY0Fi8VChw4d4OnpyZhB80xNTXHz5k3Mnj2bZ/mNGzdgbGxMUyrhtHHjRuzcuROzZs2CvLw8du3aBSMjI0yfPh3a2tp0x+Py8/PD1q1bud0J27Vrh4ULFzJmJo39+/fj6NGjjMnTlJ9++gnXrl3DnDlzADRUZP3999/c2broZmdnh7Vr1+L06dMAOBkzMjKwZMkSODo60pyOY9iwYXj+/DnjjzdOTk5YvHgxzpw5AxaLhbq6OoSGhmLBggWMGafGyMgIL1++5Jvt6MaNG2Cz2TSl4hCGyoLi4mLuBbKWWuww+UIaQbQGqYAhCOI/YezYsejXrx9mz56N8vJy9OjRA2lpaaAoCgEBAYw4Id65cycGDhwINpuNiooKODk5ITExEWpqavD396c7HgDO1ItJSUl8A+OFhIQw6iT+1q1bGDVqFLp27QorKytQFIVHjx6hY8eOuHLlCoYOHUp3RHh5eWH27NnIy8vDoEGDAHC6f2zfvl0ommAzSXJyMmxtbQE0XHFmsViYN28eBg0ahDVr1tCckDMmwIoVKzB79mzuNhkaGooZM2YgPz8f8+bNozsiqqqqYGlpSXeMFm3atAk2NjaIiYlBTU0Ndu3ahejoaISFhbU4U9uPsm3bNowYMQIaGhooLy9H//79kZOTgz59+mDDhg10xwMA2NraYuHChYiJiWH0tOMbNmyAm5sbdHV1uTOx1dbWwsnJCb///jvd8QAACxcuxKxZs1BRUQGKovD06VP4+/tj06ZNOHToEK3ZmDI7YXOUlZW5M1U21WKH7lY6Dg4OOHr0KBQUFODg4NDsukzo9kowFxmElyCI/wQtLS3cunULXbp0wcmTJ7Fq1SpERkbC19cXBw8eZMSgjQBnpp6AgAC8ePECdXV16NatG6PGLdmyZQt8fX3h4+ODoUOH4vr160hPT8e8efOwcuVKvtYcdLGwsMCwYcN4+uIDwJIlSxAYGIjw8HCakvHat28fNmzYgLdv3wIADA0NsXr1alqv6rZ0YtkYU04y9fX1cf36dZibm6NLly5YsmQJJkyYgLCwMNjY2ODDhw90R4SRkRHWrFnD99n6+vpi9erVjBgjRphm9nj16hW2bdvGc6xcvHgxzM3N6Y7G4+7duwgPD+dmHDJkCN2RuIRt2vGUlBRuWVpYWKBt27Z0R+Lx999/Y/369cjMzATAGe9n9erVmDJlCs3JeDFx5qvg4GBYWVlBTEysxUpUuiqUJk+ejN27d0NeXh6TJ09udt1PW10TRGOkAoYgiP8EaWlpJCQkQF9fH66urtDR0cHmzZuRkZEBNpuNkpISuiMKjeXLl2Pnzp2oqKgAwGlxsGDBAqxbt47mZA2kpKTw6tUrvhP0hIQEdO7cmZudKfLy8iAtLQ05OTm6o/CcWFIUhQsXLkBRURE9evQAALx48QJFRUVwcHBgzEmmk5MTevToAS8vL2zYsAG7du2CnZ0dbt++jW7dujGiokhKSgqvX7+Gqakpz/LExESYm5szYpskM3t8X0VFRVBSUqI7htCrra3Fq1evYGBgAGVlZbrj8MnPz0ddXZ3AcYroJiwzXxHEvxnpgkQQxH+Cvr4+wsLCoKKigps3b3IHkC0sLISUlBTN6Th8fX2hpqbG7UqxaNEiHDx4EGw2G/7+/nx9y+myYcMGLF++HDExMairqwObzWZExUFj6urqePnyJV8FzMuXLxl3UpyXl4f4+HiwWCyYmZlBTU2N1jyNK1UWL16MsWPHYv/+/RAVFQXA+fEzc+ZMRvXD//PPP7kVGEuXLoW4uDhCQkLg4ODAmNYcpqamOH36NJYtW8az/NSpU4y5ki8sM3uEh4dDXFyc29rl0qVLOHLkCNhsNlavXs03kxwd/vjjDxgaGmLcuHEAON1gz507By0tLVy/fh1dunShOaHwmDt3LszNzTFlyhTU1taif//+ePToEWRkZHD16lUMGDCA7ogoLy8HRVGQkZGBmpoa0tPT4e3tDTabDWtra7rjcTF55quMjIxWrdemTZvvnIQgvi/SAoYgiP+EvXv3wtPTE3JycjAwMEB4eDhERESwZ88enD9/nhGD1JmZmWHfvn0YNGgQwsLCMHjwYHh7e+Pq1asQExNjxFV8X19fjB49GrKysnRHadbatWuxc+dOLFmyBJaWlmCxWAgJCcEff/yB+fPnM2LcgNLSUsyZMwd+fn7cZuCioqJwdXXFnj17GHFyrK6ujpCQEJiZmfEsj4+Ph6WlJWOmgBUG586dw7hx4zBkyBBYWVlxt8mgoCCcPn2akbM1MdVPP/3EHcw2JSUFbDYbDg4OePbsGWxtbRkxhpKxsTGOHz8OS0tL3L59G2PHjsWpU6dw+vRpZGRkIDAwkO6IADjHoeDgYIHTt3t4eNCUipeenh4uXryIHj164OLFi5g5cybu378PPz8/3Lt3D6GhoXRHhLW1NRwcHDBjxgwUFRXBzMwMEhISyM/Px44dO/Dbb7/RHREAICsri1evXjFqzLZ69ZX8gOCZ4ugeAwYAd7y2lty9e/c7JyGEGamAIQjiP+P58+fIzMzE0KFDuS02rl27BiUlJVhZWdGcDpCRkUFcXBzatGmDxYsXIzs7G35+foiOjsaAAQOQl5dHd0Soq6ujrKwMI0eOhIuLC2xsbCAmxrzGlBRFwdvbG9u3b+eOr6Kjo4OFCxfCw8ODEVfzp0+fjjt37uDPP//kbn8hISHw8PDA0KFDsW/fPpoTcgZGPHLkCOzt7XmWX7x4EZMnT0ZhYSE9wQSora3FxYsXubNesdlsjBo1iueknm4vXrzAzp07ERsbyx1MdP78+QKnryWapqioiPDwcJiYmOCPP/7A3bt3cevWLYSGhmL8+PHcMTjo1Ljbq6enJyoqKnDgwAEkJCSgV69ejNh3IiIiMGLECJSVlaG0tBQqKirIz8+HjIwMNDQ0kJKSQndEAJzue0lJSdDT08O0adMgIyMDb29vpKamokuXLi3OmvMjqKmpITg4GB07dsShQ4ewZ88eRERE4Ny5c1i5ciViY2PpjgiAM8bX+PHjMXbsWLqj8BETE4Oenh7c3NwwcuTIJs8t6Gw9JiIiAgMDA9ja2vJ10Wxs586dPzAVIWyYd9ZMEATxnfTo0YM7jkW9+u4+TCAnJ4eCggK0adMGgYGB3FlRpKSkUF5eTnM6juzsbNy8eRP+/v4YP348pKWlMWbMGLi4uDBq9pT6GXDmzZuHjx8/AgDk5eVpTsXr3LlzOHv2LE/z+REjRkBaWhpjx45lRAXM5MmT4e7ujqSkJPTu3RsA8PjxY2zevLnFQQh/pKSkJNja2iIrKwtmZmagKIr74/fatWuMmXq8e/fuOH78ON0xeAjjzB4URXFbjd25cwc///wzAE5X0/z8fDqjcSkrKyMzMxP6+vq4efMm1q9fD4CTnSmD286bNw8jR47Evn37oKSkhMePH0NcXBwuLi7w9PSkOx6XpqYmYmJioK2tjZs3b2Lv3r0AgLKyMsZUsJaVlXG/YwIDA+Hg4AARERH07t0b6enpNKdrwOSZr7KysuDr64ujR49i//79cHFxwZQpU9ChQwfaMn1q8+bNOHr0KM6cOQNnZ2e4u7ujU6dOdMcihAypgCEI4l/Ly8sL69atg6ysLLy8vJpdlwmDSw4dOhRTp06FhYUFEhISuJVD0dHRfNM+00VMTAw///wzfv75Z5SVleHChQs4efIkBg4cCD09PSQnJ9MdkUdubi7P+Crq6up0R+IqKyuDpqYm33INDQ2UlZXRkIjftm3boKWlhZ07dyI7OxsAZyryRYsWYf78+TSna+Dh4QFjY2PuOE8AUFBQABcXF3h4eODatWs0JwSuX78OUVFRDBs2jGf5rVu3UFdXh+HDh9OSS1FRkdsiTFFRkZYMn6tHjx5Yv349hgwZguDgYG5lZWpqqsB9ig4ODg5wcnJC27ZtUVBQwP18X758yTcQM11evnyJAwcOQFRUFKKioqisrISxsTG2bNmCSZMmfdaMaN/T5MmTMXbsWGhra4PFYmHo0KEAgCdPnqB9+/Y0p+MwNTXFxYsX8csvv+DWrVvcCyi5ubmMGi/r119/BcDppvspurv3aGlpYfHixVi8eDFCQkJw5MgR9OrVC2w2G1OmTMGUKVOanbnrR1i0aBEWLVqEsLAw+Pj4wMrKCmZmZnB3d4eTkxOjPmuCuUgXJIIg/rUGDhyICxcuQElJCQMHDmxyPRaLxYj+ukVFRfj999+RmZmJ3377DTY2NgCAVatWQUJCAsuXL6c5Ib/8/HwEBARg//79iI2NZcyV3eLiYsyaNQv+/v4846uMGzcOf/31FyN+aA4ePBiqqqrw8/PjDgRdXl6OSZMm4f3797hz5w7NCXnVN/Nn4gmmrKwsHj9+zDcFcWRkJKysrBgxy1nnzp2xefNmjBgxgmf5zZs3sXjxYkRGRtKUTPhERUXB2dkZGRkZ8PLywqpVqwAAc+bMQUFBAU6ePElzQqC6uhq7du1CZmYm3NzcuN3MvL29IScnh6lTp9KckNOlNDQ0FO3atYOZmRl2796NYcOGIS4uDt26dWNMRTAAnD17FpmZmRgzZgz09PQAcMYkU1JSgp2dHc3pOPmcnJxQW1uLwYMHc8f42bRpEx48eIAbN27QnFA4vXv3DhMmTEBwcDDy8vK4FexMUVZWhjNnzuCvv/5CTEwM3r59y8jvSIJZSAUMQRAE8VnqW76cOHECd+7cgb6+PiZMmABnZ2fGNBUeO3YsXr58iT179qBPnz5gsVh49OgRPD090blzZ5w+fZruiHj9+jVsbGxQUVGBLl26gMVi4eXLl5CSksKtW7fQsWNHuiMKDRUVFVy9epWvG1xoaChGjhzJiKlVpaWlERsby9eaLS0tDR07dkRpaSk9wf5FKioqICoq2uzYDEQDa2truLm5wcnJCTNmzEBERAQ8PDxw7NgxFBYW4smTJ3RHFCo5OTnIzs5Gly5duC01nj59CgUFBca01BEWjx49go+PD86cOcNtYTJt2jTaW8B8KiQkhJuzY8eOuHfvHqSlpemORTAcqYAhCOI/g6IoFBQUgMViQVVVle44QmnChAm4cuUKZGRkMGbMGDg7OzNq7Jd6srKyuHXrFv73v//xLH/48CFsbGwY82O3vLwcx48fR1xcHHdQVmdnZ8acwL179w4LFixAUFAQcnNz8ekpA1NaPLm6uiI8PByHDx9Gz549AXC6J/z666/o3r07jh49Sm9AcJrXnzx5km8WjTt37sDJyQm5ubk0JeN19uxZ7kw9n86KEx4eTlMq4nt4/vw5Pn78iIEDByIvLw+TJk1CSEgITE1NceTIETJV9r8UU2e+qp944MiRIygsLISzszOmTJnCuIsRb9++xdGjR3H06FEUFxfDxcUF7u7uYLPZdEcjhAQZA4YgiH+9nJwcLFq0CJcvX+YOyKqgoIBffvkFmzZtYsyYAcKAxWLh1KlTGDZsGCNnP6qnqqoqsJuRoqIilJWVaUgkmLS0NLdPPhO5ubkhIyMDK1as4I6/wES7d+/GpEmT0KdPH27rh5qaGowaNQq7du2iOR3HqFGjMHfuXFy4cIE7KHBSUhLmz59P68CXje3evRvLly/HpEmTcOnSJUyePBnJycl49uwZZs2aRXc84htrPCi9uro6rl+/TmMa4kdoaeYrOitgDAwMoKOjg0mTJmHUqFEQFxdHbW0toqKieNbr3LkzTQk5A+Xfu3cP1tbW2Lp1K2xtbRl9LkQwE2kBQxDEv1pxcTG6du2KkpISODs7o3379qAoCjExMfD394eysjLCw8O501IT/w4HDx7EmTNn4OfnB21tbQCcirj6gSWnT59OS67Lly+3el0m/CiXl5fHw4cP0bVrV7qjtEpiYiJ3ulc2m82YwU4B4MOHD7CxscHz58+5Y1hkZWWhb9++OH/+PJSUlOgNCKB9+/ZYtWoVJkyYAHl5eURGRsLY2BgrV67E+/fv8eeff9IdkSCIrzBgwAC0a9eOO/NVZGQkz8xXdA683Lh7UX1l/6c/U+keKFhERATa2trQ0NBo9oIEaS1INIdUwBAE8a+2bt06+Pn54dGjR3wz4OTm5sLKygqTJ0/GsmXLaEoofIKCgrhdUuoHuK3n4+NDUyrAwsKC54QoMTERlZWVaNOmDQAgIyMDkpKSaNu2LW0nR63tv073SWY9NpuNEydOcAcQFQb1pzVMbK1DURRu376NyMhISEtLo3PnzujXrx/dsbhkZGQQGxsLAwMDaGho4Pbt2+jSpQsSExPRu3dvFBQU0B2R+IaEpYsh8e0oKSnhyZMnMDMzg5KSEsLCwtChQwc8efIEkyZNQlxcHG3ZWjtdt4GBwXdO0rQ1a9a0ar36gcEJQhDSZoogiH+1a9euYdmyZQKnH9bQ0MDSpUvx999/kwqYVlqzZg3Wrl2LHj16MK5Lir29Pd0RWvRphRXTeXt7Y8mSJThw4ABjpkJvyuHDh7Fz504kJiYCANq2bYu5c+cyYraZeiwWC9bW1rC2tqY7ikBaWlooKCiAgYEBDAwM8PjxY3Tp0gWpqal8P86J1ispKeHb95kwU4qwdDEEOMfOpKQkgRX/TKjEfPDgASwtLfm6o9TU1ODRo0eMyAgA4uLi3M9ZU1MTGRkZ6NChAxQVFZGRkUFrNjorVlqLVKwQ3wJpAUMQxL+aiooKwsLCYGZmJvD+uLg4WFpa0jZLSrdu3RAUFARlZWW+FhyfYkKTVm1tbWzZsgUTJ06kOwrxAygrK6OsrAw1NTWQkZHhm12GCbMLAcCKFSuwc+dOzJkzB3369AEAhIWF4c8//4SnpyfWr19Pc0LhMHXqVOjr62PVqlXYv38/vLy8YGVlhefPn8PBwQGHDx+mLZuXl1er192xY8d3TNI6qampmD17Nu7fv4+KigrucoqiGNPCTVi6GD5+/BhOTk5IT09nXJeUeqKiosjOzoaGhgbP8oKCAmhoaDAiI0BmviIIJiAtYAiC+FcrLi5udmwFJSUlFBcX/7hAn7Czs4OkpCQA4WjBUVVVxchZj4jvw9vbm+4IrbJv3z78/fffmDBhAnfZqFGj0LlzZ8yZM4dUwLTSwYMHua0LZsyYARUVFYSEhGDkyJGYMWMGrdkiIiJ4/n/x4gVqa2u5lesJCQkQFRVF9+7d6YjHx9nZGQCnW6ampiYjW5fo6+sLRcumGTNmoEePHrh27RpjW+rUV6x9qqCgALKysjQkEmzjxo3cyQjWrVuHSZMm4bfffuPOfEUQxPdHWsAQBPGvJioqipycHIFdkABOH3gdHR3ark7t3r0b06ZNg5SUFDIyMqCnp9fqcULosHjxYsjJyWHFihV0RyEILmVlZTx9+hRt27blWZ6QkICePXuiqKiInmBCJiMjA/r6+nw/JCmKQmZmJnc8Jbrt2LED9+/fh6+vL3dWs8LCQkyePBl9+/bF/PnzaU4IyMnJ4cWLF022vmSCwMBAbN++nfFdDGVlZREZGcmoQbXr1Q9ae+nSJdjY2HAvqADgzuBjZmaGmzdv0hWRIAiGIS1gCIL4V6MoCu3atWvyihndddBeXl4YP348pKSkYGRkJLAJM5NUVFTg4MGDuHPnDjp37szXJYUJTf+J76O8vBzV1dU8y5gwjgUAuLi4YN++fXzb38GDB7ktEYiWNXUMev/+PYyMjBjTjWL79u0IDAzkmVJeWVkZ69evh7W1NSMqYH766SdkZmYyrgJGWVmZ5/uwtLQUJiYmjO5i2KtXLyQlJTGyAkZRUREA51xCXl4e0tLS3PskJCTQu3dv/Prrr3TFE6impgb3799HcnIynJycIC8vj7dv30JBQYHMCEkQPwCpgCEI4l+N6U1qdXR0cO7cOYwYMQIURSErK4tnvIDGmHD1OSoqijtewOvXr3nuY2KzcOLrlJaWYvHixTh9+rTAGXDo/EHeeEwQFouFQ4cOITAwEL179wbAGTciMzMTrq6udEXkIQxjRDTVjaKkpARSUlI0JBKsuLgY7969Q8eOHXmW5+bmcrtX0O3QoUOYMWMG3rx5g06dOvFVbnTu3JmWXMLSrbCxOXPmYP78+cjJyYG5uTljyhJoOMcwNDTEggULGNXdSJD09HTY2NggIyMDlZWVGDp0KOTl5bFlyxZUVFRg//79dEckiH890gWJIAiCRgcPHsScOXNQU1PT5DpMGrRR2FRVVSE1NRUmJiZ8s1MwQXJyMo4cOYLk5GTs2rULGhoauHnzJvT19fl+XNJh1qxZuHfvHtauXQtXV1f89ddfePPmDQ4cOIDNmzfT2rpk4MCBrVqPxWLh7t273zlNy0RERJCTk8NXAfP27VuYmJigvLycpmQNlVm7du3Cr7/+ChkZGe59tbW1ePLkCURFRREaGkpXRB6urq4IDg7G9u3beSrcFi5ciH79+sHX15fmhA0Dx6alpXGXsVgscjz/AoK65ZKy/DL29vaQl5fH4cOHoaqqisjISBgbGyM4OBhTp07lziJHJ2GZHj0oKIib8dOZuXx8fGhKRQgD5p2NEgRB/IdMmzYNEyZMQHp6Ojp37ow7d+5AVVWV7litkpWVBRaLBV1dXbqj8CkrK8OcOXO4P8QSEhJgbGwMDw8P6OjoYMmSJTQnBIKDgzF8+HBYWVnhwYMH2LBhAzQ0NBAVFYVDhw7h7NmzdEfElStX4OfnhwEDBsDd3R19+/aFqakpDAwMcOLECVorYO7du0fba3+O3bt3A2hopdO4iX9tbS0ePHiA9u3b0xUPQMMAtxRF4dWrV5CQkODeJyEhgS5dumDBggV0xeOzf/9+LFiwAC4uLtxucWJiYpgyZQq2bt1KczoOd3d3WFhYwN/fn7GD8AqL1NRUuiO0SFgqDUJCQhAaGsqzjwOcKaDfvHlDUypewjA9+po1a7B27Vr06NGDsRkJ5iItYAiCIBjC19cX48eP5xnEj2nq6uqwfv16bN++HSUlJQA4U5nOnz8fy5cvZ8wAwp6enggNDYW3tzdsbGwQFRUFY2NjXL58GatWreKbUYUOffr0wZgxY+Dl5QV5eXnulchnz57B3t6eESfDcnJyiI6OhoGBAfT09HD+/Hn07NkTqampMDc3524DRNOMjIwAcJr+6+npQVRUlHufhIQEDA0NsXbtWvTq1YuuiFxubm7Ys2cP5OXl6Y7SpNraWoSEhMDc3BySkpJITk4GRVEwNTVlVPcPJg8cS3x7w4cPR0ZGBmbPni3wB7mdnR1NyXjVz2zGZrN5vndCQkLg6OiId+/e0R1RKKZH19bWxpYtWzBx4kS6oxBCiLSAIQiCYIhJkybRHaFFy5cvx+HDh7F582ZYWVmBoiiEhoZi9erVqKiowIYNG+iOCAC4ePEiTp06hd69e/OcCLPZbCQnJ9OYrMGrV69w8uRJvuXq6uoCx1uhg7GxMdLS0mBgYAA2m43Tp0+jZ8+euHLlSrPTuxMN6q/eDxw4EOfPn+cZOJZJampqcPz4cSxYsACdOnWiO06TREVFMWzYMMTGxsLIyIjW8T+aM2jQIFIB8xUuX76M4cOHQ1xcHJcvX2523VGjRv2gVE0LCQlhfKUBAAwdOhTe3t44ePAgAE7LvJKSEqxatQojRoygOR2HMEyPXlVVBUtLS7pjEEKKVMAQBEHQSEVFBQkJCVBTU+ObneJTTJiRwtfXF4cOHeI54e3SpQt0dXUxc+ZMxlTA5OXlCZxNqrS0lDFNhZWUlJCdnc1tIVEvIiKCMd26Jk+ejMjISPTv3x9Lly6Fra0t9uzZg5qaGjLj1WdiepcpMTExGBgYMKarRHPMzc2RkpLCt+8wyciRIzFv3jy8evVK4MCxTKg0YDJ7e3vumEn29vZNrseUMWCEodIAAHbu3ImBAweCzWajoqICTk5OSExMhJqaGvz9/emOB4AzUPSSJUsYPT361KlTcfLkSaxYsYLuKIQQIl2QCIL4T1i7di0WLFjAM7gkwJlad+vWrVi5ciUtuRp3Ozp69GizlQNMaCEjJSWFqKgotGvXjmd5fHw8unbtSutAoo31798fo0ePxpw5cyAvL4+oqCgYGRlh9uzZSEpKws2bN+mOiEWLFiEsLAxnzpxBu3btEB4ejnfv3sHV1RWurq5YtWoV3RH5ZGRk4Pnz5zAxMUGXLl3ojiN0srKycPnyZWRkZKCqqornPiZUaB05cgRnzpzB8ePHoaKiQnecJgUGBmLx4sVYt24dunfvztf1iAnTozfXHZMplQb1kpKSkJycjH79+kFaWrrJ2bCIpgUGBmL79u2MrjSoV15eDn9/f4SHh6Ourg7dunWDs7MzzxTadFJWVkZZWRlqamoYOz26p6cn/Pz80LlzZ3Tu3JkvIxOO5wRzkQoYgiD+E4RhClhh0KtXL/Tq1Ys7sGi9OXPm4NmzZ3j8+DFNyXg9evQINjY2cHZ2xtGjRzF9+nRER0cjLCwMwcHB6N69O90RUV1dDTc3NwQEBICiKIiJiaG2thZOTk44evQoz1ghhPALCgrCqFGjYGRkhPj4eHTq1AlpaWmgKArdunVjxExNFhYWSEpKQnV1NQwMDPgqNsLDw2lKxqtx5UbjigIyK87nKSgowLhx43D37l2wWCwkJibC2NgYU6ZMgZKSErZv3053RABAZmYm9PX1Bd73+PFj7kxYP9qnrVZLS0sZXWkgLFqaxYwJF6Oam4WPKTPvEcxFuiARBPGf0NQVvcjISMZc6XV2dsaAAQPQv39/vhYmTLFlyxbY2trizp076NOnD1gsFh49eoTMzExcv36d7nhclpaWCA0NxbZt22BiYoLAwEB069YNYWFhMDc3pzseAEBcXBwnTpzAunXruFciLSws0LZtW7qjCaVjx45h//79SE1NRVhYGAwMDODt7Q0jIyNGDIC5dOlSzJ8/H2vXroW8vDzOnTsHDQ0NODs7w8bGhu54ANBsVw8mYXp3LmExb948iImJISMjAx06dOAuHzduHObNm8eYCpihQ4ciNDSUb4bA0NBQ2NraoqioiJZc3t7etLzu52ppDJ3GmNA1jgkVLC0hxyDia5AWMARB/KvVX6H68OEDFBQUeCphamtrUVJSghkzZuCvv/6iMSXH9OnTERwcjISEBGhpaaF///7o378/BgwYQPs0tY29efMGe/fuRVxcHCiKApvNxsyZM6Gjo0N3NKHC1G5xwmjfvn1YuXIl5s6diw0bNuD169cwNjbG0aNH4evry4iTZXl5ebx8+RImJiZQVlZGSEgIOnbsiMjISNjZ2SEtLY3uiMQ3FhwcjG3btiE2NhYsFgsdOnTAwoUL0bdvX7qjAQC0tLRw69YtdOnShWdGHKbNcvbrr78iPDwc9+/f587Q9eDBA4wcORKrV6/GvHnzaE7IbK2dnZDO1mPFxcXcroPFxcXNrsuELoYE8TVIBQxBEP9qvr6+oCgK7u7u8Pb2hqKiIve++ilg+/TpQ2NCfjk5Obh//z7u37/PrZDR0NBAdnY23dGESl1dHZKSkpCbm4u6ujqe+/r160dTqgakW9y3w2azsXHjRtjb2/P8kHz9+jUGDBiA/Px8uiNCS0sLd+/eBZvNRseOHbFp0yaMGjUKkZGRsLKyYsyP3aKiIpw9exbJyclYuHAhVFRUEB4eDk1NTcYMDl2vrKxM4Hg6TJgZ6fjx45g8eTIcHBy4M8Y9evQIFy5cwNGjR+Hk5ER3RMjLyyM8PBxt27bl2W+ePXsGGxsbxszGRlEUxowZg9zcXAQGBiIsLAyjRo3C+vXr4enpSXc8AE1XGrBYLEhKSkJCQuIHJxIujb8PRUREBLZYpruLoYODA44ePQoFBQU4ODg0u+758+d/UCpCGJEuSARB/KvVN2U1MjKCpaUlX79sJpKXl4eysjKUlZWhpKQEMTExaGlp0R0LAGeQTjk5OYwZM4Zn+ZkzZ1BWVsaYpsOPHz+Gk5MT0tPT+WamYMoYEcLQLU5YpKamwsLCgm+5pKQkSktLaUjEr3fv3ggNDQWbzYatrS3mz5+PV69e4fz587SNYfGpqKgoDBkyBIqKikhLS8Ovv/4KFRUVXLhwAenp6fDz86M7IgDOLGeTJ0/GjRs3BN7PhP17w4YN2LJlC0/rDE9PT+zYsQPr1q1jRAVMv3794Ofnh3Xr1gHgHBvr6uqwdevWZse4+NFYLBb8/f1ha2uLwYMHIyoqCps2bcLs2bPpjsalpKTU7MDFenp6cHNzw6pVq1rdIuVbunv3LmbPno3Hjx/ztSD58OEDLC0tsX//ftpaZ929e5f7vceEFouCKCoqcj/jxhfzCOJzkRYwBEH8ZzC9RcTixYsRHByMyMhIdOrUCf369UP//v3Rr18/KCkp0R0PAGBmZob9+/fznZwHBwdj2rRpiI+PpykZr65du6Jdu3ZYs2YNtLW1+U6M6Tx5Ynq3uJaafzfGlKbgbDYbmzZtgp2dHc+V/N27d8PX1xcvXrygOyJSUlJQUlKCzp07o6ysDAsWLEBISAhMTU2xc+dOGBgY0B0RQ4YMQbdu3bBlyxaecnz06BGcnJwY003K2dkZaWlp8Pb2xsCBA3HhwgW8e/cO69evx/bt22Fra0t3REhKSiI6OhqmpqY8y5OSktCpUydUVFTQlKxBTEwMBgwYgO7du+Pu3bsYNWoUoqOj8f79e4SGhsLExIS2bFFRUXzLPn78iAkTJsDW1ha//fYbdzkTWjz5+flh+fLlcHNzQ8+ePUFRFJ49ewZfX1/8/vvvyMvLw7Zt27Bw4UIsW7bsh+cbNWoUBg4c2GR3rd27d+PevXu4cOHCD05GEP89pAKGIIj/BGFoESEiIgJ1dXXMmzcPdnZ2PIMiMoWUlBTi4uL4ptlMS0tDhw4dGDMNtaysLCIjI/l+/DAB07vFNdX8WxAm7DcAp2XWihUrsH37dkyZMgWHDh1CcnIyNm3ahEOHDmH8+PF0RxQKioqKCA8Ph4mJCU8FTHp6OszMzBhRaQAA2trauHTpEnr27AkFBQU8f/4c7dq1w+XLl7FlyxaEhITQHRGmpqZYuHAhpk+fzrP8wIED2LZtGxITE2lKxisnJwf79u3DixcvuFMSz5o1C9ra2rTmqj8ONf6+bvx//d9M+f4ePHgwpk+fjrFjx/IsP336NA4cOICgoCAcO3YMGzZsQFxc3A/PZ2BggJs3bzZ5XhEXFwdra2tkZGT84GQE8d9DuiARBPGfMGPGDPTo0QPXrl0T2CKCCSIiIhAcHIz79+9j+/btEBUV5Q7CO2DAAEZUyGhoaCAqKoqvAiYyMpJvhgo69erVC0lJSYysgGF6t7jGzb/T0tKwZMkSuLm5cSuFwsLC4Ovri02bNtEVkc/kyZNRU1ODRYsWoaysDE5OTtDV1cWuXbsYVfnC9PFVpKSkBLaAio+Ph7q6Og2JBCstLeWOnaSiooK8vDy0a9cO5ubmjJkqe/78+fDw8MDLly9haWkJFouFkJAQHD16FLt27aI7HpeWlhbWrFlDdww+qampdEf4LGFhYdi/fz/fcgsLC4SFhQEA/ve//9FWwfHu3btmv2vExMSQl5f3AxMRxH8XqYAhCOI/ITExEWfPnmXkD/J6Xbp0QZcuXeDh4QGAU6nh7e0NDw8P1NXVMeIq3/jx4+Hh4QF5eXlut63g4GB4enoy6ofunDlzMH/+fOTk5MDc/P/t3Xtczvf/P/DHu4MSqYScO8gpoojPjLEciynskDFJZphhyGmWQ8OYQ2NjQhHDGCFmmEqTU3KqpCSlDeWQihxSvX9/9HPN5aq07+j1vnjcbze3j16v9+22x+1Drq7n9Xo9n/YaP3gq4ch6ly5dVL9/+PAhnjx5orYv6nrPs7n8/PywdOlSfPzxx6o1Nzc32NvbY/Xq1Yrp+QMUT0oZMWIEbt++jaKiIo3mxqJpQ38Vd3d3+Pn5Ydu2bQCKTxmkp6dj2rRpeP/99wWn+0fTpk2RlJQEKysrODg4ICAgAFZWVli1apXwkxtPjR49GrVr18aSJUtU/382b94cW7duVcRYdKDkaz5A8Z+7oaEhGjZsCAMDgwpOVUwJV/L+jfr16yMwMBALFixQWw8MDESDBg0AFDdYNzMzExEP9erVQ1xcXKk/A8XGxirme4fodccrSET0RujatSumTJkCFxcX0VHKdPbsWdUEpCNHjiA3NxcODg5wdnbGokWLRMdDfn4+hgwZgl9//RV6esU1/KKiInh6emLVqlWKmfRQUpNDpR1Zf/DgAaZMmYJt27aVOG1ECRmNjIxw/vx5NG7cWG390qVLcHBwwIMHDwQl0z7a0F8lNzcXvXv3xoULF3Dv3j3UrVsXGRkZ6NChA/bt24cqVaqIjggA2LRpE548eQIvLy+cPXsWvXr1wp07d1CpUiWsX78eHh4eoiNqhWevGz57tecpfX19eHh4ICAgAIaGhkIyAsC3334LCwsLeHt7q60HBQXh1q1bmDp1qqBk/wgNDcWHH36IZs2aoV27dpAkCadOnUJiYiK2b9+O9957Dz/99BOSk5OxdOnSCs83duxYHD58GKdOndL4s3z48CHat28PZ2dnLF++vMKzEb1pWIAhotfWs5/upaSk4Ouvv8bkyZMVeyLCzMwM9+/fR+vWrVXXjjp37qyYRqfPSk5Oxrlz51C5cmXY29sr7tPKq1evlrmvhLxjxoxBREQE/Pz84OnpiRUrVuDatWsICAjAggULMHjwYNER0bRpU7z33ntYsmSJ2vqkSZOwd+9exTRdzszMhI+PD8LCwnDz5k2NPk9KKGZpS38VoHgiyZkzZ1Q9Qbp37y46UpkePHiAxMRENGzYEDVq1BAdR83p06dx8eJFSJIEOzu7Eqd1ibJ7925MnToVkydPVmscu2TJEsyaNQsFBQWYNm0aPDw8sHjxYmE5rayssHnzZrz99ttq6ydPnsTAgQMVc10pLS0Nq1atwqVLlyDLMpo1a4aRI0dqXNkVITMzE23atIGuri6++OILNG3aFJIk4eLFi1ixYgUKCwtV1yFFmz17NoYNG6aI1+nSpKamwtraWnQM0lYyEdFrSpIkWUdHR5YkqcRfT/d0dHRER5VlWZb37Nkj5+TkiI5BFaRBgwZyRESELMuybGxsLCcnJ8uyLMsbNmyQXV1dBSb7x2+//SYbGhrKLVq0kIcPHy4PHz5cbtGihWxoaCj/9ttvouOpuLi4yHZ2dvLKlSvlnTt3yrt27VL7pQS1atWSz5w5I8uyLFetWlVOSUmRZVmWDxw4INevX19kNJXg4GD50aNHGuuPHz+Wg4ODBSR6saKiIrmoqEh0DA2ZmZmys7OzLEmSbGZmJpuamsqSJMldu3aVb968KTqeLMuy3K5dO3n//v0a6/v375fbtWsny7Is79y5U7axsanoaGoMDAzkK1euaKynpKTIBgYGAhJpp7S0NNnV1VXt5yIdHR3Z1dVVTk1NFR1PpU2bNrKurq7ctWtXedOmTfLDhw9FR9Kgo6Mjv/vuu/LGjRsVmY+UjSdgiOi19aJTEM9S8ictVD6hoaFwdXWFvr4+QkNDy3zWzc2tglKVrmrVqrhw4QIsLS1Rv359hISEoH379khNTYW9vT3u378vOiIA4O+//8bKlSuRmJgIWZZhZ2eHUaNGqfoaKIGxsTGOHDkCBwcH0VFK9dlnn+HWrVvYtm0bqlevjtjYWOjq6qJfv37o3Lkzvv/+e9ERoaurixs3bmj0z7lz5w5q1aqliJNET23YsAGLFi1STRNq0qQJJk+ejCFDhghOVszDwwMpKSnYuHGjqoF6QkIChg4dCltbW2zZskVwQqBy5co4e/YsmjVrpraemJgIR0dHPHz4EGlpabCzsxN63bBx48aYNWsWPvnkE7X1jRs3YtasWbhy5YqQXLGxsWjZsiV0dHRK7afzlBJO2T519+5dXL58GbIso3HjxsL60pQlNjYW69atw+bNm5Gfn4+BAwfC29sb7dq1Ex0NABAfH4+goCBs2rQJjx8/hoeHB4YPH4727duLjkbaQGz9h4iI6OWQJEnOzMxU/b6sk09KYG9vLx8+fFiWZVnu0aOHPGnSJFmWZXnZsmVyvXr1REbTOs2bN1edLlGqnJwcuWPHjrKpqamsq6srN2jQQNbX15c7d+4s379/X3Q8WZaLv29KOp1x7tw52czMTECiki1ZskQ2MjKSp0yZIu/evVvetWuXPHnyZNnIyEheunSp6HiyLMtytWrV5OjoaI31kydPyiYmJhUfqAQODg7y0KFD5cePH6vW8vPz5aFDh8oODg6yLMtyVFSUbGVlJSqiLMuyvGDBAtnc3FwOCgqS09LS5LS0NDkwMFA2NzeX58+fLyzX8685pZ24VcprjjZ68uSJHBISIvft21fW19eXW7ZsKX///fdydna26GiyLP+Tz83NTdbX15ft7OzkJUuWKOaUGykTT8AQ0RuhtBMRT6c92Nra8j4vVSh/f3/o6upi3LhxiIiIQJ8+fVBYWIiCggIsXboU48ePFx0RQPHo5MDAQLU+Ft7e3jAxMREdTeXgwYNYsmSJahqOkimxv4qjoyMkScL58+fRokULVYNtoLh/TmpqKlxcXFTTfESztrbGnDlz4OnpqbYeHByM2bNnK6InSGmnss6ePYsuXbqUOO67oh07dgxubm7Q0dFBq1atIEkSYmNjUVhYiL179+Ktt97Cxo0bkZGRgcmTJwvLKcsypk2bhuXLlyM/Px9A8cj0qVOnYubMmcJyXb16FQ0bNoQkSVrRd0wb5efnY+fOnQgKCkJ4eDjefvttZGZm4vr161izZo1iGm4/fvwYK1euxPTp05Gfn69qYL1w4UJOlyINLMAQ0Rvh6bSH5//Je3YyTqdOnbBr1y5FHsel1196ejpiYmLQqFEjtG7dWnQcAEBMTAx69eqFypUrq5p0xsTE4OHDhzh48CDatGkjOiKA4gbWDx48QEFBAYyMjDSabGdlZQlKph3mzJmj+t9JkyahatWqqr1KlSrBysoK77//vmKmnBkaGiI+Pl5jpG5ycjLs7e0V0dDY3d0d2dnZ2LJlC+rWrQsAuHbtGgYPHgwzMzPs3LlTcMJi9+/fx88//6zWOHbQoEEwNjYWHU3D/fv3cfHiRVSuXBmNGzcWNiKbXr3Tp09j3bp12LJlCwwMDODp6YlPP/1U9T2/ZMkSfPfdd8jMzBSaMyYmBkFBQfjll19QpUoVDB06FMOHD8f169cxc+ZM3Lt3D9HR0UIzkvKwAENEb4SwsDDMmDED8+bNU93RjY6Oxtdffw1fX1+YmJhg5MiR+N///ofAwEAhGf/880+8/fbbap8+A0BBQQGOHTuGzp07C8n1vCNHjiAgIAApKSnYvn076tWrh40bN8La2hqdOnUSluvfjM8cN27cK0zy+njnnXdga2uLNWvWqP5eFhQU4NNPP8WVK1fw559/Ck5YLDg4uMz9oUOHVlASTSdPnkRWVhZcXV1Vaxs2bMCsWbOQl5eHfv364YcfflDEm8ng4GB4eHgIHTlcHi1btsSgQYPw1Vdfqa3PnTsXW7duRVxcnKBk//jrr7/g7u6O+Ph4NGjQAJIkIT09Hfb29ti9ezfq168vOqLWuXz5MlJSUtC5c2dUrlxZ9eGJKC/qNfYsJfQd0xatWrXCxYsX0bNnT4wYMQJ9+/aFrq6u2jO3bt2ChYUFioqKhGRcunQp1q1bh6SkJPTu3RuffvopevfuDR0dHdUzly9fRrNmzVBQUCAkIykXCzBE9EZo2bIlVq9erTHG8ujRo/jss89w4cIFHDp0CN7e3khPTxeSURsaYO7YsQNDhgzB4MGDsXHjRiQkJMDGxgYrV67E3r17sW/fPmHZynuFTJIkYU0bAeDhw4cICwvDe++9BwCYPn06Hj9+rNrX1dXFN998o4g3waU16UxISICTk5PQxpzawtXVFe+++y6mTp0KAIiLi0ObNm3g5eWF5s2bY9GiRRg5ciRmz54tNugz8vPzcfPmTY03Nw0bNhSUSN2OHTvg4eGB7t27o2PHjpAkCVFRUQgLC8O2bdvQv39/0RFV/vjjD7UG1kq4cva8hIQEpKenq673PKWUosGdO3fw0UcfISIiApIkITk5GTY2Nhg+fDhMTU2xZMkSIbmefbNdFkmSFPH6rS2++eYbeHt7o169eqKjlKpx48bw9vbGsGHDULt27RKfyc/Px5YtW4R+AEDKxAIMEb0RKleujFOnTqFly5Zq63FxcWjfvj0ePnyIq1evonnz5sLeVOro6CAzMxM1a9ZUW7906RKcnJwU0TPA0dEREyZMgKenJ4yNjXH+/HnY2Njg3LlzcHFxQUZGhuiIihcQEIC9e/diz549AIp7RbRo0QKVK1cGUDyBZMqUKZgwYYLImAAACwsLbNy4ET179lRbP3DgADw9PYUe/87NzUW1atVUvy/L0+dEqFOnDvbs2QMnJycAwIwZMxAZGYmoqCgAwK+//opZs2YhISFBWMankpOT4e3tjWPHjqmtPz1poKQ3kadPn4a/vz8uXryoKm5MmjQJjo6OoqOhoKAAhoaGOHfunMZrjpJcuXIF/fv3R1xcnNoV3aenSpTy5+3p6YmbN29i7dq1aN68uep15+DBg5gwYQIuXLggOiIRUbnpvfgRIiLt17ZtW0yePBkbNmxQFThu3bqFKVOmqMYaJicnCzkWPmDAAADFP/R6eXmpXUUoLCxEbGysxskdUZKSkkq8ClWtWjVkZ2dXfCAttGnTJo3iyubNm2FjYwMA+Pnnn7FixQpFFGCejtZcvHgx3n77bdVJg8mTJ+Pjjz8Wms3MzEx1YszU1LTEqwhKKBzcvXsXFhYWqq8jIyPh4uKi+rpdu3b466+/RETT4OXlBT09Pezduxd16tQRer3jRdq2bYuff/5ZdIwS6enpwdLSUjEFjNKMHz8e1tbWOHToEGxsbBAdHY07d+5g0qRJWLx4seh4KgcPHsSBAwc0Xp8bN278wua3r1L16tWRnJwMc3NzeHt7Y9myZYrsnaON/v77b4SGhpZ4Mmvp0qWCUml68OBBiRmVNHaclIcFGCJ6IwQGBsLd3R3169dXu49vY2OD3bt3Ayhu8Ofr61vh2Z5Ok5FlGcbGxqqTEEBxA8y33noLI0aMqPBcJalTpw4uX76sMWkmKipKVUBQgsLCQqxfvx5hYWElXqUIDw8XlKz4RFOTJk1UXxsaGqodZW/fvj3GjBkjIpqGxYsXQ5IkeHp6qu6x6+vrY/To0ViwYIHQbOHh4ahevToAICIiQmiWslhYWCA1NRUNGjRAfn4+zpw5o2p6CwD37t3TaBosyrlz53D69GmNK2dKVFhYiJ07d6qmczVv3hzu7u4aPbRE+frrrzF9+nT8/PPPqr+nSnP8+HGEh4ejZs2a0NHRgY6ODjp16oRvv/0W48aNw9mzZ0VHBADk5eXByMhIY/327dtCeyfl5+cjJycH5ubmCA4OxsKFC1mAeQnCwsLg5uYGa2trJCUloWXLlkhLS4Msy4pp/H7r1i14eXlh//79Je4rvfhKYinjVYqI6BVr2rQpLl68iAMHDqhNe+jRo4fqzW+/fv2EZFu3bh0AwMrKCj4+PqhSpYqQHOUxcuRIjB8/HkFBQZAkCdevX8fx48fh4+MjdBzo88aPH4/169ejT58+aNmypaI+yc/JyVF7k3jr1i21/aKiIrWeMCJVqlQJy5Ytw7fffouUlBTIsgxbW9sS3wxVtC5dupT4e6VxcXHBtGnTsHDhQuzatQtGRkZ45513VPuxsbFo1KiRwIT/sLOzw+3bt0XHeKH4+Hi4u7sjIyMDTZs2BVBc2KxZsyZCQ0Nhb28vOGFxU/DLly+jbt26sLS01Ph3/cyZM4KS/aOwsFA18apGjRq4fv06mjZtCktLSyQlJQlO94/OnTtjw4YN+OabbwAUnxYtKirCokWL4OzsLCxXhw4d0K9fP7Rt2xayLGPcuHFqH6A8KygoqILTaa/p06dj0qRJ8PPzg7GxMXbs2IFatWph8ODBaqcHRfryyy+RnZ2NEydOwNnZGTt37kRmZibmzp0rrCcRaQ8WYIjojSFJElxcXBTzAv68WbNmiY7wQlOmTEFOTg6cnZ3x6NEjdO7cGQYGBvDx8cEXX3whOp7KL7/8gm3btqF3796io2ioX78+4uPjVW8cnxcbG6u4CSlGRkYwMzODJEmKKL4Axf8/lZfI4+Bz587FgAED0KVLF1StWhXBwcFq45yDgoI0euyIsnDhQkyZMgXz58+Hvb29xskckb10nvXpp5+iRYsWiImJgZmZGYDiq15eXl747LPPcPz4ccEJxRX0/42WLVsiNjYWNjY2+N///ofvvvsOlSpVwurVqxV1onHRokV49913ERMTg/z8fEyZMgUXLlxAVlYWjh49KizXzz//DH9/f6SkpECSJOTk5ChiBLq2u3jxIrZs2QKg+Drfw4cPUbVqVfj5+cHd3R2jR48WnLD4BObu3bvRrl076OjowNLSEj169EC1atXw7bffok+fPqIjkoKxCS8RvbaWL1+Ozz77DIaGhi8cUayEscSZmZnw8fFRXZt5/p9nJR1pffDgARISElBUVAQ7OzvVp6hKUbduXRw+fFjtqo9SjB8/HocOHcLp06c1Jh09fPgQTk5O6N69O5YtWyYo4T+KiopUn+jdv38fQHHT4EmTJmHGjBnlngLyKujo6Kg1Di2N6B4wT+Xk5KBq1aoa41SzsrJQtWpVtaKMKE//PJ8/MaaEXjrPqly5MmJiYtCiRQu19fj4eLRr1w4PHz4UlEy7HDhwAHl5eRgwYACuXLmC9957D4mJiTA3N8fWrVvRtWtX0RFVMjIy8NNPP+H06dMoKipCmzZtMGbMGNSpU0d0NADFU/hiYmJgbm4uOorWq127NsLDw2FnZ4cWLVrg22+/hZubG86fP4+OHTuqXotEqlatGmJjY2FlZQUrKyts2rQJHTt2RGpqKlq0aMEJgVQmFmCI6LX17A9EZY0oFj2W+ClXV1ekp6fjiy++KLEBpru7u6Bk2mfJkiW4cuUKfvzxR0VdPwKKC20ODg6oVKkSvvjiCzRp0gSSJCExMRE//vgjCgoKcPbsWbXGraJMnz4dgYGBmDNnDjp27AhZlnH06FHMnj0bI0aMwLx584Rl+zfNNy0tLV9hktdHZGRkmftKuerl4OCApUuXahQIwsPDMX78eMTFxQlKpv2ysrJUp92IROjXrx/69OmDESNGYMqUKdi5cye8vLwQEhICMzMzHDp0SHREtGvXDnPnzkWvXr3Qr18/1cmX5cuXY/v27UhJSREdkRSMBRgiIoUwNjbGkSNH4ODgIDpKqR49eoQffvgBERERJTa3VUJfAwDo378/IiIiUL16dbRo0ULjKkVISIigZMVSU1MxevRo/PHHH2qjX3v06IGVK1cq5vh/3bp1sWrVKri5uamt7969G59//jmuXbsmKBm9aZ4dNR4VFYUpU6Zg9uzZeOuttwAAJ06cgJ+fHxYsWKDIq4f032RnZyM6OrrE1x1PT09BqdSFhYWV2vidPWDK78qVK7h//z5atWqFBw8ewMfHB1FRUbC1tYW/v78iCuqbNm3CkydP4OXlhbNnz6JXr164c+cOKlWqhPXr18PDw0N0RFIwFmCIiBTCzs4OmzZtgqOjo+gopRo0aBD++OMPfPDBB7CwsND4lFQpfWyGDRtW5v7TxseiZWVl4fLlywAAW1tbxU1LMTQ0RGxsrMZVrqSkJDg4OCjqqselS5dw+PDhEt/8KKlBtNIdOXIEAQEBuHLlCn799VfUq1cPGzduhLW1NTp16iQs19MrZ089W7h8/mulXJVSuv79+5d40kWSJBgaGsLW1haDBg0qtV9VRdmzZw8GDx6MvLw8GBsbq2WWJAlZWVkC0xWbM2cO/Pz84OTkVOIJ1p07dwpKRhXhwYMHSExMRMOGDVGjRg3RcUjhWIAhotfWxIkTy/3s0qVLX2GS8jl48CCWLFmCgIAAjTHPSmFiYoJ9+/ahY8eOoqNQBfjf//6H//3vfxo9lMaOHYtTp07hxIkTgpKpW7NmDUaPHo0aNWqgdu3aGm/QlHIyS+l27NiBIUOGYPDgwdi4cSMSEhJgY2ODlStXYu/evdi3b5+wbC+6HvUspVyVUjovLy/s2rULpqamqkk+Z8+eRXZ2Nnr27Inz588jLS0NYWFhQv/Nb9KkCXr37o358+crpgn48+rUqYPvvvsOQ4YMER2FiBSOBRgiem2VdzylJEkIDw9/xWlK9vxd+7y8PBQUFMDIyEjj2owSPuWzs7PDL7/8InSqTHnFxsbi0qVLkCQJTZo0UcRoWm0TGRmJPn36oGHDhujQoQMkScKxY8fw119/Yd++fWrjlEWytLTE559/jqlTp4qOotUcHR0xYcIEeHp6wtjYGOfPn4eNjQ3OnTsHFxcXZGRkiI5IL9G0adOQm5uLH3/8UdWAuaioCOPHj4exsTHmzZuHUaNG4cKFC4iKihKWs0qVKoiLi1PM1cySmJubIzo6WjEj5bXNv+k7JOpnIW37UI+UiwUYIiKBgoODy/3s0KFDX2GS8vn999+xfPlyrFq1ShH3sEsSHR2N4cOHIyEhQe1aQosWLRAYGIh27doJTqhdrl+/jhUrViAxMRGyLMPOzg6ff/456tatKzqaSrVq1XDu3DlFv0HTBkZGRkhISICVlZVaAebKlSuws7NT5Ihde3t77Nu3Dw0aNBAdRU1pb9aevd7j7u4u9NphzZo1cfToUY0rhpcuXcLbb7+N27dvIy4uDu+88w6ys7PFhAQwYMAADBw4EB999JGwDC8ydepUVK1aFb6+vqKjaCVt+FlIGz7UI+2gJzoAEdGrdOXKFVhbWyt2ooMSiir/hpOTEx49egQbGxtFntJJSEhAt27d0Lx5c/z8889o3rw5ZFnGxYsX4e/vj27duuHEiROws7MTmlPpnv2+qVu3rtBpR+Xx4Ycf4uDBgxg1apToKFqtTp06uHz5ssYVyKioKMUWt9LS0vDkyRPRMTScPXsWZ86cQWFhIZo2bQpZlpGcnAxdXV00a9YMK1euxKRJkxAVFSXs36OCggIkJiZqFGASExNVfXQMDQ2FvH6Ghoaqft+nTx9MnjwZCQkJsLe313jdeb5JuAiPHj3C6tWrcejQIbRq1UojI09ElE0bfhaKiIgQHYFeEyzAENFrrXHjxrhx4wZq1aoFAPDw8MDy5csVMeL3ec9O+XiWJEkwMDBApUqVKjiRpo8//hjXrl3D/PnzS2zCK9qsWbPQo0cP7NixQy2bo6MjPv74YwwYMACzZ8/Gtm3bBKZUPm36vgGKGxj7+vrixIkTJb5BGzdunKBk2mXkyJEYP348goKCIEkSrl+/juPHj8PHx4eNjP+lp6db1q1bh2rVqgEo/jd++PDh6NSpE0aMGIFBgwZhwoQJOHDggJCMQ4YMwfDhw/HVV1+hXbt2kCQJ0dHRmD9/vmqyUGRkJFq0aFHh2fr166ex5ufnp7GmlKbLsbGxqgmG8fHxantKe53UBikpKVi3bh1SUlKwbNky1KpVC/v370eDBg2E/H0szeXLl5GSkoLOnTujcuXKkGWZf970QryCRESvNR0dHWRkZKjeSD57rF5pnp/y8bz69evDy8sLs2bNUt3Xr2hGRkY4fvw4WrduLeS//yI1a9bE77//DicnpxL3T506hd69e+PWrVsVnEy7aNP3DQBYW1uXuidJEq5cuVKBabTbjBkz4O/vr7puZGBgAB8fH3zzzTeCk5Wsd+/eCAwMRJ06dURHUVOvXj388ccfGqdbLly4gJ49e+LatWs4c+YMevbsidu3bwvJWFhYiAULFuDHH39EZmYmAMDCwgJjx47F1KlToauri/T0dOjo6KB+/fpCMtKbJzIyEq6urujYsSP+/PNPXLx4ETY2Nvjuu+8QHR2N7du3i46IO3fu4KOPPkJERAQkSUJycjJsbGwwfPhwmJqaYsmSJaIjkoLxBAwRkUKsX78eM2bMgJeXF9q3bw9ZlnHq1CkEBwfj66+/xq1bt7B48WIYGBjgq6++EpKxWbNmiho9/Lx79+6VeUqjdu3auHfvXgUmooqQmpoqOsJrY968eZgxYwYSEhJQVFQEOzs7VK1aVXSsUomczFSWnJwc3Lx5U6MAc+vWLdVpR1NTU+Tn54uIBwDQ1dXFjBkzMGPGDFWmp6d1nmrYsKGIaPQGmzZtGubOnYuJEyfC2NhYte7s7Ixly5YJTPaPCRMmQF9fH+np6WjevLlq3cPDAxMmTGABhsrEAgwRvdYkSdI4VaLU46HBwcFYsmSJWqNBNzc32NvbIyAgAGFhYWjYsCHmzZsnrACzYMECTJo0CfPmzSvxqsfzP7xXNCsrK0RHR5fakPPkyZOKbR6sJNr0ffOs27dvQ5IkmJubi46i1YyMjEo9RaYUly5dwuHDh3Hz5k0UFRWp7SnhupS7uzu8vb2xZMkStes9Pj4+qus10dHRGv1XRBH9b3dJwsPD8cUXX+DEiRMa+XJycvD222/jp59+QufOnQUlLG4QXB4hISGvOMnrIy4uDps3b9ZYr1mzJu7cuSMgkaaDBw/iwIEDGifDGjdujKtXrwpKRdqCBRgieq3JsgwvLy8YGBgAKG6UN2rUKFSpUkXtOSX8cHT8+HGsWrVKY93R0RHHjx8HAHTq1Anp6ekVHU3FxcUFANCtWze19af3nkXfxffw8MDEiRPRtGlTtGzZUm0vLi4OPj4+WtHsTzRt+r7Jzs7GjBkzsHXrVty9exdA8UjTgQMHYu7cuTA1NRUbkF66NWvWYPTo0ahRowZq166tVhyUJEkRBZiAgABMmDABAwcOREFBAQBAT08PQ4cOhb+/P4DiE4Vr164VltHR0bHEwuqzk5q8vLzKPf3lZfv+++8xYsSIEotDJiYmGDlyJPz9/YUWYExMTIT9t19XpqamuHHjhsbV0rNnz6JevXqCUqnLy8uDkZGRxvrt27dVr5tEpWEPGCJ6rQ0bNqxcz61bt+4VJ3mxJk2aYMCAAViwYIHa+rRp07Bz504kJSUhJiYG7u7uuHbtmpCMkZGRZe536dKlgpKU7NGjR+jWrRtOnjyJHj16qI4GJyQk4NChQ2jfvj3Cw8NhaGgoNKfSacv3TVZWFjp06IBr165h8ODBalOvNm/ejAYNGuDYsWMwMzMTmpNeLktLS3z++eeYOnWq6CgvdP/+fVy5cgWyLKNRo0aKus41ffp0/PTTT7C3t1dde42JiUFsbCy8vLyQkJCAsLAwhISEwN3dvcLzWVpaYv/+/WpXPJ6VmJiInj17Cv1Qgl6+KVOm4Pjx4/j111/RpEkTnDlzBpmZmfD09ISnpydmzZolOiL69OmDNm3a4JtvvoGxsTFiY2NhaWmJgQMHoqioSBF9aki5WIAhIlKI0NBQfPjhh2jWrJnqyPqpU6eQmJiI7du347333sNPP/2E5ORkjrQsQ35+Pvz9/bFlyxZcunQJQHFxa+DAgZgwYQI/nXqNfPnllwgLC8OhQ4c0ev9kZGSgZ8+e6Natm+rEAb0eqlWrhnPnzim2KfSzlDwlZcSIEWjYsCF8fX3V1ufOnYurV69izZo1mDVrFn777TfExMRUeD5DQ0PEx8fD1ta2xP3Lly/D3t5e0X3J6N978uQJvLy88Msvv0CWZejp6aGwsBCDBg3C+vXroaurKzoiEhIS8O6776Jt27YIDw+Hm5sbLly4gKysLBw9ehSNGjUSHZEUjAUYIiIFSUtLw6pVq3Dp0iXIsoxmzZph5MiRsLKyEpYpNjYWLVu2hI6ODmJjY8t8tlWrVhWUiqi4509AQAB69epV4v7+/fsxatQopKWlVWwwLfXnn3/i7bffhp6e+g31goICHDt2TOhVj2cNHz4c7dq1w6hRo0RHKZU2TEkxMTHB6dOnNQocly9fRtu2bZGTk4PExES0a9dOSPPyRo0aYfHixejfv3+J+yEhIfDx8eGUs9dUSkoKzp49i6KiIjg6OqJx48aiI6nJyMjAypUrcebMGRQVFaFNmzYYM2aM4iaykfKwAENERGV6diTx01HZJb10KKEHDL1ZDAwMkJKSUuqI3L///hu2traqkcpUNl1dXdy4cUM1fvypO3fuoFatWor5/v7222+xdOlS9OnTp8Rm4OPGjROU7B+enp64efMm1q5di+bNm6vGuB88eBATJkzAhQsXREeEhYUFFi1aBE9PT7X1DRs2YPLkycjMzERCQgI6d+4sZFT22LFjcfjwYZw6dUrj2ujDhw/Rvn17ODs7Y/ny5RWejYjo/4pNeImIBNKG0yWpqamoWbOm6vdESlGjRg2kpaWVWoBJTU3lRKR/obTrMXfu3NFowCzS6tWrUbVqVURGRmr0pZIkSREFGG2YkjJ27FiMGjUKp0+fVpvUtHbtWtWkvQMHDsDR0VFIvq+//hohISFo0qQJvvjiCzRt2hSSJOHixYtYsWIFCgsLMWPGDCHZ6NXIy8vDwoULERISgrS0NEiSBGtra3zwwQfw8fEpsfGtCMnJydi9e7cqo42NDfr166fROJioJDwBQ0QkkLadLtGWKwr0Zhg+fDguX76MP/74A5UqVVLbe/z4MXr16oVGjRohMDBQUELt8HSU7u7du+Hi4qLWJ6mwsBCxsbFo2rQp9u/fLyqi1jE2NsaZM2fQuHFjGBsbq07AnDp1Ci4uLooZp7tp0yb8+OOPSEpKAgA0bdoUY8eOxaBBgwAUnzR5OhVJhKtXr2L06NE4cOCA6rVRkiT06tULK1euFHo9l16u/Px8vP3224iPj4erqyuaNWumaqq+f/9+tGnTBn/++afGibeK9u2332LmzJkoKipCrVq1IMsybt26BV1dXcyfPx8+Pj5C85HysQBDRCTQ1atX0bBhQ0iS9MJPRS0tLSsoVemUfEUhNze3xHGl9Pr6+++/4eTkBAMDA4wZMwbNmjUDUNwgceXKlXj8+DFiYmLQoEEDwUmV7enUq+DgYHz00UeoXLmyaq9SpUqwsrLCiBEjUKNGDVERS3T79m1IkqTIU06ckvJy3b17F5cvX4Ysy2jcuDEnm72Gli1bhm+//RaRkZFo2rSp2l5iYiLeffddzJgxA2PHjhWUEIiIiED37t3h6+uL8ePHq/4eZmVl4fvvv8f8+fMRHh7OD6OoTCzAEBFRueno6CAzM1N1JempS5cuwcnJCbm5uYKSqReHunbtipCQEJiamgrLQxUjNTUVn3/+OQ4ePKj2CXmPHj3w448/ljpBhTTNmTMHPj4+irpu9Lzs7GzMmDEDW7duxd27dwEAZmZmGDhwIObOnauY73lOSSH6d7p06YKPPvoIY8aMKXH/hx9+wPbt2zWuHVYkDw8PmJqaIiAgoMT9zz77DPfu3cOWLVsqOBlpExZgiIgECg0NLfezbm5urzBJ2bThioKJiQlOnDiB5s2bl1oootfX3bt3kZycDACwtbVF9erVBSeily0rKwsdOnTAtWvXMHjwYDRv3lx1RWHz5s1o0KABjh07ppjTERkZGfjpp59w+vRpRU5JKSwshL+/P7Zt24b09HTk5+er7WdlZQlKRm+imjVr4vDhw2jRokWJ+/Hx8XB2dsatW7cqONk/rK2tsXHjRnTq1KnE/SNHjsDT05P98qhMbMJLRCRQv379yvWc6B4wJiYmAIqbdBobG2tcUXjrrbcwYsQIUfEAAN27d4ezszOaN28OAOjfv79GX5CnwsPDKzIaVQAzMzO0b99edAytlpmZCR8fH4SFheHmzZsa/ahE96Hy8/NDpUqVkJKSAgsLC429nj17ws/PD/7+/oISqqtduzbmzJmjtvbXX3/B29sbQUFBglL9Y86cOVi7di0mTpwIX19fzJgxA2lpadi1axdmzpwpOh69YbKzs8u8Tmhubo6cnJwKTKQpMzOzzL5D1tbWyMjIqLhApJV4AoaIiMpNyVcUHj58iODgYKSkpGDJkiUYMWJEqRMTlPIGjUhJXF1dkZ6eji+++AJ16tTRmIjk7u4uKFkxKysrBAQEoFevXiXu79+/H6NGjUJaWlrFBvsXzp8/jzZt2ggvZgFAo0aNsHz5cvTp0wfGxsY4d+6cau3EiRPYvHmz6Ij0BtHV1UVGRkapJ1czMzNRt25dod87zw5OKIkSMpLy8QQMEZFA1atXR3JyMszNzeHt7Y1ly5bB2NhYdKxSzZo1S3SEUlWuXBmjRo0CAMTExGDhwoWK6QdBpA2ioqJw5MgRODg4iI5Sohs3bpR6PQEAWrZsyU+f/4WMjAzY29sDAKpWrao6XfDee+/B19dXZDR6A8myjG7dumlMWXyqoKCgghOVbO3atahatWqJe/fu3avgNKSNWIAhIhIoPz8fOTk5MDc3R3BwMBYuXKjoAoy2iIiIUP3+2casRFS6Bg0aaFw7UpIaNWogLS0N9evXL3E/NTVVkRORlKp+/fq4ceMGGjZsCFtbWxw8eBBt2rTBqVOn1Pp8EVWE8nzA8/7771dAktI1bNgQa9aseeEzRGXhFSQiIoF69OiBzMxMtG3bFsHBwfDw8FDrr/IsJfQM0CYbNmzAokWLVI1ZmzRpgsmTJ2PIkCGCkxEp08GDB7FkyRIEBASU2edAlOHDh+Py5cv4448/NPo7PX78GL169UKjRo0QGBgoKOGLKekK0rRp01CtWjV89dVX2L59Oz7++GNYWVkhPT0dEyZMwIIFC0RHJCJ67bAAQ0QkUGZmJvz9/ZGSkoKQkBD06tWr1E8ed+7cWcHptNfSpUvh6+uLL774Ah07doQsyzh69ChWrFiBuXPnYsKECaIjEimCmZmZ2umwvLw8FBQUwMjICPr6+mrPip6K8/fff8PJyQkGBgYYM2YMmjVrBqB45PPKlSvx+PFjxMTEoEGDBsIyPp0YV5rs7GxERkYqogDzvBMnTuDYsWOwtbUVOnWPiOh1xgIMEZFCWFtbIyYmhkfoXwJra2vMmTMHnp6eauvBwcGYPXs2R0QS/X/BwcHlfnbo0KGvMEn5pKam4vPPP8fBgwfVrhf26NEDP/74I2xtbYXmGzZsWLmeW7du3StOQkRESsQCDBERlWn58uXlfnbcuHGvMEn5GRoaIj4+XuPNWHJyMuzt7fHo0SNByYjoZbh7967qeqGtrS2qV68uOJH2uXPnjqrg/9dff2HNmjV4+PAh3Nzc8M477whOR0T0emIBhohIQcLCwhAWFoabN2+iqKhIbU9UDxhra+tyPSdJEq5cufKK05RPy5YtMWjQIHz11Vdq63PnzsXWrVsRFxcnKBmRcuXm5pa4LkkSDAwMNPqukHaKi4tD37598ddff6Fx48b45Zdf4OLigry8POjo6CAvLw/bt29Hv379REclInrtsABDRKQQc+bMgZ+fH5ycnFCnTh2NqT3sAVN+O3bsgIeHB7p3746OHTtCkiRERUUhLCwM27ZtQ//+/UVHJFIcHR2dMqeF1a9fH15eXpg1axZ0dHQqMBm9TK6urtDT08PUqVPx888/Y+/evejZsyfWrl0LABg7dixOnz6NEydOCE5Kb7pHjx7B0NBQdAyil4oFGCIihahTpw6+++47Tul5SU6fPg1/f39cvHgRsizDzs4OkyZNgqOjo+hoRIq0YcMGzJgxA15eXmjfvj1kWcapU6cQHByMr7/+Grdu3cLixYsxefJkjdNlpD1q1KiB8PBwtGrVCvfv30e1atUQHR0NJycnAEBiYiLeeustZGdniw1Kb6SioiLMmzcPq1atQmZmJi5dugQbGxv4+vrCysoKw4cPF5KrtBOCJalWrdorTELajgUYIiKFMDc3R3R0NBo1aiQ6Spn+/vtvhIaGIj09Hfn5+Wp7S5cuFZSKiP6rbt26YeTIkfjoo4/U1rdt24aAgACEhYVh48aNmDdvHhITEwWlpP9KR0cHGRkZqFWrFgDA2NgY58+fh42NDYDi6Xx169ZV5KQmev35+fkhODgYfn5+GDFiBOLj42FjY4Nt27bB398fx48fF5LrRScEAUCWZUiSxO8dKpOe6ABERFTs008/xebNm+Hr6ys6SqnCwsLg5uYGa2trJCUloWXLlkhLS4Msy2jTpo3oeET0Hxw/fhyrVq3SWHd0dFS96enUqRPS09MrOhq9ZM+/kXzRG0uiirJhwwasXr0a3bp1w6hRo1TrrVq1Elr4jYiIEPbfptcLCzBERArx6NEjrF69GocOHUKrVq2gr6+vtq+E0yXTp0/HpEmT4OfnB2NjY+zYsQO1atXC4MGD4eLiIjoeEf0H9evXR2BgIBYsWKC2HhgYiAYNGgAonpxjZmYmIh69RF5eXjAwMABQ/NozatQoVKlSBQDw+PFjkdHoDXft2rUSx8kXFRXhyZMnAhIV69Kli7D/Nr1eWIAhIlKI2NhYODg4AADi4+PV9pTy6eTFixexZcsWAICenh4ePnyIqlWrws/PD+7u7hg9erTghET0f7V48WJ8+OGH+P3339GuXTtIkoRTp04hMTER27dvBwCcOnUKHh4egpPSfzF06FC1rz/55BONZzw9PSsqDpGaFi1a4MiRI7C0tFRb//XXXxXXw+3BgwclXsdu1aqVoESkDViAISJSCG043lqlShXVp6N169ZFSkoKWrRoAQC4ffu2yGhE9B+5ubkhKSkJq1atwqVLlyDLMlxdXbFr1y5YWVkBAIusr4F169aJjkBUqlmzZmHIkCG4du0aioqKEBISgqSkJGzYsAF79+4VHQ8AcOvWLQwbNgy///57ifvsAUNlYQGGiIjK7a233sLRo0dhZ2eHPn36YNKkSYiLi0NISAjeeust0fE0XL58GSkpKejcuTMqV66sapBHRCWzsrLSuIJERFRR+vbti61bt2L+/PmQJAkzZ85EmzZtsGfPHvTo0UN0PADAl19+ibt37+LEiRNwdnbGzp07kZmZiblz52LJkiWi45HCcQoSEZFgAwYMKNdzISEhrzjJi125cgX3799Hq1at8ODBA/j4+CAqKgq2trbw9/fXODIsyp07d+Dh4YHw8HBIkoTk5GTY2Nhg+PDhMDU15Q9IRP9fbGwsWrZsCR0dHcTGxpb5LI/VE9GrVFBQgHnz5sHb21vVd0qJ6tSpg927d6N9+/aoVq0aYmJi0KRJE4SGhuK7775DVFSU6IikYDwBQ0QkmImJiegI5fZ0TCkAGBkZYeXKlQLTlG7ChAnQ09NDeno6mjdvrlr38PDAhAkTWIAh+v8cHBxUI4kdHBwgSRJK+myOo1WJ6FXT09PDokWLNPoUKU1eXp5qjHv16tVx69YtNGnSBPb29jhz5ozgdKR0LMAQEQmmTffxhw0bhk8++QRdu3ZV9FWegwcP4sCBA6hfv77aeuPGjXH16lVBqYiUJzU1FTVr1lT9nohIpO7du+Pw4cPw8vISHaVUTZs2RVJSEqysrODg4ICAgABYWVlh1apVqFOnjuh4pHAswBARUbnduXMHffr0gbm5OQYOHIghQ4aoJjcpSV5eHoyMjDTWb9++rRq9SkRQuzaolCuERPTmcnV1xfTp0xEfH4+2bduqxqM/5ebmJijZP7788kvcuHEDQHHT4F69emHTpk2oVKkS1q9fLzYcKR57wBAR0b+SnZ2Nbdu2YfPmzThy5AiaNm2KTz75BIMGDVJNShGtT58+aNOmDb755hsYGxsjNjYWlpaWGDhwIIqKilQjdYnedKGhoeV+VglvfIjo9aajo1PqnlKvQj548ACJiYlo2LAhatSoIToOKRwLMERE9H/2999/Y8uWLQgKCkJycjIKCgpERwIAJCQk4N1330Xbtm0RHh4ONzc3XLhwAVlZWTh69CgaNWokOiKRIpT1ZudZSn3jQ0RU0SIjI9GlSxfRMUhLle9Vl4iI6DlPnjxBTEwMTp48ibS0NFhYWIiOpGJnZ4fY2Fi0b98ePXr0QF5eHgYMGICzZ8+y+EL0jKKionL9YvGFiKhYjx490LBhQ0ybNg3x8fGi45CW4QkYIiL6VyIiIrB582bs2LEDhYWFGDBgAAYPHoyuXbuW+9N0IlKG6tWrIzk5Gebm5vD29sayZctgbGwsOhYRvaH8/PzK3J85c2YFJSnd7du38csvv2DLli04fvw4WrZsqbqK/Xzzf6LnsQBDRETlVr9+fdy5cwe9evXC4MGD0bdvXxgaGoqOpWH//v2oWrUqOnXqBABYsWIF1qxZAzs7O6xYsQJmZmaCExIpQ9WqVREbGwsbGxvo6uoiIyNDNRWJiKiiOTo6qn395MkTpKamQk9PD40aNVLcmOfU1FRs3rwZW7ZsQWJiIjp37ozw8HDRsUjBWIAhIqJyW716NT788EPFFzDs7e2xcOFC9O7dG3FxcXBycsKkSZMQHh6O5s2ba9Xob6JXqUePHsjMzETbtm0RHBwMDw8PVK5cucRng4KCKjgdERGQm5sLLy8v9O/fH0OGDBEdR0NhYSF+//13+Pr6IjY2llc2qUwswBAR0WunatWqiI+Ph5WVFWbPno34+Hhs374dZ86cQe/evZGRkSE6IpEiZGZmwt/fHykpKQgJCUGvXr1KHdW+c+fOCk5HRFQsPj4e7733HtLS0kRHUTl69Cg2bdqE7du349GjR3Bzc8PgwYPh6uoqOhopmJ7oAEREpGwDBgzA+vXrUa1aNQwYMKDMZ0NCQiooVdkqVaqEBw8eAAAOHToET09PAMX9LnJzc0VGI1IUCwsLLFiwAABgbW2NjRs3wtzcXHAqIiJ12dnZyMnJER0DAPDVV19hy5YtuH79Orp3747vv/8e/fr1g5GRkehopAVYgCEiojKZmJhAkiTV77VBp06dMHHiRHTs2BHR0dHYunUrAODSpUtskEdUitTUVNERiOgNt3z5crWvZVnGjRs3sHHjRri4uAhKpe7w4cPw8fGBh4cHatSoIToOaRleQSIionKRZRnp6emoWbOm4j/lSU9Px+eff46//voL48aNw/DhwwEAEyZMQGFhocYPeERULCwsDGFhYbh58yaKiorU9tgDhoheNWtra7WvdXR0ULNmTXTt2hXTp0/nlDbSeizAEBFRuRQVFcHQ0BAXLlxA48aNRcchopdszpw58PPzg5OTE+rUqaM6+fYUe8AQ0ZsqNDQUrq6u0NfXR2hoaJnPurm5VVAq0kYswBARUbm1aNECgYGBeOutt0RHKbeHDx/iyZMnamvVqlUTlIZIuerUqYPvvvtOkVNGiOjN4O3tjWXLlmmcdMnLy8PYsWOFncTT0dFBRkYGatWqBR0dnVKfkySJU5CoTCzAEBFRuf32229YsGABfvrpJ7Rs2VJ0nFLl5eVh6tSp2LZtG+7cuaOxzx+OiDSZm5sjOjoajRo1Eh2FiN5Qurq6uHHjBmrVqqW2fvv2bdSuXRsFBQWCkhG9HKWX74iIiJ7zySefIDo6Gq1bt0blypVRvXp1tV9KMWXKFISHh2PlypUwMDDA2rVrMWfOHNStWxcbNmwQHY9IkT799FNs3rxZdAwiegPl5uYiJycHsizj3r17yM3NVf26e/cu9u3bp1GUEeHJkydwdnbGpUuXREchLcUpSEREVG7ff/+96AjlsmfPHmzYsAHvvvsuvL298c4778DW1haWlpbYtGkTBg8eLDoikeI8evQIq1evxqFDh9CqVSvo6+ur7S9dulRQMiJ63ZmamkKSJEiShCZNmmjsS5KEOXPmCEimTl9fH/Hx8Ro9sojKiwUYIiIqlydPnuDw4cPw9fWFjY2N6DhlysrKUk1SqFatGrKysgAUj6cePXq0yGhEihUbGwsHBwcAQHx8vNoe32wQ0asUEREBWZbRtWtX7NixQ+1UbaVKlWBpaYm6desKTPgPT09PBAYGYsGCBaKjkBZiAYaIiMpFX18fO3fuhK+vr+goL2RjY4O0tDRYWlrCzs4O27ZtQ/v27bFnzx6YmpqKjkekSBEREaIjENEbqkuXLigoKICnpyecnJzQoEED0ZFKlZ+fj7Vr1+KPP/6Ak5MTqlSporbP04JUFjbhJSKichs2bBjs7e0xceJE0VHK5O/vD11dXYwbNw4RERHo06cPCgsLUVBQgKVLl2L8+PGiIxIREdFzjI2NERcXBysrK9FRSuXs7FzqniRJCA8Pr8A0pG1YgCEionKbN28eFi9ejG7duqFt27Yan/qMGzdOULKypaenIyYmBo0aNULr1q1FxyFSlAEDBpTruZCQkFechIjedP369UO/fv3g5eUlOkqJCgsLERUVBXt7e0UNHyDtwQIMERGV29O+KiWRJAlXrlypwDRE9DIMGzasXM+tW7fuFSchojddQEAAZs+ejcGDB5f4QY+bm5ugZP8wNDTExYsXy/yZiKg0LMAQEdFro3fv3tiyZQtMTEwAFJ/YGTNmjKrvy507d/DOO+8gISFBYEoiIiIqiY6OTql7kiShsLCwAtOUrF27dliwYAG6desmOgppodL/hhMREZVTXFwcvvzyS9ExcODAATx+/Fj19cKFC1UTkACgoKAASUlJIqIRERHRCxQVFZX6SwnFF6D4wx0fHx/s3bsXN27cQG5urtovorJwChIREf2f5ObmYsuWLQgMDERMTAxatWolOhKeP9TJQ55ERET0Mrm4uAAovg4lSZJqXZZlxZzSIeViAYaIiP6VyMhIBAYGYseOHXj06BEmT56MzZs3w9bWVnQ0IiIi0nJ5eXmIjIxEeno68vPz1faU0Ow/IiJCdATSYizAEBHRC924cQPr1q1DUFAQ8vLy8PHHHyMyMhIdOnSAp6enYoovkiSpfRr1dI2IiIiU7+zZs+jduzcePHiAvLw8VK9eHbdv34aRkRFq1aqliAJMly5dSt07d+5cxQUhrcQCDBERvZC1tTU+/PBDrFixAj169CizSZ5IsizDy8sLBgYGAIBHjx5h1KhRqikKz/aHISIiImWZMGEC+vbti59++gmmpqY4ceIE9PX18cknn2D8+PGi45UoJycHmzZtwtq1a3H+/HleQaIysQBDREQvZGlpiaioKDRs2BCWlpZo1qyZ6EglGjp0qNrXn3zyicYznp6eFRWHiIiI/oVz584hICAAurq60NXVxePHj2FjY4PvvvsOQ4cOxYABA0RHVAkPD0dQUBBCQkJgaWmJ999/H4GBgaJjkcKxAENERC+UlJSEo0ePIjAwEO3atUOTJk1UxQ0lXfFZt26d6AhERET0f6Svr6/6ucLCwgLp6elo3rw5TExMkJ6eLjgd8Pfff2P9+vWqK9kfffQRnjx5gh07dsDOzk50PNICyjxDTkREitOxY0cEBQXhxo0bGDVqFLZt24bCwkJ8/vnnWLNmDW7duiU6IhEREWkxR0dHxMTEAACcnZ0xc+ZMbNq0CV9++SXs7e2FZuvduzfs7OyQkJCAH374AdevX8cPP/wgNBNpH0nmjE4iIvo/unjxIgIDA7Fx40ZkZWXhyZMnoiMRERGRloqJicG9e/fg7OyMW7duYejQoYiKioKtrS3WrVuH1q1bC8ump6eHcePGYfTo0WjcuLFqXV9fH+fPn+cJGCoXFmCIiOiFDh48CGdnZ+jr65e4X1BQgNDQUEXdzSYiIiJ6WY4fP46goCBs27YNzZo1w5AhQ+Dh4YG6deuyAEPlxgIMERG9kI2NDbKystCrVy+4u7ujd+/eMDU1FR2LiIiIXkM3b95EUlISJElC06ZNUbNmTdGRVB48eIBffvkFQUFBiI6ORmFhIZYuXQpvb28YGxuLjkcKxwIMERGVS2xsLEJDQxEaGorY2Fh07NgR7u7ucHNzg5WVleh4REREpOVyc3MxZswY/PLLL6pxzrq6uvDw8MCKFStgYmIiOKG6pKQk1VXs7Oxs9OjRA6GhoaJjkYKxAENERP/a9evXVcWYiIgINGnSRFWMcXJyEh2PiIiItNBHH32Ec+fO4YcffkCHDh0gSRKOHTuG8ePHo1WrVti2bZvoiCUqLCzEnj17EBQUxAIMlYkFGCIi+k/y8vLw+++/IzQ0FPv27cPEiRPx1VdfiY5FREREWqZKlSo4cOAAOnXqpLZ+5MgRuLi4IC8vT1AyopdDT3QAIiLSTo8ePYKhoSGqVKmCDz74AB988AGKiopw584d0dGIiIhIC5mbm5d4zcjExARmZmYCEhG9XDqiAxARkfYoKirCN998g3r16qFq1aq4cuUKAMDX1xeBgYHQ0dFRVKM8IiIi0h5ff/01Jk6ciBs3bqjWMjIyMHnyZPj6+gpMRvRy8AoSERGVm5+fH4KDg+Hn54cRI0YgPj4eNjY22LZtG/z9/XH8+HHREYmIiEhLOTo64vLly3j8+DEaNmwIAEhPT4eBgQEaN26s9uyZM2dERCT6T3gFiYiIym3Dhg1YvXo1unXrhlGjRqnWW7VqhcTERIHJiIiISNv169dPdASiV4oFGCIiKrdr167B1tZWY72oqAhPnjwRkIiIiIheF7NmzRIdgeiVYg8YIiIqtxYtWuDIkSMa67/++iscHR0FJCIiIqLXSXZ2NtauXYvp06cjKysLQPF1o2vXrglORvTf8QQMERGV26xZszBkyBBcu3YNRUVFCAkJQVJSEjZs2IC9e/eKjkdERERaLDY2Ft27d4eJiQnS0tIwYsQIVK9eHTt37sTVq1exYcMG0RGJ/hOegCEionLr27cvtm7din379kGSJMycORMXL17Enj170KNHD9HxiIiISItNnDgRXl5eSE5OhqGhoWrd1dUVf/75p8BkRC8HT8AQEVG5FBQUYN68efD29kZkZKToOERERPSaOXXqFAICAjTW69Wrh4yMDAGJiF4unoAhIqJy0dPTw6JFi1BYWCg6ChEREb2GDA0NkZubq7GelJSEmjVrCkhE9HKxAENEROXWvXt3HD58WHQMIiIieg25u7vDz89PNVlRkiSkp6dj2rRpeP/99wWnI/rvJFmWZdEhiIhIOwQEBGD27NkYPHgw2rZtiypVqqjtu7m5CUpGRERE2i43Nxe9e/fGhQsXcO/ePdStWxcZGRno0KED9u3bp/FzB5G2YQGGiIjKTUen9IOTkiTxehIRERH9Z+Hh4Thz5gyKiorQpk0bdO/eXXQkopeCBRgiIiIiIiIioleMU5CIiIiIiIhIqKKiIqxfvx4hISFIS0uDJEmwtrbGBx98gCFDhkCSJNERif4znoAhIqJy8/PzK3N/5syZFZSEiIiIXheyLKNv377Yt28fWrdujWbNmkGWZVy8eBFxcXFwc3PDrl27RMck+s9YgCEionJzdHRU+/rJkydITU2Fnp4eGjVqhDNnzghKRkRERNpq3bp1GD9+PHbv3g1nZ2e1vfDwcPTr1w8//vgjPD09BSUkejlYgCEiov8kNzcXXl5e6N+/P4YMGSI6DhEREWmZnj17omvXrpg2bVqJ+/Pnz0dkZCQOHDhQwcmIXi4WYIiI6D+Lj4/He++9h7S0NNFRiIiISMvUrl0b+/fvh4ODQ4n7Z8+ehaurKzIyMio2GNFLVvo8USIionLKzs5GTk6O6BhERESkhbKysmBhYVHqvoWFBe7evVuBiYheDU5BIiKiclu+fLna17Is48aNG9i4cSNcXFwEpSIiIiJtVlhYCD290t+a6urqoqCgoAITEb0avIJERETlZm1trfa1jo4Oatasia5du2L69OkwNjYWlIyIiIi0lY6ODlxdXWFgYFDi/uPHj7F//34UFhZWcDKil4sFGCIiIiIiIhJm2LBh5Xpu3bp1rzgJ0avFAgwREZWbt7c3li1bpnHSJS8vD2PHjkVQUJCgZEREREREysYCDBERlZuuri5u3LiBWrVqqa3fvn0btWvX5v1sIiIiIqJSsAkvERG9UG5uLmRZhizLuHfvHgwNDVV7hYWF2Ldvn0ZRhoiIiIiI/sECDBERvZCpqSkkSYIkSWjSpInGviRJmDNnjoBkRERERETagVeQiIjohSIjIyHLMrp27YodO3agevXqqr1KlSrB0tISdevWFZiQiIiIiEjZeAKGiIheqEuXLigoKICnpyecnJzQoEED0ZGIiIiIiLSKjugARESkHfT09LBjxw4UFhaKjkJEREREpHVYgCEionLr1q0bDh8+LDoGEREREZHW4RUkIiIqN1dXV0yfPh3x8fFo27YtqlSporbv5uYmKBkRERERkbKxCS8REZWbjk7pByclSeL1JCIiIiKiUrAAQ0RERERERET0irEHDBERERERERHRK8YeMERE9K/k5eUhMjIS6enpyM/PV9sbN26coFRERERERMrGK0hERFRuZ8+eRe/evfHgwQPk5eWhevXquH37NoyMjFCrVi1cuXJFdEQiIiIiIkXiFSQiIiq3CRMmoG/fvsjKykLlypVx4sQJXL16FW3btsXixYtFxyMiIiIiUiyegCEionIzNTXFyZMn0bRpU5iamuL48eNo3rw5Tp48iaFDhyIxMVF0RCIiIiIiReIJGCIiKjd9fX1IkgQAsLCwQHp6OgDAxMRE9XsiIiIiItLEJrxERFRujo6OiImJQZMmTeDs7IyZM2fi9u3b2LhxI+zt7UXHIyIiIiJSLF5BIiKicouJicG9e/fg7OyMW7duYejQoYiKioKtrS3WrVuH1q1bi45IRERERKRILMAQEREREREREb1ivIJERET/2s2bN5GUlARJktC0aVPUrFlTdCQiIiIiIkVjE14iIiq33NxcDBkyBPXq1UOXLl3QuXNn1K1bF5988glycnJExyMiIiIiUiwWYIiIqNw+/fRTnDx5Env37kV2djZycnKwd+9exMTEYMSIEaLjEREREREpFnvAEBFRuVWpUgUHDhxAp06d1NaPHDkCFxcX5OXlCUpGRERERKRsPAFDRETlZm5uDhMTE411ExMTmJmZCUhERERERKQdWIAhIqJy+/rrrzFx4kTcuHFDtZaRkYHJkyfD19dXYDIiIiIiImXjFSQiIio3R0dHXL58GY8fP0bDhg0BAOnp6TAwMEDjxo3Vnj1z5oyIiEREREREisQx1EREVG79+vUTHYGIiIiISCvxBAwRERERERER0SvGHjBERPSvZGdnY+3atZg+fTqysrIAFF83unbtmuBkRERERETKxRMwRERUbrGxsejevTtMTEyQlpaGpKQk2NjYwNfXF1evXsWGDRtERyQiIiIiUiSegCEionKbOHEivLy8kJycDENDQ9W6q6sr/vzzT4HJiIiIiIiUjQUYIiIqt1OnTmHkyJEa6/Xq1UNGRoaARERERERE2oEFGCIiKjdDQ0Pk5uZqrCclJaFmzZoCEhERERERaQcWYIiIqNzc3d3h5+eHJ0+eAAAkSUJ6ejqmTZuG999/X3A6IiIiIiLlYhNeIiIqt9zcXPTu3RsXLlzAvXv3ULduXWRkZKBDhw7Yt28fqlSpIjoiEREREZEisQBDRET/Wnh4OM6cOYOioiK0adMG3bt3Fx2JiIiIiEjRWIAhIiIiIiIiInrF9EQHICIi7VBUVIT169cjJCQEaWlpkCQJ1tbW+OCDDzBkyBBIkiQ6IhERERGRYvEEDBERvZAsy+jbty/27duH1q1bo1mzZpBlGRcvXkRcXBzc3Nywa9cu0TGJiIiIiBSLJ2CIiOiF1q9fjz///BNhYWFwdnZW2wsPD0e/fv2wYcMGeHp6CkpIRERERKRsPAFDREQv1LNnT3Tt2hXTpk0rcX/+/PmIjIzEgQMHKjgZEREREZF20BEdgIiIlC82NhYuLi6l7ru6uuL8+fMVmIiIiIiISLuwAENERC+UlZUFCwuLUvctLCxw9+7dCkxERERERKRdWIAhIqIXKiwshJ5e6W3DdHV1UVBQUIGJiIiIiIi0C5vwEhHRC8myDC8vLxgYGJS4//jx4wpORERERESkXViAISKiFxo6dOgLn+EEJCIiIiKi0nEKEhERERERERHRK8YeMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMEREREREREREr9j/A6u0XXyA/F+LAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGAAAAOHCAYAAABo6DUdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1d7A8e+WZFO2pBdIIJSQUJSO9N57VWmCYgUrIoheBLyWK1ZscFEQUFRAOgrSe+8lIZBASCA92fS27f1jyYZNdkOyQSP3PZ/n2edJZs/M/PbszDkzZ845KzGZTCYEQRAEQRAEQRAEQRCEv4y0pgMQBEEQBEEQBEEQBEH4XycaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBEARBEARBEP5iogFGEARBEARBEARBEAThLyYaYARBEARBqDEXLlzgySefpF69eri4uKBUKmnVqhULFiwgIyOjpsOzsm/fPiQSCfv27avyuhEREcybN4/Y2Nhy702ePJmQkJBqx+cIiUTCiy++aPO93377zeHPW1n5+fnMmzfvL92HIAiCIPxTiAYYQRAEQRBqxHfffUfr1q05efIkb7zxBtu3b2fDhg2MGTOGxYsXM2XKlJoO8b6JiIhg/vz5Nhtg5syZw4YNG/7+oP4B8vPzmT9/vmiAEQRBEP5fkNd0AIIgCIIg/P9z9OhRXnjhBfr06cPGjRtRKBSW9/r06cPrr7/O9u3b78u+8vPzcXNzK7fcYDCg1+ut9l0TGjRoUKP7FwRBEATh7yF6wAiCIAiC8Lf74IMPkEgkLFmyxGYDiLOzM0OHDrX8bzQaWbBgAeHh4SgUCvz8/HjiiSe4deuW1Xrdu3enWbNmHDhwgI4dO+Lm5sZTTz1FbGwsEomEBQsW8N5771GvXj0UCgV79+4F4NSpUwwdOhQvLy9cXFxo2bIla9asuefnOHXqFI8//jghISG4uroSEhLC2LFjuXnzpiXN8uXLGTNmDAA9evRAIpEgkUhYvnw5YHsIUmFhIbNnz6ZevXo4OztTu3Ztpk2bRmZmplW6kJAQBg8ezPbt22nVqhWurq6Eh4ezbNmye8buqMrkVWpqKlOnTqVJkyYolUr8/Pzo2bMnBw8etKSJjY3F19cXgPnz51vyZfLkyQDMmzcPiUTChQsXGDNmDBqNBi8vL6ZPn45erycqKor+/fujUqkICQlhwYIFVjEUFhby+uuv06JFC8u6HTp0YNOmTeU+U8lQrP/+9780atQIhUJBkyZN+PXXX+9z7gmCIAj/n4keMIIgCIIg/K0MBgN79uyhdevWBAcHV2qdF154gSVLlvDiiy8yePBgYmNjmTNnDvv27ePMmTP4+PhY0iYmJjJhwgRmzpzJBx98gFRa+rzpyy+/pFGjRnzyySeo1WpCQ0PZu3cv/fv355FHHmHx4sVoNBp+/fVXHnvsMfLz8y0NArbExsYSFhbG448/jpeXF4mJiSxatIi2bdsSERGBj48PgwYN4oMPPuCtt97im2++oVWrVoD9ni8mk4nhw4eze/duZs+eTZcuXbhw4QJz587l6NGjHD161KrR6vz587z++uu8+eab+Pv78/333zNlyhQaNmxI165d75m3JpMJvV5fbrnRaCy3rLJ5VTJ/z9y5cwkICCA3N5cNGzbQvXt3du/eTffu3QkMDGT79u3079+fKVOm8PTTTwNYGmVKPProo0yYMIHnnnuOnTt3smDBAnQ6Hbt27WLq1KnMmDGDn3/+mVmzZtGwYUNGjhwJQFFRERkZGcyYMYPatWtTXFzMrl27GDlyJD/88ANPPPGE1X42b97M3r17effdd3F3d+fbb79l7NixyOVyRo8efc98FARBEIR7MgmCIAiCIPyNkpKSTIDp8ccfr1T6yMhIE2CaOnWq1fLjx4+bANNbb71lWdatWzcTYNq9e7dV2hs3bpgAU4MGDUzFxcVW74WHh5tatmxp0ul0VssHDx5sCgwMNBkMBpPJZDLt3bvXBJj27t1rN1a9Xm/Kzc01ubu7mxYuXGhZvnbtWrvrTpo0yVS3bl3L/9u3bzcBpgULFlilW716tQkwLVmyxLKsbt26JhcXF9PNmzctywoKCkxeXl6m5557zm6cJYB7vu6OubJ5ZStfdDqdqVevXqYRI0ZYlqemppoA09y5c8utM3fuXBNg+vTTT62Wt2jRwgSY1q9fb1mm0+lMvr6+ppEjR9r9rCUxTJkyxdSyZcty+eDq6mpKSkqySh8eHm5q2LCh3W0KgiAIQlWIIUiCIAiCIPyjlQwTKtsTpV27djRu3Jjdu3dbLff09KRnz542tzV06FCcnJws/0dHR3PlyhXGjx8PgF6vt7wGDhxIYmIiUVFRdmPLzc219LyQy+XI5XKUSiV5eXlERkY68nHZs2cPUP7zjhkzBnd393Kft0WLFtSpU8fyv4uLC40aNbIaBlWRRx99lJMnT5Z7ffTRR1bpqppXixcvplWrVri4uCCXy3FycmL37t1VzpfBgwdb/d+4cWMkEgkDBgywLJPL5TRs2LDcZ167di2dOnVCqVRaYli6dKnNGHr16oW/v7/lf5lMxmOPPUZ0dHS5oW6CIAiC4AgxBEkQBEEQhL+Vj48Pbm5u3Lhxo1Lp09PTAQgMDCz3Xq1atcrddNtKZ++95ORkAGbMmMGMGTNsrpOWlmZ3e+PGjWP37t3MmTOHtm3bolarkUgkDBw4kIKCArvrVSQ9PR25XF5uKI5EIiEgIMCSHyW8vb3LbUOhUFR6/76+vrRp06bc8rK/2FSVvPrss894/fXXef755/n3v/+Nj48PMpmMOXPmVLkBxsvLy+p/Z2dn3NzccHFxKbc8Ozvb8v/69et59NFHGTNmDG+88QYBAQHI5XIWLVpkc46cgIAAu8vS09MJCgqqUtyCIAiCUJZogBEEQRAE4W8lk8no1asX27Zt49atW/e8sS1pYEhMTCyXNiEhwWr+FzA3VNhT9r2SdWfPnm2ZO6SssLAwm8uzsrLYunUrc+fO5c0337QsL5l7xFHe3t7o9XpSU1OtGmFMJhNJSUm0bdvW4W1XR1Xy6qeffqJ79+4sWrTI6v2cnJy/Nsi7/PTTT9SrV4/Vq1dbfe9FRUU20yclJdldZquRSxAEQRCqSgxBEgRBEAThbzd79mxMJhPPPPMMxcXF5d7X6XRs2bIFwDKc6KeffrJKc/LkSSIjI+nVq5fDcYSFhREaGsr58+dp06aNzZdKpbK5rkQiwWQylfsVp++//x6DwWC1rCRNZXqllHyesp933bp15OXlVevzVkdV8koikZTLlwsXLnD06FGrZVXJl6qSSCQ4OztbNb4kJSXZ/BUkgN27d1t6+YB5sujVq1fToEED0ftFEARBuC9EDxhBEARBEP52HTp0YNGiRUydOpXWrVvzwgsv0LRpU3Q6HWfPnmXJkiU0a9aMIUOGEBYWxrPPPstXX32FVCplwIABll9BCg4O5rXXXqtWLP/9738ZMGAA/fr1Y/LkydSuXZuMjAwiIyM5c+YMa9eutbmeWq2ma9eufPzxx/j4+BASEsL+/ftZunQpHh4eVmmbNWsGwJIlS1CpVLi4uFCvXj2bPSv69OlDv379mDVrFtnZ2XTq1MnyK0gtW7Zk4sSJ1fq81VHZvBo8eDD//ve/mTt3Lt26dSMqKop3332XevXqWf3ikkqlom7dumzatIlevXrh5eVlycvqGjx4MOvXr2fq1KmMHj2a+Ph4/v3vfxMYGMi1a9fKpffx8aFnz57MmTPH8itIV65cET9FLQiCINw3ogFGEARBEIQa8cwzz9CuXTs+//xzPvroI5KSknBycqJRo0aMGzeOF1980ZJ20aJFNGjQgKVLl/LNN9+g0Wjo378/H374YbWHh/To0YMTJ07w/vvv8+qrr6LVavH29qZJkyY8+uijFa77888/88orrzBz5kz0ej2dOnVi586dDBo0yCpdvXr1+OKLL1i4cCHdu3fHYDDwww8/2PyJa4lEwsaNG5k3bx4//PAD77//Pj4+PkycOJEPPvigXM+Sv1Nl8+rtt98mPz+fpUuXsmDBApo0acLixYvZsGED+/bts9rm0qVLeeONNxg6dChFRUVMmjSJ5cuXVzvWJ598kpSUFBYvXsyyZcuoX78+b775Jrdu3WL+/Pnl0g8dOpSmTZvyr3/9i7i4OBo0aMCqVat47LHHqh2LIAiCIABITCaTqaaDEARBEARBEISaIpFImDZtGl9//XVNhyIIgiD8DxNzwAiCIAiCIAiCIAiCIPzFRAOMIAiCIAiCIAiCIAjCX0zMASMIgiAIgiD8vyZG5AuCIAh/B9EDRhAEQRAEQRAEQRCE/zcOHDjAkCFDqFWrlmXy+3vZv38/rVu3xsXFhfr167N48eIq71c0wAiCIAiCIAiCIAiC8P9GXl4ezZs3r/Tk6zdu3GDgwIF06dKFs2fP8tZbb/Hyyy+zbt26Ku1X/AqSIAiCIAiCIAiCIAgPtKKiIoqKiqyWKRQKFApFhetJJBI2bNjA8OHD7aaZNWsWmzdvJjIy0rLs+eef5/z58xw9erTSMYo5YARBEARBEARBEARBqLbfncJqbN8n3x7L/PnzrZbNnTuXefPmVXvbR48epW/fvlbL+vXrx9KlS9HpdDg5OVVqO6IBRhAEoGYLy8oYpIti2ieZNR1Ghb6Z4cGIF6/VdBj3tOHrUB6bcbOmw6jQ6k/qMvqV6zUdRoV+W1ifQU9fqukw7un375sx8uXomg6jQuu/bMhnm/7ZHXKnD5Mwd6WupsO4p/lPODHl36k1HUaFls7x5Yk5iTUdRoVW/juQsTPjajqMe/plQR26jjhU02FU6MCGzjz6emxNh1GhNZ+G/OPzEcx5OeHthJoOo0I/vV+LAZMv1HQYFdq2/OF/fIxgjlOomtmzZzN9+nSrZffq/VJZSUlJ+Pv7Wy3z9/dHr9eTlpZGYGBgpbYjGmAEQRAEQRAEQRAEQXigVWa4UXVIJBKr/0tmcym7vCKiAUYQBEEQBEEQBEEQhGqTOFW+MeJBEhAQQFJSktWylJQU5HI53t7eld6O+BUkQRAEQRAEQRAEQRAEOzp06MDOnTutlu3YsYM2bdpUev4XED1gBEEQBEEQBEEQBEG4D6TyB6MHTG5uLtHRpXPk3bhxg3PnzuHl5UWdOnWYPXs2t2/fZuXKlYD5F4++/vprpk+fzjPPPMPRo0dZunQpv/zyS5X2KxpgBEEQBEEQBEEQBEH4f+PUqVP06NHD8n/J5L2TJk1i+fLlJCYmEhdXOhl7vXr1+OOPP3jttdf45ptvqFWrFl9++SWjRo2q0n5FA4wgCIIgCIIgCIIgCP9vdO/e3TKJri3Lly8vt6xbt26cOXOmWvsVDTCCIAiCIAiCIAiCIFSbxElMM1sRkTuCIAiCIAiCIAiCIAh/MdEDRhAEQRAEQRAEQRCEantQJuGtKaIHjCAIgiAIgiAIgiAIwl9M9IARhBp05MgRunTpQp8+fdi+fXtNh1OOV+c21H99CppWzXCp5cepUVNJ3ry74nW6tKXJJ2+ibBJKUUIKMZ9+T9ySX63SBIzoS6N5r+DWoA75MXFEvfM5yZt2VSvWLi2c6d1WgcZdSmKagd/2FhBz22AzrdpdwsjurtTxl+HrKWXfmWLW7S0ol65FqBODO7vgo5GSlmVky8FCzkfrHI6xfxcNw3t54qmREZ9YzNJ1qUTGFNpN37ShK0+O9CE40JmMLAMbd2n581CW5f0+HdV0b6emTi1nAGLiili1JY1rN4scjhGgb0clQ7pr8FDJuJVczIpNWq7csL/NxvUVPDHUkyB/Z7TZejbvy2bX0VybaTu2cOOVCb6cvJTPJ8tTHY6xX2c1Q3tq8FTLiE/SsXx9OpHX7edlkwYuTBrhTXCAE9osA5v2ZLLjcI7l/d4dVHRrqyQ40JyX1+OL+Hmrlui46uUlwLihfvTv6onSTUbUjQIWrUogLqHi7XZspWbicD8CfZ1JTC1m5YZkjp7NsUozqLsXI/v54OUhJy6hiCW/JnL5Wn6V4+vfWc2wXp538rKYZevSKs7Lhi48OcKH4IA7x+VuLTsOZ1ve791BTfd2KurcycuY+CJWbUmvVl5ePvIz5/cvJT8nFU//hnQc+haB9drYTHv94g4ijv1KekIkBn0xnv4NadPnRYLDuljSZCRd49SOL0m9fZlcbQIdhszm4S6THI4PoG2YlE5NpCjdIDUTtp00EJdie3I/pSv0ayOjlpcELzUcjzSy/ZSxXDoXJ+jVUkrjOlJcFJCZA3+eNnDttv1JA++lR2sX+nVww0Ml5Xaqnl//zONavP1yrVEdJx7r605tXzmZOUa2Hcln/xnr46N3O1d6tHHBSy0jN9/Iqcgi1u3JQ2+7CL6nXu3cGNjZHY1Sxu0UPau2ZXH1pv0Yw0KcGddfTW0/OZk5Bn4/lMfek9bngpuLhNG9VbRp4oKbi5S0TAM/b8vmwjXHjss+HZQM7qa+U07qWLlZS1RsxeXkhMGeBPk7oc02sHV/NruO2S4nOzR34+XxPpy8lM9nK9Mciu9uTz5WhyF9/VG5y4m4lsvnS2KIja+4rOjW3psp4+pSK8CFhKRCvlt1k4PH0622+eTjdazWSdcWM+KpE1WOr29HFUO7q/FQy7mVVMzyTRn3rHMmDfUiKOBOnbM3m51Hc2ym7djCnVcnmuucj39IqXJsZf3T87L3I24M7KzEQyXjdoqOn37PJupmsd304SHOjB+oprafE5k5BrYezGXPidLP06WlK8+N9iy33pNzE9Dpqxyexfjh/gzo5oXSXUbU9Xy+WXn7nvVipzZqnhgRQKCfM4kpxaxYl8SRM6V1T7NG7owe6EvDuq54ezrx7pexHL3r/f/lOP9pJE6iB0xFRA8YQahBy5Yt46WXXuLQoUNWP3P2TyFzdyP7QhSXX3m3UuldQ4Jou2UJGYdOc6jtcKI/WkzTz98mYERfSxqP9i1o+fPn3F61iYOth3F71SZa/fIFHu0edjjOVmFOjO7hyp/HivhwZQ7Rtw1MG6XEU2W7ApDLJOTmm9h+rJDbKbbvEOoFynhqiBsnLhfz4cocTlwuZsoQN0ICZA7F2KmVkqdG+fLbnxm8/p84ImIKmDO1Nj6ettvB/bzl/OuFWkTEFPD6f+JY92cGU0b70r6F0pKmaagrB0/nMGfhLd78NJ40rY6502rjpXEsRjBf+E8a6sWGXVm8+XkCV64XMftpP7w9bG/T10vOm0/7ceV6EW9+nsDG3dk8OcyLdg+5lUvr4yljwmDPCm/uK6NjS3cmj/Bm/Y5M3vj4NpExhbz1fAA+nrZj9POS89ZzAUTGFPLGx7dZvzOTJ0f68Ehzd0uapg1dOHQmj3lfJ/LW5wmkaQ3MeSGgWnkJMLq/DyP6eLP450Reey8GbZaO96aH4KqwX/2G13flzeeC2XM0kxfnR7PnaCZvPleHsHquljRd2qp55vEAVv+RysvvxnDpah7zX6mLr5dTleLr1FLJkyN9WbdDy+sL4omMKeRfL9Syf1x6yfnXc7WIjCnk9QXxrN+pZcooX9rflZfNQl05dDqHd766zezPbpGm1TN3ai2H8zL63B8c2fIhLXs+z6hXNhBQrw1/LH2WHG2CzfSJN04RFNqRAU8tYdTL66jV4BG2L59K2u0ISxq9rhCVVzCPDHgdN5WvQ3HdrWmIhP5tpBy4aGDxVj03k41M6CVD4247vVwK+YUmDlw0kKy1nUYmhSf6yPBQSli938BXG/VsPmYgO9/xxpe2TRQ83k/J74fymf+dlmtxOl4dp8FLbft49PGQ8upYDdfidMz/Tsvvh/IZ119J63BnS5pHmikY3cudzQfy+deiDJZvzaFdUwWjetr58PfwSDMXxg9Qs3l/Lu8sSuPqzWJmTPTCW2MvRhkzJnpy9WYx7yxKY8uBXCYOVNOmiYsljUwGMyd54eMh46tftcxamMqyjZlocxxrIWrf3I0nhniycU8WsxcmEnWjkDen+NovJz1lzHzKl6gbhcxemMimvVlMGupJu2au5dL6eMgYP8ij2uVkiXEjavPo0Fp88d11np15ngxtMZ/Na4qri/3zsWmYirkzwvlzXwpPvXaWP/elMH9GGI1DlVbprsflMfzJ45bX5Fer/ssgHVq4MXmYF+t3ZzHrswQibxTx1jP+FdY5s5/2J/JGEbM+S2DD7iyeHO7FI3bqnIlDPImo4EFHVfzT8/KRh1yYMFDD5v25/OubVKJii3ljkhfedspeX08ZMyZ5ERVbzL++SWXz/lyeGKShbVMXq3T5hUamfZhk9apO48uYgb6M7OfDtz/d5pX519Bm6fngjfq4ulRQLzZwY/YLddl9RMvUd66x+4iW2VPrEla/9BxyUUi5HlfAtz/ddjy4BzBO4cEjGmAEoYbk5eWxZs0aXnjhBQYPHlzup842b95MaGgorq6u9OjRgxUrViCRSMjMzLSkOXLkCF27dsXV1ZXg4GBefvll8vLy7luMqX8e4OrcL0jauLNS6es++ziFcYlEvP4BuVeuE7/sN+KXr6f+9Kcsaeq9NIm0XUeIWbCEvKjrxCxYQtqeY4S85PjT515tFBy9WMyRi8UkZxhZt7cAbY6RLi0UNtNnZBv5bW8BJyJ0FNh5MNSjtYIrN/XsOFFEcoaRHSeKiIrT06O17W3ey9Cenuw+msWuo9ncStaxbF0a6Vo9/btobKbv11lDmlbPsnVp3ErWsetoNnuOZTO8l4clzRcrktl+MIvY28XcTtbx7c8pSCTwcFj5C9HKGtRNzZ4Tuew5kcvtFD0rNmtJzzTQt4PKZvo+HZSkaw2s2KzldoqePSdy2XsylyHd1FbpJBJ4aZwPa3dkkZxejSs3YEh3DXuO5bD7WA63k3Us35BOulZP305qm+n7dlKTptWzfEM6t5N17D6Ww97jOQztUZr3C39M5c9D2cTeLiYhRcfiX1ORSCU81Kj8DVJVDOvtzerfUzlyJpubCUV8tuw2Cmcp3R6x/b0DDOvjw9mIXNZuS+NWUjFrt6Vx/kouw3p7W9KM6OPDjkNadhzUEp9YxHerk0jT6hjY3atK8Q3p4cHuY9nsOprN7WQdy9abj8t+ne9xXK5P4/Zdx+WwnqVPSL9Ymcz2O3l5O0XHol9SkEglPNzIsePy4sHlhLcdReNHxuDp34BOQ99C6RFAxLFfbKbvNPQtWnR/Gr/gh9D4hvDIgOlofOpyM2KvJY1f8EN0GDyThi0GIZVXrdHKlo6NpZyNNnIm2kRaFmw/ZSQ7D9o2sn2ZlZkH204aOX/dRGGx7QaVlg2luCok/LLXQHyqiaw8iEsx2W2wqYy+7V05eLaQg+cKSUwz8OuOPDKyDXRvY/s4797alfRsc7rENAMHzxVy6Fwh/TqUfpcNgpyIjtdx/FIR6VlGLl83/x1Sy7F87d/Rnf1n8tl/uoCEVD2rtmWTkW2kZzvbDTo927mRnmVk1bZsElL17D9dwIEz+QzsVJq+ays33N2kLPzZ3OiUnmXgapyO+CTHyqJBXVTsPZnL3hN5JKToWbklk/RMA33aK22m791eRbrWwMotmSSk6Nl7Io99p3IZZKOcnDbWm992ZpGSUb1yssSYwbX58bd4DhxL50ZcPh98eRWFQkafrvYbHscMrsWp81pWrb9F3O0CVq2/xekLWYwZUtsqncFgIiNTZ3llZVc95sFdNew5kcOe47ncTtGxYlMGaZl6+na0Xef07aAiLVPPik0Z3E7Rsed4LntP5DKke/m8fHm8L2v+zPx/k5cDOinZdzqffafySUjV89Mf2aRnGej1iO2yt2c7N9IzDfz0h/nc2Xcqn/1n8hnY2fo4NpkgK9do9aqO4X19+HVLCkdOZ3PzdhGffhePQiGle3uPCtc5czmHNb+nciuxiDW/p3IuMpfhfUvz/tTFHFauT+bI6fvTm+RBiVN48IgGGEGoIatXryYsLIywsDAmTJjADz/8YPkt+tjYWEaPHs3w4cM5d+4czz33HG+//bbV+hcvXqRfv36MHDmSCxcusHr1ag4dOsSLL75YEx8HMPduSd112GpZ6o6DaFo3QyI3P1H3bN+CtF2HrNKk7TyIZ4eWDu1TJoVgfxmRsdYXK5GxeurXcnyUZb1a8nLbjIjVU7921bcpl0GDYAXnIq27KZ+LzCO8novNdcLquXIu0rox7WxEHg3quCCzU3I7O0uQySTk5jt2cSSTQf3azly4aj0c6/zVAhqF2G54alRXwfmy6aMKqB/sbBXn6D4asnON7D1hu8t9ZcllUD9Ywfko67w8H1VAmJ28bBSi4HyUdYznruTToI6i4ryU4nBeAgT4OOHl4cSZy6WfWa83cSkqj8YN7TdGhNd35WyEdT6duZxrWUcuk9CwritnL9tI06DyjRwlx+X5K2WOyyv5do/LRiEunLORvjJ5mZNf9d4GBn0xqbcvE9Sok9XyoNBOJMeerdQ2TEYjuqI8FG72G72qQyaFQG8J0QnWDSkxiUaCfR3vhh0WJCE+1cSgR2S8MUbO1CFyujSTInFwkzIp1A2Uc/m6datzREwxDYNsl2sNasuJiLFOfymmmLqBcsv3HR2vo26gnHp3ylsfDykPhTo7NLRHJoOQWk5cirZe92J0EaHBtht0GgY7cdFG+pDaTpYYW4UriI7X8cRgDV/N8uODF30Y0tXdobyUyaBebWcuXLXuVXHhWqHdcjK0rjMXrlmnPx9VSP0g63JyVG8NOXlG9p28Pw9SAv0VeHs5c/JcpmWZTm/i/OUsmoXbbuAAc6+Nu9cBOHFOS7Mw63WCAl1Zv7Qtqxe3Ye70MAL9q/aAQiaD+kHOnI8qk5dRhYSF2C6DQusquFAm/bmoAuoHW5dBo/t6kJ1rqHadU+JByMt6Ns6dS9FFhNZxtrlOaLBz+XPtWhH17jp3AFycJXwxw48vZ/rz+kQv6gY6fm0V4OtsrhcvlQ4Z0+lNXLySS5MK6sXGDd04c8n6uzx9MafCurQ6HpQ4/6mkckmNvR4EogFGEGrI0qVLmTBhAgD9+/cnNzeX3bvN86ssXryYsLAwPv74Y8LCwnj88ceZPHmy1foff/wx48aN49VXXyU0NJSOHTvy5ZdfsnLlSgoL709326pS+PtQlGw9Xr04JR2pkxPOPuYn5IoAH4qS063SFCWnowhwbBiA0lWCTCohu8yNck6+EbW74wWx2l1CTl6ZbeYZUblVfZsqpQyZTEJmme7umTkGPNS2L2Q81TKb6eUyCWql7e7ETwzzISNLX+6GurLU7uY4s3KsP3dWjgEPle19alQyssrEmZVjRC6ToHI3rxMWoqBHOyVL1qbb2kSVqEpizC67T/sxeqhtxJhtzkuVnbycMMSLjCwDF6LKzw1UWZ4a83ebWeZJZma2Hk8733vJetos63W0WaXrqEuOp3LbNVj2WRkleVn2OKsoLz1t5OW9jsuJQ73JyNI7lJeFeVpMRgOuSm+r5a4qb/JzKjc3xvkDP6ArzqdB8wFV3n9luClAJpWQV6bYzS0wl0+O8lRJaFJXglQCP+3Wc+CigY5NpXR9yLFLN5Wb1FxWlinXsvJMaJS2t6lWSsnKs25Yys4zn99KN/M6Jy4XsWFfHm9O9uC/b/nw0UveRMXq2Hak6t+3yk1qPr/LPGHPzjWgsXd+K2Vk55Y5hnOtY/T1lNO2iQtSKXz6Ywab9ucyoJOSod1s91ipiKWcLLvPnApitFVO5t4pg9zNMTaq60z3tu5891tGlWOyx9vDfOOdkWk9f05Gpg4vD9s35QBeHs5oy6yjzdTh5Vm6TsS1HD5YeJUZ8y+z4NtreHk68+2HzVGrKl8G2c3L3HuU5zbSl61zerZT8t/7UOeU+KfnZem5U/5c8LBTNmtUsnLnWtnjMiFNz5J1mXz2UwbfrNai05t451kf/L0dG1JaUkdpbdWLGvu95jw1cpt1qVcV6ryqeFDiFB5M4mgQhBoQFRXFiRMnWL9+PQByuZzHHnuMZcuW0bt3b6Kiomjbtq3VOu3atbP6//Tp00RHR7Nq1SrLMpPJhNFo5MaNGzRu3NjmvouKiigqsn7ioVA4NqzGJlOZ7vQljxjvXm4rTdllVd7vvUOp7iYdffJsz70+tr3921pneG9POrdWMWfhLXT66n1wU5k9SyQ2s9cuS5yYcFFIeHGcD0t+SyenGr1JysdYxfTlMtP+hob11NCplZJ5XydWKS+7P6LhxYm1LP/P+/Km7V04cBzZ+g7u12lkK28q2ozdrLR1XPbyoHMrFe98dbt6x2XZk88EkkqckNFnt3J659f0m/xNuUac+83m91GN7UkkkFcIm48ZMJkgMcOEytVIp6ZS9l+oxrlU5eOmTHlQsvTOSmF1nRjc2Z2f/sjleoIOP08ZY/spGZzrxtaDjjUGlyOROFRWlpBKzA3oyzZlYTJBbIIeT5WMgZ3d2bTPwR4S1Tz/7j5vXBQSpo314bt1GdUqJ/t09eX15xta/p/1/mWbwVYmVpOp4nWOn7lrLFwcXI66zC+L2tC/hx9rNtuen8n+vmwsq0L6u4tzF4WEl8b58N+16eUeolTF/0xeSsrX6RWmv5ObJctj4nXE3DVJ99W4Yt6b5kvf9u78+Pu9h9D06ODBS5NKh1vN/Ty2gjgrdr/L2Ls9KHE+KMQkvBUTDTCCUAOWLl2KXq+ndu3Swt5kMuHk5IRWq8VkMpW7uShbgRuNRp577jlefvnlctuvU6dOuWUlPvzwQ+bPn2+1bO7cubS1k74qipLTyvVkcfb1wqjTUZyeaU6TlIYiwMcqjcLPq1zPmcrKLTBhMJpQu0uB0ic/KjcpOdWYrDI7r2SbpZQObjMn14DBYCr3RE+jlJGVY3uctzbbgKeN9HqDiZw86ydcw3p5MLqvJ3O/vs3NBPu/dnAv2Xm241Qryz+9LWHrqa9aKUVvMJGbZyQowAk/Lzkzn/SzvF9yaP/8UR1eW5BQpTlhckpiVJfJG1X5HkMlMrMNNtPbysuhPTSM7OPBu98mVjkvj5/LIepGjOV/pztdYT3V1j1aPFTyck/V7qbN0pfryeKhLn2qln3neCqbRqOSlXvyVpGSvPQsmzcVfN/a7PJPpu3l5bCeHozq48m8bxIcPi5d3D2RSGUUlOntUpCbfs8Glehzf7D/t3/Re8IXBIV2dGj/lZFfBAajCWWZaVTcXSCvwPEyKDffhMFkfTGfmmVC5WYe0mWo4r1lTr7RXFaW6e2idivfK6ZEdq4RTZlyUOVuPr9LPtvw7u4cvWCeVwbgdooBhXMeTwxS8fvB/CrdeOTkGzEYyvfIUbtLy/VyKZGZa0BT5gm/+k6MJUMIM3MMGIzWeZmQqsdDJUMmA0MVRseVlJPly73yPXEsMdosJ2WWGIP8zeXkG5NL68+ScvKnD4OZ/nFipeYxOXQig4irpUPznJzM+ejl4Uy6tvQm2lPjhDbL/jmZkVls1UMDwEPjhDbT/jqFRUau38wjKLDy82bZq3MqKoMybZRBlrzMMxAU4IyftxOznipf5/yyoC6vfnS7UnXOg5aXJeeOOW9K49O4S+3O2WLu7Wh9rmmU1udOWSYTXL9VTIBP5W4hj53N5kpMaUNsSb3opSlfL2Zm2f+lM1v1okZVvreoox6UOIX/DWIIkiD8zfR6PStXruTTTz/l3Llzltf58+epW7cuq1atIjw8nJMnT1qtd+rUKav/W7VqxeXLl2nYsGG5l7Oz/e6ws2fPJisry+o1e/bs+/LZMo+dw6eX9Y2Ob5/OZJ2+hElvrny0x87h08t6Pgef3p3RHq3cfA5lGYwQn2wgPMS6wgsPkXM9wfEK70aCnsZ1rbfZOETO9dtV36beYP4p3ubh1mOAm4e7ceWG7eFiUTcKyqVv0diNmLhCqxuv4b08GNPfi3e/TSCmmj+ZbDDA9dvFPFxm4tmHG7lw1c7Pq169WcTDjVzKpHflenwxBiMkpOiY8UkCsz5PtLxORxRwOaaQWZ8nkpZZtfzUG8w/Ef1wWJkYw1yJspOXV2PLp28e5kZMXJFVXg7tqWFUP0/eW5xETHzVGwwKiowkphRbXnEJRWRk6mjZtHSYg1wmoVmYO5HR9nsGXLleQIsm1kMjWjZRWtbRG0xE3yygpa00MZXvcWA5LsMqf1xejS20eRyXzcthPT0Y3c+Tfy9OICbe8eNSJnfGt3ZTbl07YrX81rUj+IfYnzcq+uxW9q2ZTc+xn1C3cXeH918ZBiMkpptoUMu60bx+oJT4VMcbYOJSTXipJFYdpnzUErLzTVVufCmJ82ainqb1reuHJvWdib5l+zyMua2nSZn0Tes7czNRb4nB2an8012j8c5z9Co+BDUYIDZBR7MG1r0ymzVwtvtT2dHxOpo1sI6xWUMFsbd1lhivxunw85JZ9YwJ8JahzTZUqfGlJMYbt4t5ONS63Hso1H45ee1mMQ+Fli0nXbh+6045marjjU8TefOLJMvrdEQBETFFvPlFEumVvHkrKDRwO6nQ8oqNzyc9o5g2zT0saeRyCc2barh0xfbPNgNcjsqh7V3rALRt4cGlKPvrOMkl1A1yI11b+bLTYDDfzJevQ1yIirVdBl2zUec0D3PhenyRpc55/ePbzPwswfIqqXNmfpZQ6TrnQczLGwk6mjUsc+40VHAtzvZ2rsUX20x/465zx5a6gU5k5lSuECootFcvls6BI5dJeChcSUQF9WJkdD6tmlrXea2aKSusS6viQYlT+N8gGmAE4W+2detWtFotU6ZMoVmzZlav0aNHs3TpUp577jmuXLnCrFmzuHr1KmvWrLH8SlJJz5hZs2Zx9OhRpk2bxrlz57h27RqbN2/mpZdeqnD/CoUCtVpt9bI3BEnm7oa6eTjq5uEAuNULQt08HJfgQADC3ptO8x8+sqS/ueRXXOvWovHHb6IMr0/Q5FEEPzmK658ts6SJ/XolPn06UX/GM7iH1af+jGfw6dWB2K9WOJynu08V0fEhZzo0c8bfS8qo7i54qaQcOm++GB7axYUnBljfNAb5ygjylaFwApWrhCBfGQHepUXi3jNFhIfI6dNOgb+XlD7tFITXkbP3tGM3k5v3aOndUUOv9mqC/J14cqQPPl5O/HkwC4AJQ715eaK/Jf2fh7Lw9TKnC/J3old7Nb06aNi4O9OSZnhvT8YN9ubrVSmkpOvwUMnwUMlwcXa86+fv+7Pp2U5J97bu1PaT88RQT3w85Ow8Zr5YHDvAg2mPl/Y82Hk0Fx9POROHeFLbT073tu70bKdky35z12SdHuKTdFavvAIjhUUm4pN0Vb75AdiyL4te7dX0fERFbX8nJo/wxsdTzo7D5hjHDfbkpfGlT5J3HM7G11POpOFe1PZ3oucjKnq2V7F5b5YlzbCeGsYO8uLbX1JJzdDfl7wE2LQrnUcH+tKhpYq6tRS89lRtioqN7D9euu/pT9Vm0sjS737zrjRaNVEyur8PQQHOjO7vQ4vGSjbtKp3PYMPONPp28aRPJw+CAxU881gAvl5O/LGvavNHbNmbSa8Oanq2N+flkyN8zHl5yBzf+CHevDyh9Enyn4ey8PWUM3mEjzkv26vo1V7Npj2lXeiH9/Jg3GBvvvk5hZT06uflQ10mc+XEb1w5uQ5tcgxHNn9IbmYiTdo/DsDxbZ+y59dZlvTRZ7eyd/WbdBg8C/+6zcnPSSU/J5WigtIbHoO+mLSESNISIjHqdeRlJZOWEElW2k2HYjwSaaRVQyktG0rw0UD/NlI07nDyqvkmpXdLKSM6WT+1D/A0v5zl4O4iIcATfO+aJ/hklBE3BQxoJ8VbBaG1JXR5SMrJKMeHVew4VkCXli50bu5CoI+Mx/q446WRsf+0eb6WkT3dmTKs9IZj3+kCvDXmdIE+Mjo3d6FLSxf+PFp6M3H+ajHdW7vQrqkCHw8pTeo5Mby7O+euFjk0JG77kTy6tXajaytXavnKGTdAhbdGxp4T5n2O6aPi2VGlGbXnRD4+HjLG9VdRy1dO11audGvlxh+H8+5Kk4fSTcqEgWoCvGU0b6RgSDclu044dlP0+8EcerRT0r2NO7X85Ewc4oGPh4xdx8zDmR7vr+GFx0rLyV3HcvDxlDFhsAe1/OR0b+NOj7ZKfr+rnLyVrLN65RcaKSgycivZsXKyxNqtt5kwOpguj3hTr44bs18KpajIwM4DqZY0b73ciGcn1LX8/9vWBNq08GTciNrUqe3KuBG1afOwB2u3lP5s7tRJITRvqibQT0HjUCXvzmyMu5uM7XtTqhTf1gNZ9HpERY92Smr7OTFpqCc+nnJ2Hr1T5wz0YNrY0l6zO47m4ONprptq+znRo52Snu1UbNlXkpem+17nlPin5+W2w7l0b+1G19bmc2f8QDXeGhm77xznj/ZV8dxoD0v6PSfy8faQMX6A2nzutHale2s3/jhUOixvRE8lDzVU4Ospo06gnGdGelAn0IndJxyfKHrjjjQeG+JHx1Zq6tZWMP3pIIqKjOw7lmlJ8/ozwUweHWD5f9PONFo1UzFmoC9BgQrGDPSlZRMVG3eU5r2LQkr9Oi7Ur2NuoPP3caZ+HRd8vRz7RbYHJc5/IjEJb8XEECRB+JstXbqU3r17o9GU/0WOUaNG8cEHH6DVavntt994/fXXWbhwIR06dODtt9/mhRdesDSWPPzww+zfv5+3336bLl26YDKZaNCgAY899th9i1XTuhkddv9o+b/JJ28BEL9yPRemzEYR6IvrncYYgILYW5wc8ixNPp1N3RfGU5SQwuXX3idpww5LGu3Rs5wdP52w+a8SNv9l8mPiOTvuNTJPXHA4zjNROtxdCxjQwQW1u4TENAPfrs8lI9t89a9xl+Kptm5vnj2p9CajbgC0beJMepaRd74zX8TdSDDww9Z8BndyYXAnF9IyjSzdmk9skmNXb4fP5KJyT+XRAV54qmXEJRbz3re3SdWan8Z5quX4epUWySnpet5blMCTo3wY0EVDRpaBpb+lcuxc6YXRgC4anJykzHo60Gpfv/6Rzuo/HJvI8ej5fFTuGYzq44GnWkZ8UjH/WZpCmtb8uT3UMrw9S+NMzdDzn+9TmDTUk36dVGizDfywKYMTF/+6pz1Hzuahck9ndD8PPDVy4hKL+eC/SaTdlZc+d8WYkqHng/8mMXmEN/27aMjI0vPD+jSOny+9gOzXWY2TXMIbT/lb7WvNNi1rtjv+u7+/bU/D2VnK1PG1ULrLiLpewJzPYikoKr2J9vV2trpRjYwp4KMl8Uwc7s+E4X4kpRbz0ZJ4om6UTmp68GQ2avckxg7xw0sj52ZCEXMX3iQ1w37XaFsOn81F5S7l0X5ed/KyiPcXJ9x1XMrw8Sy9KEzJ0PPefxN4akTJcaln6bpUjt2Vl/07a3CSS5g5xfq4XL0tg9Xbqn5cNmwxkKL8TE7v+ob87FS8AkIZ8NR/UXmah3DmZ6eSm1k6T0LE8dUYjXoObXyXQxvftSxv1Ho4PR77z511Ulj3xQjLexcOLOPCgWUE1m/L0OdLy7zKuhxrwk1hpNvDMlSukJIJq3YbyLqTLUpXCZoyv6L8wpDSfK3tAw/Xl6LNNfHF+jtDzfJh5U4D/dtKeWGonJx8OBZp5NBlxxtgTkYUoXSVMKSrGxqllNupehb+kkV6lnmbHkopXneVlWmZRr74JYvH+7rTo40rmTlGft6ey+krpU/US+Z5Gd7dHU+VlJx8I+evFrN+r2M3aMcvFaJ0y2ZYdyUeKhm3kvV8+qOW9CyDJUZvTWljVlqmgU9+1DJ+gJpej7iTmWPgxz+yORVR2oMiI9vIxysyGDdAzXvTfNHmGNhxNI+tBx2L8dj5fFRuUkb21uChlhGfpOOjZamkZZaWkz4epTGmag0sWJbKxCGe9O1oLidXbNZy4pLjk3xX1s8bbqNwljH92QYolXIir+Xw+vzLFBSW1mX+vgqrYc6XonKY/+kVnh5Xlylj65KQXMi8T6OIvFZa//h6K5g7PQyNyonMbB0RV3N4ftZ5klOr9pDi6Ll8VG531TmJxXz4fbKlzvFUy/HxsK5zPvw+mUnDvOjXSY02S88PGzM4/hfWOSX+6Xl5/GIhKrcsRvRQ3Tl3dHy8MoP0kuNSJcNHY31cfrIigwmD1PRu744228DK37M4ebn03HFzkTJluAaNSkZ+oZGbiTre+y6N67eqVtfcbe0fqTg7S5n2RG1zvRiTz9ufXKegsLRs8/N2ssrHyOh8/rMojidG+TNxpD+JKcV8uOgmUddLz6HQeq4seLOB5f/nxpnnZNt5KIPPvr/1Pxun8OCRmMpOLCEIwj/S+++/z+LFi4mPj/9Ltv+7U9hfst37ZZAuimmfZNZ0GBX6ZoYHI168VtNh3NOGr0N5bIZjT/r/Lqs/qcvoV67XdBgV+m1hfQY9fammw7in379vxsiXo2s6jAqt/7Ihn236Z1+OTB8mYe5Kx286/i7zn3Biyr9T752wBi2d48sTcxJrOowKrfx3IGNnxtV0GPf0y4I6dB1xqKbDqNCBDZ159PXYmg6jQms+DfnH5yOY83LC21WbmPfv9tP7tRgw2fGHan+Hbcsf/sfHCOY4H0QHmtkfIvxX63rJsSkN/k6iB4wg/EN9++23tG3bFm9vbw4fPszHH3/Miy++WNNhCYIgCIIgCIIgCA4QDTCC8A917do13nvvPTIyMqhTpw6vv/76fZssVxAEQRAEQRAE4X6Tyh6MuVhqimiAEYR/qM8//5zPP/+8psMQBEEQBEEQBEEQ7gPxK0iCIAiCIAiCIAiCIAh/MdEDRhAEQRAEQRAEQRCEapNIxRCkiogeMIIgCIIgCIIgCIIgCH8x0QNGEARBEARBEARBEIRqk8hEH4+KiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SWViEt6KiB4wgiAIgiAIgiAIgiAIfzHRA0YQBEEQBEEQBEEQhGoTP0NdMYnJZDLVdBCCIAiCIAiCIAiCIDzYjnd4pMb2/cjR4zW278oSPWAEQQBg2ieZNR1Chb6Z4cHvTmE1HUaFBumiGPZCVE2HcU+bFoXRd+LZmg6jQjt+bMnkeck1HUaFls/zZ8hzkTUdxj1t+W9jnpiTWNNhVGjlvwNZuOWf/TzolSES3llRXNNh3NO7k5yZsSi/psOo0CcvuPHSF9k1HUaFvnpVzczFBTUdxj0teN6VSe8k1XQYFVrxbgBPzU+p6TAqtGyu3z++nARzWfn8R9qaDqNCi2d5MviZiJoOo0Jbv2vCoKcv1XQY9/T7981qOgSHiDlgKibmgBEEQRAEQRAEQRAEQfiLiQYYQRAEQRAEQRAEQRCEv5gYgiQIgiAIgiAIgiAIQrVJxBCkCokeMIIgCIIgCIIgCIIgCH8x0QNGEARBEARBEARBEIRqk0hFH4+KiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SaRiEt6KiB4wgiAIgiAIgiAIgiAIfzHRACP85bp3786rr75q+T8kJIQvvvii0uvHxsYikUg4d+7cfY+tImXjFgRBEARBEARBEOyTyiQ19noQiCFIQrVNnjyZFStWlFt+7do1GjZsWG75yZMncXd3v68xLF++nFdffZXMzMx7pnvyyScBkEqlqNVqGjVqxKBBg3jllVfQaDSWtOvXr8fJyalS++/evTstWrSoUsPSg6RLC2d6t1WgcZeSmGbgt70FxNw22Eyrdpcwsrsrdfxl+HpK2XemmHV7C8qlaxHqxODOLvhopKRlGdlysJDz0TqH4vPq3Ib6r09B06oZLrX8ODVqKsmbd1e8Tpe2NPnkTZRNQilKSCHm0++JW/KrVZqAEX1pNO8V3BrUIT8mjqh3Pid50y6HYgQY0NWDEX088dTIiUssZunaFCKiy+dNiaahrjw12o86gc5kZOnZsCOD7QezLO8HBzozbogPDeq44O/txPdrU9iyR+twfHebOCKAgT18ULrLuBKTx9crbnHzdmGF63Ruo2HS6EAC/RQkphSxfG0ih0+Xxvv4EH86tdEQHOhCsc5IxLU8vv81gVtJRVWOr2dbVwZ0dMdDJeV2ip6ft+dwNc7+8RNW14mx/VTU9pOjzTGw7XA+e0+V5v2bkz0JD3Eut975q0V8/nNmleMDGNjNk5F9vczfd0IR361JrvD7bhbqxpQxftSppSAjU8+6HelsP2C9744tVYwf6kugrxOJqTp+3JTKsXM5DsVXolc7NwZ2dkejlHE7Rc+qbVlcvVlBXoY4M66/mtp+cjJzDPx+KI+9J/Ot0ri5SBjdW0WbJi64uUhJyzTw87ZsLlyr+ncNcOnwz5zdt5T8nFS8/BvSadhb1KrfxmbamIs7uHzkV9ISIjHoi/EKaEjbvi9SJ6yLJU1G0jVO/Pklqbcuk6NNoNPQ2TTvOsmh2Eq0DZPSuakMpRukZprYdsLAzRSTzbRKV+jfRkYtbyleajgeaWTbyfJlqosT9Golo0kdKS4KyMyB7af0XLtte7uV0bGpnO4t5KjcJCRrTWw6XMyNRKPNtCo3GNLRmSBfKT4aCYcu6tl82PrYaFZPRq9Wcnw0UmRSSM0ysf+8jjNXbdcRldHlYSd6tVagdpeQmG5k/f5CYhLs1DluEkZ0dSHYT4qvp5T954pZv9/6OAvwkjKog4Jgfxneainr9hey72yxw/EBdGgqo1vz0nzcfFhHbJL9fBzcwYkgXyneGgmHLxrYcqRsPkrp2dIJb40EmRTSskwcOK/nzDXH8xHMZWXJ+Z2QqmfVtux7nN9OjOuvppav+fz+41CeVVkJ5vN7VC+l1fn9y/ZsLlxzLE97tHGlf0c3S3n+y5+5XKugPG9U14nH+yrvlEFGth3OY9/p0vpp5iQPu+X5wl+yyi2vjAehnATo1lJBn3YKNEopCWkG1u4uIPqW3m760GA5o3u6UstHRmaukR3HCzl4rvR7lEqhf3sXOjRzxkMlJTnDwPp9BUTcsL/NexnY3ZOR/bzxKqkbVydz+Vq+3fTNGrnx9KP+pXXjn+ls2299rdOxlYoJw/xK68aNKRw9W726EWDcUD/6d/VE6SYj6kYBi1YlEJdQ8ffTsZWaicP9CPR1JjG1mJUbksvFMqi7FyP7+eDlYc6DJb8mVpgHwv8W0QNGuC/69+9PYmKi1atevXo20/r6+uLm5vY3R1hKrVaTmJjIrVu3OHLkCM8++ywrV66kRYsWJCQkWNJ5eXmhUqlqLM5/ilZhTozu4cqfx4r4cGUO0bcNTBulxFNlu5VZLpOQm29i+7FCbqfYvnCsFyjjqSFunLhczIcrczhxuZgpQ9wICZA5FKPM3Y3sC1FcfuXdSqV3DQmi7ZYlZBw6zaG2w4n+aDFNP3+bgBF9LWk82reg5c+fc3vVJg62HsbtVZto9csXeLR72KEYO7dWMWWMH2u3Z/DaBzeJiM7nnWlB+Hjabgf383binWlBRETn89oHN/ltewZPP+pPh5ZKSxqFs5TkNB0/bkwlI8vxi6GyHh3kx8gBfny9Mp6X5kahzdLzn1kNcXWxX2U0bujG2y/WY/dhLS+8fYXdh7W8/WI9whuUnusPhSvZvCuNV+Zf5c2PYpBKJXw4qyEuiqpVRe2aKhjXX8WWg3m8szidq3HFTJ/ggZfG9nZ8PKRMH+/J1bhi3lmcztaD+YwfoKJNY4UlzVerM3nlk1TL661v0jAYTZyMqLjRyZ7ObVQ8/ag/a/5I55X3bnA5uoB5L9XB18737e/txNyXgrkcXcAr791g7bZ0nn0sgI4tS8ugsPquzHymNnuPZ/Hyv2+w93gWs56tTaMQF4diBHikmQvjB6jZvD+XdxalcfVmMTMmeuFtNy9lzJjoydWbxbyzKI0tB3KZOFBNmyalMchkMHOSFz4eMr76Vcushaks25iJNsexG8lr5/7g0OYPad37eca8toHA+m3Y+v2z5GgTbKZPvH6K4EYdGTRlCWNeXUftBo/wx7KppN6OsKTRFRei9gqm/cDXcVP5OhTX3ZqFSBnQVsb+iwYWbdFxM9nEhN5yNHaeNcilkFcI+y8YSM6w3Zgik8KkvnI8lRJW79Pz5QYdm47qya7GNXrzBjKGdnJi1xkdn68t5HqigacHKfBQ2i/P8wpM7D6tIzHNdpwFRSZ2n9Hz1fpCPl1TyMkreh7r4UyjYMcuMVs1kjOymwt/nijio1V5xCToeWG4m/06Rw65BUZ2nCzmdqrtBhBnJ0jLMrL5UCFZebbTVEXzBjKGdHRizxk9C38r4kaikSmDnCvOx0LYfUZPYrrtfMwvgt1ndHyzoYjP1hZxMkrPmB5ONApy/FK93Z3ze8v+PN5ZlEbUzWJen+BZQVkp4/UJnkTdOb+3HshjwkA1bZqUlpUyGbwxyQsfTxlfr87kzS9TWbYpC222Y/natqmCsf2VbD2Yx7z/ZnAtTsdr4zV4qe2X56+N8+BanI55/81g68E8xg1Q0fqu8vyb1Vm8+kma5fWvb9MxGE2cinCsYeNBKCcBWoc7MaaXK9uOFvL+8myib+l5cYz96zVvjZQXRyuJvqXn/eXZbD9ayGO93WjZqPTh47AurnRtoWD1rnzmf5/NgbNFPD9CSbCfY9drXdqoeeaxANb8nsbL717n8rV85r1cB18vO3WjjxPzXq7D5Wv5vPzuddb8kcazjwfQsVVp3Rhe35VZzwax91gmL717nb3HMpn1bBCN6rk6FGOJ0f19GNHHm8U/J/LaezFos3S8Nz0E1wquWcLru/Lmc8HsOZrJi/Oj2XM0kzefq0PYXbF0aavmmccDWP1HKi+/G8Olq3nMf6Uuvl6Ve+grPPhEA4xwXygUCgICAqxeMpntwrnsEKQrV67QuXNnXFxcaNKkCbt27UIikbBx40ar9a5fv06PHj1wc3OjefPmHD16FIB9+/bx5JNPkpWVhUQiQSKRMG/ePLuxSiQSAgICCAwMpHHjxkyZMoUjR46Qm5vLzJkzLenKDkH69ttvCQ0NxcXFBX9/f0aPHg2YewDt37+fhQsXWvYfGxuLwWBgypQp1KtXD1dXV8LCwli4cKFVLJMnT2b48OF88sknBAYG4u3tzbRp09DpSp+qFBUVMXPmTIKDg1EoFISGhrJ06VLL+xEREQwcOBClUom/vz8TJ04kLS3N7uevql5tFBy9WMyRi8UkZxhZt7cAbY6RLi0UNtNnZBv5bW8BJyJ0FNh5GNajtYIrN/XsOFFEcoaRHSeKiIrT06O17W3eS+qfB7g69wuSNu6sVPq6zz5OYVwiEa9/QO6V68Qv+4345eupP/0pS5p6L00ibdcRYhYsIS/qOjELlpC25xghLzn2lHxYL092Hcli5+EsbiUVs3RtKmlaHQO6ethM37+LhtQMHUvXpnIrqZidh7PYfSSL4b29LGmibxayfH0qB0/loNM7/kS8rBH9/fhlUxKHT2URe6uQj/97E4WzhJ4dPO2v08+PM5dy+HVLMvGJRfy6JZmzETmM6OdnSfP2xzHsPJjBzduFXI8r4NPv4vD3cSY0pGoXSf06uHPgTAEHzhSQmGbg5+25ZGQZ6dnGdsNujzZupGeZ0yWmGThwpoCDZwvo37E0fV6Biaxco+XVrIGCYp2JE5cda4AZ3tubnYcz2XE4k1tJxXy/Jtn8fXeznYf9u3mQmqHj+zXJ3EoqZsfhTHYdzmRE39Lve1gvL85F5vHb9nRuJRfz2/Z0zl/JY2gvL5vbrIz+Hd3Zfyaf/acLLE/HM7KN9Gxnu+WgZzs30rOMrNqWTUKqnv2nCzhwJp+BnUrTd23lhrublIU/a7kWpyM9y8DVOB3xSY41Ep7fv5zG7UbR5JExePk3oPOwt1B6BHDp6C8203ce9hYtezyNf52H8PANof3A6Wh86hJ7ea8ljX+dh+g4ZCahLQchk1f/ordjEylnoo2cuWYkLQu2nTSQnQdtw2zXg5l55jTnrxsptPMQvWVDKa4KCT/v0ROXaiIrD+JSTCRrHT/XuzWXc+KKnhORBlIyzb02MnNNdGhq++ZHm2Ni02Edp68aKCy2vd+YBCOXbpi3l55t4tBFcyNDPQcb1Hu0UnD0so6jl3Uka42s31+ENtdI54fL92gAyMg2sW5/EScidXZjjEs2sulQEWeu6tFXr0MJAF0elnPyioETV8yfe8sRcz62b2L7M2tzzHl9poJ8vJ5g5HKskZRMExnZJg5fNJCUbiIk0PFL9f4d3ThwpoD9JWXlthwyso30amu7rOzZ1pX0LCM/b8shMc3A/jMFHDhbwIC7z++WrihdJXz5c+ad89vItTgd8cmOnd/92rtx8GwBB88Wkphm4Jc/zeV5j7a264XubVxJzzKnS0wzcPBsIQfPFtKvw13leaGJ7Dyj5dW0vjPFOscb1B+EchKgd1sXDl8o5vCFYpLSjazdbb5e69bS9rVV1xYKMnLM6ZLSjRy+UMyRC8X0aVfaUPRIU2e2HS3k0nU9aVlGDpwrJuKGjt7tHLteG97Hm52HtOw4ZK4bv1ttrhsHdrNdjw3o5klqho7vVt+pGw9lsuuwlpF9vS1phvb24mxEHmu3pXMrqZi128x147DejteNAMN6e7P691SOnMnmZkIRny27jcJZSrdHNPbX6ePD2Yhc1m5LuxNLGuev5DKsd2m8I/r4sOOQlh0HtcQnFvHd6iRzHnSvXrz/JBKppMZeDwLRACPUKKPRyPDhw3Fzc+P48eMsWbKEt99+22bat99+mxkzZnDu3DkaNWrE2LFj0ev1dOzYkS+++MLSsyUxMZEZM2ZUKQ4/Pz/Gjx/P5s2bMRjKX52dOnWKl19+mXfffZeoqCi2b99O165dAVi4cCEdOnTgmWeesew/ODgYo9FIUFAQa9asISIignfeeYe33nqLNWvWWG177969xMTEsHfvXlasWMHy5ctZvny55f0nnniCX3/9lS+//JLIyEgWL16MUmnuBZGYmEi3bt1o0aIFp06dYvv27SQnJ/Poo49W6fPbI5NCsL+MyFjrC4LIWD31azk+grFeLXm5bUbE6qlf++8ZFenRvgWpuw5bLUvdcRBN62ZI5OYYPNu3IG3XIas0aTsP4tmhZZX3J5dBgzounIvIs1p+LjKf8Pq2LzLD67tyLtL6UffZiDwa1nVB9heW3AG+znh7OHH6Uml3WZ3exIUruTQJtT90sElDd05fyrZadvpidoXruLuaP0hOXuXviGQyCKkl51KMdevepZhiGgbbvpFuGOxULv3F6GJCajnZzcsuLV04fqmQYgdGxcll0LCOC2fLfN9nI/Jo3MDe9+1WLv2ZiDwa1nW1xBhe37X8Ni/n0biBYz0KzXnpxKVo66fCF6OLCK0gLy/aSB9SuzQvW4UriI7X8cRgDV/N8uODF30Y0tUdiQPXRQZ9Mam3LxPcqJPV8uBGnUiOPVupbZiMRnRFebi42b9org6ZFAK9JcQkWPcAiE4wUsfX8YvB8GAp8SlGBreXMfNRJ6YNldP1IalD+VgSZ21fKVfjreO8Gm8gJOD+FSoNa0vx85BwPbHqLR0yKQT7Sbly07p+uHJTT71Axxp07jdzPkq4Gm/9+a7dMt73fPT1kNgdHnYvMhmEBDpxKcb6fL0UXUTDOrYbsxoGO5crDy5FF1mVlS3DXe6c32q+nOnL+9O8Gezg+S2TQt1aci6XKZ8vXy+mYZDtMqhBkBOXr5dJH1NESC15BeW5KycuFTlUnj8I5SSY87JOgIzIG9YfMvKGzu61Vf3a5dNH3NBRN0CG9E6ccjnoDNaNhjo9NAyq+vWaXAYN69qoGy/nEm63bnTl7OVcq2VnLt+pG2Uladw4G1E2Ta7d+rYyAnyc8PJw4sxd+9brTVyKyqNxQ/t1rrmethHLnXXkMgkN69r6TLkO1+XCg0fMASPcF1u3brU0CgAMGDCAtWvX3nO9HTt2EBMTw759+wgICADg/fffp0+fPuXSzpgxg0GDBgEwf/58mjZtSnR0NOHh4Wg0GkvPFkeFh4eTk5NDeno6fn5+Vu/FxcXh7u7O4MGDUalU1K1bl5YtzTfiGo0GZ2dn3NzcrPYvk8mYP3++5f969epx5MgR1qxZY9VA4unpyddff41MJiM8PJxBgwaxe/dunnnmGa5evcqaNWvYuXMnvXv3BqB+/fqWdRctWkSrVq344IMPLMuWLVtGcHAwV69epVGjRuU+Z1FREUVF1hcGCoXtJxlKVwkyqYTsfOsLwJx8I2p3x4sPtbuEnDLdwHPyjKjc/p6Wa4W/D0XJ1r2EilPSkTo54ezjSVFSKooAH4qS063SFCWnowio+nAFtVKGTCYhM8f6piIzR4+nnTEKHmo5mTl55dLLZRLUShna7PvwGNcGLw/zBaU2y/qiLDNbj5+37Yt2AE8POdoyw6C0WXo8NfaPk+fGB3ExKpfYW5V/Kqlyk5qPyTLHT3aeAY3SdnwapZTsMo082XlG5DIJSjcpWbnW26pXW06wvxPLNls3KFWWWik3f9/Z5b9vD7Xt79tTLSt/fGSXfN9ytNl68zFRdpvZejzVjt2YqtykyGSScp8/O9eARmW7TPBQyriYa11+ZOVa56Wvp5zG9WQcvVDApz9m4O8tZ9JgDVKphE37cm1u157CPC0mowFXlbfVcjeVN/E5levpd27/D+iK82nQfECV9l1ZbgqQSSXklpneJ6/QhNLV8RtyT5WEeoESLlw38uMuPd5qCYMfkSGVwL4LVb8pd3cxl+c5+dY3UzkFpmqXvS7OMOcJV+RSMJpg/cFirt1yIEZXOzHmm1D/TfXDvbi72P6+c/JNqBwcdlXCxRnenuhiyccNB3UO5SPYP7+z8oxolLbj1Cil5YZolT+/ZTSu58zRCwV89qMWf285TwxWI5PCpn15NrdbYYxSW2WQEU0D+zFml/1MuRWU57XkBPnL+cHB8vxBKCcBlG62r9ey80yo3W3npdpdSnaedZ2SnW9EJpOgdJWQnWci4oae3m1diI7Xk6o1Eh4ip3mok0MNRSV1o7ZMPabNMdDKzrWCp0ZebliWNluPXH6nbrxznWG7bnT8OrXk2sXWdn297fea9NTYuRa6E4vlerDcdg0VXi89aCRS0cejIv8737RQo3r06MGiRYss/1d2kt2oqCiCg4OtGi7atWtnM+3DD5fOvREYGAhASkoK4eHhjoRcjslkvuCT2KhV+vTpQ926dalfvz79+/enf//+jBgx4p5z2SxevJjvv/+emzdvUlBQQHFxMS1atLBK07RpU6vhWoGBgVy8eBGAc+fOIZPJ6Natm83tnz59mr1791o1fpWIiYmx2QDz4YcfWjUMAcydOxeUr9r/IDZ6TJuqOeKl7OqOPvVxPIAyEZQEcPdyW2mq8cHLbY7S464y6c1r2Pw6HNazoyevPBls+f9fn17H3k7utV+bWWpnpRcnBVEv2IXp/75W6Vgr3BcVH0BV+dq6tnQlPlnHjdvVm1en3DF+r/T2Dsm7tmTrkLifx0PJjivKr3udu1KJuUF12aYsTCaITdDjqZIxsLO7QzcWUP77Ncd370Lj2tmtnNzxNQOe/Aa3Mo04f4fqfDcSIK8ANh81YDJBYoYJtRt0aipzqAGmov1U9yAqKobP1hSicILQIBlDOzqTkV1UrldQZd33Y/ovYOs8qG69WFQMX6wtwtkJQmub55nJyDFx3cF8tBkn94jTTjlUouT8/mFztvn8TtTjoZYysJN7lRtg7JHco1wrn/d36kYbK3Vp5cqtZD03Eu7fPGl3dvqPKyfBfj1S6TjL/L9mVz4T+rsx72k1JiBVa+TIxSI6PuTYECRbO733MWn9psSy2H7deK9jqKzuj2h4cWIty//zvrxpc7uVqHbKsRXLfb68FB4wogFGuC/c3d1t/uLRvZhMJpsNHrbc/YtEJesYjffvIjQyMhK1Wo23d/mLdJVKxZkzZ9i3bx87duzgnXfeYd68eZw8eRIPDw+b21uzZg2vvfYan376KR06dEClUvHxxx9z/Phxu58LzJ+t5HO5ulbcfdJoNDJkyBA++uijcu+VNFKVNXv2bKZPn261TKFQMP2r8r/OkltgwmAseXpS+gRC5SYt94SyKmw9kVFWc5tVUZScVq4ni7OvF0adjuL0THOapDQUAT5WaRR+XuV6zlRGdq4Bg8FU7mmMRiUn005PFltPbzxUMvQGEzm596/3y9EzWVyJLr1odnIyfy+eHk5WE/t6qOVkZtnvv63N1OPlUSZetbzcky6AqROD6NBSw+vvXyNNW7U+4Tn5RgxGU7knuCr38k8+S2TlGtEorXuJqN2l6A0mcss8LXR2Mk+4uGGv4xfA2bn6Cr5v2zcB2myDzfR3f9+2jwn7x9C95OQbMRjK56XaXUq2nWMsM9dwz7zMzDFgMFpfTCak6vFQyZDJwMYoT7tc3D2RSGXkl+ntUpCbfs8GlWvn/mDvmn/Rd+IXBDfqWPmdVlF+ERiMJpRlimt3F/MEto4yl7/W+ZiaZe6tIpOCoYrVX16huTwv29tF6SohpxpxgvnmIj3bvI2EdD1+nuZf9Im5x6+FlIuxpM4pE6PKTUL231Q/3Eteofn7VpX5vpWuEnLvYz4mpuvx85TQo6Wc6wlV/3WhkvPbw9b5bWciYnNZWT691fmda97u3cdlooPnd0XledleLhXHKEFvMJFXUKY8l5snbd9YjYahB6GcBMjNN587mnLXa+V7jJbIzjOicS97rkkxGEyWYzm3wMTiDXnIZeZjPDPXxIhurqRlVf3621I3aspf29itG7Ns1HtqOXq9yTJ82VaaiupbW46fyyHqRozlfye5OV881dY9WjxUtq9rrOIt+/nu6r1quR7UlI3Xfh48iB6UuVhqiugfJNSo8PBw4uLiSE5Otiw7efJklbfj7Oxsc+6WykpJSeHnn39m+PDhSO10m5PL5fTu3ZsFCxZw4cIFYmNj2bNnj939Hzx4kI4dOzJ16lRatmxJw4YNiYmJsbVpux566CGMRiP79++3+X6rVq24fPkyISEhNGzY0OplrxeSQqFArVZbvewNQTIYIT7ZQHiIdUURHiLnejWeJt1I0NO4rvU2G4fIuV7NHgeVlXnsHD69rG/IfPt0Juv0JUx6cwzaY+fw6WU974RP785oj1Zu3om76Q0QE1dI88bWPaZaNHbjynXbP0t85XoBLcqmb+JO9M3CKt94VaSg0EhCSrHldfN2IemZOlo1K/2FAblMwsPhSiKu2b+IjYjOs1oHoHUzdbl1pj0RROc2Gt74MJqk1KrfVBgM5ieFTRtYDzdq2sCZ6HjbjTnR8bpy6Zs1cCY2QVcuL9s1dcFJLuHIBccmawTz9x0dV0jLxtbnYIvG7kTG2Pu+82lRJn3LJu5E3yywxGg+JsqniYxx7GdxzHmpo1kD6/O/WQNnrlWQl83K5mVDBbG3S/PyapwOPy+Z1ZPXAG/zsLmqFtMyuTO+tZsSf/WI1fJbV4/gH2J/PqZrZ7ey59fZ9B7/CSFNuldtp1VkMEJiuokGZSZLbVBLSlyq4zfkcSkmvNTWfX+81eaGCEfKAIMRbqcay/2qTqMgmd2fT64OuQMj4wxGiE8xEl7Hun4IqyPnhgNzyvwVzPloIjTY+gOG1pb+Y/IR7pzfiTqaljm/mzZQEB1nu+yNji8ul75ZA4VVWXktrhg/L7nV+e3vLXfo/DYY4WaCnib1y5Tn9Z2JvmW7DIq5paNp2fQNnIlN0Jc7L9reKc+PVqM8fxDKSTDnZVySgcYhZa+tnOxeW12/baBxiPVDwMb1nLiZZKDs8029ATJzTUil0DLMifMO/OS43mD+8YCy9ViLJkqu2K0bC2jRxLqXt6VuNJSkyadlk7J1o9JufWtLQZGRxJRiyysuoYiMTB0tm5buWy6T0CzMncho+3Wu7XiVlnX0BhPRNwtoaSuNg3W58OARDTBCjerTpw8NGjRg0qRJXLhwgcOHD1sm4a1szxgw/7JSbm4uu3fvJi0tjfx8+4WYyWQiKSmJxMREIiMjWbZsGR07dkSj0fCf//zH5jpbt27lyy+/5Ny5c9y8eZOVK1diNBoJCwuz7P/48ePExsaSlpaG0WikYcOGnDp1ij///JOrV68yZ86cKjcuhYSEMGnSJJ566ik2btzIjRs32Ldvn2Ui32nTppGRkcHYsWM5ceIE169fZ8eOHTz11FPVapC62+5TRXR8yJkOzZzx95IyqrsLXioph86bn2wO7eLCEwOsGwqCfGUE+cpQOIHKVUKQr4wA79LiZu+ZIsJD5PRpp8DfS0qfdgrC68jZe9qxn4iUubuhbh6Ourl5OJpbvSDUzcNxCTb3Agp7bzrNfyjtJXRzya+41q1F44/fRBlen6DJowh+chTXP1tmSRP79Up8+nSi/oxncA+rT/0Zz+DTqwOxX61wKMZNu7X06eRBrw5qggKcmTLaFx9PJ7YfzARg4jAfXp1UOhRv+8EsfL2ceGqUL0EBzvTqoKZ3Rw0bd2VY0shlUC9IQb0gBU4yCd4ecuoFKQjwrd6vumzYnsLYIf50aq0hJMiFGc/WoajYxJ6jWkuaN56ry1OPlvay2rgjldbN1Dw6yI/gQAWPDvKjZVMVG/5MsaR5aVIQvTp68uGimxQUmsc7e2rkODtV7UnJn0fz6NbKlS4tXQj0kTG2nxJvjZS9p8zn/eheSp4Zobak33sqHx+NjMf7KQn0kdGlpQtdW7my/Uj5cqJLS1fOXCmqVs8FgI270unT2YPeHTUEBTjz9Bg/fL2c2HbAnIdPDPfltcml+bd9fyZ+3k5MGeNHUIAzvTtq6NPJgw07Sr/vzbszaNnEnVH9vAnyd2ZUP2+aN3Zn8+6McvuvrO1H8ujW2o2urVyp5Stn3AAV3hoZe06Y82ZMHxXPjiqdvHbPiXx8PGSM66+ilq+crq1c6dbKjT8O592VJg+lm5QJA9UEeMto3kjBkG5Kdp1w7OKyebfJRJ74jcgT68hIjuHQpg/JyUykWfvHATj6x6fs+mWWJf21s1vZ/cubdBoyi4A6zcnPTiU/O5WigtKJpQ36YtJuR5J2OxKDQUdeVjJptyPJSrvpUIxHIoy0CpXSsqEUHw30bytD4w4no8zlcO9WMkZ2tr6TDvCUEOApwVkObi7m/33vmif4RJQBNwUMaCfDWw2Nakvo+pCME1ccL9v3n9fTrrGctuEy/DwkDO3ohIdKwrHL5hu0AY848XhP6xvHWt4SanlLcHYCpYv5b3/P0nO2Z0s5oUFSvFQSfD0kdH1YTptGMk5fc6xBfe+ZIjo0c6J9Eyf8PaWM7Kow1zkXzDd8QzopmNjX+qfXa/tKqe0rReEkQelq/jvAq7TOKZmAuLavFLkUNO4SavtK8dE49pT24AU97cJltAkz5+OQknyMMH83/dvJeayHdTkc6C0h0FuCQi5B6Wr+3++ufOxRJh+7PCyndSMZZ686/n1vP5J/p6x0JdDHfN56a6TsOXnn/O6t5NmRd53fJwvw8ZAytr/qTlnpStdWrmyzOr/zUbpJGD9AhX/J+d3Vnd0Ont9/HsunaytXOrcwl+eP91PipZGy75T55nlUL3eeHl7auL/vVAHeGhmP9TWX551buNClpSt/HrVVnrvcl/L8QSgnAXadLKRTcwUdH3ImwFvKmJ6ueKqlHDhnPneGd3Vh8qDS67UD54rwUksZ3dOVAG8pHR9yptPDzuw8UdpgFRIoo0UjJ3w0UhoGyXl5jBKJBHYcd+x6bePOdPp28aRPJw9z3fioP75eTvyx31w3Thrhx/SnSocCbduvxc/biacf9ScowJk+nTzo09mT9TtK5+gz141KRvX3JijAmVH9vWnR2J1NuxyvGwE27Urn0YG+dGipom4tBa89VZuiYiP7j2dZ0kx/qjaTRvqXxrIrjVZNlIzu70NQgDOj+/vQorGSTbtK492wM82SB8GBCp55LMCcB/uqF6/w4BBDkIQaJZPJ2LhxI08//TRt27alfv36fPzxxwwZMgQXF5d7b+COjh078vzzz/PYY4+Rnp7O3Llz7f4UdXZ2NoGBgUgkEtRqNWFhYUyaNIlXXnkFtVptcx0PDw/Wr1/PvHnzKCwsJDQ0lF9++YWmTZsC5gmCJ02aRJMmTSgoKODGjRs8//zznDt3jsceewyJRMLYsWOZOnUq27Ztq1IeLVq0iLfeeoupU6eSnp5OnTp1eOuttwCoVasWhw8fZtasWfTr14+ioiLq1q1L//797fbkqaozUTrcXQsY0MEFtbuExDQD367PJeNON2mNuxRPtfW+Zk8qvViqGwBtmziTnmXkne/Mk+DdSDDww9Z8BndyYXAnF9IyjSzdmk9skmMXmprWzeiw+0fL/00+MedP/Mr1XJgyG0WgL67BpTe7BbG3ODnkWZp8Opu6L4ynKCGFy6+9T9KGHZY02qNnOTt+OmHzXyVs/svkx8RzdtxrZJ644FCMh07noHKX8dggH7zUMm4mFvPuN7dIzTDfpHhq5Ph4lV6wp6TrePebW0wZ7cfAbh5kZOn5fk0yR8+WDo3x0sj54u0Qy/8j+ngxoo8XF6/m86/P4x2KE2DN7ykonKW8ODkYlZuMK9fzmL0gmoLC0kdift5OVuOvI67l8cE3sUweHcik0YEkJhfz/jc3uHLXE50hvc3Dvj59O9Rqfx8vucnOg5W/8DhxuQilWw7DuinRKKXcTtHz2apM0u90ifZQSfHWlN7spmUa+WyVlrH9VfRq60ZmjpFV23I4FWl9AenvLSOsrjMfr9RSXYdO5aB2T+bxQT54aeTcTChi/tdxlu/bSyPH967vOzldx/yv4nn6UX8GdfMkI0vPktVJHDlb2mhw5XoBC76/zcRhvowf6ktSajELvrvN1VjHn+4ev1SI0i2bYd2VeKhk3ErW8+mPWtKzzOeih7JsXhr45Ect4weo6fWIO5k5Bn78I5tTd/28a0a2kY9XZDBugJr3pvmizTGw42geWw86NgwgtMVAivIyObXzG/KyU/EOCGXwlP+i8qoNQH52KrnaBEv6y0dXYzTqObDhXQ5seNeyPKzNcHo9bm5kz8tOYc3nIyzvndu/jHP7l1GrfluGTy0tSyrrUqwRVwV0by5D5SojJdPET7v1ZN35yCpXynX1nzq09Puv7QPN68vQ5pr4fJ35qXp2Pqzcqad/WxlThzqRkw/HIg0cvOR4L4vzMQbcXXT0ae2E2l1CUoaJpb8Xoc01n8tqNwmeSus4pz9aOtYm2A9aNZKTkW3kg1Xm79zZScLILs54KCXo9JCSaeTn3cWcj3GsPD9zVY+7SyH92ytQu0lITDeyaFM+2pySOkdSrs55c3zp0+Q6/jLahjuRnm1k3jJzealRSqzS9G6joHcbBddu6fnyt6rf8J6PMeDmAr3byFG7mfNx2R/FZJbko7sED5V1Pr42pvSaJshPSstQORk5Rv6zylwOOcthRBcnNO6l+fjrHp3D+Qhw4lIhSlfJnfP7Tln5k9ZSVmpUMrzKnN+f/qRlXH81vdq5kZlj4Kc/sjkVUVpWZmQb+XillnH9Vbw31YfMHAM7juXzu4Pn98nLRShdcxnazd1Snn+xKqs0RqW0TIxGPv85k7H9lPRs60pmjvlns0+XLc+9ZDSq68wnP1a/PH8QykmA01d0KF0LGNTJBbW7lIQ0A1+vzSUj+668vOvcSc8y8vVvuYzp6Uq3lgqyco2s3pXP2aulPXuc5BKGdXHFx0NKUbGJS9d1/PB7HgVFjjVqHTyVjUop4/HBpXXjvC/jSM0w79PTo0zdmKZj3pdx5rqxuyfpWXqW/JrEkTN31Y0xBSxYcosJw/2YMMyPpNRiPlpyi6s3Kt8Dxpbftqfh7Cxl6vhaKN1lRF0vYM5nsRQUlZbBvt7OVsPIImMK+GhJPBOH+zNheEks8UTdFcvBk9mo3ZMYO8TPkgdzF9605MH/AqlMDEGqiMRU0QyQglADDh8+TOfOnYmOjqZBgwY1Hc7/G9M+yazpECr0zQwPfncKq+kwKjRIF8WwF6JqOox72rQojL4Tqz6U6u+048eWTJ6XfO+ENWj5PH+GPBdZ02Hc05b/NuaJOYk1HUaFVv47kIVb/tmXI68MkfDOiqp3u/+7vTvJmRmL/tld2T95wY2XvnDsV2n+Ll+9qmbm4urdwP0dFjzvyqR3kmo6jAqteDeAp+an3DthDVo21+8fX06Cuax8/qPqNyr9lRbP8mTwMxE1HUaFtn7XhEFPX6rpMO7p9++b1XQIDrk8rGeN7bvppj01tu/KEj1ghBq3YcMGlEoloaGhREdH88orr9CpUyfR+CIIgiAIgiAIgvAAEZPwVkw0wAg1Licnh5kzZxIfH4+Pjw+9e/fm008/remwBEEQBEEQBEEQBOG+EQ0wQo174okneOKJJ2o6DEEQBEEQBEEQBEH4y4gGGEEQBEEQBEEQBEEQqk1yn34I5H+VyB1BEARBEARBEARBEIS/mOgBIwiCIAiCIAiCIAhCtYlJeCsmesAIgiAIgiAIgiAIgiD8xUQPGEEQBEEQBEEQBEEQqk30gKmY6AEjCIIgCIIgCIIgCILwFxMNMIIgCIIgCIIgCIIgCH8xMQRJEARBEARBEARBEIRqE0OQKiYxmUymmg5CEARBEARBEARBEIQH29Wx/Wts341+2V5j+64s0QNGEAQARrx4raZDqNCGr0MZ9kJUTYdRoU2LwvjdKaymw7inQboodp4vqukwKtSnuYL8Fe/WdBgVcpv0DtvPFdd0GPfUv4UzMxcX1HQYFVrwvCtXY+JqOowKNWpQh9e+zq3pMO7p8xeVfLbpn/1sbfowyT8+Lz9/UcnclbqaDuOe5j/h9EDk5diZ/+zz+5cFdXhlYU5Nh3FPC19RPRDleb9J52o6jAr9uaIFfSeerekw7mnHjy1rOgSHSKRilpOKiNwRBEEQBEEQBEEQBEH4i4kGGEEQBEEQBEEQBEEQhL+YGIIkCIIgCIIgCIIgCEK1SWViEt6KiB4wgiAIgiAIgiAIgiAIfzHRA0YQBEEQBEEQBEEQhGoTP0NdMdEDRhAEQRAEQRAEQRAE4S8mesAIgiAIgiAIgiAIglBt4meoKyZyRxAEQRAEQRAEQRAE4S8mGmAEQRAEQRAEQRAEQRD+YqIBRrBISkqiT58+uLu74+HhAYBEImHjxo0AxMbGIpFIOHfuXKW3uXz5csu2/k629rtkyRKCg4ORSqV88cUXzJs3jxYtWvztsd3L5MmTGT58eE2HIQiCIAiCIAiCUCUSqaTGXg8CMQfM/6jJkyeTmZlpaTypjM8//5zExETOnTuHRqMp935wcDCJiYn4+Pjcx0gdi/VeHnvsMQYOHGj5Pzs7mxdffJHPPvuMUaNGodFoMBqNvPTSS/dtn/fLwoULMZlMNR2Glf5dNAzv5YmnRkZ8YjFL16USGVNoN33Thq48OdKH4EBnMrIMbNyl5c9DWZb3+3RU072dmjq1nAGIiSti1ZY0rt0scjjGAV09GNHHE0+NnLjEYpauTSEiusB+jKGuPDXajzqBzmRk6dmwI4PtB0tjDA50ZtwQHxrUccHf24nv16awZY/W4fi8Oreh/utT0LRqhkstP06Nmkry5t0Vr9OlLU0+eRNlk1CKElKI+fR74pb8apUmYERfGs17BbcGdciPiSPqnc9J3rTL4TgBDvz5K7s3LycrM43AoAaMmjyTho1b20wbc+UMm1Z9QdLtG+iKCvHyDaRT7zH0HDzRZvpTh7exfOEsHm7Tg2dnLnQ4xjWnr7LiWARpuQU08PVgRu/WtKrjZzPtO1uOsuXi9XLL6/toWPfsYADWn41m68XrRKeZj4HGAV681L05zWo5Xt4d/PNX9mxZTnZmKgFBDRg5aRYNKsjHLas+JznBnI+evoF07D2GHoOesJn+zOFtrPhyJg+16cHTb3zpcIwAHZrK6NZcjspNQrLWxObDOmKTjDbTqtxgcAcngnyleGskHL5oYMsRnVWaZvWk9GzphLdGgkwKaVkmDpzXc+aaweEYf9+6mfXr1qLNSKdO3RCeefYFmjZ76J7rRVy+xOxZr1M3JIQvv/6v1Xu5ubn8uGIZR48cJjc3B/+AAKY8/Rxt2j7iUIydmsnp0coZtZuEpAwjGw8WcT3Rdj6q3SQM7exMsK8MHw8JB8/r2Hio2CpN+yZy2oY7EeBlflZ2K9XA70eLiUuxvc3KunzkZ87vX0p+Tiqe/g3pOPQtAuu1sZn2+sUdRBz7lfSESAz6Yjz9G9Kmz4sEh3WxpMlIusapHV+SevsyudoEOgyZzcNdJlUrxgchL9uGSenURIrSDVIzYdtJA3EptutupSv0ayOjlpcELzUcjzSy/VT5fbs4Qa+WUhrXkeKigMwc+PO0gWu3Hb8meBDysk8HJYO7qfFQybiVrGPlZi1RsfavBxrXVzBhsCdB/k5osw1s3Z/NrmO5NtN2aO7Gy+N9OHkpn89WpjkcY+eHnejZyhm1u4SkdCPrDxRxPcF2maZ2kzC8q4IgPxm+HhIOnNOx4YD15wnwkjKwgzNBfjK81VLW7y9k/zmdze1VxYNQngNMGB7AwO7eKN1lXInJ55sfb3Hztv3rSoDObTQ8MTKQQD9nElOKWb4ukSOnS6/bHhvsR6fWHgQHKijWGYm4ls/SNQncSnL82nLiiAAG9vC5E2ceX6+oXJyTRgcS6KcgMaWI5WsTOXxXnI8P8adTGw3BgS534szj+1+rF6fwYBE9YASLmJgYWrduTWhoKH5+5W9kZDIZAQEByOX//HY7V1dXq88QFxeHTqdj0KBBBAYG4ubmhlKpxNvb+2+Lqbi4+N6JAI1GUyO9huzp1ErJU6N8+e3PDF7/TxwRMQXMmVobH0/bx4Gft5x/vVCLiJgCXv9PHOv+zGDKaF/at1Ba0jQNdeXg6RzmLLzFm5/Gk6bVMXdabbw0Modi7NxaxZQxfqzdnsFrH9wkIjqfd6YFVRCjE+9MCyIiOp/XPrjJb9szePpRfzq0LI1R4SwlOU3HjxtTycjSOxTX3WTubmRfiOLyK+9WKr1rSBBttywh49BpDrUdTvRHi2n6+dsEjOhrSePRvgUtf/6c26s2cbD1MG6v2kSrX77Ao93DDsd5+sh21i1fQL+Rz/DmR2to0LgV334wlYy0RJvpnRWudO33OK/N/4F/fb6RfiOfZevqrzi067dyaTNSE9j446c0aNzK4fgA/oyI5eOdp5nSqRm/TBlIy2BfXly9l8SsPJvp3+jTmp0vj7S8tr84Ao2rM33C61jSnIpLpn/TEL4b34sVT/QlUO3GC7/sISUn36EYzxzZzoYVH9F3xDO88Z+1NAhvzeIPX7CbjwqFK136j+XlecuZ/dkm+o58lj9Wf82RXWvLpc1ITWDjT5/QILx6+QjQvIGMIR2d2HNGz8LfiriRaGTKIGc8lLafIsllEvIKYfcZPYnptm8K84tg9xkd32wo4rO1RZyM0jOmhxONghy75Di4fx/fL1nEo4+NZeFXi2jatBnz3nmLlJSUCtfLy8vj808X0LxFy3Lv6XQ65rw9i5SUZN58aw6Ll/zAiy9Px9vbsQa3Fg3lDO+iYOepYj5Znc/1BAPPDnG1m48yGeQVmNh5qpiENNs3Rw1ryzhzVcc3GwtY+Fs+2hwTzw9zRePu+BO+6HN/cGTLh7Ts+TyjXtlAQL02/LH0WXK0CTbTJ944RVBoRwY8tYRRL6+jVoNH2L58Kmm3Iyxp9LpCVF7BPDLgddxUvg7HVuJByMumIRL6t5Fy4KKBxVv13Ew2MqGXDI277fRyKeQXmjhw0UCynXZ8mRSe6CPDQylh9X4DX23Us/mYgex8xxtfHoS8bN/cjSeGeLJxTxazFyYSdaOQN6f44u1h+3rA11PGzKd8ibpRyOyFiWzam8WkoZ60a+ZaLq2Ph4zxgzyIvF7xDfO9tAyVM6Krgh0ni/n453xiEgw8P8wVT5W9chJy803sPFFEQqrtfHR2MjdmbDlcRFZe9RpVSzwI5TnAowP9GNnfl29+vMVL866izdLx4RsNcHWxv83GDdx4a2oIu49kMHVOFLuPZPD21BDC6rtZ0jwcpmTL7jRe/fc1Zi+IQSaDD95ogMLZsVgfHeTHyAF+fL0ynpfmRqHN0vOfWQ0rjrOhG2+/WI/dh7W88PYVdh/W8vaL9QhvUBrnQ+FKNu9K45X5V3nzoxikUgkfzmqIi+J/57Zc9ICp2P/ONy1UqHv37rz88svMnDkTLy8vAgICmDdvnuX9kJAQ1q1bx8qVK5FIJEyePLncNmwNQdq8eTOhoaG4urrSo0cPVqxYgUQiITMz02rdP//8k8aNG6NUKunfvz+JieabkHnz5rFixQo2bdqERCJBIpGwb9++cvvesmULHh4eGI3mSurcuXNIJBLeeOMNS5rnnnuOsWPHAtZDkJYvX85DD5mflNavXx+JREJsbOw9hyBptVrGjx+Pr68vrq6uhIaG8sMPP1jev337No899hienp54e3szbNgwYmNjLe+XDCX68MMPqVWrFo0aNWL27Nm0b9++3L4efvhh5s6da7VeCaPRyEcffUTDhg1RKBTUqVOH999/v9JxVNfQnp7sPprFrqPZ3ErWsWxdGulaPf27lO8lBdCvs4Y0rZ5l69K4laxj19Fs9hzLZngvD0uaL1Yks/1gFrG3i7mdrOPbn1OQSODhMDeb27yXYb082XUki52Hs7iVVMzStamkaXUM6OphM33/LhpSM3QsXZvKraRidh7OYveRLIb39rKkib5ZyPL1qRw8lYNOX/0eSal/HuDq3C9I2rizUunrPvs4hXGJRLz+AblXrhO/7Dfil6+n/vSnLGnqvTSJtF1HiFmwhLyo68QsWELanmOEvOT40+c9W1fSoecIOvYaRUBQfUZPnoWnTwAHd6yxmT64XmPadB5IYHBDvP1q067rYBo370RM5BmrdEajgeVfzmbgo1Px8QtyOD6An05cYXjzBoxs0ZD6Phre6NOGALUba89ctZle5eKMj9LV8opITCe7oJihzetb0nwwrBOPtm5EmL8X9Xw0zBn4CCaTieOxSQ7FuO/3lbTvOZIOd/Jx5ORZeHoHcHjHapvpg+o1pnWn0nxs22UI4Q93JOZK+Xxc+dWbDBgzDW//6uUjQJeH5Zy8YuDEFQMpmSa2HNGRmWuifRPbNz/aHPMT1TNXDRQW2z4vricYuRxrJCXTREa2icMXDSSlmwgJdOySY+OGdfTp259+/QcSXKcuzzw3FR9fX7b9vqXC9b756gu6de9JeHiTcu/t2rGd3Jwc3p4znyZNm+Hn70/Tps2oV7+BQzF2b+HE8Qg9xyP0pGhNbDxUTGauiU4POdlMr80xseFgMaei9BTaaZv/aWcRhy/pSUgz5+XqvUVIJBAa5FhDNcDFg8sJbzuKxo+MwdO/AZ2GvoXSI4CIY7/YTN9p6Fu06P40fsEPofEN4ZEB09H41OVmxF5LGr/gh+gweCYNWwxCKrf9eaviQcjLjo2lnI02cibaRFoWbD9lJDsP2jayfYxn5sG2k0bOXzfZPW9aNpTiqpDwy14D8akmsvIgLsVkt8GmMh6EvBzURcXek7nsPZFHQoqelVsySc800Ke90mb63u1VpGsNrNySSUKKnr0n8th3KpdB3dRW6SQSmDbWm992ZpGSUb2HKN1bOXPsso5jl3Uka41sOFCENtdoNx8zckysP1DEySt6Cux833HJRjYfKuLsVT366nUmsXgQynOA4f18+XVzModPZ3HzdiGffBeHwllKj/aedtcZ0c+XM5dzWL01hfjEIlZvTeFcRA4j+pU2+r796XV2Hsrg5u1CrscX8un3cfj7OBNar3zjXGWM6O/HL5uSOHwqi9hbhXz835sonCX07FBRnH6cuZTDr1uSiU8s4tctyZyNyGFEv9KHwm9/HMPOg3fijCvg0+/uxBniWJzCg0c0wPw/smLFCtzd3Tl+/DgLFizg3XffZedO883gyZMn6d+/P48++iiJiYksXHjvoQGxsbGMHj2a4cOHc+7cOZ577jnefvvtcuny8/P55JNP+PHHHzlw4ABxcXHMmDEDgBkzZvDoo49aGmUSExPp2LFjuW107dqVnJwczp49C8D+/fvx8fFh//79ljT79u2jW7du5dZ97LHH2LXLPCTjxIkTJCYmEhwcfM/PN2fOHCIiIti2bRuRkZEsWrTIMvwqPz+fHj16oFQqOXDgAIcOHbI0Lt3d02X37t1ERkayc+dOtm7dyvjx4zl+/DgxMTGWNJcvX+bixYuMHz/eZhyzZ8/mo48+ssTz888/4+/vX6U4HCWXQYNgBecirXsBnIvMI7yei811wuq5ci7SuifC2Yg8GtRxQWanxHF2liCTScjNr/pTILkMGtRx4VyE9T7PReYTXt92ZRZe37XcZzobkUfDuvZj/Lt5tG9B6q7DVstSdxxE07oZkju90DzbtyBt1yGrNGk7D+LZofwT/8rQ63XEX4+kcXPrc7Dxwx24EXWuUtuIvxHJ9ahzhDaxHmqz7bfFKNWedOw50qHYSugMBiITM+hQP9Bqeft6gZy/Vbnu5RvPx/BIvQBqaWxf4AMU6gzojSY0Ls5VjtGcjxGEPWydj2HNO3Lj6rlKbePWjUhuXD1Hw8bWQ0O238nHDtXMRzA/ca/tK+FqvPXV/7VbRkIC7t+J0LC2FF8PCTfsDHuoiE6nIzr6Ki1bWR9PLVu2JjLyst31du3YTmJiAmPH2x4Kd/z4UcIbN2Hxt18xcdwYpr3wDGtW/4zBUPU7IZkUgvykRMVb3+RFxesJCXC8saQsZzlIpZBf5FiDsEFfTOrtywQ16mS1PCi0E8mxZyu1DZPRiK4oD4Wb7Qb46noQ8lImhUBvCdEJ1uvGJBoJ9nX86WtYkIT4VBODHpHxxhg5U4fI6dJMisTBTT4QeSmDerWduXDVuofKhWuFNApR2FwntK4zF65Zpz8fVUj9IGer+ntUbw05eUb2nbTdM7LSMUoh2E9KVJx12RB100C9wPuXj9X1IJTnAAG+znh7OHH6Uo5lmU5v4mJULk1C7XQhAxo3dLdaB+DUpRyaNLS/jrur+fvJya16uW4vzgtXKo6zSUN3Tl/Ktlp2+mJ2heu4u5q/n5y8+9QSJ/zj/fPHkgj3zd29LEJDQ/n666/ZvXs3ffr0wdfXF4VCgaurKwEBAZXa3uLFiwkLC+Pjjz8GICwsjEuXLln1zgDzBfTixYtp0MD8ZPHFF1/k3XfNwzCUSiWurq4UFRVVuF+NRkOLFi3Yt28frVu3Zt++fbz22mvMnz+fnJwc8vLyuHr1Kt27dy+3rqurq2Woka+vb6U/X1xcHC1btqRNG/MNUEhIiOW9X3/9FalUyvfff4/kztXRDz/8gIeHB/v27aNvX/MwEXd3d77//nucnUtv4h5++GF+/vln5syZA8CqVato27YtjRo1KhdDTk4OCxcu5Ouvv2bSJHOvhgYNGtC5c+cqxXG3oqIiioqsx5kqFLYvdFRKGTKZhMwc60ohM8eAh9p28eGplnHWRnq5TIJaKUObXb6CeWKYDxlZes5fqfpwD7UlRuuLzMwcPZ52+oN7qOVk5uSVS19RjH83hb8PRcnWDQrFKelInZxw9vGkKCkVRYAPRcnpVmmKktNRBDg2DCA3W4vRaEClsR6ap9J4k51ZcePGv57vTW62FoPBwMAxL9Cx1yjLezFXznJ0zwbeXFB+OE1VafOLMJhMeLlbNwB6u7uQnmd/zp8SqbkFHI5J4INhnSpM9+Xes/ipXHmkXmCF6WzJu5OPahv5mJOZbmcts3de6GX+HgwGBox5gQ535eP1K2c5tnc9Mz8qP7zLEe4uIJNKyC2TbTn5JlTB1btgd3GGtye6IJeC0QQbDuq4dqvqF+zZ2VkYjUY8PKyfOHp4epKptd01IOH2LVYsX8p/FnyOTGb7BikpKYkL58/RvUcv5s5/n4SE2yz+9isMBgNjx9lutLHH3VWCTCohp8xQkZx8E2q3+9cdenAHZ7JyTeVusCqrME+LyWjAVWl9XLqqvMnPqVzj5fkDP6ArzqdB8wEOxXAvD0JeuinM501emVEtuQWgrOV4jJ4qCfWUcPG6iZ926/FWSxj0iAypFPZfqPq58yDkpdrdXH9nlblBzsoxoFHZfsjjoZKRlWOd+Vm55msMlbuUzBwjjeo6072tO7O/cKwH491K8jG7zAOinAITKvd/yBMbHozyHMBLY7521GZbzzWjzdbh523/gYenRk5mlvU6mVk6PDX2b2WfHVebS1G595yzxWacHubeTdqy+8zWVxynhxxtmWHr2ix9hXE+Nz6Ii1G5xN6q3lC5fxKJ9J9zbvwTiQaY/0cefth6XojAwMB7jqGvSFRUFG3btrVa1q5du3Lp3NzcLI0v1dlv9+7d2bdvH9OnT+fgwYO89957rFu3jkOHDpGZmYm/vz/h4eFV/yB2vPDCC4waNYozZ87Qt29fhg8fbumdc/r0aaKjo1GpVFbrFBYWWvVueeihh6waXwDGjx/PsmXLmDNnDiaTiV9++YVXX33VZgyRkZEUFRXRq1cvm+9XNo67ffjhh8yfP99qmblhznYPHFskEqhonuCyb5U8wbO1zvDennRurWLOwlvVGupTdtsSqHAy4/JvmYP8R01/XO5D2chIW2mqO4lzmUeuJkyWBj57Xn13OUWF+cRevcCmnxfiGxBMm84DKSzIY+VXsxn73FyUavvddqscYpn/TYCk3NLyNl+IQeXiTI8w+8N3lh+9zPaIm3w3oTcKeTWecJYL0lR+WRmvzF9hzsdrF9jy8xf4BNShdSdzPv749Wwef3befc1HsH2+VvcQKiqGL9YW4ewEobXN8xJk5Ji4nuDYRXvZ489kMpU7TgEMBgMfL/iQceOfoHaQ/e/YZDSi8fBg2kuvIpPJaBjaiIz0dNavW1vlBhjLNiu5zBE9WzrRspET32woqP5whbL5Ziqfv7ZEn93K6Z1f02/yN+Uace63ByEvbRa91YhLIoG8Qth8zIDJBIkZJlSuRjo1lTrUAGOJs5LLHHHfjstqVmMlR6/JBC4KCdPG+vDdugxyHOhVa5fNjPxHXTEA/7zyvEcHT16ZXFoWz/nsus1AJdz7BCp/2WZ/nWkTa1MvyJXX3792zxgBenb05JUnS3vH/+tT23HaWWT9vq1LNzsrvTgpiHrBLkz/d+XiFP43iAaY/0ecnKzHqkokEsucKo4wmcrflNm64bW1X0d+5ad79+4sXbqU8+fPI5VKadKkCd26dWP//v1otVqbw4+qY8CAAdy8eZPff/+dXbt20atXL6ZNm8Ynn3yC0WikdevWrFq1qtx6vr6lvQ/c3cv3wBg3bhxvvvkmZ86coaCggPj4eB5//HGbMbi6VjwetLJx3G327NlMnz7daplCoeDx1+PKpc3JNWAwmPBQWd+EapQysnJsj6nWZhvwtJFebzCV6145rJcHo/t6Mvfr29xMcGzIVPadGD3L9MjRqORk2unJkpmtL5feQ3UnRge6qv4VipLTyvVkcfb1wqjTUZyeaU6TlIYiwHrSUIWfV7meM5WlVHsilcrIKdPbJTcro1yvmLJK5nWpXacROVkZ/LF2EW06DyQtOZ701AT++9HLlrQmk7ncefnxlsz5YjO+AfceEljC002BTCIhvczj54y8wnK9YsoymUxsOn+dQc3q4WSnZ8TKYxEsPXKZxeN60cjPsYYO9zv5mF2mt0tO9r3z0ftOPtaq04iczHS2r11E607mfMxIvc13C0p/ua0kH18b24K3P9+CTxXyEcw3ewajCVWZYkbpKiG3oHpX7CYgPdu8jcR0PX6eEnq0lHO9iue5Wq1BKpWi1WZYLc/KzLQ5WXlBQQHR165yPSaaxYu+NsdiMmEymRg2uB/vvvcfmrdoiaeXF3K53KqHTFBwHbTaDHQ6Xbl6qyJ5BSYMxvK9ClRu5XsfOKJ7Syd6t3Fm0aYCEtMdr7Nd3D2RSGUUlOntUpCbfs8Glehzf7D/t3/Re8IXBIWWHyZ8vzwIeZlfZD5vlGXOG3cXc/yOys03YTBZ37ylZplQuZl/fcZQxXAfhLzMzjPX35oy1wxqpYxsO3VxZo7BZnq9wURuvpEgfyf8vOS8Mbm0/iy5VP3pw2Cmf5xYpTlhLPnoLgVKP6fK9f7k4/3yTy3Pj53NIiqmtMexk5O5Z4SnxsnqBw481HK02fa/F3MvEuty2d46UyfUpkNLDa9/EE2atnK/LHX0TBZXom3E6VE+zrI9cazizNTj5VHm+tJenBODzHG+f63ScT4oHpTJcGuKaIARHBYeHs4ff/xhtezUqVNV3o6zs3Olxt2XzAPzxRdf0K1bNyQSCd26dePDDz9Eq9XyyiuvVHnf9+Lr68vkyZOZPHkyXbp04Y033uCTTz6hVatWrF69Gj8/P9Rq9b03dJegoCC6du3KqlWrKCgooHfv3pY5XcoqmeB49+7dPP300+XedyQOhUJhd8hRWXoDxMQX0TzcjeMXSium5uFunLhoe1x11I0C2jazbnhq0diNmLhCqwvI4b08GN3fi3e/SSAmzvGf3tMbICaukOaN3Th2vvRnKFs0duP4eds/S3nlegHtHrae/6NFE3eibxZW+SL3r5J57Bx+g3pYLfPt05ms05cw6c0VufbYOXx6deLGwhWWND69O6M9Wrn5HMqSy50Irt+YKxeO0rxdaa+rKxeO8VDbHhWsac1kMqHXmy8m/GvV461P1lm9v/XXrykszLNM8FsVTjIZjQO9OHYjkZ5hpQ0Ox24k0r1RxZPSno5LIV6bw/DmtidaXXEsgu8PX+Kbx3vSNNDxJ/zmfGxCVJl8jLpwlIfaVD4fwYReb77A9a9Vj1kfr7d694/VX1FYmM/ISbPwqGI+gvmG7naqidBgGZdjSw/80NpSLsfe/4ZIRzoTOTk50bBhI86ePUOHjp0ty8+dPcMj7cs3BLi5ufH1t0uslv3++xYunD/H7Lfm4H9nCGqTJk3Zv28vRqMR6Z2u0gm3b+Hl5VWlxhcw5+OtFCONguVcvF6ab42C5Vy6Ub3JP3u0dKJPG2f+u7mA+Gr+/LRM7oxv7abcunaEes36WJbfunaEkKY97a4XfXYr+9a+Ta9xn1K3cfdqxXAvD0JeGoyQmG6iQS0JV+JLb2zrB0qJind8u3GpJh6qJ+Xuh+U+agnZ+SaH6qUHIi8NcON2MQ+HunDqcunYmYdCXTh92faQ5Gs3i2nVxLqV4eFGLly/VYzBCAmpOt741PrX5h7tp8FVIWXFZi3pVfxVQ4MR4lOMhNWRcSGmdN2wOjIuXq/+LyTeL//U8ryg0EhBmRmd0zN1tGqmIiau4M62JDwUpmTpGtu/xgYQGZ1Hq6YqNvyZalnWupmKiGjra9FpE2vTsbWGNz6MJjmt8g3+FcZ5szTOh8OVLF1tP86I6DxaNVOxfvvdcaqJuFYmzieC6NRaw4wPoklKrf6cjcKDRQzQEhz23HPPceXKFWbNmsXVq1dZs2YNy5cvByrXnblESEgIFy5cICoqirS0NHQ6263AJfPA/PTTT5a5Xrp27cqZM2fszv9SHe+88w6bNm0iOjqay5cvs3XrVho3bgyYhxH5+PgwbNgwDh48yI0bN9i/fz+vvPIKt27duue2x48fz6+//sratWuZMGGC3XQuLi7MmjWLmTNnsnLlSmJiYjh27BhLly69L3FUxuY9Wnp31NCrvZogfyeeHOmDj5cTfx7MAmDCUG9enljagPTnoSx8vczpgvyd6NVeTa8OGjbuzrSkGd7bk3GDvfl6VQop6To8VDI8VDJcnB1rMd+0W0ufTh706qAmKMCZKaN98fF0YvtB8z4nDvPh1UmlN6jbD5pjfGqUL0EBzvTqoKZ3Rw0bd5U+ZZfLoF6QgnpBCpxkErw95NQLUhDg69ivfMjc3VA3D0fd3DxMzq1eEOrm4bgEm+cYCXtvOs1/+MiS/uaSX3GtW4vGH7+JMrw+QZNHEfzkKK5/tsySJvbrlfj06UT9Gc/gHlaf+jOewadXB2K/WoGjeg5+giO713N0zwaSbl1n3fIFZKQl0qXPGAA2/byQlV+/ZUm/f/uvXDy1j5TEm6Qk3uTo3o3s3rKCtl0GAeDkrKBWnVCrl6u7ChcXd2rVCUXuwK+mTGgX/n/snXV4VEfbh+/djdvuxgOEBAghBNcixd2Ku7ZQKkhLS5HytsUKhWIFihYK5YUixd2huCZYIJAEjbvrbr4/lmyyyUaBpnm/ua/rXJBznpnz22fOzDln5pk57PX2Z98dfwIiYll08hYhcUn0q18V0Kzf8p8Dl/Ok23fHj1rlbHCzV+Q5tunKA349f4cfujWhnNyciIRkIhKSSUor2ahU624juHpmN1fPavy4Z/MCoiOCad5hAAAHty3jvzn8eOH4n9y/le3Hq2f3cubgZhq+X5gfzUrsR4ALdzNo7CGjYTUZ9goJPZoZorCUcNVH88DeubEBA9vo5u1kI8HJRoKxgQQLU83f9srsutumngFVK0ixtpRgp5DQorYBDdxleD0u2UtAr959OXn8KCdPHOPli+esX7ea8PAwunTtDsDm3zewZJGm7kilUlxcK+lsCrkCIyNDXFwrYWKieXHr0q0H8fFxrF+7isBXr7hx/Rq7dv5J1+4flEjjOe90mnga0Li6AfZKCb3eN0JpIeHyfc31062pEUPa63Z8l7OVUs5WirGhZpS6nK0Uhxx+bFvPkK5NjNh+JoWoeE0khKWZBKM3+NBQrRajeHT9Lx7d2E10qD+XD8wnISYYzyaaKMxrRxdzZvtUrb2f1yHO7phG0+5TcXCpQ1J8OEnx4aQmZy9MqcpIIyLoIRFBD1FnpJMYG0pE0ENiI56XSGNZ8OXlh2rqu0mp5ybBVg6dG0qRm8ONx5oX3/b1pPRurvuG6qjUbEYGYG4iwVEJdjnWMr7hq8bMGLo0lmJjCVXLS2hRS8oN35J3cJQFXx6+EE+bxha0bmhOOXsDhvdQYKuQceqqZgBlUGc5nw3M7hA/dTUeW6WMYd0VlLM3oHVDc9o0suDwec3Cp+kZ8Co0XWdLSlGTnKrmVWg6JVhnm3O302hSw5D3PA1wUErp3dIYpaWUS/c0fuzezIihHXUjMMvbSilvK8XYUIKFqYTytlIcrLNfu2TSbBsDKcgtNP+3lZc8cqAstOcA+46HM6i7A80ayHEpb8LkjyuSmqbm7NXsdb2+GVuRD/tnr8G270Q4DWpaMqCrPc5Oxgzoak89T90OmfEjKtC2qTU/rX5OcooapdwApdwAI8OS+XTvsTAG93CgeQM5rhVMmDy2IqlpmZy5kkPnJy58NCC3TisGdHuts5s99WpYsvd49tILE0ZWoF0zJfNXPyc5RfXGOv+NSKTSUtvKAiICRlBiKlWqxF9//cXXX3/NL7/8QtOmTZkxYwafffZZkSMsAD7++GPOnTtHw4YNSUhI4OzZs/l2prRp04bbt29rjyuVSjw9PQkKCtJ2jrwtjIyMmD59Os+ePcPU1JQWLVqwfft2QDPK+vfffzN16lT69OlDfHw85cuXp127dkWKROnfvz8TJkxAJpPpfHJaH9999x0GBgZ8//33BAUF4eTkxKeffvpWdBSFS7cTsDQPZ0AXa5RWMl4EpzF3VSDh0ZqRH6WVAXbW2U1JWGQGc1cH8WFfW7q0kBMVq2LDX+Fc9c6ORunSQo6hoZSpY3QXON1+JJIdR3SnGhSFi7fisTSXMbCbLdZWMp4HpzH711eEvw4zVsoNsLXOfugIi0xn9q+vGN3Pnq6tFETFZvDbzlCueGVrtJYbsGyGq/bv3h2s6d3BmnuPk/jP0pfF1ihvUJOmp7do//ZcpHn5fvnHHu6Ono6xkx2mztn+SH72ihs9xuK5eDounw0lNSiMB5N+JGTvCa1N9BUvvIZ+RbVZX1Jt1kSS/F/iNWQSMdfvFltfFg2adSYxPoaju9cSFx2Ok7Mbn0//FWu7cgDERYcTFZG9sGFmppoDf/5CZFggUqkBto4V6Dn0C5q3719iDYXRydOV2OQ01l28R0RCMm52ClYMbK39qlFEQgohcbqjTfEpaZx+9JJvOjTUlyU7bz8hXaXmmz0XdPZ/8n4tPm1ZW2+agqj/2o/Hd68h9rUfP5m2KtuPMeFER2aP0maq1Rzc9gtR4YFIpTJsHZzpMeRLmr1DPwLc8VdhZgLtGxpgZSYhJCqTjUc0n6oFsDKXoLDUfSic1D/7RaOCvZR6VQ2Iilfz01ZNJJuRAfRuYYjcXEJ6BoTFqNl+Jp07/iV7YG/RqjVx8XFs3/ZfoqKicHF15YdZP2L/OnIwKjqS8PDirStmZ2fP7Lk/8du61UwYNxYbG1t69OxN334DS6TR2y8DcxPo1MgIK3MJwZFq1h1KJjr+tR/NJCgtdR8Mvxlkpv2/s72MBtUMiYpTM+cPzch/81qGGMgkfNhFd7T/2PU0jl8v2YipW92upCbFcOvUryTFhWPtWJUuH63FUlkegKS4cBJiskd3fa7tQK3O4OK+2VzcN1u7371BL9oM/Ol1mjB2L+utPXb3743c/XsjTpUb8cGn2W1eUSkLvnzwLBMzYzWtasuwNIWwGNh6WkXs62bHwlRC7jXgP+uRfQ8qbwu1K0uJTshk2R7NfSouCf44qaJzIymffWBAfBJcfajm4oOSd8CUBV9evZOEpZmUPu3lKKxkvAxJZ8HGcCJiNO2FwkqGrSK7Mys8WsXCjeEM76GkYzNLouNUbD4QzfX7hS/CXlK8nmRgbppKp/eMkZtp/Lh2fw4/mktR5monpwzNvgAqOsho6GFIZJya2b9rLhK5uUTHpl0DI9o1MOLJqwxW7i7ZbykL7TnAziNhGBlJGT+iApZmMh4FJDH9Z3+SU7KvdTtrI3KukuDjl8S8Vc8Y1deJEX0dCQ5LY96qZ/gGZEdK9WinmZK96NuqOudbtP4FJy8W/9ly5+EwjI2kjB/l/FpnItMX+unotLcx1FlWwedJIvN+fcaofk6M7OdEcGgaP/76lEf+OXS210yPWzxDV+fP655z8kLxdQrKHpLMkizGIRDkw48//siaNWt4+bL4L6iC0qX3+H/3AmB7V1al52e+pS2jQPavrsZhw2qlLaNQuqX7cvJOyad9/RN0qGNM0ubZhRuWImYjv+eY978/dLhzXSOmrHl3Lydvg4WfmvLYP+86VP8m3KtUZNJK/dMa/00sHW/Bkv3/7ke7r3pK/vW+XDregh/++PevyzBrhGGZ8OXgKf/u+v3nwop88Ut84YalzC9fWJaJ9rzTSO/SllEgxzfXpePwkk3X/ic5saVeaUsoEa/Gv9vBo4KosPLNv7j5rhERMII3YtWqVTRq1AgbGxsuXbrEzz//zPjx40tblkAgEAgEAoFAIBAI/mmKsRTF/0dEB4zgjXjy5Alz584lKiqKihUr8vXXXzN9+vTSliUQCAQCgUAgEAgEAsG/CtEBI3gjli5dytKlS0tbhkAgEAgEAoFAIBAIShnxGeqCKRtLBQsEAoFAIBAIBAKBQCAQlGFEB4xAIBAIBAKBQCAQCAQCwTtGTEESCAQCgUAgEAgEAoFA8MZIpCLGoyCEdwQCgUAgEAgEAoFAIBAI3jEiAkYgEAgEAoFAIBAIBALBGyMW4S0YEQEjEAgEAoFAIBAIBAKBQPCOEREwAoFAIBAIBAKBQCAQCN4YsQZMwQjvCAQCgUAgEAgEAoFAIBC8YySZmZmZpS1CIBAIBAKBQCAQCAQCQdkm5JthpXZux5//W2rnLipiCpJAIABg4OTnpS2hQHYscqHjcK/SllEgJ7bU4+Sd1NKWUSgd6hhz2LBaacsokG7pvjzwCy5tGQVSw82Jh/6BpS2jUKpXKU+PTx6WtowCObi2Oh/NCittGQWy8Qd7en3+uLRlFMq+Ve50G3O/tGUUyOHfajJqZmhpyyiQTTMdykx5l4W68+mC6NKWUSBrpioZPSe8tGUUyobv7P711+W+Ve50/9intGUUyKH1nv96jaDRWRYRi/AWjJiCJBAIBAKBQCAQCAQCgUDwjhERMAKBQCAQCAQCgUAgEAjeGBEBUzAiAkYgEAgEAoFAIBAIBAKB4B0jOmAEAoFAIBAIBAKBQCAQCN4xYgqSQCAQCAQCgUAgEAgEgjdHKmI8CkJ4RyAQCAQCgUAgEAgEAoHgHSMiYAQCgUAgEAgEAoFAIBC8MRKJWIS3IEQEjEAgEAgEAoFAIBAIBALBO0Z0wAgEAoFAIBAIBAKBQCB4YyRSaaltxWXVqlVUqlQJExMTGjRowIULFwq037p1K3Xq1MHMzAwnJyc+/PBDIiMji3VO0QFThhg1ahS9evV6q3m6urqybNmyYqV59uwZEokEb2/vt6rl/xMzZ86kbt26pS1DIBAIBAKBQCAQCP7fsWPHDr788ktmzJiBl5cXLVq0oEuXLrx48UKv/cWLFxkxYgSjR4/mwYMH7Nq1ixs3bjBmzJhinbdYa8CMGjWKzZs3axIaGGBtbU3t2rUZPHgwo0aNQvovWfH43LlztGnThujoaBQKxT967kqVKrF69Wo6d+6s3VetWjWePn3K06dPKV++fInz/uWXX8jMzHwbMovMqFGjiImJYd++fdp9zs7OBAcHY2tr+49q+V9i8uTJTJgw4a3muWnTJr788ktiYmLear4AHZtZ0KO1HIWljFehaWzeH82jp6n52levbMyID5RUcDAiOi6DA+fiOHUlQa9ts7pmfDHMjhv3k1i0KfyNdA7v7UjXNrZYmMt45J/Iys2veB6YUmCa9xvKGdnPCSd7Y4LDUtm0K5hLt2K1xwf1cKB5QznOTiakpavxeZLIb9uDeBWS/+/Pj7+Pb+f0gU3ExkTgVKEKfUdNwa16A722/o9us3/rMkICn5KemoK1nRPN2/enbffheu1vXjrKpl+mUrthG8ZO+aXY2gCs329I5a9HI69fE5Ny9tzs+zmhB04XnKZFIzwXTcPCsyqpQWH4L/6NF+u269g49u6I+8wvMKtSkST/F/h+v5TQ/adKpDGLo4f2sX/PdqKjInGuWImPxo7Hs2btQtM99LnHd1O/oKJLJZas3KDX5uL50yxZOIfGTZoz7bsfS6zxyKH97Nu9Q6PRxZXRY8dRoygaH9xnxtQvqehaiWUr1+u1uXD+DIsXzKVxk+Z8+/2cEmsE6NpKSZ+O1ijlBrwISmX9zlB8/JLzta9Z1YzR/e2pWM6YqJgMdp+I5NjfMTo2zepZMvQDO5zsDAkOT2fL/nCueseXWGObhqZ0bmaGwlJKYFgGfx5P4MmL9Hzt3V0MGdTRgvL2BsTEqzl6KZFzt7LbgikjFXi4GuVJd+dxKr/8GZtnf1Ho0lJOr/bWKOUyXgansWFXOD7++fuxRlVTPuprh7OTEVGxGew9Gc3xC9nndnYyYkh3G6pUNMHexpANu8I4eDamRNpyM+QDezq3VGJhJsP3aTKrtwbxIqjgNq1ZfSuG97LHyc6I4PA0/tgbyhUv3TLt1tqaPp1ssVZorqV124N58CSp2PraNjKlSzNzbXlvOxbP4wLKu5qLIYM7WVLe3oDoeBVHLyVx9ma276eNUuZb3ku3xRRbH5Sd8i4LdadVPWM6NDZGbiElKELFrtPJ+L3KyNe+qrMB/dqaUs5WRkyCmhPXUrjgnaY9LpVC5yYmNK1phMJSSmiUij3nkvF5mn+ehdGmgQmdmr72Y3gG248n8uRlAX6saMjAjuaUt3vtx8tJnL+d7cdvhsv1+vHuk1R+2R5XYp1l4brs2lpJn042WGfdc3aEFthO1HQ3Y8wAh+x7zvFIjp6P1rFpVt+SYT3ts+85+8LytE8lYUgPOzq1VGBhJuPx02RWbwspQltZuJbi+kDwbliyZAmjR4/WdqAsW7aM48ePs3r1aubPn5/H/urVq7i6ujJx4kRA897/ySefsHDhwmKdt9g9Jp07dyY4OJhnz55x9OhR2rRpwxdffEH37t3JyCh5w/a2SE/PvzF81/ndvXuXyMhI2rRpo9138eJFUlJS6N+/P5s2bSo0j7S0tDz7VCoVarUauVz+j3co6UMmk+Ho6IiBgVjDuaRYWFhgY2NT2jKKRNM6Zoz8wJq9p2KZtjSIRwGpTB9jj41CptfeztqAaWPseRSQyrSlQew7HceHPa1pXMssj62tUsaw7koeBhTcSVIUBnSzp08Xe1b+8ZIJP/gSHZvBT1PdMDXJv5mr7mbGjPGVOH0pms9mPOL0pWhmjK+ER5VsrbU8LDhwKoIvZj1m2gJ/pFIJ86e6YWJcvObz1uVj7N60kE59Pmbagp1UqV6fVfM+JyoiWK+9kbEpLTsNYtKs3/nP0n106jOWQztWcPHUX3lso8KD2LdlMVWq1y+WptzIzM2Iu+vLgy9mF8ne1LUCjQ6uI+riLS426oXfgjXUWDoDx94dtTaKJnWpt20pgVv3c6FBTwK37qf+n8tQNC68IyI/Lv59ht/Xr6TvwGEsXv4b1WvWYu4PUwgPCy0wXWJiAssXz6d2Xf2dXgBhYSFs2rAazxol1wdw8fxZNq77lf4Dh7JkxTo8a9RizvfTiqRx2eL51K6bf1mGhYaw6bc1eNao9UYaAd5vaMmYAQ7sPBLJF3Of8sAvmZkTKmKn1N++O9gY8sMEZx74JfPF3KfsOhrJ2IGONKtnqbWpVtmUKR+X5+y1WCbOecrZa7FMHVsed1eTEmlsVMOYwZ0tOHQhkZlro3jyIp1JQ+VYW+mvg7YKKZOGKHjyIp2Za6M4dCGRIV0saVDdWGvz645YvlwUod3+syoSlTqTmz7F71gFaN7Ago/62bPrWCRfzX+Bj18y340rj20+frS3MeC7z8vj45fMV/Nf8NexKMb0t6dpXQutjbGRhJCIdP7YF0FU7Nt7vurX2ZbeHWxYsy2YSXP9iY5NZ+5XrpgW0KZ5VDZl2ifOnLkSw/hZfpy5EsO0TypSrZKp1qZFIys+HuTIjiPhTJztz/3Hicz6wgU7a8Ni6Wtcw5ghnS05eCGR79dE8vhFGl8NU2Atz7+8vxqq5PGLNL5fE8mhC0kM7WJJwxzlvWJHDF8sCtdu3/4agUqdyQ2fkt17ykp5l4W608DDkP7tTDl6JYUfN8Xh9yqD8f0tUFrqX8TTRi5lfD8L/F5l8OOmOI5dSWFgezPquWdfZz1bmNKyrjE7TiUx67c4/vZK5dPeFjjb639uKYxGnsYM6mTB4YtJzFofzZMX6Xw5pGA/fjlYzpMX6cxaH83hi0kM6WxBA4/sDpdVu+KYtCRCu323JuqN/Ahl47ps0dCKjwc6svNwBBNnB/DgSRIzJ1bEzjqfe46tITMnVuTBkyQmzg5g55EIxg5ypFn97HuOR2VTpo6twNmrMUyYHcDZqzFMHVsB9xztU0no29mGXh2sWbMthK9+fEp0bAZzJlUstK0sTEtxfVAWkUglpbalpqYSFxens6Wm5q1XaWlp3Lp1i44dO+rs79ixI5cvX9b7u5o1a8arV684cuQImZmZhIaG8tdff9GtW7di+afYHTDGxsY4OjpSvnx56tevz7fffsv+/fs5evSoTgdDbGwsY8eOxd7eHisrK9q2bcudO3e0x7OmYKxduxZnZ2fMzMzo37+/zuj9jRs36NChA7a2tsjlclq1asXt27d19EgkEtasWUPPnj0xNzdnzJgx2g4QpVKJRCJh1KhRgP7pNnXr1mXmzJn55jd37lwADh48SIMGDTAxMaFy5crMmjUrT4fT/v376dSpE8bG2TeqDRs2MGTIEIYPH87GjRvzRLC4uroyd+5cRo0ahVwu5+OPP2bTpk0oFAoOHTqEp6cnxsbGPH/+XGcK0tq1aylfvjxqtVonvw8++ICRI0cC4O/vT8+ePXFwcMDCwoJGjRpx6lTRR51nzpzJ5s2b2b9/PxKJBIlEwrlz5/JMQTp37hwSiYTjx49Tr149TE1Nadu2LWFhYRw9epTq1atjZWXF4MGDSUrK7t3NzMxk4cKFVK5cGVNTU+rUqcNff+V9ucxJamoqU6ZMwdnZGWNjY6pWrcqGDdmj2OfPn6dx48YYGxvj5OTEtGnTdMqpdevWTJw4kSlTpmBtbY2jo6NO+Q8ePJhBgwbpnDM9PR1bW1t+//33IunO8sfp06dp2LAhZmZmNGvWDF9fXx3f5p6C9Pvvv1O9enVMTEzw8PBg1apV2mNZPt+zZw9t2rTBzMyMOnXqcOXKFe05P/zwQ2JjY7VllfN3vQndWllx5noCZ64nEBiWweYD0UTGqOjY1FKvfYemFkRGq9h8IJrAsAzOXE/g7I0EerSy0rGTSGDCEFt2nYglNPLNb+q9O9vz5/4QLt2M5dmrFH5e+xxjIwltmyrzT9PJntv349l+MJSXwalsPxiKl088vTvZa21m/OzPyQtRPA9MIeBFMovXv8DB1oiqrsW7sZ859AdN2/amWbu+OFaoTL9RU1HaOnLhxE699s6VqtPw/a44ObthY1+exi27U71Oc/wf6raBarWKTcun03XA59jaVyiWptyEH/+bxz8sI2TfySLZu4wdRMqLYHy+nkfCowBebvyLl5v2UPmrj7Q2lSaMJOLUZfwXriPRNwD/heuIOHMV1wkjS6zz4N5dtOvYlQ6dulOhogujx07Axtae40f2F5huzcrFtGjdDncPT73HVSoVy36ey6ChH+Lg6FRifQD79+6ifccudOjcDeeKLoz5ZDy2dvYcO3ygwHSrVyylZet2VCtA49Kf5zFo2CgcnMq9kUaAXu1tOHkphhOXYngVksZvO0OJiE6nSyv99aZzKwXhUen8tjOUVyFpnLgUw6lLMfTuaK216dnOGu+Hifx1LJJXoWn8dSySO48S+aCdtd48C6NTEzMueCVzwSuF4AgVfx5PICpWTZtG+utg64amRMZq7IIjVFzwSuGCVwqdmmZ3rCamZBKXqNZuNSobkZZe8hfynm2VnLocy6nLcbwKSWPDX+FExKTTuaVCr33nFgrCo9PZ8Fc4r0LSOHU5jtNXYunZPtvvfs9T2bw3gou34snIeHvRrz3b27DjcDiXb8fxPCiVJRsDMTaS0uo9ef5pOtji5ZPArqMRvApJY9fRCO48SqBn++yBhN4dbDlxMZoTF6J5GZzK+h0hRESn07V18cq9U1Nz/r6dzN+3kwmOULHtmKa82zbM24kP0KahGZGxGrvgCBV/307mglcynZvlKO/kTGIT1NqtZhVj0tIzuf7gf7u8y0Ldad/IhEt307h0N42QSDW7TicTHa+mVT1jvfYt6xoTFa+xC4lUc+luGpfvptGhcXYH73s1jDh6JYX7ARlExKr52zsNn6fptG+sP8/C6NjEVOMLb40ft59IJCpOReuG+fixgSmRcRq74AgVF7xTuOitz4/Zm2el1358WPIOmLJwXfbqYMPJi9GcuKi556zfobnndG2lv53o0kpJeFQ663e8vudcjOHUpWj6dMxuez5ob42XTyK7jka+bp8095ye7Ut2z8miZztrdhyJ4IpXvKat/D3odVtplW+aomgprg8ExWP+/PnI5XKdTV80S0REBCqVCgcHB539Dg4OhISE6M27WbNmbN26lYEDB2JkZISjoyMKhYIVK1YUS+NbmTPUtm1b6tSpw549ewDNC2q3bt0ICQnhyJEj3Lp1i/r169OuXTuioqK06fz8/Ni5cycHDx7k2LFjeHt7M27cOO3x+Ph4Ro4cyYULF7h69SpVq1ala9euxMfrhnH98MMP9OzZk3v37jF79mx2794NgK+vL8HBwfzyS/HC8XPm99FHH3H8+HGGDRvGxIkT8fHxYe3atWzatIkff9QNTT9w4AA9e/bU0b9r1y6GDRtGhw4dSExM5Ny5c3nO9/PPP1OzZk1u3brFd999B0BSUhLz58/nt99+48GDB9jb2+uk6d+/PxEREZw9e1a7Lzo6muPHjzN06FAAEhIS6Nq1K6dOncLLy4tOnTrRo0ePfOe15Wby5MkMGDBAG/UUHBxMs2bN8rWfOXMmK1eu5PLly7x8+ZIBAwawbNkytm3bxuHDhzl58qTOBfqf//yH33//ndWrV/PgwQMmTZrEsGHDOH/+fL7nGDFiBNu3b2f58uU8fPiQNWvWYGGh6akPDAyka9euNGrUiDt37rB69Wo2bNig7UTLYvPmzZibm3Pt2jUWLlzI7NmzOXlS88I5dOhQDhw4QEJC9nSZ48ePk5iYSN++fYule8aMGSxevJibN29iYGDARx99RH6sX7+eGTNm8OOPP/Lw4UPmzZvHd999p53ylzPPyZMn4+3tjbu7O4MHDyYjI4NmzZqxbNkyrKystGU1efLkfM9XVGQyqFzeiLuPdcNX7zxOxt1V/4OMu4sxd3Lb+yZT2dkIWY4Wp18HOXEJas5e1z81qTg42hlhozDk1v3stiE9I5O7jxLwrGqebzpPN3Nu3dcN9b11L67ANOammh8Rn6gqsr6MjHReBjykeh3d+lO9dlOe+noXKY+XTx8S4OtNVU/d6I2jf63BwkpJs7Z9iqznbaFoUpfwU5d09oWfuIC8QU0kryPklE3qEnHqoo5NxMkLKJvWK9E509PT8ffzpU69Rjr769ZvxKOHD/JNd/rkUUKCgxg4JP+On11//oGVXEH7TsUbydCv8TF16zfU1VivYcEaT2g0Dhqav8adf27BSi6nQ6eub6QRwEAGbhVN8PJJ1Nnv5ZNI9Sr6Xyw8Kpvlsb/tk4ibi6m2fntUNs2b54NEqlfR/wJdEDIpuJQz4IG/bnTog4A03Croj6yoUsGQBwG57P1TcS1noNMG5aRFPVOu308lrQRBtAYyqFLRBO+HuuHj3g+T8KisP+qnWqW89l4+Sbi5mOSr8W3gaGuItcKQ2w+y292MjEzu+yZS3S3/8tGUqW5bfftBgjaNgUyCm4spXg/02BSj3GUycC1nwP1c5X3fPw03Z/3l7eZsmMf+nl8aruUMCyhvE67dT/mfLu+yUHdkUqjoKOPhU93ED5+mU7m8/miAyuXz2vs8TcfFUUbWSggGBpCu0u0sSM8AtwrFjzCQScHFySCPX3z80/LNr0p5A3z0XMMuTgX50YTrD0rmRygb16WBDNxc9NxzHiTgke89R1+78vqeI8uyMdPfPuWTZ1FweN1Wej3I1pqRkcn9x0kFtmmFaSmJD8okUmmpbdOnTyc2NlZnmz59er5Sc38yOzMzM9/PaPv4+DBx4kS+//57bt26xbFjx3j69Cmffvppsdzz1mKdPDw8uHv3LgBnz57l3r17hIWFaaNBFi1axL59+/jrr78YO3YsACkpKWzevJkKFTSjtitWrKBbt24sXrwYR0dH2rZtq3OOtWvXolQqOX/+PN27d9fuHzJkiM7L7dOnTwGwt7cv0ZSd3PkNHz6cadOmaSNLKleuzJw5c5gyZQo//PADoHn5v3PnDl27Zj8Ub9++napVq1KjRg0ABg0axIYNG3SmKIGmAyvny/LFixdJT09n1apV1KlTR69Ga2trOnfuzLZt22jXrh0Au3btwtraWvt3nTp1dNLPnTuXvXv3cuDAAcaPH1+oHywsLDA1NSU1NRVHR8dC7efOnUvz5s0BGD16NNOnT8ff35/KlSsD0K9fP86ePcvUqVNJTExkyZIlnDlzhqZNmwIav168eJG1a9fSqlWrPPk/fvyYnTt3cvLkSdq3b69Nk8WqVatwdnZm5cqVSCQSPDw8CAoKYurUqXz//ffaNYpq166tLbeqVauycuVKTp8+TYcOHejUqRPm5ubs3buX4cM1a21s27aNHj16YGVlVSzdP/74o/bvadOm0a1bN1JSUjAxyXsjnDNnDosXL6ZPH81LdKVKlbSdfVnXHWg6xbLC3GbNmkWNGjXw8/PDw8MDuVyORCIptKxSU1PzhOLljNrKiZW5DJlMQmy8bqRVbLwKhaX+UF65pYzYeFUuezUGMgmW5jJi4lVUczWmTWMLpi7RP/2muFgrNA+T0bG6Ty4xcRnY2+SdY52FUmFAdK6Q2ujYDJTy/JvGT4ZW4J5vAs9eFX20LyEuGrVahaVcd9qZpdyGuJiIAtP+59P2JMRFo1Kp6Nr/M5q166s95v/Iiytn9jJt4a4ia3mbGDvYkhqqqz8tLBKpoSFGtkpSQ8IxdrQlNVR3dfjU0EiMHe1KdM74uFjUajUKhW6EhlyhJCY6Sm+aoMBX/HfTOn5cuByZTH/ZPvS5x6kTh1my4rcS6SqSRqWS6AI0/rHpN+YtXIZMpr9uPXxwn1PHj7A0n3VhiouVhQEymYSYON06EBOfgcJKfyek0kpGTHwu+7gMDGQSrCwMiI7LQGFlkDfPuAyUVsUP/7c0kyKTSohN0G2D4hLUyKvof0OQW0iJy2Ufm6BpgyzMpHnyqlTOgAoOBvx+oGTrLlhaaNrJ3H6JjVOhtNJ/vSmsDIiN033xiYnP8qOM6Liid/AWh6y2TV/52NnkP1VIKc+nrXz9+6yyfJAnX1WB7Wlusso7LjFXeSeqkFvob8vlFlLicnWIxyUWUN7lDXB2MGTj/3h5l4W6Y2Em0ZR3Uu7yzsTKXL9GK3MpcYm6vo9LUiOTSbAwlRCXmInP0wzaNzLB72UG4dFqPFwNqFPVkHzeqQokv2syNjGTmhb5aLSQEpuo2wFU4DVZzoAK9gZsOljyNUvKwnWZdc+JztVORMerqJ9PO6GUa9Z10rGPy8DA4PU95/Uzm/57TslfcwtqK+0LaSsL0lISHwiKh7Gxcb7vNTmxtbVFJpPliXYJCwvLExWTxfz582nevDnffPMNoHmnNDc3p0WLFsydOxcnp6JFT7+1ks7ZW3Tr1i0SEhLyrHGRnJyMv7+/9u+KFStqO18AmjZtilqtxtfXF0dHR8LCwvj+++85c+YMoaGhqFQqkpKS8kRwNGyoO8r4puTO79atW9y4cUMn4kWlUpGSkkJSUhJmZmYcOHCA5s2bY22dHT62YcMGhg0bpv172LBhtGzZkpiYGJ2OIX36jYyMqF274DUIhg4dytixY1m1ahXGxsZs3bqVQYMGaR/eExMTmTVrFocOHSIoKIiMjAySk5OLHAFTXHLqdXBwwMzMTKeDxMHBgevXrwOaHsSUlBQ6dOigk0daWhr16ukfGff29kYmk+ntnAF4+PAhTZs21em1bN68OQkJCbx69YqKFSvm0Qng5OREWFgYAIaGhvTv35+tW7cyfPhwEhMT2b9/P9u2bSu27pznyaqQYWFhWh1ZhIeH8/LlS0aPHs3HH3+s3Z+RkYFcrhsSnl+eHh4een2ij/nz5zNr1iydfZoOqQ/zTZOJ7oOERALFCUTNKpJMMjExljB+iC3r/ookPtdDV1Fp20zJFx86a//+z+KArBPkoTCdude1lkjyTzR+ZAUqOZvw1ZwnRdaaN/Oc2vLvZc/iy9mbSE1J4tnju+zf9gt2js40fL8rKcmJ/LFiOoM/+QELq/ynWb1z9Dow1359Nm+4oHgev2Vm6n241kzZmcOgoaMoV945rwGQnJTEL4t+5POJ32AlV7yRrlwi9WjMK1KlUrFk4Y8MHjqS8hXy17h00Tw+n/g1VvL8p4qUhNwlUdg7Sr5FniOnPKVbzDajMAprg/L8ptci9V12Leqb8io0g6dBbzgVUo8jC7rM87Sr+WTzJrR+T8744dlT1WYuf67/HCV4MdVXBm+rqufJpxCBxTlHy3qmvAxN52ng/155F4V/Y93Jr03J1z7X37nNd55KYlhnM2aOsSITCI9Wc/leKs1qlWwKkr6TFn5t51PeehK9X9eEV2FvoQ3Ke9p/53WZp34X4svMwn2Z97ot3m9o/Z4V44Zlt5WzVrzQn29hWouqpbg+ELx1jIyMaNCgASdPnqR3797a/SdPntSZ0ZKTpKSkPGugZr13F+dDOW+tA+bhw4dUqlQJALVajZOTk97pNgVFpGQ18ln/jho1ivDwcJYtW4aLiwvGxsY0bdo0z0K15ub5TxfIiVQqzeMcfYvs5s5PrVYza9YsbXRCTrKiGXJPP/Lx8eHatWvcuHGDqVOnaverVCr+/PNPPvvsswL1m5qaFvpi1qNHD9RqNYcPH6ZRo0ZcuHCBJUuWaI9/8803HD9+nEWLFuHm5oapqSn9+vXTu9Dv28DQMLtHWCKR6PydtS9rzZqsfw8fPpzny1D59VqamhYcmqcvZCyrvHPuL0gXaDq2WrVqRVhYGCdPnsTExIQuXboUW3duf+RMn5OsfevXr+e9997TOZZ7JLyoeRbE9OnT+eqrr/JoHzEj73zHuEQVKlVmnmgXK4u8US5ZxMarkOexl5KhyiQhUU0FR0PsrQ2Y8mH2tLqs4tm2oCKTFgYVuibMlduxPPLLDt80NNSMQikVhjqLxCmsDIiJzT+eNzomA2uFbjOosDLIMzIB8PnwCjStJ+frH58QEV28GGELKyVSqYz4XNEuCbFReaJicpO1rkv5iu7Ex0ZxZNdqGr7flYjQl0SGB7F2wUStbWam5lqYOKge3y07gJ2j/pf5t0VqaESeSBYjO2vU6emkRcZobEIiMHbU/WKasb11nsiZomJpJUcqleaJJImNjUGuyDt/OiU5Cf8nvjz1f8L61ZrpqJmZmWRmZtKvR1t+mLsICwtLwkJDmDcrO0Q1q+3o16MtK9dtwdGp6F+wy9KYOyInNiYmT1QMaAYn/J74EuD/hHWrl+to7NO9PTPnLsTC0oqw0BB+nDUjj8Y+3dvz6/rNOBVDI0BcQgYqVWaeUUK5Zd4RvCyi9Yymyi0NyFBlEp+gaRP0jTwqLA2IKcFoanySGpU6E3mukWZL87wj9VnEJqjz2FuZS8hQZZKYrJvGyECz6Ou+c7rh4MXSmPC6nczjl7zRQlnEvI4U0rXX9ePb4Jp3PL5Pswe+DA00ja3SSjeiRWGpv93LQl9kYM5Ip7jXPshtI7eU5Xst6aOg8s4dNZCFprxz3XPMX99zcnXyGxnCezVN2Hu25FNf/83lraOzDNSdhKRMjUZzKZDtB0uzvBEnWcQlqpGb6z7rWZpJUakySUjWtIkJyZms2ZuIgQwsTCXEJGTSu5UpEbHFH/TJ8qNVbr8UpDFB/fo35dD4+ppMTNZ9D8ny4/7zb/YFnLJwXWrvObnbkgLaiZyRdlp7KwMyMjK1U8H12RR0H9PHNe8EfANytJVZz5W52kq5ngjPwvTm1FISH5RFJNIS9OqXAl999RXDhw+nYcOGNG3alHXr1vHixQvtlKLp06cTGBjIH3/8AWjevT/++GNWr15Np06dCA4O5ssvv6Rx48aUK1f0dfneSgfMmTNnuHfvHpMmTQKgfv36hISEYGBggKura77pXrx4QVBQkFbwlStXkEqluLu7A3DhwgVWrVqlndbz8uVLIiIKf2g3MtKEqapUuo2HnZ0dwcHZUx7i4uK005UKon79+vj6+uLm5qb3eEJCAmfPnuXXX3/V7tuwYQMtW7bU2QewZcsWNmzYoNMBU1JMTU3p06cPW7duxc/PD3d3dxo0yF4f4sKFC4waNUrbq5eQkMCzZ8+KdQ4jI6M8fnwbZC0u/OLFi3wjWnJTq1Yt1Go158+f105Byp3n7t27dTpiLl++jKWlZbE+/92sWTOcnZ3ZsWMHR48epX///tprqiS6C8PBwYHy5csTEBCgXb+nJBS1rIoamgegUkFAYBq13U25cT97XZfa7ibcvK//s4aPn6fSwFO3s6y2uykBL9NQqSEoLJ3Ji4J0jg/srMDEWMLm/dFExBR+A0pOUZOcotuRGBmTTv2alvg/1+gykEmo7WHBhh1B+rIAwMcvkfo1LdlzLPvz1w1qWuHzRPeBctyICjRvIGfyPD9CwovfgWlgYIhz5eo8unuFOo3bafc/unuVWo3aFJBSl8zMTDIyNJ0/DuUq8e2i3TrHD21fSUpKonaB33dNzFVv7Lvp6rfr8D6xt+6T+Xrx6+ir3ti2a87TX7LXM7Jt/z7RV7xKdE5DQ0OquFXjjtdNmjRrod1/x+smjZs0z2NvambO0l836uw7dng/9+/eZvL0WTg4OiGVSvPY/LllA8nJyXw0djw2trprcBVNozveXrd0NHp73eK9JnnX0TIzM+OXVbqfxD56eD/37ngx5duZODg6IpXK8ths/WMjyclJmgV+i6kRIEMFfi9SqFfdXOcT0XWrm3Ptjv5Q+EcBSTSupbsAdz1Pc/yeJ6NSZ9kkU7e6OftPR+nYPPQv/guGSg3PgzLwrGzE7UfZda9GZSO8fPUvVun/Kp267rptXI0qRjwLytBqzKJRDRMMDSRcuVvyL7FlqMD/RQp1q5tx7U72i31dDzOu3dX/cur7NIVGtXQHX+pWN8PveUoejW9Ccqqa5DDdNisqJp16NSwIeKn5zQYyCTWrmfP7X/oXHYTXZeppwb6T2dMJ63la8NBPU6YZqkz8nidTz9NC53Or9TwtivX5cZUKngVlUKOKEbcfZZdvjSpGeD3SX95+L9OpW023vGtWMeJZUHoeXzZ+Xd6X/0fLOydloe6o1PAiREV1VwO8n2QPbFR3NeTOE/332oBAFbXdDIHsZ5DqlQx5HqIi93hUhgpiEjKRSqFeNUNuPSr+/VulhufBGa/9lp3es7IRXo/15+cfmEGdqkZA9vVQo7IRz4P1+NHTWOPHe2/2NciycF1mqMDveQp1q5vrtBN1PS24lk878Sggmca1LYHsLwhq7zmqLJsk6nmas/9UznuOBQ8L+Px2bpJT1SSH6/7oqJh06nma52grNZ/E3rQ7/68ZFqalJD4QvDsGDhxIZGQks2fPJjg4mJo1a3LkyBFcXFwACA4O1pk5MmrUKOLj41m5ciVff/01CoWCtm3bsmDBgmKdt9gdMKmpqYSEhKBSqQgNDeXYsWPMnz+f7t27M2LECADat29P06ZN6dWrFwsWLKBatWoEBQVx5MgRevXqpZ1yY2JiwsiRI1m0aBFxcXFMnDiRAQMGaNewcHNzY8uWLTRs2JC4uDi++eabQqMgAFxcXJBIJBw6dIiuXbtiamqKhYUFbdu2ZdOmTfTo0QOlUsl3332X71z7nHz//fd0794dZ2dn+vfvj1Qq5e7du9y7d4+5c+dy7Ngxqlatqp1uk56ezpYtW5g9ezY1a9bUyWvMmDEsXLiQO3fu5Lu+S3EYOnQoPXr04MGDBzrTnUDjvz179tCjRw8kEgnfffddsaMlXF1dOX78OL6+vtjY2OSZElNSLC0tmTx5MpMmTUKtVvP+++8TFxfH5cuXsbCw0Fn3JKeWkSNH8tFHH7F8+XLq1KnD8+fPCQsLY8CAAXz++ecsW7aMCRMmMH78eHx9ffnhhx/46quvtOu/FAWJRMKQIUNYs2YNjx8/1lnouCS6i8LMmTOZOHEiVlZWdOnShdTUVG7evEl0dHSeaJX8cHV1JSEhgdOnT1OnTh3MzMwwMyv+ope5OXw+jvGDbfF/mcqT56m0a2KJrcKAk1c1N4rBXRRYy2X8ul3zYH7ySgKdmlsyvIeSM9fiqepiTNvGFvyyVdN5mp4BL0N0I0g0I2vSPPuLw95jYQzu4UBQSCqBoakM6uFAalomZ65Ea22++cSFyOg0Nu7UdMTuOxHO4hlVGdDNniu3Y2laX069GpZ8NfexNs2EkRVo01TJD8uekpySvZ5BYpKKtPSihxu27T6CP1Z8S8XKNajkXodLp/4iKiKYFh36A7B/2y/ERoUyYvw8AM4f2461rSMO5TWRhf6PvDh9cDOtugwGwNDImHIVq+qcw9Rc82Kce39RkZmbYe6WPUXOrFIFrOp4kBYVS8rLYKrN/QqT8g7c+VAT1fd83XZcPh9K9Z+n8XLDThRN6uH8YV+8hn2tzePZyj9ocua/VJ78MaEHT+PQox227ZpypfWQEmkE6NG7P8sXz8OtajWqedTgxLGDRISH0rHrBwD8d9M6IiMj+OLrb5FKpbi4VtZJL1coMDQ00tmf28bc3ELv/qLSs3d/li2e/1qjJyeOHSIiPJROXXsAsOX39URGRvDl5OmvNVbS1ShXYGhkpLM/t425hYXe/cVh36lIvvqwPE+eJ/MoIJnOLRTYWRty9G9NvRnRyw4bhQFLN2nqzLHzMXRvbc3o/vYcvxCDR2VTOjRXsOi3QG2eB05H8dNkF/p2suGadzzv1bWkTnVzpi58ViKNx68m8XFvK54FZeD/Kp1WDUyxlks5d1PzQNu3nTlKSym/7dO0SeduJtOukRkDO1rw9+1kqlQwpEU9U9buzrtORYt6Jtx+lJpnVLq47D8TzZcjnfB7noLv0xQ6NpdjqzTk+IUYAIb1tMVGYcAvmzWdHMcuxNC1lYIP+9px8lIs1SqZ0L6ZnCUbsweJDGTg7GT8+v8SrBUGVKpgTHKqmpDwkreV+09FMqCrHUGhqQSFpjGgmx2paWrOX4vV2nz1UXkiYzLYvEfzonHgVAQLplSmX2dbrnrH0aSuFXWrWzBlQYA2zd6TEXw9ugJPnr2+lloqsbM25Mg5/ese5cfxK4mM7SPnWVA6fi/Tad3AFBu5lLM3NZ09/dpZoLSSsn6vpjzP3kyifWMzBnWy4PytZNycDWlZ35Q1f8XmybtFPdP/V+VdFurOqRspfNjdnOchKgKCMmhRxxillZS/vTWdG71amqCwlLLpsKb8//ZOpXV9Y/q1NeXinVQqlzOgeW0jNhzI7mRwdZKhsJTyKlSFwlJK9+YmSCRw4lrJvjB04moyY3pZavwYmE7LeiZYy2Wcv6XxY5+2Gj9u2P/aj7eSadvQlIEdzPnbK4Uq5Q1pUc+EdXvy+vH9eqZ4+b65H6FsXJf7Tkby1ejy+D1P4aF/UnY7cV5zzxnZ2x4bpQFLNmoGz46ej6Z7G2vGDHDg2N/RVK9iRof3lfy8/pU2zwOno1jwjSt9O2ffc+pWN2dKCe85Wew/HUX/rrYEhaURFJpG/662r9vK7HL86qNyREZnsHlvWJG1FOaD/wUkkne4mvxb5vPPP+fzzz/XeyznF56zmDBhAhMmTHijcxa7A+bYsWM4OTlhYGCAUqmkTp06LF++nJEjR2pfciUSCUeOHGHGjBl89NFHhIeH4+joSMuWLXUWtXFzc6NPnz507dqVqKgounbtqvPp3Y0bNzJ27Fjq1atHxYoVmTdvXpG+7FK+fHlmzZrFtGnT+PDDDxkxYgSbNm1i+vTpBAQE0L17d+RyOXPmzClSBEynTp04dOgQs2fPZuHChRgaGuLh4cGYMWMAzeenc04/OnDgAJGRkTrzybKoWrUqtWrVYsOGDSxfvrzQcxdG27Ztsba2xtfXlyFDdF9oli5dykcffUSzZs2wtbVl6tSpxMUVb6G0jz/+mHPnztGwYUNtpE9BUU3FYc6cOdjb2zN//nwCAgJQKBTaT5vnx+rVq/n222/5/PPPiYyMpGLFilr78uXLc+TIEb755hvq1KmDtbU1o0eP5j//+U+xtQ0dOpR58+bh4uKiXVj4TXQXxpgxYzAzM+Pnn39mypQpmJubU6tWLb788ssi59GsWTM+/fRTbW/uDz/88FY+RX3lThKW5lH07aBAaSXjZUgaP20IIyJaM/SgsJJho8xuSsKjMvjptzBGfqCkU3NLouNU/L4/iuv33iy8tjB2Hg7D2EjK+FHOWJrJeBSQyPSFfiSnZHc62tsY6kxD9HmSyLxfnzGqnxMj+zkRHJrGj78+5VGOkfoe7TVTbBbP0O3U+Hndc05eKPqLRYNmnUmMj+Ho7rXERYfj5OzG59N/xdpOEwEYFx1OVET2CHRmppoDf/5CZFggUqkBto4V6Dn0C5q37188xxQDeYOaND29Rfu35yLNNf3yjz3cHT0dYyc7TJ2zFxhLfvaKGz3G4rl4Oi6fDSU1KIwHk34kZO8JrU30FS+8hn5FtVlfUm3WRJL8X+I1ZBIx1++WWOf7LdsSHxfHzj83Ex0VRUWXSsyYtQB7e03nfXRUJBHh+Y9Q/RO836oNcfFx7Nj2h0ajqyvfzZqPvYNGY1R0FOHhYaWqEeDizXiszEMZ1M0Wa7kBz4NSmbXyBeFRmggma7kBdtbZUx9DI9OZteIlYwY40K2VkqjYDNbtCOFyjpG8RwHJLPwtkOE97Rj6gR0h4WksXB/I42clG+G98SAVC9MEPmhljtxCSmBYBsu2xhL5ejqB3EKKtTx7MCUiRs3SbTEM7mRB20amxMSr2XY0nlu5Pu/qYC3D3cWIRVve/KH30q0ErMzDGNjVBqWVjBfBacxZFZjtRysZdjnaybDIDOasCuSjvnZ0bSknKlbFb7vCuOKdPXJtLTdg6bcu2r97d7Cmdwdr7j9O4j/Lsl8+istfxyIwMpLy+dByWJjL8A1I5rslz0hOzW4r7WyMdNYjeOifzIJ1Lxney4FhvewJCU9jwbqX+D7NHmG+cCMOK/MQBvew115LP/zynPCo4r2kXX+QioVZPD1bWWjLe8nWGG15Kyyl2OQq7yVboxnc2ZJ2jcyIiVez9Wg8N3OXt42Mai5G/PzH/5/yLgt159ajdCxMk+nW3AQrcylBESpW7kogKi6HRqvsl7nIWDUr/0qgf1tTWtUzJjZBzY5TSXg9zr7ODA0k9Gxhiq1CSmpaJvcD0vn9cCLJqSXr5Ljhk4qFqYQeLc00fgzP4Jc/s/2oyKUxIkbNsj9jGdTRnDYNX/vxWEKeCBwHaxnuFQ1Z/N+ST+PKSVm4Li/cjMPSQsag7tn3nJnLX2jbCaUi1z0nIp2Zy19o7jmtlUTGZrBuewiXb+e45/gns3DdK4b1smdYz6z26RWPnxY9AkYfu49FYmwo5bMhjtq28vulL3TbSmtD1Dkuq6JoKcwHgv99JJnFWTHmLTJz5kz27duHt7d3aZz+raFSqbC3t+fo0aM0bty4tOUIBCVm4OTnpS2hQHYscqHj8JJNW/mnOLGlHifvlGyE7Z+kQx1jDhtWK20ZBdIt3ZcHfm/nK1nvihpuTjz0DyzcsJSpXqU8PT55WNoyCuTg2up8NKv0O6QKYuMP9vT6/HHhhqXMvlXudBtzv7RlFMjh32oyambpdpIWxqaZDmWmvMtC3fl0wb97dH/NVCWj54QXbljKbPjO7l9/Xe5b5U73j31KW0aBHFrv+a/XCBqdZZHoH998qY2SopyxutTOXVTE967ekMjISCZNmkSjRo1KW4pAIBAIBAKBQCAQCASlRxlZhLe0EB0wb4i9vX2JprgIBAKBQCAQCAQCgUAg+P9Dqa2QM3PmzDI//UggEAgEAoFAIBAIBAKBBolUWmpbWaBsqBQIBAKBQCAQCAQCgUAgKMOIKUgCgUAgEAgEAoFAIBAI3hiJWAOmQEQEjEAgEAgEAoFAIBAIBALBO0Z0wAgEAoFAIBAIBAKBQCAQvGPEFCSBQCAQCAQCgUAgEAgEb45ExHgUhPCOQCAQCAQCgUAgEAgEAsE7RkTACAQCgUAgEAgEAoFAIHhjxCK8BSMiYAQCgUAgEAgEAoFAIBAI3jGSzMzMzNIWIRAIBAKBQCAQCAQCgaBsE7fky1I7t9VXy0rt3EVFTEESCAQA9PsioLQlFMhfv1Rm1MzQ0pZRIJtmOpC0eXZpyygUs5Hf88AvuLRlFEgNNycOG1YrbRkF0i3dlyf+z0tbRqFUreLCgK+flbaMAtm52JWbvtGlLaNAGlZT0n/S09KWUSi7llZiyLRXpS2jQLb9VIGBk//ddWfHIhcmLIsrbRmFsuJLqzLhy56f+Za2jALZv7rav76dBE1b2Xv8k9KWUSB7V1al60f3SltGgRzZWOtfrxE0OsskUjHJpiCEdwQCgUAgEAgEAoFAIBAI3jEiAkYgEAgEAoFAIBAIBALBGyORiEV4C0JEwAgEAoFAIBAIBAKBQCAQvGNEBIxAIBAIBAKBQCAQCASCN0esAVMgwjsCgUAgEAgEAoFAIBAIBO8Y0QEjEAgEAoFAIBAIBAKBQPCOEVOQBAKBQCAQCAQCgUAgELwxEqlYhLcgRASMQCAQCAQCgUAgEAgEAsE7RkTACAQCgUAgEAgEAoFAIHhzJCLGoyCEdwT5kpSURN++fbGyskIikRATE/POz+nq6sqyZcu0f0skEvbt2/dOzzlz5kzq1q37Ts8BMGrUKHr16lXqOgQCgUAgEAgEAoFA8M8jImD+AUaNGsXmzZvz7O/UqRPHjh0rBUVFY/PmzVy4cIHLly9ja2uLXC7Xa5ecnMxPP/3E9u3befbsGZaWlrRu3ZpZs2ZRo0aNN9IQHByMUql8ozzKCpMnT2bChAmlLUMvnd634oO2cpRWMl6GpLNpTyQPA1LytfesYsLI3jY4OxoSHati/5kYTlyK1x5v39SSVo0scHYyAiDgZSrbDkXj9yK1xBrbNjKlSzNzFJZSAsMy2HYsnscv0vO1r+ZiyOBOlpS3NyA6XsXRS0mcvZmsPT5tlBIPV6M86e48TmXptpgSadx56zGbr/oQkZBMFTsFk9s3oH5Fe7223x+8wsF7AXn2V7aVs3tsdwD2ePlx6F4AfhGxAFR3tGZC6zrULGdbIn1ZHD20j/17thMdFYlzxUp8NHY8njVrF5ruoc89vpv6BRVdKrFk5Qa9NhfPn2bJwjk0btKcad/9WCJ91u83pPLXo5HXr4lJOXtu9v2c0AOnC07TohGei6Zh4VmV1KAw/Bf/xot123VsHHt3xH3mF5hVqUiS/wt8v19K6P5TJdIIcPjQAfbs3kVUVBQVXVz4eOxn1KxZq9B0Pg8eMG3q17i4urJi5RqdYwkJCWzZ/DuXL18iISEeB0dHRo/5hEaNGpdYZ8dmlnzQ2gqFlQGvQtLYtD+KR0/zr4vVKxsz8gNrKjgaER2XwYGzcZy8kl2/G9cyo3c7OY62hsikEBKRwcHzsVy4lVhijSeP/MXhPVuJiY6kfMVKDB8zCY8adQtN5+tzh7nffk4Fl8rM/2WLzrHrl8+wa+s6woIDsXcqz4Bhn9KoaesSa+zY3JKebeQorGS8Cknn932RPArI34+eVUwY2dOaCo6GRMep2H8mlpOXdf3Yp4MCR1sDZFIJIRHpHDwXx983E0qsEaB9E3O6t7REYSkjMDSdPw7F4PssLV97j0pGDO+moLyDITFxKg7+Hc/pa9ll2bKBGZ/2t86TbuR/XpGeUTKNHZtZ0KO1HIWljFehaWzeH13oNTniAyUVHF5fk+fiOHVFv5+a1TXji2F23LifxKJN4SUTCLSobUi7BsZYmUsIjlSz53wK/kEqvbZWZhJ6tzTB2V6KnVLKee809pzX/T2O1lK6NTXG2UGGjZWU3edTOOeVf7kUlbLgyy4tFfTuoEQpN+BFcBobdoXh45ecr32NqqZ81M+eik5GRMVmsPdEFMcuxGqPOzsZMaSHLVUqmuBgY8hvu8I4eCa6xPrg7beTOWlW15wvh2v8+PPvYW+ks3MLOb3aKVHKZbwMTmPD7nAe+uf/vFbDzZQP+9ji7GREVKyKfaeiOX4x25cdmlnRurEVFctpnof8X6Sy9WAET56X/HkNYGhPezq3ssbCTIZvQBKr/hvEi6CC82zewIrhvR1wsjMiODyNzXtCuXI7Tnu8prsZfTvb4eZqio3CkDkrnnPFK66AHP93dArKFiIC5h+ic+fOBAcH62x//vlnacsqEH9/f6pXr07NmjVxdHREIsm7oFJqairt27dn48aNzJkzh8ePH3PkyBFUKhXvvfceV69efSMNjo6OGBsbv1EeZQULCwtsbGxKW0YemtUzZ1RvG/aciOGbnwN56J/Ct586YquU6bW3tzbg208ceeifwjc/B7LnZAwf9rHlvTrmWpsabiZcvJ3IzJXBfLs0iIhoFd995oi1XH+ehdG4hjFDOlty8EIi36+J5PGLNL4apsBarr+Js1VI+Wqokscv0vh+TSSHLiQxtIslDatnX2srdsTwxaJw7fbtrxGo1Jnc8Mn/QaYgjvs84+eTtxjdvCZ/ju5KPWc7xu84S3Cs/pfSbzo04OTEPtrt2PjeyE2N6OBRUWtz80UonWu4sn5oOzaP6IiTlRmf/XmGsPikEmkEuPj3GX5fv5K+A4exePlvVK9Zi7k/TCE8LLTAdImJCSxfPJ/adRvkaxMWFsKmDavxrFF4Z05ByMzNiLvry4MvZhfJ3tS1Ao0OriPq4i0uNuqF34I11Fg6A8feHbU2iiZ1qbdtKYFb93OhQU8Ct+6n/p/LUDQumda/z59j/bo1DBg4hOUrVlOjRi1mfj+DsLCCH64TExNZsnghderWy3MsPT2d72ZMIzQslOnffsfadRuZMHHSG7UbTeuaMaqnNXtOxzJ1SRAPn6by7ccO2Cj010U7awOmj3Hg4dNUpi4JYu/pWD7sZc17tcy0NglJavaciuU/y4P5ZnEQZ2/E8/lAW+pUMymRxisXTrLlt2X0HDCKH5dtxsOzLgtnTSIiPKTAdEmJCaxZNpsadRrmOfbk0T1WLPyO91t3Yf7yLbzfugsrFs7Az/d+iTQ2q2vOh71s2H0yhimLgngYkMKMsY7Y5uNHe2sDpn/swMOAFKYsCmLPyRg+6m3De7Vz+fFkDDOWBTP550DOXk/g80G21KlmWiKNAE1qmzKiu4J9Z+P4dnkoj56lMvVDW2zyaXvtlDKmfGjLo2epfLs8lH3n4hjZQ0GjmroaklLUfDY3SGcraedL0zpmjPzAmr2nYpm2NIhHAalMH2Nf4DU5bYw9jwJSmbY0iH2n4/iwpzWNc1yTWdgqZQzrrixwAKEo1Hc3oE8rE45fT2XB1kT8gzL4rJcZSkv9C08aGEBCspoTN9IIDFfrtTEyhIhYNQcuphCbqN+muJQFX77fwJLR/e3ZdSyKSfOe4+OXxPfjKmCr1D9GbG9jyPfjKuDjl8Skec/561gUYwY40LSehdbG2EhKaEQ6W/aFExVbwgsxB++inczCViljeA8lPgV0khSV5vUt+KivHX8dj+Lrn17g45/Md5+XL8CXBvzns3L4+Cfz9U8v2H08itH97GhSN9uXNaqacuFWPN/98oppi18SEZ3OD+PKl/h5DaBfF1t6d7Rl9X+D+HKOH9GxGfw4uRKmJvm/lnpUMWPapxU5czmGcT/4ceZyDNM/rUi1ytltkYmxlKcvU1j936ASayuLOv+VSCWlt5UBRAfMP4SxsTGOjo46W87IjiVLllCrVi3Mzc1xdnbm888/JyEhe8Th+fPn9OjRA6VSibm5OTVq1ODIkSPa4z4+PnTt2hULCwscHBwYPnw4ERERBWravXs3NWrUwNjYGFdXVxYvXqw91rp1axYvXszff/+NRCKhdevWevNYtmwZV65c4dChQwwYMAAXFxcaN27M7t27qV69OqNHjyYzMxPInoKzaNEinJycsLGxYdy4caSn5x+lkHMK0rNnz5BIJOzZs4c2bdpgZmZGnTp1uHLlik6ay5cv07JlS0xNTXF2dmbixIkkJhY+8rp27VqcnZ0xMzOjf//+OlOu1Go1s2fPpkKFChgbG1O3bt080Uv37t2jbdu2mJqaYmNjw9ixY3XKMDe3bt3C3t6eH3/URAHknoJUFH8FBwfTrVs3TE1NqVSpEtu2bcszjetN6dFazpmr8Zy+Gk9gaDqb9kYSGZ1Bx+ZWeu07NrciIjqDTXsjCQxN5/TVeM5ei+eDNtkRVL9sCef4xTieBaYRFJbOmu3hSKQSarmX7MWiU1Nz/r6dzN+3kwmOULHtWAJRsWraNsz7sAPQpqEZkbEau+AIFX/fTuaCVzKdm2XbJyZnEpug1m41qxiTlp7J9Qcle0j67/VH9KpThT513ahsK+ebDg1xtDJj1+3Heu0tTYywtTDVbj7BkcQlp/FBncpam3k9mzOggTvVHKypZCvnu67vkZmZybVnBb+YFsTBvbto17ErHTp1p0JFF0aPnYCNrT3Hj+wvMN2alYtp0bod7h6eeo+rVCqW/TyXQUM/xMHRqcT6AMKP/83jH5YRsu9kkexdxg4i5UUwPl/PI+FRAC83/sXLTXuo/NVHWptKE0YSceoy/gvXkegbgP/CdUScuYrrhJEl0rhv7246dOxMp85dcK5YkbGffIatnR1HDh8sMN3KFcto1boNHh7V8xw7eeI48fHx/Oe7mXjWqIG9gwM1atSkcuUqJdII0L2lnDPX4zlzLYHAsHQ2748iIiaDjs0s9dp3bGpJREwGm/dHERiWzplrCZy9nkCP1tntgY9/CjfuJxEYlk5oZAZHL8TzPDgNj0ol64A5uv9PWrfvQZuOPSnvXInhH0/CxtaeU0f2FJhuw6qfaNayI1Wr1cyb54Ht1KzbiJ79R1Kugis9+4+kRu1GHDuwo0Qau7e24sy1bD9u2vfaj/m0kx2aafy4aV+2H89c120nffxTuH4v249H/o7T+LFyyQclur5vybmbiZy7kURQeAZbDsUSGauifRNzvfbt3rMgMkbFlkOxBIVncO5GEuduJtK9hYWOXWYmOu1lbELJOxC6tbLizPUEzlxPIDAsg80HoomMUdGxqf5rskNTCyKjVWw+EE1gWAZnridw9kYCPVrp+l4igQlDbNl1IpbQyDd7KW9T35grD9K58iCd0Gg1e86nEp2g5v3aeaMmAaLiMtl9PpXrD9NJScvUa/MiVM3+i6ncfpxBhv5AmmJTFnzZs52SU5djOXkpllchaWzYFU5EdDpdWir02nduISc8Kp0Nu8J5FZLGyUuxnL4cS6/22VFYfs9T2LQnnAs340nP0O/v4vAu2knQ+HHiUDt2Ho8hLOrNO4o+aKvk9JVYTl2J41VoOht3RxAZnUHnFvoj2Du9LyciOoONuyN4FZrOqStxnLkaR692Cq3Nss2hHLsQy7PANAJD01m1LQyJBGpX0/98VRR6dbBl+6EwLt+O43lgKos3vMLYSErr9xQFpLHByyeBnUfCeRWSys4j4Xg/TKBnh+yI35v3EvhjbyiXb7+daJKyolNQ9hAdMP8SpFIpy5cv5/79+2zevJkzZ84wZcoU7fFx48aRmprK33//zb1791iwYAEWFpoHoODgYFq1akXdunW5efMmx44dIzQ0lAEDBuR7vlu3bjFgwAAGDRrEvXv3mDlzJt999x2bNm0CYM+ePXz88cc0bdqU4OBg9uzR/6C7bds2OnToQJ06dfL8nkmTJuHj48OdO3e0+8+ePYu/vz9nz55l8+bNbNq0SXvOojJjxgwmT56Mt7c37u7uDB48mIwMzY3r3r17dOrUiT59+nD37l127NjBxYsXGT9+fIF5+vn5sXPnTg4ePMixY8fw9vZm3Lhx2uO//PILixcvZtGiRdy9e5dOnTrxwQcf8OTJE0CzXk7nzp1RKpXcuHGDXbt2cerUqXzPe+7cOdq1a8esWbOYMWNGvroK89eIESMICgri3Llz7N69m3Xr1hU6wl4cDGRQ2dmYO766ERV3fJOpls/LlLurMXd8dUOHvR8lUaWiMbJ8WhwjIwkyqWbEt7jIZOBazoD7/rqh2vf903BzNtSbxs3ZMI/9Pb80XMsZ5quxRT0Trt1PIS3//sJ8SVepeBgcRdPKuh0PTSo5cedVwR2lWey74897lRwpJ7fI1yYlXUWGOhO5if6XgEJ1pqfj7+dLnXqNdPbXrd+IRw8f5Jvu9MmjhAQHMXBI/p0Vu/78Ayu5gvadupVI25ugaFKX8FOXdPaFn7iAvEFNJAaakUFlk7pEnLqoYxNx8gLKpnkjUQojPT0dP78n1KtfX2d/vXoNePTQJ990J08cJyQ4mCFDh+s9fu3aFTyqV2f1qhUMGzKAzz/7mJ07/kSlKtnbmkwGlSsYccdXt1Pxrm8K1Vz11++qLsbczWXv7ZtMZef863fNqiaUszPEpwQj5Rnp6Tz186VWvfd09teq9x5PHt3LN935U4cICw6kz+DReo/7PbpP7Vx51q7/Ho8LyDM/DGRQuULedu+ubzLVXPV3lri7mnA3l/2dR0XzY0HTCQpCJoNK5Q25+0Q3/b0nKbi76NdZ1cWIe7ns7z5JoVIFIx2dJkYSfpnqyIrpjkweaYNLOf1tb1E0Vi5vxN3HuXzzOBn3/HzpYsyd3Pa+yVR21tXYr4OcuAQ1Z6+/2RQumRSc7aU8eq77wvzoeQaVnEoeFfC2KQu+NJBBlYomePvoDpJ5P0zCo7L+ARmPyqZ4P9R9JvHyScTNxSTfuvMmvMt2sl9HBXEJqjf2I7z2pbNxHt94P0zMt/O7WiVTvB/q+t7LJ5EqFfP3pZGRBJlMUqLnNQBHO0OsFYbcfpD9mzMyMrnnm0h1t/w7dTyqmHH7vu4Urtv34/GsUvKOoP8Fnf9WJBJpqW1lAbEGzD/EoUOHtB0mWUydOpXvvvsOgC+//FK7v1KlSsyZM4fPPvuMVatWAfDixQv69u1LrVqa9QMqV84eBV+9ejX169dn3rx52n0bN27E2dmZx48f4+7unkfPkiVLaNeunfb87u7u+Pj48PPPPzNq1Cisra0xMzPDyMgIR0fHfH/X48ePadOmjd5j1atX19pkRXYolUpWrlyJTCbDw8ODbt26cfr0aT7++ON8z5GbyZMn062b5iUua50ZPz8/PDw8+PnnnxkyZIjWn1WrVmX58uW0atWK1atXY2Ki/yaUkpLC5s2bqVChAgArVqygW7duLF68GEdHRxYtWsTUqVMZNGgQAAsWLODs2bMsW7aMX3/9la1bt5KcnMwff/yBublmJHHlypX06NGDBQsW4ODgoD3X/v37GT58OGvXrmXw4MEF/taC/PXo0SNOnTrFjRs3aNhQE2L/22+/UbVq1QLzTE1NJTVVd/5qftO8LM1lyGQSYuN0X/Bi41UoLPU/aCqsZMQ+ymUfp8JAJsHSQkZMXN6XxWE9rImKVeV5ISkKlmZSZFIJcblCtuMSVcgt9HdEyC2kxCWqctmrMZBJsDCT5hm9rVTeAGcHQzYeKNloRXRSKqrMTKzNda8/G3MTIhML/83hCclc8g9iXs/mBdotP+uFvaUp71UqWYRJfFwsarUahUJ33SW5QklMdJTeNEGBr/jvpnX8uHA5Mpn+W8pDn3ucOnGYJSt+K5GuN8XYwZbUUN2OrrSwSKSGhhjZKkkNCcfY0ZbU0Egdm9TQSIwd7Yp9vri4ONRqNcpcflQqldyO1r8OQWBgIJs3bWDBwiXIZPrrVmhIMHfveNO6TVtmzppLYFAga1atRKVSMXjIsGLrtMqq3wm56mtCIfXbN6+9gUyCpbmMmHjNMVMTCWu/d8bAQIJaDRv2RHLvcfE7DuLjYlCrVcgVumuMyOXWxMZE6k0TEvSC7Zt/5fuf1uZ7TcbERGKVK08rhTWx0frzLIisdjLrt2vPEa9CYZWPHy1leu1zt5NmJhLWzqz42o+Z/PZXJHdL4Ed43VbKJMTG67ZvsfFq5O76H1oVFlLu6rHXlLeUmHg1QWEZrNkVzcvQdEyNJXRubsHMT+2Y/ksYIcWMjtBek3nOmf81KbeUERuf+x6l1rkmq7ka06axBVOXBBdLjz7MTSXIpBLik3QjK+KTMrEy+/eEv5cFX1pZZNUd3eskJj4DpVx/VJbCyoCY+MQ89gYyCVYWMqL1PGO8kcZ31E5WczWmbWMLpix5O9NQLC0Kaof0t4NKKxle+bRD+flyRE9bomIzuPOoZFOdlVaaztmYuFxlHpeBvU3+HbdKuYHeNEr5u3mVLSs6BWUTcTX8Q7Rp04bVq1fr7LO2zn74O3v2LPPmzcPHx4e4uDgyMjJISUkhMTERc3NzJk6cyGeffcaJEydo3749ffv2pXZtzdoEt27d4uzZs3k6eECzjou+DpiHDx/Ss2dPnX3Nmzdn2bJlqFSqfF8AikPW1KOca8fUqFFDJ28nJyfu3SveiGPW785KDxAWFoaHhwe3bt3Cz8+PrVu36uhQq9U8ffpU2ymUm4oVK2o7XwCaNm2KWq3G19cXMzMzgoKCaN5c9+W3efPm2uiehw8fUqdOHW3nS9bxrDyyOmCuXbvGoUOH2LVrF7179y70txbkL19fXwwMDKifY5Tdzc2t0EWL58+fz6xZs3T2/fDDD8CIfNMUN4A3M3eCrEtAT0Y928ppXt+CmSuD3yhUOPc5JRT8IJxHYwG0rGfKy9B0nga+WYhwbkWZFK4T4MBdfyxNjGhTrUK+NpuuPOCYz3PWD2uPscGb1d886z1lZqJnCShUKhVLf57DoKGjKFfeWW9eyUlJ/LLoRz6f+A1WcsUb6Xoj8lwgkrz79dkU50LJTS6nZRbgx0UL5zNk6AjKV8i/jNXqTBQKBeMnfIlMJsOtqjtRkZHs2f1XiTpgsnXp2VcMe33VOyU1k28WB2FiLKVWVRNGfGBNaGRGidc5yH1NZr6uPblRq1T8uugH+g75GKfyFfMc19Wt7zp/gxdoPX4p6PLJ75LMmU9yaibfLArExEhKTXcTRvZ6Mz/qRUKBBZ6nOc9VdfxepuH3Mjui8PHzKH6cYE/HZub8cTCWkpCZ66wSSfHuQ1qNZGJiLGH8EFvW/RVJfAlH7fVrLBuUCV/qrTv5q8x7SPJa47vjbbaTJsYSJgyxZe2uSOLf0no/+VHYbayw+p2TXu2VvN/Aku9+eVXk57XWTRRMGFFO+/cPy57rzb+w9lKfViSSt1bmZUVnmaGMrMVSWogOmH8Ic3Nz3Nzc9B57/vw5Xbt25dNPP2XOnDlYW1tz8eJFRo8erV3vY8yYMXTq1InDhw9z4sQJ5s+fz+LFi5kwYQJqtVobaZGbrA6K3GTqedAs6GaXH1mRM/p49OgRgE5EhqGhbq+xRCJBrS7ezSdnHlm/ISsPtVrNJ598wsSJE/Okq1ix4Ifx3Lpy/pv7/6DrQ33+1JeuSpUq2NjYsHHjRrp164aRUcFTRQryV37lVVg5Tp8+na+++kpnn7GxMUOnBOaxjU9UoVJl5hnFlesZvc0iJi7vqK/cUkaGKpP4XFEnH7SR06eDgtmrgnkeVLKvPcQnqVGpM5Fb6I7gWprnjWTJIjZBjdxCV6OVuZQMVWaesFojQ3ivpgl7z5Y8RFhpZoxMIiEyUfelKSoxJU9UTG4yMzPZfyeAbjUrYZhPx+gfV33YcPkBa4a0w92+5F8Ns7SSI5VKic4V7RIbG5MnAgEgJTkJ/ye+PPV/wvrVv2j1ZmZm0q9HW36YuwgLC0vCQkOYN2u6zm8C6NejLSvXbcHRqXyJNReF1NCIPJEsRnbWqNPTSYuM0diERGDsqPv1KGN76zyRM0XByspKrx9jYmLyRBeB5ktyT548xt/fjzWrVwLZfvyge2fmzJ1Pnbr1sLa2RmZgoNMp6+xckejoKNLT0/O0F4URl1W/c43iyi3yjoJrf0Nc3lFfKwtN/U7IUb8zM9GuDfE8KI3yDob0aicvdseBpZUCqVRGTK7IlLjYaL3XZHJyEgF+D3kW8JjNaxe/1qImMzOT4b2aM23WL9So0xCFwiZPBE1cbHSeqJiiUFA7ma8f41Uoc9tb5G0nMzM1X5ECeBaURgUHI3q3L74f4XVbqcpEbqnbVsot8m8rYxLUKHLZW1nobytzag54lYajbfGnIeV3TVoVcE3GxquQ57F/rTFRTQVHQ+ytDZjyYfYX57Juy9sWVGTSwqBirWOSmJyJSp032sXSTEJc0r/nNass+DIuQaNRmStCQ25poDdaFl5HE+SyV2Q9YyS83egXeDftZAVHI+xtDJn6UV4//rnQhS8XBBZ7bZ34hIJ06s8rOk6FUo+9vue1nu0U9Ouo5IeVgcV6XrvmHYdvQHa0jKGB5ocq5QZE51ggWW6VN3JER2us/nKPeQuLLJclnYL/DUQHzL+AmzdvkpGRweLFi5FKNQ86O3fuzGPn7OzMp59+yqeffsr06dNZv349EyZMoH79+uzevRtXV1cMDIpWpJ6enly8qLveweXLl3F3dy9W9MugQYOYMWMGd+7c0VkHRq1Ws3TpUjw9PfOsD/MuqV+/Pg8ePMi3sys/Xrx4QVBQEOXKaXq/r1y5glQqxd3dHSsrK8qVK8fFixdp2bKlNs3ly5dp3Fjz6VdPT082b96sjVgCuHTpkjaPLGxtbdmzZw+tW7dm4MCB7Ny5s9gvTVl4eHiQkZGBl5cXDRpovjzj5+ens3iwPoyNjYv8ZakMleYT0bWrmXL9bvaNqXY1U27c07+w8eNnqTSoqTvXtU41M/xfpKLK8bz+QVs5fTsqmbs6GP+XJf/UpkoFz4IyqFHFiNuPsqdW1ahihNcj/Z8K9HuZTt1quj6oWcWIZ0HpOhoBGtcwwdBAwuW7JR9xNpTJqO5kzdWnwbStlh0pcvVpMK3d8494ALj1IoyX0fH0qqN/odXNV3347dJ9fh3UlhpOb/YVLUNDQ6q4VeOO102aNGuh3X/H6yaNm+Sd/mRqZs7SXzfq7Dt2eD/3795m8vRZODg6IZVK89j8uWUDycnJfDR2PDa2+j/D/TaJueqNfTfdqZJ2Hd4n9tZ9Ml+vHxV91Rvbds15+stmrY1t+/eJvuJV7PMZGhri5lYVb6/bNGv2vna/t9dt3mvSNI+9mZkZK1et1dl35PBB7t7xZtq332mngVb3rMH5c2dRq9Xae0VgYCDW1tYlakdUKs2Lcm13E27cz1G/3U248UB/ePmT56k08NRdm6FONRMCXqbmqTs5kQCGsuKPiBkYGlLJrRr3va/rfCL6nvd1GjRumcfe1Mycn1Zs1dl36shuHty9xRfT5mHnoGnj3Txqcs/7Ol16Zk8Dvet1DXePwj8TnpsMFQS8SqW2uynX7+X0o6mOX3Py+FkKDWvkbidNi+ZHg5KNLKpU8DQwnVpuJtzMsZh4TTcTbvnonwr55Hka9aubANmRLLWrmvD0VVqBOl2cjHgZWvwFs1QqCAhMe+27bE213U24eV+/xsd6rsna7qYEvNRoDApLZ/Ii3WkeAzsrMDGWsHl/NBExxXsxUqnhZZgaj4oG3PXPTlutogH3Av49L1llwZcZKvB/kUKd6mZcvZM9yFG3uhnX7ugf9HgUkEzj2roR33U9zfF7nlLgNVlS3kU7GRSWztc/6w56DeqixMRYol3Au7hkqMD/ZSp1PMy4djf7+ayOhxnX83le832aTKOaulO96lY3w/+Fri97tVPQr7M1s38Nwv9F8T4/nZyiJjlF9xkvKiad+p4WBLzQtEMGMgm1qpnz+678PyDwyD+JejUs2Xcyu+O8fk1LfPxL/tXHsqhT8L9B2Vip5n+A1NRUQkJCdLasrxRVqVKFjIwMVqxYQUBAAFu2bGHNmjU66b/88kuOHz/O06dPuX37NmfOnNFOpxk3bhxRUVEMHjyY69evExAQwIkTJ/joo4/yXZzx66+/5vTp09pPR2/evJmVK1cyefLkYv2uSZMm0bhxY3r06MGuXbt48eIFN27coG/fvjx8+JANGza8WUh3MZk6dSpXrlxh3LhxeHt78+TJEw4cOMCECRMKTGdiYsLIkSO5c+cOFy5cYOLEiQwYMED74vPNN9+wYMECduzYga+vL9OmTcPb25svvvgCgKFDh2rzuH//PmfPnmXChAkMHz5cZ/0XAHt7e86cOcOjR490FhAuLh4eHrRv356xY8dy/fp1vLy8GDt2LKampm/V5wfPxdKuiRVt37OkvIMho3rbYKs04MQlzSJjQ7ormTA0O7rgxKU47JQGjOxlTXkHQ9q+Z0nbJpYcOJv9AN+zrZzB3axZ9Wc44VEZKCxlKCxlmBiVTPfxK4m0qm9Ki3omONnKGNzJAhu5lLM3NTe8fu0s+Lh39tcHzt5MwlYuY1AnC5xsZbSoZ0LL+qYcu5z3Btminim3H6WSmPxmI5vDGnuw19uffXf8CYiIZdHJW4TEJdGvviZCbPlZL/5z4HKedPvu+FGrnA1u9oo8xzZdecCv5+/wQ7cmlJObE5GQTERCMkklWSn4NT169+f0icOcPnGEVy+es3HdSiLCQ+nY9QMA/rtpHb8s1qw3JZVKcXGtrLPJFQoMDY1wca2MiYkpRkbGeWzMzS0wNTXFxbVyiToOZOZmWNXxwKqOBwBmlSpgVccDE2dNxF+1uV9R5/fsiMDn67Zj6lKO6j9Pw8KjMhVG9cX5w74ELMnuGHq28g9sOzSn8uSPMa9WmcqTP8a2XVOerdhMSejVuy8njh/jxIljvHzxgvXrVhMeHkbXrt0B2PT7BhYvWqj1o6trJZ1NLldgaGSEq2slTEw0D/Jdu3UnPj6OdWtXE/jqFTeuX2PXzj/p1v2DEmkEOPR3LO3es6RNYwvK2xsy8gMltkoDTl7R1O/BXRWMG5wdGXTiSjy2SgNGfKCkvL0hbRpb0LaxJQfPZa+P1KutnFruJthbG1DO3pBuLa1o2dCCC7dLFkXWpedgzp48wLmTBwl8+ZQtvy0jMjyUdl000zi3b17F6qWaaZVSqRRnlyo6m5VciaGREc4uVbS+7NxjIPe8rnNw9x8EvXrGwd1/8ODODTp/MLBkfjwXR7smOfzYy1rTTl5+3U52UzJ+SLYfT17W+HFkT+tsP76n2072aientrsJ9jYaP3ZvZUXLRhb8fbPk0XhHLsbTppE5rRqaUc7OgGHd5dgqZJy+pnlBG9jJis8GZEdpnb6WoPnccDc55ewMaNXQjNYNzTl0IVtDn3aW1K5qjL21DBcnQ8b2U+JSzpDTV0um8/D5ONo2tqB1I3PK22uuNVuFASevvr4muygYNyi7s/nklQRslQYM76GkvL0BrRuZ07axBQfPa67J9Ax4GZKusyUmq0lJzeRlSDolWcP67O1UmtY0pImnIQ5KKX1aGmNtKeXiXc0LXI/mxgzvqBvdWN5OSnk7KcaGEixMNf93tM5+DJdJs20MpCA3l1DeToqtvOT387Lgy/2no+nQXEG7plZUcDRidD87bJWGHLsQA8DwnrZ8OTJ7LcJjF2Kxszbko752VHA0ol1TK9o3k7PvVHbEoYEMKlUwplIFYwxlEmwUBlSqYIyjXckGvN52O5mekfnW/Qhw4Ew07ZvJadfEigoOhnzYxxZba0OOX9C0K8M+sGHi8Oxn0uMXNb78sI8tFRwMadfEinZN5ew7HaO16dVeyZDuNqzcGkZYZPobP68B7DsZwYDu9jStb4VLeWO+Gl2B1DQ1565ln/frMRUY1TfH+oknI6lfw4J+XWyp4GhMvy621K1uwf6T2VGqJsZSKjubUNlZU/ccbA2p7GyCnXXJyr2s6Pw3IpFKS20rC4gImH+IY8eO5ZkOVK1aNR49ekTdunVZsmQJCxYsYPr06bRs2ZL58+czYkT2mhwqlYpx48bx6tUrrKys6Ny5M0uXLgWgXLlyXLp0ialTp9KpUydSU1NxcXGhc+fO2lHS3NSvX5+dO3fy/fffM2fOHJycnJg9ezajRo0q1u8yMTHhzJkzzJ8/n2+//Zbnz59jaWlJmzZtuHr1KjVr5v3857ukdu3anD9/nhkzZtCiRQsyMzOpUqUKAwcW/FDt5uZGnz596Nq1K1FRUXTt2lW7ADLAxIkTiYuL4+uvvyYsLAxPT08OHDignV5lZmbG8ePH+eKLL2jUqBFmZmb07duXJUuW6D2fo6MjZ86coXXr1gwdOpRt27aV6Pf+8ccfjB49mpYtW+Lo6Mj8+fN58OBBvosNl4TLXolYmkfSr5MCpdyAF8FpzFsbQkS0puNIaWWArTK7KQmLymDe2hBG9bahcws5UbEZ/L4ngmt3skdgOr1vhaGBhG8+0u2c2nk0mp3H9C9SWhDXH6RiYRZPz1YWyC2kBIZlsGRrDJGxmiEchaUUG3l2ZFdEjJolW6MZ3NmSdo3MiIlXs/VoPDcf6o7sONjIqOZixM9/FF9Tbjp5uhKbnMa6i/eISEjGzU7BioGttV81ikhIISROd5QqPiWN049e8k2Hhnrz3Hn7CekqNd/suaCz/5P3a/Fpy9p60xTG+y3bEh8Xx84/NxMdFUVFl0rMmLUAe3vNA3B0VCQR4aElyvttIW9Qk6ant2j/9lz0LQAv/9jD3dHTMXayw9Q5u71NfvaKGz3G4rl4Oi6fDSU1KIwHk34kZO8JrU30FS+8hn5FtVlfUm3WRJL8X+I1ZBIx1++WSGPLVq2Jj49j+7atREVF4eLqwsxZc7F/3SEbHR1FeHjxvlhmZ2fP7Lnz+W3dGsaP+wQbG1s+6Nmbvv3y/+JdYVzxTsLSLIq+HRQorWS8DE5j/m+hRERr3gCUVgbYKrLrd3hUBvN/C2VkT2s6NbciOjaD3/dFcS1H5IexkYQxfWywUchIS88kMCydFdvCueJdshHApi06kBAfy94dG4iJiqSCS2W++X4JdvaaMo6JjiAyvHifXnevXpvx38xh13/XsmvrOhwcyzPhm7m46flkdVG47J2IhblU005aGfAyOI1560JztJOyPO3k/PWhjOxlTaf3NX7cuDeSazkiDU2MpIzpZ4uNPIcf/xvOZW/9o9lF4erdZCzMYujTzgqFpYxXIeks3BRBRIymvBVWMmxylne0ioW/RzC8u4IOTS2IjlOx+WCMTkSFmamU0X2UKCxlJKWoeR6Uzpy14fi/KllH8JU7SVia57gmQ9L4aUOY9ppUWMmwUepekz/9FsbID5R0am5JdJyK3/dH6UQjvW1uP87A3CSFzk2MsTKTEBypZvX+JKLjNR31cnMJSivd569pQ7OjNio6yGjkYUhknJqZGzUdVXILiY5N+4bGtG9ozJNXGSz/q2S/pSz48uKteCzNZQzsZou1lYznwWnM/vUV4a8/y6yUG2Cb48U0LDKd2b++YnQ/e7q2UhAVm8FvO0O54pXd4WctN2DZDFft3707WNO7gzX3Hifxn6Uvi63xXbST74JLtxOwNA9nQBdrlFYyXgSnMXdVIOE5ntfsrHO0Q5EZzF0dxId9benSQk5UrIoNf4Vz1Tvbl11ayDE0lDJ1jO47zPYjkew4on9x/sL462gExkZSxg0rh4W5DN+AJP6z+CnJKdlhN3bWhuRcoeChfxI/rXnBiD4ODO/tQHBYGj+teYFvQHZbVNXVlAVTsz9SMnawJuLx5MVolm589T+rU1D2kGSWZOEPgUDwr+TVq1c4Oztz6tQp2rVrV6y0/b4IeEeq3g5//VKZUTNL98W/MDbNdCBp8+zSllEoZiO/54Hfm3/B4l1Sw82Jw4bVSltGgXRL9+WJ//PSllEoVau4MODrZ6Uto0B2Lnblpu+bd3S+SxpWU9J/0tPSllEou5ZWYsi0f/dD/LafKjBw8r+77uxY5MKEZSX78t0/yYovrcqEL3t+5lvaMgpk/+pq//p2EjRtZe/xT0pbRoHsXVmVrh8V7wMb/zRHNtb612sEjc6ySNLGH0rt3GYfzSrcqJQRETACQRnmzJkzJCQkUKtWLYKDg5kyZQqurq46a9UIBAKBQCAQCAQCgaD0ER0wAkEZJj09nW+//ZaAgAAsLS1p1qwZW7duLfHCvgKBQCAQCAQCgUAgeDeIDhiBoAzTqVMnOnXqVNoyBAKBQCAQCAQCgQDKyGK4pYXwjkAgEAgEAoFAIBAIBALBO0ZEwAgEAoFAIBAIBAKBQCB4cyQl/0z5/wdEBIxAIBAIBAKBQCAQCAQCwTtGRMAIBAKBQCAQCAQCgUAgeGMkYg2YAhHeEQgEAoFAIBAIBAKBQCB4x4gOGIFAIBAIBAKBQCAQCASCd4yYgiQQCAQCgUAgEAgEAoHgzZGIGI+CEN4RCAQCgUAgEAgEAoFAIHjHiAgYgUAgEAgEAoFAIBAIBG+OVHyGuiAkmZmZmaUtQiAQCAQCgUAgEAgEAkHZJnnb/FI7t+mQ6aV27qIiImAEAgEA3cbcL20JBXL4t5r0+ORhacsokINrq3PMO620ZRRK57pGPPQPLG0ZBVK9Snme+D8vbRkFUrWKC4cNq5W2jELplu5L9499SltGgRxa71kmNP7b2yDQtEP/dp0H11an/eCbpS2jQE792ZCuH90rbRmFcmRjrTJRd9oMuFbaMgrk7M73/vV+BI0vxfPam1MW2knQ6BT87yE6YAQCgUAgEAgEAoFAIBC8MRKxCG+BCO8IBAKBQCAQCAQCgUAgELxjRASMQCAQCAQCgUAgEAgEgjdHLMJbICICRiAQCAQCgUAgEAgEAoHgHSMiYAQCgUAgEAgEAoFAIBC8OWINmAIR3hEIBAKBQCAQCAQCgUAgeMeIDhiBQCAQCAQCgUAgEAgEgneMmIIkEAgEAoFAIBAIBAKB4M2RiEV4C0JEwAgEAoFAIBAIBAKBQCAQvGNEB4xAAEgkEvbt21faMnB1dWXZsmWlLUMgEAgEAoFAIBAIio9UWnpbGUBMQRL844SEhDB//nwOHz7Mq1evkMvlVK1alWHDhjFixAjMzMyKlM+mTZv48ssviYmJebeC3wH5ab9x4wbm5ualI6oQhnxgT+eWSizMZPg+TWb11iBeBKUWmKZZfSuG97LHyc6I4PA0/tgbyhWveB2bbq2t6dPJFmuFAS+CUlm3PZgHT5KKra9rKyV9OlqjlGvyWb8zFB+/5Hzta1Y1Y3R/eyqWMyYqJoPdJyI59neMrv56lgz9wA4nO0OCw9PZsj+cq97x+jMsAheOb+fMwU3ExYTjWKEKfUZOpUr1Bnpt/R/d5uDWpYQGPSU9NQWlnRPN2venTbcReu1vXzrK5uVTqNWwDWO+WV5ijQBHDu1n3+4dREdF4uziyuix46hRs3ah6R4+uM+MqV9S0bUSy1au12tz4fwZFi+YS+Mmzfn2+zkl1nj40AH27N5FVFQUFV1c+HjsZ9SsWavQdD4PHjBt6te4uLqyYuUanWMJCQls2fw7ly9fIiEhHgdHR0aP+YRGjRoXW5/1+w2p/PVo5PVrYlLOnpt9Pyf0wOmC07RohOeiaVh4ViU1KAz/xb/xYt12HRvH3h1xn/kFZlUqkuT/At/vlxK6/1Sx9eVmSA87OrVUYGEm4/HTZFZvCylC/bZkWE/77PqxLyxP/e7aWkmfTjZYZ9XLHaElq9/FzKemuxljBjhk1+/jkRw9H11s/cXSWAbaoLKkc0TfcnRtZ4uluQGP/BJZ/vtznr9KKTBNi8YKRvUvj5ODMcGhqWzcEcilm9lae7S3o0cHOxxsjQF4/iqZLXuCuHEnrsQ6h/a0p3Mra829MSCJVf8t/N7YvIEVw3s7aO+Nm/eEcuV2toaa7mb07WyHm6spNgpD5qx4zhWvkmksC3UHYGT/8nRvZ4+lhQEPnyTwy4ZnPHuV/3UJ0PI9JR8OdKacgzFBoals+PMlF29E67Ud0qscHw9x5q/Dwfy6+UWx9ZUVP8L/v+e1ik5GDP3AjioVTXCwNWL9zhAOnNZ/HfwvaRSUXcpGN5Hgf4aAgADq1avHiRMnmDdvHl5eXpw6dYpJkyZx8OBBTp168xeJsoydnV2RO6D+Sfp1tqV3BxvWbAtm0lx/omPTmfuVK6bG+TchHpVNmfaJM2euxDB+lh9nrsQw7ZOKVKtkqrVp0ciKjwc5suNIOBNn+3P/cSKzvnDBztqwWPreb2jJmAEO7DwSyRdzn/LAL5mZEypip9Tfx+xgY8gPE5x54JfMF3OfsutoJGMHOtKsnqXWplplU6Z8XJ6z12KZOOcpZ6/FMnVsedxdTYqlLYvbl4+xd/MCOvb+mG9+2kUVjwasmf8ZURHBeu2NjU1p0XkwE2duYvqS/XTsM5YjO1Zy+dSuPLZR4UHs++8iqnjUL5G2nFw8f5aN636l/8ChLFmxDs8atZjz/TTCw0ILTJeYmMCyxfOpXTd/DWGhIWz6bQ2eNQrvKCmIv8+fY/26NQwYOITlK1ZTo0YtZn4/g7CwsEI0JrJk8ULq1K2X51h6ejrfzZhGaFgo07/9jrXrNjJh4iRsbGxKpFFmbkbcXV8efDG7SPamrhVodHAdURdvcbFRL/wWrKHG0hk49u6otVE0qUu9bUsJ3LqfCw16Erh1P/X/XIaiceGdYwXRt7MNvTpYs2ZbCF/9+JTo2AzmTKpYaP2eOrYCZ6/GMGF2AGevxjB1bAXcc9bvhlZ8PNCRnYcjmDg7gAdPkpg5sSJ21sUb+yluPg62hsycWJEHT5KYODuAnUciGDvIkWb1s+t3UfQXh7LQBpUlnQN7ONK3qwMrf3/BuBk+RMWks+Bbd0xN8r8mq1c15z8Tq3DqYiSfTPPh1MVIvvuiMh5Vsgc1wqPS+O3PQD6f4cPnM3zwehDP7MluuFQomdZ+XWzp3dGW1f8N4ss5fkTHZvDj5EoF6vSoYsa0Tyty5nIM437w48zlGKZ/WpFqlbOvPRNjKU9fprD6v0El0pVFWag7AIN6OtG/mxPLNz7j0+n3iYpJ5+f/eBToR8+qFnz/ZVVO/h3BmG/ucfLvCH6Y5EZ1t7yDWNWqmNO9vR3+zxJLpK+s+BH+fz6vGRtJCYlIZ/PecKJiM4qlp6xqFJRtRAeM4B/l888/x8DAgJs3bzJgwACqV69OrVq16Nu3L4cPH6ZHjx5a2yVLllCrVi3Mzc1xdnbm888/JyEhAYBz587x4YcfEhsbi0QiQSKRMHPmTADS0tKYMmUK5cuXx9zcnPfee49z584VS+e9e/do27Ytpqam2NjYMHbsWO25s9i4cSM1atTA2NgYJycnxo8f/8bac09BevHiBT179sTCwgIrKysGDBhAaGj2i/DMmTOpW7cuW7ZswdXVFblczqBBg4iPf/MRlJz0bG/DjsPhXL4dx/OgVJZsDMTYSEqr9+T5p+lgi5dPAruORvAqJI1dRyO48yiBnu2zX2h7d7DlxMVoTlyI5mVwKut3hBARnU7X1tbF0tervQ0nL8Vw4lIMr0LS+G1nKBHR6XRppdRr37mVgvCodH7bGcqrkDROXIrh1KUYenfMPm/PdtZ4P0zkr2ORvApN469jkdx5lMgH7YqnLYtzh/+gSds+NG3XF8cKlekzaipKG0cundih175Cpeo0aN4VJ2c3bOzL06hFDzxqN8P/0W0dO7VaxR8rptGl/zhsHCqUSFtO9u/dRfuOXejQuRvOFV0Y88l4bO3sOXb4QIHpVq9YSsvW7ajm4an3uEqlYunP8xg0bBQOTuXeSOO+vbvp0LEznTp3wbliRcZ+8hm2dnYcOXywwHQrVyyjVes2eHhUz3Ps5InjxMfH85/vZuJZowb2Dg7UqFGTypWrlEhj+PG/efzDMkL2nSySvcvYQaS8CMbn63kkPArg5ca/eLlpD5W/+khrU2nCSCJOXcZ/4ToSfQPwX7iOiDNXcZ0wskQas+jZzpodRyK44hWvqd+/B72u31b5pvmgvTVePonsOhr5un5r6kfP9tn1o1cHG05ejObERU29XL9DUy+7tipm/S5mPl1aKQmPSmf9jtf1+2IMpy5F06djdttTFP3F0lgG2qCypLNPF3u27Qvm4o0Ynr1KYeHqp5gYSWnbPP88+3Zx4Na9OP7cH8LLoBT+3B+C14N4+nS119pcvR3Lde9YAkNSCQxJ5fedgSSnqKnuZlEinb062LL9UJjm3hiYyuINrzA2ktL6PUUBaWzw8klg55FwXoWksvNION4PE+jZwVZrc/NeAn/sDeXy7ZJFveQ817+97gD06+rIf/cGcuF6NM9eJvPTr/6YGEtp/75t/mm6OXLzbizb9gXxMiiFbfuCuH0/jr7dHHXsTIylzJhQhUVrnxKfqCqRvrLiR/j/+bz25HkKv+8O48LNONLT1cXSU1Y1/uuRSEtvKwOUDZWC/wkiIyM5ceIE48aNy3eajSTHqtlSqZTly5dz//59Nm/ezJkzZ5gyZQoAzZo1Y9myZVhZWREcHExwcDCTJ08G4MMPP+TSpUts376du3fv0r9/fzp37syTJ0+KpDMpKYnOnTujVCq5Exl5ugABAABJREFUceMGu3bt4tSpUzodLKtXr2bcuHGMHTuWe/fuceDAAdzc3N5Ye04yMzPp1asXUVFRnD9/npMnT+Lv78/AgQN17Pz9/dm3bx+HDh3i0KFDnD9/np9++qlIv7UoONoaYq0w5PaD7A6ojIxM7vsmUt0t/2gdj8qmePnodlrdfpCgTWMgk+DmYorXAz02VYoeBWQgA7eKJnj56I5sefkkUr2K/pEkj8pmeexv+yTi5mKKTJpTf648HyQWS1sWGRnpvAzwoVrtZjr7q9VpxtPH3kXK49XThzx97I1b9YY6+4/9tQYLKyVN2/Yptq7cpKen4+/3mLr1dc9Rt15DHj18kG+60yeOEhIcxKCh+XcE7PxzC1ZyOR06dX1jjX5+T6hXXzfSpl69Bjx66JNvupMnjhMSHMyQocP1Hr927Qoe1auzetUKhg0ZwOeffczOHX+iUpXsgb24KJrUJfzUJZ194ScuIG9QE4mBZtRN2aQuEacu6thEnLyAsmneiJ6i4vC6fns9yL7WMzIyuf84qcBrXVOH9NVdTZ0zkIGbi556+SABj3zqpT5Kko9HZX3tyuv6LSua/uJQFtqgsqTTyd4IG6URt+7FavelZ2Ry92E8Ndzz7yjxrGrOrbu6HRY378RRo6r+NFIJtG6qxMRYis+TBL02BeFop//eeK+we2MVM27f1x0kuX0/Hs8S+is/ykLdAXCyN8ZGacTNO7rlfccnnhrVCihvdwtu3o3V2XfjTiw13C119n05xpWrXjHcvleyzqyy4kf4//u89jYpCxoFZR+xBozgH8PPz4/MzEyqVaums9/W1paUFM287nHjxrFgwQIAvvzyS61NpUqVmDNnDp999hmrVq3CyMgIuVyORCLB0TF7tMPf358///yTV69eUa6cZpR98uTJHDt2jN9//5158+YVqnPr1q0kJyfzxx9/aDuKVq5cSY8ePViwYAEODg7MnTuXr7/+mi+++EKbrlGjRtr/l0R7bk6dOsXdu3d5+vQpzs7OAGzZsoUaNWpw48YN7fnUajWbNm3C0lLz0DF8+HBOnz7Njz/+qDff1NRUUlN15wIbGxvnq0Mp1zQTMXG6IZMxcRnY2eQfeqqUGxCdK8wyOjYDpZUmPysLGTKZRE++Ku05i4KVhYH+fOIzUFjp7+hTWsmIic/7ewxkEqwsDIiOy0BhZaD3NyutZEXWlkViXDRqtQorue50Fku5DfExkQWm/f6zdiTERaNWqejS/zOatuurPRbwyIurZ/cwZcFfxdakj/i4WNRqNQqF7iiPXKkkOjpKb5qgwFf8sek35i1chkym3zcPH9zn1PEjLM1nXZjiEBcXh1qtRplLo1Kp5Ha0/vnUgYGBbN60gQULl+SrMTQkmLt3vGndpi0zZ80lMCiQNatWolKpGDxk2BvrLgxjB1tSQyN09qWFRSI1NMTIVklqSDjGjrakhupeL6mhkRg72pX4vAXVb/tC6rf++pFVvzX1MjqXTXS8ivolqN/FyUcpNyA6XrfjLDouAwOD1/U7NqNQ/cWhLLRBZUmnUq657vTdPxxsjfJPpzAkOjY9V5p0lArd67iSsynLZ3tgZCglOUXFzCX+vAgseG0Zveez0uT71upOMepFUSgLdQfAWpFV3nnLrqDytlYYEh2TK01MujY/gDbNrKlayZxPp98vkTYoO37MOm9WPrnz/V9+XnublAWNZQKp+Ax1QYgOGME/jiTXt+GvX7+OWq1m6NChOh0DZ8+eZd68efj4+BAXF0dGRgYpKSkkJibmG0Fz+/ZtMjMzcXd319mfmppa5LUcHj58SJ06dXTO0bx5c9RqNb6+vkgkEoKCgmjXrl2+eZREuz4dzs7O2s4XAE9PTxQKBQ8fPtR2wLi6umo7XwCcnJwKXAtj/vz5zJo1S2ffDz/8APQDoPV7csYPz54iMnP5cwAyc2dUgrZVIsmbT2amHps8Jyuc3EkKk6fvvJp8sg/o+80lkJa/qMzMQoV+MWszqSlJPHtyl4PblmHrWJEGzbuSkpzIlpXTGTR2JhZW+sNiS64zl6jMzDz1FjTTipYs/JHBQ0dSvoJznuMAyUlJLF00j88nfo2VPP8Q6DfVmJmZmUd2lsZFC+czZOgIylfIf4qWWp2JQqFg/IQvkclkuFV1Jyoykj27//pHOmCAAi7KzIJtilFhWr9nxbhh2fV71grNYpT66k9h2eZJo69+5JZbhHyLcrJC88l1UKLdnX/91qu/GJSJNkhPnqWts21zayaNcdH+PWPhk3zPW1ieeu9TuXa+DErhk2k+WJjLaNFYyZTPXPlqtm+hnTCtmyiYMCK77vyw7Ll+nXr2Fa5T8sblWtSTlXbdaf++DV+NraT9e/p8X32nLdI1pE9H1k47GyPGj3Jlyo+PSE9/C979l/kRxPNa5rurNWVCo6DsIjpgBP8Ybm5uSCQSHj16pLO/cuXKAJiaZof2PX/+nK5du/Lpp58yZ84crK2tuXjxIqNHjyY9XXfEIydqtRqZTMatW7fyjHRbWBRtjndmPi+boOk8yqlTHyXVXlQdufcbGuqOakgkEtTq/OeXTp8+na+++kpnn7GxMX3GaR56r3nH4/vUPzt/A825lFa6IyQKy4J79bNGeHKSc6Q0LkGFSpWZx0ZuKcsz8lAQcQkZmnyscueTd3RJqy1Opdc+Q5VJfIJm1ErfSJTC0oCYuOJPSTG3UiKVyojLFe0SHxeFpbzgjkEbe02nQbmK7sTHRHJs12oaNO9KROhLosIDWb9wgtY2M1NT7pMG12XG0oPYOurvFMkPSys5UqmUmFzRLrExMXmiYgCSk5Pxe+JLgP8T1q1e/lpDJpmZmfTp3p6ZcxdiYWlFWGgIP86akUOn5oGkT/f2/Lp+M05O5Yus0crKCqlUmiciJ6YAjU+ePMbf3481q1fqaPyge2fmzJ1Pnbr1sLa2RmZgoNNuODtXJDo6ivT09Dz17G2TGhqRJ5LFyM4adXo6aZExGpuQCIwddddEMLa3zhM5UxDXvBPwDchRvw018dG567dcT1RDTnKOjmrTWOas3xl667eipPW7GPno06awMiAjI1O7BkRh+otDWWiD/s06r9yK4ZFfdvi+oaHmnmOtMCAqR4SDwsogT5SEjtaYdKzluvVUaZU3KiZDlUlQqGaw53FAEtUqm9OnswPLNjwvUOc17zh8A7K/+KK9N8rfvO4oLGXEvOWFOf+tdefSzWidKV9Gr9sga4WhTnnrK7ucROWKdgFQyA2Jep3GvbI51gpD1v5UU3tcJpNQu7olvTs70nHIddRFeDf+t/oRxPNaVhv0NikLGssEZWQtltJCeEfwj2FjY0OHDh1YuXIliYkFr0R/8+ZNMjIyWLx4MU2aNMHd3Z2gIN2vARgZGeVZn6FevXqoVCrCwsJwc3PT2Qqa7pMTT09PvL29dTReunQJqVSKu7s7lpaWuLq6cvq0/k/KllS7Ph0vXrzg5cuX2n0+Pj7ExsZSvXreRUSLirGxMVZWVjpbzilIyalqgsPStNuLoFSiYtKpVyO7A8tAJqFmNXMe+uX/+cFHAcnU9dTt9KrnaaFNk6HKxO95MvX02fgX/bOGGSrwe5FCveq6kUV1q5vz0F//JwMfBSRRN5d9PU9z/J4no1Ln0K/HpjjasjAwMMS5sie+d6/o7Pe9e4VK7nWLkVMmGRlpADiUq8TUn/fwzYJd2q1mg9a41WjMNwt2obAt2vWeE0NDQ6q4uePtdUtnv7fXLTyq18hjb2Zmxi+rNrB05Xrt1qlrD8pXcGbpyvW4e1SngnPFPDaN3mtGzdp1WbpyPba29nnyLUyjm1tVvL10FyP29rqNR/W8CwCbmZmxctValq9crd26dO1GhQoVWL5yNdU8PACo7lmD4KAgnc7LwMBArK2t33nnC0DMVW9s2+muEWTX4X1ib90nM0Pz0Bd91Rvbds11bGzbv0/0Fa8inyc5VU1weLp209Zvz+xr3UCm+YRqQdf6o4AknTSQVXc1dS5DBX7PU/LUobqeFjzKp17qoyT56G97XtdvVdH0F4ey0Ab9m3Ump6gJCk3Vbs9fpRAZnUb9WtkRcwavX5wfPM5/rRafJ4nUr6W7cHSD2lY8KGx9F0l2p09hOvXdG+t76t4baxV2b/RPol4N3XVK6te0xKeE5Zof/9a6k7u8n71KJjI6jYa1dcu7jqclD3wLKO/HCTTIcY0ANKwt58Fjzfo6t+/F8uHXdxkz5Z52e+SXwKmLkYyZcq9InS/w7/UjiOc11TtYy7YsaBSUfUQHjOAfZdWqVWRkZNCwYUN27NjBw4cP8fX15b///S+PHj3Sjj5XqVKFjIwMVqxYQUBAAFu2bGHNmjU6ebm6upKQkMDp06eJiIggKSkJd3d3hg4dyogRI9izZw9Pnz7lxo0bLFiwgCNHjhRJ49ChQzExMWHkyJHcv3+fs2fPMmHCBIYPH46DgwOg+frQ4sWLWb58OU+ePOH27dusWLHijbTnpn379tSuXZuhQ4dy+/Ztrl+/zogRI2jVqhUNGzbMY/8u2X8qkgFd7WhazxKXcsZM+qg8qWlqzl/LXgDvq4/KM7KPg/bvA6ciqO9pQb/OtlRwNKJfZ1vqVrdg/6nsKJC9JyPo2EJJh+YKnJ2M+XigI3bWhhw5p3+9kfzYdyqSDu8raN9MTgVHI8b0t8fO2pCjf2vWBBnRy45Jo5y09sfOx2BvY8jo/vZUcDSifTM5HZor2Hsi+7wHTkdRz9Ocvp1sqOBgRN9ONtSpbs6B08XTlkXrbiO4emY3V8/uJeRVAHs2LyA6IpjmHQYAcHDbMv678lut/YXjf3L/1jnCgp8TFvycq2f3cubgZhq+3w0AQyNjylWsqrOZmltiYmJGuYpVMTAoWadBz979OXX8CKdOHOXli+dsWPcrEeGhdOqq+ULZlt/Xs2zRfECz2LSLayWdTS5XYGhkhItrJUxMTDF6/f+cm7mFBaamZri4VipR50av3n05cfwYJ04c4+WLF6xft5rw8DC6du0OwKbfN7B40UKtRlfXSjpblkbX1xoBunbrTnx8HOvW/h97Zx0fxfH//+dJXC7uIR5IcHd3tyItLaWl0JY6VWpAjZYWqFJKWwqlRYq7u2vQBEuAuOficvb74yDhkosd5ZPm+5vn43GPR7L7ntnXzu7OzL7nPbM/kxAfz5nTp1jzz0oGDxlmUjnKbKyxb94I++Z6B491gA/2zRth6au/Dxt+Np3mf3xVan938Sqs/LwI+/o9bBsF4jNpNL7PjCZm/pJSmzs//olL384EvjUFm4aBBL41BZfeHbnzwzKTNN5n075MxgxyKX2+X3/m/vNdtmjl9Ge9eHpkmbNM/3zYMnqAMz4e5owe4EyLMBs27S17PjbuySh9vn08zHlurLv++T5kfK2eyqgun6dHujH92bIw/B2HsnBzNuO5se74eJjTt7MDfbs4sn53Wd1TE/210lgP6qD6pHP9jlSeGO5B5zYO+PtY8s6L/hSVaNl/rCzPd1/0Z/J47wfSpNCmmT3jhnrg62XJuKEetGpix/rtZVNynx3nTZOGtri7mBPga8UzY71pHm7HvmMmXvc96Ywd4kbHVvb4eVswfbIPxSVaDp5Sltq8+ZwPk0aXtY2b9mTQqrEtjw10wcfDgscG3msb95RFsllaSAn0tSTQV/95bHcXMwJ9LWv9yd/68OwArN2ezISRXnRp64i/rxXvvRRIUbGWvUfLymTGS4E893hZVOe67cm0ba5g/HBPfL0sGT/ck9ZN7Vm3LRnQO3ruxBUa/IqKteTkqrgTVztHa30pR/j/s78ml0GAjwUBPhbI5RKcHcwI8LHA09W0flB90Cio34gpSIL/KUFBQURERPDFF18wY8YM4uPjsbCwIDw8nLfeeotp06YB0KJFC+bPn89XX33FjBkz6NatG3PmzGHixImleXXq1IkXXniBcePGkZGRwcyZM5k1axZ//PFH6SK5CQkJODs707FjRwYNqtnXV6ytrdm1axevvfYabdu2xdramtGjRzN//vxSm6effpqioiIWLFjAW2+9hYuLC4899thDa38QiUTCxo0beeWVV+jWrRtSqZQBAwaUOnr+l6zdmY65uZRpE7ywtZFxPaaQj+bfobC4zLXv6mxuMAc2KrqQrxbH8dQId54c4UZyWglfLY7j+u2yjs+RMznY2yTz+FA3nBRy7iYWM/O7u6Rl1nyqFsDRs7nY26QwfrBLaT6zf4wlLVMfOeCkkBt0XFMyVMz+IY7nxrozuLsjmdlqFq9O5nhE2ZcprsUUMve3BJ4a7sqEYa4kp5Uw99cEbtyp/WKNAK06DSA/V8mudYvIzkrD0zeY599biJOrvtOWo0wjKyOp1F6n1bJlxXdkpiUglcpwcfdl6BOv06nPGJOOX1O6dO9JTm4Oq1f8SVZmJg38/flo9hzc3PURNZlZmaSlVb7G0P+Cbt17kJubw6oVf5OZmYmfvx+zZn+G2z0HaZYJGl1d3fjkszn8tngRL7/0PM7OLgwbPpLRj401SaOidRM67lte+n/4N3rnWtyf67k0eQYWnq5Y+ZZ14ArvxHNm6FTC583A78UJFCemcvWNz0nesLvUJutEBBETptNw9us0nP0qBdFxRDzxBsrTl0zSeJ91OzOwMJPy4hMepc/3xwtiDZ9vJzODEeNr0YXMXRzPkyPceHL4/ec7nhsPPt9nc7CzlTF+SNlzOev72Fo/39Xl4+hQ7vlOVzHr+1j9893DkYxsNYtXJXP8/APPdw3014b6UAfVJ52rtyRjYS7l1WcbYGcjJyo6n/e+uEFhUdk96eZiYXBPRt7M57PvY3hmrBeTxnqRmFLMZ9/HcC26LJrVUSHnvZcCcHIwI79Aw+3YQmZ8edPkL+Ss3ZGOhbmUl5683zYW8OG82wY6XZ3MeHBWcFR0AV8uimXiKHeeGulOUmoJXy6K5XpM2b0X4m/FV+8Glv4/9XF9O7HnaBYLlsTXWF99eHYAVm1KwsJcyuvP+euv96083v78WpXX++qNPD759haTx/vw7DgfEpOL+eTbW0TdqjrC2hTqSznC/5/9NScHM77/qOx5GdXPmVH9nLl8PZ/358fWSl990fifp5KlHAR6JDqdScvhCQSC/2MMfs70rwT8L9j2WxOGPh9V1zKqZMsvYey8UFLXMqplQAtzoqIT6lpGlYQFeXMzuuo1GeqakCA/tpk1rN6wjhmsus6QKZV/ovu/wNZfw+uFxv96HQT6eui/rnPLL2H0efxsXcuokr0r2zDo2ct1LaNati9pWi+enZ5jT9W1jCo58E/7/3w5gr4sRX/t4akP9SToddZHijb/VGfHthz2Up0du6aICBiBQCAQCAQCgUAgEAgED49UrHJSFaJ0BAKBQCAQCAQCgUAgEAgeMcIBIxAIBAKBQCAQCAQCgUDwiBFTkAQCgUAgEAgEAoFAIBA8PGIR3ioRETACgUAgEAgEAoFAIBAIBI8YEQEjEAgEAoFAIBAIBAKB4OGRiBiPqhClIxAIBAKBQCAQCAQCgUDwiBEOGIFAIBAIBAKBQCAQCASCR4yYgiQQCAQCgUAgEAgEAoHg4ZGKGI+qEKUjEAgEAoFAIBAIBAKBQPCIEREwAoFAIBAIBAKBQCAQCB4e8RnqKpHodDpdXYsQCAQCgUAgEAgEAoFAUL8p2vV7nR3bsv/kOjt2TRERMAKBAIBRr96qawlVsv77YCZ+lFTXMqrkz089eWdRYV3LqJa5L1gx9PmoupZRJVt+CWPsm3fqWkaV/DPPnyFTIutaRrVs/TWcbWYN61pGlQxWXefnnXWtompeHAC5Z//jIgG7NgMoPLiyrmVUiVWPx+tFff5fr4NAXw/913X+M8+f57/MrGsZVfLLe07/+XIEfVkWbVtU1zKqxHLwC/R5/Gxdy6iSvSvb0Hv86bqWUS37VrWrawmmIT5DXSWidAQCgUAgEAgEAoFAIBAIHjHCASMQCAQCgUAgEAgEAoFA8IgRU5AEAoFAIBAIBAKBQCAQPDxiEd4qEREwAoFAIBAIBAKBQCAQCASPGBEBIxAIBAKBQCAQCAQCgeDhkYoYj6oQpSMQCAQCgUAgEAgEAoFA8IgRDhiBQCAQCAQCgUAgEAgEgkeMmIIkEAgEAoFAIBAIBAKB4KHRiUV4q0REwAgEAoFAIBAIBAKBQCAQPGKEA0ZQLzl48CASiQSlUvk/P/akSZMYMWJErdIsXboUBweHau169OjB66+/XuN879y5g0Qi4cKFC7XSIxAIBAKBQCAQCAT/OhJp3f3qAWIKkuChmTRpEsuWLauw/ebNmwQHB9eBovrL+vXrMTMzq2sZFRjQxZ7hvR1xtJcRl1zCknXpRMUUVWofHmzJMyNd8PUwJzNbw8Z9Wew+llO6v09He3q0s6OBpzkA0XHF/L0lg1uxxSZr7N3OmkFdbFDYykhIVfP3jmxu3FVVat/Q35wnBtjj7SZHmath29F8DpwpMLCxtpTwWB872oRbYm0pJV2pYcWOHC7dNE1nx8YyujeXY2ctISVLx+ZjKu4ka43a2lnDkI5m+LhKcVZIOHZZw5bjhufTJEBKr5ZmOCskyKSQnq3j8EU1529qTNJ3n0HdHRnVzwlHhZzYxGJ+/SeFyFuFldo3CbFm8hg3GnhZkKlUs253BjsPKw1sOrW0Y8IwVzxdzUhKU7F8UxonL+SarLFfJzuG9bDHwV5OfHIJSzdlcu125dclLNCCp4c54eNhTlaOms0Hcthzouz47ZpaM7K3Ag8XM2RSSE5Xs+VQNkfO5Zus8T5PDHWlfzcHbK1l3LhdyM8rkolNrPoe6tTKjieHu5WV18ZUTkQYltegHo6M6u+M0/3rtDqFqzcLKsmxIk5d2hD45mQUrZpg6eXG2dHTSNm8r+o0XdsS/s172IaHUJyYSvS834hdvMrAxmNkP0JnvYZ1UAMKomO5/vECUjbtrbEuY1w88jfn9v9Ofk4azh4hdB/1Pt5BbYza3rq4m0tHV5KWEIVGXYKTZwgdBryMf1hXA5vTexahTI9Fq1Hj4OpH657PENZ2hMka1+w5wvJt+0lX5hDo7cGbT42iZaMgo7ZnI2/ywuc/Vti+9uv38fdyB2DqZz9wPupWBZvOLcL57u3nTda5+uBplu0+Tnp2LkFebrw9dgCtQvwqtS9Rqfll2yG2n7pEek4e7g72PDeoKyM6twJg3ZFzbD15kVuJqQCEN/Dk5RG9aRrgY7LG+lCf15c6qD7o7N7Sgn7tLVHYSklM1/DP3gJuxasrtQ/xlTOmtzVeLjKUeVp2nyzi8IWyc5JKYWBHSzo2scDBTkpypoYNBwq5ervye6g66kM5Aqw+dpGlB86SnpNPkIcz74zoTqvAyp/FErWaX3afYtu5KNJzCnB3sOW5Pu0Y2b5JqU1OYRE/bj/Ovks3ySksxttJwZvDutE1PMBknRNHezGotwt2NnKu3crn+z/ucje+8n4lQNd2Dkwa442nuwVJKcUsWZ3AsbPK0v1D+7gytK8r7i4WANyNL2T5+kTOXMypJMca6HzMm8G9XLGzlRN1K4/vl9zlbnzl/SG9TkeeGetTqvP31fEcO5NVprOvG8P6uOHu+qDOBE5fyDZZp6B+IRwwgn+FAQMG8Mcffxhsc3V1rSM19Q+VSoWZmRlOTk51LaUCnVva8swoV35dk0ZUTCH9Oyv48EUvXvsilvSsih0kNyc5Hz7vxd4TOXz7ZwphgVZMGeNKTp6Gkxf1HYsmIVYcPZfLtdtFqFQ6RvRxZOY0L16bE0tmdu2dB+2bWDJhoD3LtmZzM1ZFzzbWvPWUEzN+SCMju6KDw8VBxltPOXLwbCG/rFMS0sCMp4coyM3XcjZS3wGQyeCdp53Iydfyw6osMrO1OCukFJboaq0PoHmQjKGdzNh4RO90aR8uZ/Jgc+atLkaZVzFPuUxCfhHsO6+mazPjVXVBMew7ryJNqUOthTA/KWN6mpFXqONGvHHHTnV0aWPHc2PdWbQimcjoAgZ0c2TWKw14aVY0aUaut7uzGTNf8WXXUSXzliQSHmTNC094kJOr4fg9h0HDQCvemeLNX5vTOBmRS4eWdrw71Zt3597hxp2qO1zG6NjCmknDnfhtfQbXbxfTp6Md709x5425CWQoK94/rk5yZjznzr5TefywIp2GARY8N8qZnDwNpy7rX9LyCrSs35tNYqoKtUZHq3Arpo1zISdPw8Xrtdd4n9EDnBnR14kFfySSmFLCuMEufPpGA174MJrCYuPXqFGgFe9O9eGvTXqnS8eWdrw71Yd35t7hxm19x69rG3umjPPg57+TiLxVwMDujsx6tQHTZt4iLbPyF5cHkdlYk3PpOvHL1tN6TUVnQHms/H1ou2Uxcb+v4cLTb+PYqRVNfphJSVomyRt2A+DQoQUtVyzgxszvSN60F4/hfWi18ltO9HgC5elLNSw1Q66f386hDXPoNWYmXgGtuHR8FRsXTeGpGduwd/KqYB8ffYYGjTrRacgbWFjZE3lqPZt/fZHx0//BzSccAAtrBe36voiTeyBSuRm3rxxg94r3sbJ1NnDU1JTdJ84zb/kG3ntmDM1DA1i//zivzl3Emrkz8HCpvF5f980H2FhZlv7vaG9b+vfXrz+LSl12P2fn5fPEjLn0adei1vrus+vMFb7+ZyfvPzGYFkENWHv4LC/98BfrZ72Ep5OD0TTv/LqGjJw8Zk4chq+rE5m5+Wi0Zffu2Rt3GNC2Cc2DfLEwk7N01zFe/G4562a+hLujfa011of6vL7UQfVBZ5tG5oztY82KXQVEJ6jo1sKSV8baMeu3bLJyKl5vZ4WUV8bYcfRiMUu25BHkbcYT/a3JLdQScV3vYBnRzYp2jS34a0c+yRkawgPNeGGULXP/yiEupfZ9jPpQjgA7I64zd+NBPhjdixYBXqw9fplpizey4d2JeFbyLL69bBsZuQXMGtcXXxcHMnMLDZ5vlVrDC4vW42RrzTeThuCusCNZmYuNhblJGgHGDfVg9CB3vl50m/ikIiaM9OKr90N5ZvoVCouMt4thITZ8+GoQS9ckcPSMki5tHfjotUBen3Wda9H6vmVaZgm/rUwgIVlffv26ufDJW8G8MCOyWueOMcYP8+SxQR7M/TmG+KQinhzlxdz3GzJp+qVKdYaH2PLRa8H88U88R89k0aWtIx+/FsRrs6K4dkuvMz2jhF9XxpGYUvyAzhCef+9qtc6dekM9iUSpK0TpCP4VLCws8PDwMPjJZDIADh06RLt27bCwsMDT05P33nsPtbrsBaG4uJhXX30VNzc3LC0t6dKlC2fOnDHIf/v27YSGhmJlZUXPnj25c+dOtZrmz59P06ZNsbGxwdfXl2nTppGXl1e6//60oF27dhEWFoatrS0DBgwgKSmp1Eaj0TB9+nQcHBxwdnbmnXfeQaervsO2dOlSGjRogLW1NSNHjiQjI8Ng/6xZs2jRogVLliwhMDAQCwsLdDpdhSlI/v7+fPHFFzz77LPY2dnRoEEDFi9eXOlxtVotU6ZMITQ0lLt371arsyYM7enAvpM57D2RQ0KKiiXr08nIUtO/i8Koff8uCtKz1CxZn05Cioq9J3LYfzKH4b0cS22+/TOFnUdzuJNQQkKqip9XpiKRSmgWam2SxgGdbDh0voBD5wpJTFPz944cMnO09GpnY9S+VztrMrK1/L0jh8Q0NYfOFXL4fAGDOpfZd2tljY21lO9WZHEzVkVGtoYbsSrikmv2cluers3knLmm4fQ1DalKHVuOq1Dm6egQLjNqn5Wrj5A5f0NDUSUvCTGJWq7e0ZKq1JGZo+PYZQ3JGTr8PU2v2kf0cWbPMSW7jymJTy7ht39SSM9SMbC7o1H7Ad0dSMtU8ds/KcQnl7D7mJK9x5SM7Ff20jm8txMXovJZuzOD+JQS1u7M4OK1fIb1Ns3hOKSbgv2nc9l/Ko+EVBXLNmWSrlTTr5OdUft+He1IV6pZtimThFQV+0/lceB0HkN7lHVII6OLOHOlgIRUFSkZanYcyeVuUgmNAiyN5llThvd2YvX2dE5E5HI3sZj5fyRiYS6le/vKX0yH9XEiIjKfNTsyiE8uYc0OfXkN71NWXiP6OrPnaBa7j+qv06+r9ddpUPeal2narsPcmPktyRv31Mjeb+p4imKTiHzzC/KuxRC3ZC1xS9cTOP3ZUpuAV54mfe9xoucuJv96DNFzF5O+/yT+rzxdY13lOX/wDxp3GE2TjmNw8giix6gPsHX04NKxlUbte4z6gDa9p+Dh1wxHN386D52Og6sfMVf2l9r4hrQnuHlfnDyCcHBpQMseT+Pi1ZDEmHMmafx7x0GG9+jAiJ4dCbgX/eLu7MjavceqTOdkb4uLg33pTyYte3YVtjYG+05dvo6luRl92rcwSSPA8r0nGNm5FaO6tCbQ05V3xg3Ew1HBmkNnjdofu3KTszfu8OMrE+gQFoS3iyNNA3xoEdSg1GbO5NGM69GORr6eBHi48vFTw9DpdJy+FmOSxvpQn9eXOqg+6OzTzpJjF4s5dqmY5Awt/+wrICtHS/eWFkbtu7e0IDNHb5ecoeXYJX3afu2sSm3aN7Zg54lCrsSoSM/WcjiimMjbKvq2NU1jfShHgOWHzjOyfRNGdWhKoLsz74zsgYeDHf8cM+78PhZ1h3PRCfw0ZSQdQv3wdlLQ1M+DFgFlju0Np6+QXVDEgmeH0jLAGy8ne1oFetPQ2/RB1lED3VixMYmjZ5TciS9i7s+3sTSX0qtz5e3X6IHunLucw8pNycQlFrFyUzIRV3MZNcit1Obk+WxOX8gmIbmYhORi/vgngcIiLWHBtpXmW7VOd1ZsTOTomSzuxBfy1cIYLC2k9O7sXHmaQe6cu5zNyk1J93Qmcf5KDqMHepTanDiv5PSFbOKTiohPKmLJ6ngKi7SEhxiv4wT/9xAOGMEjJSEhgUGDBtG2bVsuXrzIzz//zO+//85nn31WavPOO++wbt06li1bxvnz5wkODqZ///5kZmYCEBcXx6hRoxg0aBAXLlzgueee47333qv22FKplO+//54rV66wbNky9u/fzzvvvGNgU1BQwDfffMPy5cs5fPgwsbGxvPXWW6X7582bx5IlS/j99985evQomZmZbNiwocrjnjp1imeffZZp06Zx4cIFevbsaXC+97l16xb//PMP69atq3INl3nz5tGmTRsiIiKYNm0aL774IteuXatgV1JSwtixYzl79ixHjx7Fz6/ykPKaIpdBkK8FF68ZhnJfuFZQaSch1N+SC0bsgxpYIKukxjE310+hyS2o/ciUTAb+XmZcuWUYCnz5VjEhvsancwX7mnHZiL2/t1mpxlaNLLgVp2LiEAU/vOvGFy+7MLSbDaYs7C6TgrerhBtxhud3M16Lv8e/Vw0He0txdZBwO8m06Be5DIIbWBIRaRgCHRGZT1iQldE0jQKtK9ifj8wn2M+qtCwbBVpVzPNqPmFBtXe4yWQQ6GNeYYTw0vUiGvobvydD/Cy4VM7+wvVCAn0rvyebhFji5WpGZBVT7arD3cUMJwczIq6WnbtarePKjYIqz11fpnkG285fzSu9BnIZBPsZuU5X82hUyXX6N3Do0IK0cg6FtN1HULRugkSuj9Jy7NCC9L1HDWzS9xzBsWNLk46pUZeQGncVv4ZdDLb7NexM0u2IGuWh02pRFeVjae1gfL9OR+z1E2Sl3sY7qG2tNarUaq7djqND04YG2zs0bcilm7erTDvhg6/p/9JHvPjFj5y9erNK200HT9KvYyusLI2/mNZEZ1RsIh3DDadFdQgP4mJ0nNE0By9dp7GfF0t3HaPvu/MY9tH3zF+7i6KSyqdyFJWoUGu0KGxqfy/Wi/q8ntRB9UGnTAoNPGRE3jG8nyLvqAjyNh75Gegtr2h/W4Wfh4z7/ku5HFRqw4GLErWOIN/aB/7Xh3IEfaRKVHwKHUMN+34dGzbg4p1Eo2kOXo0m3NeNPw6coc+sxQyd8wfzNh+mqKTMMXnoSgzN/DyZs24/PT/+hVFz/+S3vacNomRqg6ebOc6O5py7XDbdRqXWcSkql8ahlTtKwkNsOHfJcCrR2Ys5NA4xnkYqgR4dHbG0kBJ5M8+oTdU6LXB2NOfsJUOdF6NyaRxq3PGm12lrkAbg7KXsSs9NKoGeHZ30Om/UXqegfiKmIAn+FbZu3YqtbVnlMnDgQNasWcPChQvx9fXlxx9/RCKR0KhRIxITE3n33Xf5+OOPKSws5Oeff2bp0qUMHDgQgF9//ZU9e/bw+++/8/bbb/Pzzz8TGBjIggULkEgkNGzYkMuXL/PVV19VqenBSJKAgAA+/fRTXnzxRRYuXFi6XaVSsWjRIoKC9B3Sl19+mU8++aR0/7fffsuMGTMYPXo0AIsWLWLXrl1VHve7776jf//+pU6i0NBQjh8/zs6dOw3sSkpKWL58ebVTtQYNGsS0adMAePfdd1mwYAEHDx6kUaNGpTZ5eXkMHjyYwsJCDh48iEJhPDoF9BFHxcWGnVULC+MdejsbGTKZBGWuoeMgO1eDg53xyA1HexkXytkrczXIZRLsbWVk5VR0sjw1zJnMbDWXrtc+9NLOWopMJiE7z7AzkJOnQWFn/LwcbGVczjMsg+w8LXKZBFtrKdl5Wlwd5YQFyDhxqZB5yzNxd5bz9BAFUqmETQdr10jaWIJMKiGv3OnlFuiw8304B4ylOXzwlCVyKWh1sOGIipsmTj+yt5Xrr3eO4aiwMleNg73xkRlHexnK3HL2Oep711tOVo4aB3t5xTxz1DjaG7+HqtR4757Mzit3T+ZVfk862MvIvl7RXi6TYGcjK72/rSwl/PKxL3K5BK0Wfl+fweUbpjtgHBX6JtbYubs5V77Wk6OisvLS53f/OmWVs8nK1dBK8eiadQt3F4pT0g22laRmIDUzw9zFkeLkNCw8XChOMYz4K07JwMLDtNHSwvwsdFoN1vaGI47Wdi4U5KbVKI9zB5agKikktOVAQ12Fufz2cTc06hIkUim9xszEr1HnWmtU3puS46QwjGpyUtiRnm18nSMXB3s+mDyOsABfStRqth89w4tzfuKXD16mVVjFtdOuRN8lOj6Jj6Y+Xmt998nKK0Cj1eFU7ll2trMhPcd4nZaQlkXErVjMzeTMf2EcyrwCvli5jez8QmY/PcJomu/W78XNwY72YYG11lgf6vP6UgfVB5221hJkUgk5+YbOktx8LfY2xutIexspufmGDpicfB0ymQRbK31ekTEq+rS15GacmrQsLY385bQIMTfJ4VYfyhEgK78QjVaHs52hc9/Zzob0XOMR0fEZ2UTcTsTcTM6CZ4ahzC/ki3X7yS4o4pPx/fQ2mdkk3opjUKtG/DRlBHfTlcxZtx+1RssL/TvUWqejQn9ds7LLtV/ZatxdKp/W5OhgRla24XXPylbh6GB4nwT4WvH9J40wN5NSWKRh1vxoYhNqX6b38zV2zPtrzBjDycHM6LkZ0/nDp+GlOmfOu8ldE3T+VxGfoa4a4YAR/Cv07NmTn3/+ufR/Gxt9By8qKoqOHTsieeBB7Ny5M3l5ecTHx6NUKlGpVHTuXNbpNTMzo127dkRFRZXm0aFDB4M8OnbsWK2mAwcO8MUXXxAZGUlOTg5qtZqioiLy8/NL9VlbW5c6XwA8PT1JTdUvJJidnU1SUpLBseRyOW3atKlyGlJUVBQjR4402NaxY8cKDhg/P78arZPTrFmz0r8lEgkeHh6lGu/z+OOP4+Pjw759+7C2rjqqYM6cOcyePdtg28yZM4EnK01T4XQlUNVELCPmxvMBRvR2oEsrOz7+IaHCiNVDIZEYPd59Kmgs11ZIJfpO4JJN2eh0cCdRjaOdjEFdbGrdYa/qmDWY0VYlxSXw7ZpizM0gxFu/zkxmro6YRNOcMEZ1VmdfLsH9stQ9kFOF06zmHqoOY+VW5T1ZXqORNEXFOt6el4ilhZSmIZZMHOZESoaayOiadYp6tLfnpSfLQrdn/xBrVJekEv0GesunMVZeRs7pYe+naqn0YuuqtnloYeXvQp2RbRW5dm4rJ3f+yLDnFmJtZ+jEMbewYcI7GykpLiDuxgkObfwSe2dffEPam6awnBydrnKF/l7upYvtAjQLCSAlQ8ny7QeMOmA2HTxJkI8nTYIePrJRUk5VVSWp1emQSCR8MXk0dvfWqnlLpeatxf8w4/HBWJobvlT8sesoO89c5rc3J2Hxby4o/1+sz/+DdVC91VnL6qEyjfdZvbeApwbaMHuKAh2QlqXl+KViOjUzLXrM2DHhP1iOGKuHdJU6nrQ6HRJgzoSB2Fnpy+ZNdTfeWraV90f1wtJcjlanw8nWmo/H9kEmlRLu605adh7LDpytkQOmV2cn3niurN76YO7Ne7oq6q7uNjDWjyi/MS6xiOffi8TWRkbXdo6886I/0z+5Xq0TpndnZ96Y4l/6//tf3TCuE6pdiqD8fokR8XGJRUx99wq2NnK6tnPk3WmBTJ8d9X/KCSOoHOGAEfwr2NjYGP3ike5e5638NtA7Ex78u7J0NVlzpTx3795l0KBBvPDCC3z66ac4OTlx9OhRJk+ejEpV5s0u/8WhBzWZSk3T33cCVYcxjdpyoZ+DBg3ir7/+4uTJk/Tq1avK/GbMmMH06dMNtllYWPD42xVD0HPzNWg0ugqRCgpbGdm5xqcLZeVUHBVS2MlQa3Tk5humGd7LgdF9HZn1UyJ3E0uq1F0ZuQVaNBodClvDSBJ7Gyk5ecY1KvM0KGxlFezVGh15BfqyVeZq0GgNG9/ENDUOdjJkMtDUYrZUfhFotDrsykXk21pJyCt8yPsNyMjR55GUocbNUULPlnJiTCjPnDz1vett2DQo7CpGZNwnK0dj1F6t0ZF7r/wfjN64j4OdHKWRaKhqNd67JyvcY1Xck0oj96S9rf6ezHvgntTpICVDf553E0vwdjdjRG9FjTvDpy7kcT0muvR/MzP9PeloLzcYEVMYiQh6kKzsiuX14DUovU6K8mUqqzLfh6U4Jb1CJIu5qxNalYqSDKXeJjkdCw8XAxsLN6cKkTM1xcrGEYlURkGOYfqC3Ays7VwqSaXn+vnt7F35AYOf+Y4GDTtV2C+RSnFw1b8YuPmEkZkSzZm9i2vtgHGws0EmlZKhNAyPz8rJxVlReah6eZoE+7PjWMW1WIqKS9h94jwvPDbQSKqa42hrjUwqIaNctEtmbj7O9sbD410Udrg52JU6XwACPF31z0pWDn7uZU6tZbuP8fuOI/zy+kRCfTyMZVct9aE+/y/XQfVNZ16BDo1Wh72tYR/QzkZKTr7xQYScfC325e4POxsJGo2utD3NK9Tx8/o85DJ9O6vM0zGqhxXpRhbMrY76UI4AjjZWyKQS0nMMp4Bn5hXgbGt8YM7V3gY3hW2p8wUg0N1Jrys7Fz9XR1ztbJDLpAbrUwW6O5GeW4BKrcFMXnUk64lzytLFZwHMzPTX2slBTqayrD/uYC+vEG3yIFlKFU4Kw/6wo33FqBi1Rle6uO2NmAIaBtowaoA73/5e9bqIx89lEXWrrG683347OZgZ6lSYocyuvJ3NVKpwKhft4qCoeG5lOou5EZNPwyAbRg30YMFvd6rUWW8Qi/BWiSgdwSMlPDyc48ePGzgljh8/jp2dHd7e3gQHB2Nubs7Ro2VrBqhUKs6ePUtYWFhpHidPnjTIt/z/5Tl79ixqtZp58+bRoUMHQkNDSUw0Pge2MhQKBZ6engbHUqvVnDtX9SKNpuh9WF588UW+/PJLhg0bxqFDh6q0tbCwwN7e3uBX2RQktUb/iejmDQ0b7+aNrLl223gH4cadIpo3qmgfHVuM5oH+1PBeDjzW35FPFyUSHWf656c1GriTqKJJkOE5NAky52ac8cb8VpyKJkGGoa5Ngi24k6Aq1XgjVoWbk8xg5MjDWT+FqjaddQCNFhLSdIT4GnZUQryllX6G+mGopj9UKWoN3IotomWYoXOwRZgNUdHGp4ddiymgRTn7luE23LpbWFqW12IKjdpERdf8k8n30WggJr6EZqGGc++bhVpyvZIvKt28W1zBvnlDS2LiDO/J8kgAM1nNw2gLi7UkpalKf7GJxWQqVbQMLzt3uQyahFpXee7XYgoM0gC0DLctvQZqDdy6W1ShTFuE23Ktkuv0b6A8eQGX3oaODNe+Xcg+dwXdvYXVs05ewKW34TQelz5dyDpRs/VayiOTm+Pm25jY64Zrz8ReP45nQOXrylw7t5XdK95jwMR5BDTuUbOD6XRo1LV3XJrJ5TQK8OXUlesG209dvk6zkJp/pvX6nXhcHCouzrznZAQqtZqBnWu/Pk15nWENvDgRFW2w/VRUNM2DfI2maRHkS5oyl4Kisjr6bkoGUonE4AtHS3cd49dth1n46pM09vc2WWO9qM//w3VQfdOp0UJssoYwf8MX1jB/M6ITjL/kxiSoK9iH+5txN1lD+WVJ1BpQ5umQSqFlQ3Mu3qz9Z6jrQzkCmMllhPm4c/KGoaPh5I1YmvtX/FocQIsAL9Jy8ikoLqv37qYp9c/3PedxiwAv4tKz0Wp1D9hk4WpvU63zBaCwSEtiSnHp7258ERlZJbRqWjZVXi6T0CzMjqtVrIESeTOfVk0N68fWzey5Wt36LpIyp0/tdBaSkVVC6weOKZdJaB5mx9UbxqeW6nXm0fqBcwNo00xR5bmBPgKoJjoF/zcQDhjBI2XatGnExcXxyiuvcO3aNTZt2sTMmTOZPn06UqkUGxsbXnzxRd5++2127txJZGQkU6ZMoaCggMmTJwPwwgsvEB0dzfTp07l+/TorVqxg6dKlVR43KCgItVrNDz/8QExMDMuXL2fRokW11v/aa6/x5ZdfsmHDBq5du8a0adNQKpVVpnn11VfZuXMnc+fO5caNG/z4448Vph89Cl555RU+++wzhgwZYuDQeli2HFDSu6M9vTrY4e1uxjMjXXBxlLP7qH6RsQlDnXn1ybJV6HcdzcbVUc6kkS54u5vRq4MdvTvYs2l/VqnNiN4OPDHEmZ9WpJKaoR+FdLCTYWluWuOz83g+3Vtb062VFV6ucp4YaIezQsb+0/qX3DF97Zg6uqxB3H+6ABcHGU8MsMPLVU63VlZ0b2XN9mP5D9jkY2st5clB9ng4y2geasHQ7rbsPV17pwHAkUtq2jWS0aahDDcHCUM7meFgJ+FkpL73P6CdnHE9DTuVns4SPJ0lWMgl2Frp/3dzLCujni3lhPhIcbKT4OogoWszOa1DZUTcqP0o33027s2gbxcH+nRS4ONhznNj3HB1MmPHYf31mzjClTcmeZba7zykxM3ZjMlj3PDxMKdPJwV9OzuwYXdmqc3mfZm0DLdhdH9nfNzNGd3fmeZhNmzel1nh+DVh6+Fsere3o2c7W7zdzHh6mCMujnL2nNB3ih4f5MBLj5dFR+w+kYuLo5yJwxzxdjOjZztberWzY8vBsoiFEb0UNA21xM1JjpebGYO72dOtjS1Hzj/conib9mUyZpALHVva4edlwevPeFNcouXQqbJjT3/Wi6dHlj1D+vKyZfQAZ3w8zBk9wJkWYTZs2ltWXhv3ZNCvqyN9Ozvor9NYd1ydzNh+KIuaIrOxxr55I+yb69eTsg7wwb55Iyx99de34WfTaf5H2VpbdxevwsrPi7Cv38O2USA+k0bj+8xoYuYvKbW58+OfuPTtTOBbU7BpGEjgW1Nw6d2ROz8sq33h3aNVj2e4cnItV0+uJTM5mkPrvyA3K4lmnccDcHTLPHb9VbbA+rVzW9n917t0G/4unv7Nyc9JIz8njeLCsk7z6T2/cPfaMbLT48hMieb8gT+IOrOJsDbDTNI4YWAPNh44yaaDJ7mdkMy85etJzshi9D1n1I+rtvDxz3+V2q/YcZCDZy8Rm5xKdHwSP67awv4zFxnbr+InsDcdOkn31k1xsHv4L2Q81acjG46eZ+Ox88QkpfH1PztJyszmsW5tAPh+w14+/GN9qf2gdk1R2Frz8bJNRCemcu7GHRas283wzi1Lpx/9sesoP23ez6ynh+Pl7EB6di7p2YZOm9pQH+rz+lIH1Qede08X0aW5BZ2amePhLGVMb2uc7KUcjtDfPyO6WzFpSNm9fyiiGGd7KWN6WePhLKVTM3M6N7dg9+ky57O/p4yWoWa4KKQE+8h5bawdEgnsOmXa9I76UI4AT3VvxfpTV9hw6goxKRl8vfEgSVm5jOmkn8r+3dajfLCirD86qFUjFDaWfLxqN9HJGZyLjmf+lsOMaNcYS3N9hOXYTs1RFhTy1caD3EnN4nBkDL/tPcO4zs1N1rl+RypPDPegcxsH/H0seedFf4pKtOw/VtbGvfuiP5PHez+QJoU2zewZN9QDXy9Lxg31oFUTO9ZvL5uS/+w4b5o0tMXdxZwAXyueGetN83A79h0zra+xfkcKT4zwonNbR/x9rHhnWiBFxVr2HStb5+zdaYFMHu9TTqeC8cM88fWyZPwwT1o1sWfdjuRSm8njfWjayBZ3V73OZ8f50Dzcnn1HDddPE/zfRUxBEjxSvL292b59O2+//TbNmzfHycmJyZMn8+GHH5bafPnll2i1Wp566ilyc3Np06YNu3btwtFR/9nbBg0asG7dOt544w0WLlxIu3btSj/NXBktWrRg/vz5fPXVV8yYMYNu3boxZ84cJk6cWCv9b775JklJSUyaNAmpVMqzzz7LyJEjyc7OrjRNhw4d+O2335g5cyazZs2iT58+fPjhh3z66ae1OrYpvP7662i1WgYNGsTOnTvp1Kli2H1tORaRh52NlLH9nXBUyIlNKubzRYmkZelHpxztZbg4ljkOUjPVfPZLIs+OdGFgVwWZ2Wp+X5fGyYtlneEBXRSYySW8M9nT4Fird2SyekftG8pTV4qwtc5heA9bHOxkxKeombc8i4xsvSPCwVaKs6JspCZdqeGb5VlMGGhP7/Y2KHM1LN+ew9nIss5ZZo6Wr5dl8sRAez57yZWsXA27T+Sz9Uh+hePXhIvRGqwtoU8bOfbWEpIzdSzZXoIyTz+qZG8jwcHO0AH1xpiyETQfNyktQ+Rk5mr58m99x9RcDiO7mqGwkaBSQ6pSy6r9Ki5Gm+6AOXo2F3ubFMYPdsFJIeduYjGzf4wlLVN/vZ0Uclydyq53SoaK2T/E8dxYdwZ3dyQzW83i1ckcjyh72b0WU8jc3xJ4argrE4a5kpxWwtxfE7hRyehhdZy4UICddSaj+zrgaC8jLqmEOb+lkJ6lP29HezkuDmXNW1qmmjm/pfD0cCf6d7YnK1vNHxszOXW57OXLwlzCc6OccXaQUaLSkZCq4ocVaZy4YNoL2n3W7czAwkzKi094YGsj43pMIR8viKWwuGwY1NXJjAcGF7kWXcjcxfE8OcKNJ4e7kZxWwleL47lxu+wF48jZHOxsZYwfUnadZn0fS1pmzUd4Fa2b0HHf8tL/w795H4C4P9dzafIMLDxdsfIte0YL78RzZuhUwufNwO/FCRQnpnL1jc9J3rC71CbrRAQRE6bTcPbrNJz9KgXRcUQ88QbK08Y/g1oTGrYaRFF+Fid3LaQgOxVnz1CGP78Yeyd95zw/J42crKRS+8vHV6PVqjmw9hMOrC1bVD2s3Uj6T/gSAHVJAQfWzCY3Oxm5mSVOboH0f+prGrYaZJLGfh1bkZ2Xz28bdpGuzCbIx5Pv3n4eT1f9Z1XTlTkkZ5Q5x1RqDd+u2ERaZjYW5mYE+njw7dtT6dKisUG+d5NSuXA9hh/fe9EkXeXp37YJyvwCftl2iPTsPIK93Pjx5Ql4OTsAkJadS1JmWftmbWnBotef4stVO5jwxWIUttb0a92Yl4aXTXX959AZVGoNb/3yj8Gxnh/SnReH9qy1xvpQn9eXOqg+6Dx7rQQbKwmDO1uhsJGSmK7hxzW5ZObo60iFrRQn+7Lx4oxsLT+syWVsb2u6t1KQnadl9Z4CIq4/ML1cLmFYN2tcHaQUl+i4HKNiydY8CotNm/JbH8oRYEDLhmQXFLF49ynScvIJ9nTmpykj8HLSR3Gk5+aTnFXWNltbmPPL86P5csMBnliwAoWNJf2ah/LywLIoRg9HOxY9P4qvNx5izDfLcVPYMqFbS57p1cZknau3JGNhLuXVZxtgZyMnKjqf9764QWFRWbvo5mJh0C5G3szns+9jeGasF5PGepGYUsxn38dwLbrsGXZUyHnvpQCcHMzIL9BwO7aQGV/e5Pxlw+mhNWXV5iTMzaW89qyfXuetPN794no5neYGUf6RN/L47PtbPDPWh0ljvUlMKebT76INpmE5Ksx476WgUp0xsQXMmHOdcybq/E8iFuGtEonuYRe8EAgE/ycY9eqtupZQJeu/D2biR0nVG9Yhf37qyTuLHt0UkH+LuS9YMfT5qLqWUSVbfglj7Jt36lpGlfwzz58hUyLrWka1bP01nG1mDas3rEMGq67z86MPFHwoXhwAuWf/4yIBuzYDKDy4sq5lVIlVj8frRX3+X6+DQF8P/dd1/jPPn+e/NC0K4X/FL+85/efLEfRlWbSt9hHd/0ssB79An8crrmf1X2Lvyjb0Hn+6rmVUy75V7epagkkUHFlTZ8e27jqmzo5dU8QUJIFAIBAIBAKBQCAQCAQPj1Rad79asnDhQgICArC0tKR169YcOXKkSvvi4mI++OAD/Pz8sLCwICgoiCVLllSZpjxiCpJAIBAIBAKBQCAQCASC/29YvXo1r7/+OgsXLqRz58788ssvDBw4kMjISBo0aGA0zdixY0lJSeH3338nODiY1NRU1OrafYFSOGAEAoFAIBAIBAKBQCAQPDS6erIGzPz585k8eTLPPfccAN9++y27du3i559/Zs6cORXsd+7cyaFDh4iJicHJSb/Gm7+/f62PK6YgCQQCgUAgEAgEAoFAIKjXFBcXk5OTY/ArLq74Vb6SkhLOnTtHv379DLb369eP48ePG8178+bNtGnThrlz5+Lt7U1oaChvvfUWhYW1W/9ROGAEAoFAIBAIBAKBQCAQ1GvmzJmDQqEw+BmLZklPT0ej0eDu7m6w3d3dneTk5Ar2ADExMRw9epQrV66wYcMGvv32W9auXctLL71UK41iCpJAIBAIBAKBQCAQCASCh0dSdzEeM2bMYPr06QbbLCwsKrWXlJsupdPpKmy7j1arRSKR8Pfff6NQKAD9NKbHHnuMn376CSsrqxppFA4YgUAgEAgEAoFAIBAIBPUaCwuLKh0u93FxcUEmk1WIdklNTa0QFXMfT09PvL29S50vAGFhYeh0OuLj4wkJCamRRjEFSSAQCAQCgUAgEAgEAsFDo5NI6+xXU8zNzWndujV79uwx2L5nzx46depkNE3nzp1JTEwkLy+vdNuNGzeQSqX4+PjU+NjCASMQCAQCgUAgEAgEAoHg/xumT5/Ob7/9xpIlS4iKiuKNN94gNjaWF154AdBPZ5o4cWKp/RNPPIGzszPPPPMMkZGRHD58mLfffptnn322xtOPQExBEggEAoFAIBAIBAKBQPD/EePGjSMjI4NPPvmEpKQkmjRpwvbt2/Hz8wMgKSmJ2NjYUntbW1v27NnDK6+8Qps2bXB2dmbs2LF89tlntTqucMAIBAKBQCAQCAQCgUAgeHgqWcT2v8i0adOYNm2a0X1Lly6tsK1Ro0YVpi3VFolOp9M9VA4CgUAgEAgEAoFAIBAI/r8n79SWOju2bfuhdXbsmiIiYAQCAQDzN/23fbHTh0v4bst/W+NrQyXciI6t3rCOCQ1qwLOzU+taRpUsmenG2etZdS2jSto0dGTIlMi6llEtW38N5+edda2ial4cANvMGta1jCoZrLrOhZtpdS2jWlqEuLLq+H+7rhzfScKHS0vqWkaVfDbJnDcX5te1jGqZN82GKV9k1LWMKvn1fWfmbfxv35NvjpAw+dP//vP9+0eu7IhQ1bWMKhnY0ox+T0XUtYwq2b285X9eI+h11kdqsxju/4+I0hEIBAKBQCAQCAQCgUAgeMSICBiBQCAQCAQCgUAgEAgED089WgOmLhARMAKBQCAQCAQCgUAgEAgEjxjhgBEIBAKBQCAQCAQCgUAgeMSIKUgCgUAgEAgEAoFAIBAIHh6xCG+ViNIRCAQCgUAgEAgEAoFAIHjEiAgYgUAgEAgEAoFAIBAIBA+NTizCWyUiAkYgEAgEAoFAIBAIBAKB4BEjHDACgUAgEAgEAoFAIBAIBI8Y4YAR/M+5c+cOEomECxcuAHDw4EEkEglKpfKRHrdHjx68/vrrj/QYtaH8eS9duhQHB4c61SQQCAQCgUAgEAgEJiOR1t2vHiDWgBHUmLi4OGbNmsWOHTtIT0/H09OTESNG8PHHH+Ps7Gxyvp06dSIpKQmFQvEvqq1/jBs3jkGDBtW1DKNcPb6Ci4d+pyA3DUf3YDoNex/PgDZGbWMu7yby5CoyEqPQqEtwdA+mTd+X8W3YtdQmM/kmZ3d/T1rCVfKyEuk4dAbNuj79UBqvHFtBxEG9Rif3YDoPfx+vQOMaoy/v5urxVaTf0+jkEUzbfi/ToJzG07u+Jy3+KrlZiXQeNoPm3R5O47atm1m/bg1ZmRk08PNnytQXadykabXpIq9eYca7b+Ln78/3P/5isC8vL4/ly5Zw4vgx8vJycffwYPJzz9OmbXuTdfZsY8WATtY42ElJSFWzclceN2NVldqH+pkxvp8t3m5ylLladhzL5+C5otL97zztQCN/8wrpLt4o5ruV2SZp3LN9LdvW/40yKwPvBgE89dwbNGrcotp01yMv8tn70/DxC2TOd8sN9p0+vp81fy8mNSkBN09vxj75Am079jBJH8CgHo6M6u+Mk0JObGIxv65O4erNgkrtm4Ra89xYdxp4WZCpVLNuVwY7DmUZ2HRqZceTw93wdDUjKU3F8o2pnIjINVkjwMUjf3Nu/+/k56Th7BFC91Hv4x1k/Nm5dXE3l46uJC3h3rPjGUKHAS/jH9bVwOb0nkUo02PRatQ4uPrRuuczhLUdYZI+py5tCHxzMopWTbD0cuPs6GmkbN5XdZqubQn/5j1sw0MoTkwlet5vxC5eZWDjMbIfobNewzqoAQXRsVz/eAEpm/aapBFg17b1bFm/EmVmBj4N/Hl6ymuENWlebbprkZeY/d4r+PoFMPeHpaXb9+3czOH9O4m7GwNAQHBDHp/4PMENw03WCHB6/wqO7fidPGUart7BDHziffxCjV/vyLO7OXNgFcmx+uvt6h1Mz+EvE9y07Hpr1CqObFvMhWMbyc1KwdkzgL5j3iLkAZva0q6hlK5NZNhaQ2qWju2nNdxN1Rm1tbWCgW1leDlLcbaHk1Fatp/WVLCzNIc+LWU09pNiaQFZubDzjJobCcbzrY5OjeX0aGmGvbWE5Ewtm46VcDtJa9TWzlrCsE7m+LhKcXGQcPSSmk3HSgxs2ofJadNQjoeT/gUiPk3L9lMlxKUaz7Om9GhlQf8OVihspSSmaVi9N5+bcepK7UMbyBnb2wYvVxnKXC27ThZyKKLYwKZ3W0t6tLLEyV5KXqGWc9dKWH+gAHXFYq8RV0+s4NIDfYyOQyvvY9y+spvIE6vISCrrY7TuY9jHAIi5vIuzu78nJyMWe+cGtO3/OgFN+pomEOjZ2pL+He+1i2lqVu3K52ZcFe1iAzPG9bPB2/Veu3i8gEPny9rFt59SGG0XL90s5rtVOSbrPLp7Ffu3/EGOMg0Pn2BGTnyXoLDWRm1jrp1ny4r5pCTeRlVchKOrF516j6HH4ImlNhdP72Hvxl9JS45Dq1Hj4tGAnoOfpm23YSZrBHhqpAeDerpgayPjWnQ+Py6L525CUZVpurRR8PRjnni6WZCUWszSNUkcO1fWhxg/1J3ObRT4elpSotISeTOf31YlEp9cXEWu/zd0CuoX9cNNJKhzYmJiaNOmDTdu3GDlypXcunWLRYsWsW/fPjp27EhmZqbJeZubm+Ph4YHk/+iCTSUlJdUbAVZWVri5uT1iNbXn1oXtHN8yh5a9XmD0axvwCGjD9t+nkpuVaNQ+6fZZfEI6MfDZxYx+dR1eQe3ZuXQa6QmRpTZqVRF2Tr60H/gm1nauD63x5oXtHN08h9Z9XmDMGxvwDGzD1t+q0BhzFt/QTgyevJgxr6/DO6g925dMI+0BjaqSIuydfOkw6N/ReOTQQX5b/DNjxz3Odz/8TOPGTZj18fukpqZWmS4/P58F8+bSvEXLCvtUKhUfffAuqakpvPf+Ryxa/AcvvzodZ2cXk3W2bWzB4wNs2Xokn1m/ZHIzVsUbExQ42RtvLlwcpLzxhAM3Y1XM+iWTrUfyeWKgHa3DLEptflqdzevfpJf+PlyYgUar42ykaZ2NE0f2sPy3bxk+dhKff7uMRuEtmDv7DdLTkqtMV5Cfx6JvP6Fx84od+5vXLvPD3I/o0mMgc75fTpceA/lh7gfcun7FJI1d29gzZZwH/2xL59VPYrh6s4BZrzbA1cn4uIe7ixmzXm3A1ZsFvPpJDP9sT2fqeA86tbIrtWkUaMW7U304cFLJK5/EcOCkknen+hAaYGWSRoDr57dzaMMc2vV7kQlvb8QrqDUbF00hJ9P4sxMffYYGjTox/PnFPP7WenyD27P51xdJjS97diysFbTr+yLjX1/Nk+9upnG7Uexe8T53oo6YpFFmY03Opetcfe2TGtlb+fvQdstiMo+e42jbEdz6ahGNF3yAx8h+pTYOHVrQcsUCEv7exJHWw0n4exOtVn6LQ7tmJmk8fngfy379npFjJ/Ll90to1Lg5c2a9RXpq9ffkwvmf0aR5xRekq5cj6NS9Dx/P+YFPv/kFF1d3Pv94OpnpaSZpBLhyajs7V8yh25AXeGH2BvxC2/DX/KkoM4xf77s3zhLUuBNPvrGY52euI6BRe1Z8N42ku2XXe9/67zh7cDWDJnzIS59vo02P8az64WUDm9rQxF/KoHYyDl7SsHCzirupOib2laOwMW4vl0F+ERy6pCE507gzRSaFSf3kONpKWHlQzXfrVWw6riancn9olbQIljG8izn7zqmYv6aQ20lapgyxxMHWeD9GLoO8Ih17z6tISjfuUAn2lhFxU83Pm4r4YX0hyjwtzw+1xN7G9L5RmzBzxvW1YduxQj75PZubcSpeHWdfeX2ukPLqWHtuxqn45Pdsth8vZHw/G1o1LHMUtG9szuie1mw5UsDHi5Us25ZP2zALRvW0Nklj9MXtnLjXxxj16gY8/NuwY8lU8qpov71DOjHgmcWMutfH2LXMsI+RcjeCfSumE9JqGI+9vomQVsPY+/cbpMZeNElj23ALxve3ZdvRAmb/msXNWBWvP1F1u/j64wpuxqqY/WsW244W8MQAW1o3KivHhWtyeGN+eunvo0WZD9UuApw/voMNy76k78gpvPXlGgIbteKXL18gKz3JqL25hRVd+j/BKzOX8d68zfQbOZXt//zA8b1rSm2sbRT0HTGV1z/9i3e+Wkf77iNYuegjoi4eM1nn2MFujBroxo9/xvHKzOtkZav58t1grCwrfy0NC7bmg5cD2Hcsixc/uMa+Y1l88HIAjYLK7rumjWzZvDed12bf4L2vopFKJcx5NxhLC9Ned+uLzv8iOiR19qsP/N+50oJHyksvvYS5uTm7d++me/fuNGjQgIEDB7J3714SEhL44IMPSm39/f354osvePbZZ7Gzs6NBgwYsXry40rwrm4qza9cuwsLCsLW1ZcCAASQlGTYgf/zxB2FhYVhaWtKoUSMWLlxY7Xmo1WpefvllHBwccHZ25sMPP0SnK+uwZWVlMXHiRBwdHbG2tmbgwIHcvHmzdH9GRgaPP/44Pj4+WFtb07RpU1auXGlwjB49evDyyy8zffp0XFxc6NtXP+Kyfft2QkNDsbKyomfPnty5c8cgXfkpSLNmzaJFixYsX74cf39/FAoF48ePJze3bLQ7NzeXCRMmYGNjg6enJwsWLPjXp1pdPrKURm1HE9Z+DI7uQXQe9j62Dh5Enlxp1L7zsPdp0eM53HybonD1p/3A6Shc/LgbeaDUxs23KR2HvENwi8FI5WYPrfHioaWEtRtNePsxOLkH0WW4XuOVE8Y1dhn+Pi17Pod7g6Y4uPrTYZBe452rZRrdGzSl09B3CGk5GNm/oHHjhnX07TeA/gMG4dvAjynPT8PF1ZUd27ZUme6nH76le49eNGpUcdR77+6d5OXm8sFHswlv3AQ3d3caN25CQGCQyTr7d7DmSEQhRyKKSErXsHJXHpnZWnq2Nf6S36ONFRnZerukdA1HIoo4ElFE/45lnY38Ih05+drSX+NAc0pUOs5EVj2KVBk7Nq2kR5+h9Ow3HG/fAJ6a8gbOLm7s3b6+ynS/L/ySTt36EdKwScU8N6+iSYu2DB/zNF4+/gwf8zSNm7Vl5+bVJmkc0deZPUez2H1USXxyCb+uTiE9S8Wg7k5G7Qd2dyQtU8Wvq1OITy5h91Ele49lMapfWXThsD5ORETms2ZHBvHJJazZkcHFa/kM72M8z5pw/uAfNO4wmiYdx+DkEUSPUR9g6+jBpWPGn50eoz6gTe8pePg1w9HNn85Dp+Pg6kfMlf2lNr4h7Qlu3hcnjyAcXBrQssfTuHg1JDHmnEka03Yd5sbMb0neuKdG9n5Tx1MUm0Tkm1+Qdy2GuCVriVu6nsDpz5baBLzyNOl7jxM9dzH512OInruY9P0n8X/FtCi3bRtX0avvEHr3H4qPrz+Tpr6Gs4sbu7dvrDLd4h+/pnP3voQ2alxh36tvz6T/4FH4B4bg7evH86+8i06r5fLFsyZpBDi+eyktu42mdfcxuHoFMfCJ97F38uDMfuPXe+AT79Nl0HN4BzbF2cOfPo9Nx8ndj+sXyurKSyc20XXI84Q2746Tmy/tej1OcJMuHN/5h0kaOzeWcu6mlnM3taRlw/bTGrLzoV1DmVF7ZZ7e5kK0luJKAhJahUixNpfw9341sak6lPlwN1VHcpZp0S/dmptxOkrNqSg1qVk6Nh0rQZmno1MT4w7WrFwdm46WcO66msJKxmT+3lvM8atqEjO0pCp1/HOwBIkEQnyMn3dN6NvOkqMXizl6sZjkDA2r9xaQlaOheytLo/bdW1mSmaO3S87QcPRiMccuFtOvfZl9oLcZt+LVnI4sISNbS+RtFacji/H3NC2o/tKRpTRsO5pG7fR9jE7D3sdWUXkfo9ODfQwXf9oNmI7C2Y+7UWX35OWjf+IT3ImWPZ/HwS2Qlj2fxzu4A5ePLjNJY78OVvq27YK+XVy1O5/MHA092lTSLra2IiNHb5eUruHIhSKOXjDWLpb9wgPutYtRpjtgDm77k/Y9R9Gx12N4eAcx6un3cHD24OieVUbtfQLCaN15EJ6+wTi7edOm61AaNetEzLWyujqkcTuateuDh3cQLh4N6D7oKbwahHL72nmTdY4c4MbKTckcO5vNnfgivv7lLhbmEnp1dKw8TX83zl/JZdWWFOKSilm1JYWIyFxG9i8buPzg62j2HMnkbkIRMbGFzPs1FncXc0L8TRukqC86BfUP4YARVEtmZia7du1i2rRpWFkZVg4eHh5MmDCB1atXGzgy5s2bR5s2bYiIiGDatGm8+OKLXLt2rcbHLCgo4JtvvmH58uUcPnyY2NhY3nrrrdL9v/76Kx988AGff/45UVFRfPHFF3z00UcsW1Z147ps2TLkcjmnTp3i+++/Z8GCBfz222+l+ydNmsTZs2fZvHkzJ06cQKfTMWjQIFQqfa+uqKiI1q1bs3XrVq5cucLUqVN56qmnOHXqlNHjHDt2jF9++YW4uDhGjRrFoEGDuHDhAs899xzvvfdeteUQHR3Nxo0b2bp1K1u3buXQoUN8+eWXpfunT5/OsWPH2Lx5M3v27OHIkSOcP296o1gejbqEtISr+IR2NtjuE9KZlDsRNcpDp9WiKs7HwvrRTDG7r9G3nEbf0NprtHxEGlUqFbdu3aBlK8NR7pYtWxMVdbXSdHt37yQpKZHHJzxldP+pUydoFBbOooU/8NQTY3jpxSn8s3oFGo1pceAyKfh5ybkabfiGcDWmhGAf406oIB8zrsaUs48uxt9LjqySFqZrSytOXymmpPLo7UpRq1TcvnWdpi0Np1g1bdmem9cuV5ru0N6tpCYlMOrxyUb337p2hWbl8mzWqj03qsizMuQyCPazJCIy32B7xNU8GgUZ72A1CrQi4mqewbbzV/MJ9rNCJrtvY01EZHmbPMIqybM6NOoSUuOu4tewi8F2v4adSbpdi2enKB9Lawfj+3U6Yq+fICv1Nt5BbU3SWVscOrQgba/h6Gza7iMoWjdBIte/JDp2aEH63qMGNul7juDYsWKkWXWoVSpibt2gWUvD82vesi03rlUeQXVgzzZSkhN47IlnanSc4uJi1Bo1tnb2tdYIoFaXkHTnKsGNDevKoMadiYuu2fXWarWUFOVjZVNWV6pVJcjNLAzs5OYWxN6svcNNJgUvZwm3Eg2jRG4lamngZvrIZiNfKbFpWoZ2kPHeODNeGS6ne1MppgTeyqTg4yrlepxhPXs9ToO/u+nOkvKYy/XHKigyzUkkk4Kfp5zIGMOK9uptFUE+xp0lgd5yrt4uZx+jws+zrD6/Fa/Cz0NW6nBxcZDSNMiMS7dqFu37IBp1CekJV/EJKdfHCO1Myt2a10El5foYKXcv4F2+3xLahZS7F2qt8X45lm/nIqNLCK6kHIO85USWa0evRJcYlGN5ura05PRV09pFALVaRfztSBo162SwvVGzTty5UbPIn/jbUdy+cYGgcOPTv3Q6HTcunyQ16U6l05qqw8PVHGcHM85dKRtMVKl1XLqWR3hIJWFuQHiwDeeuGE7NOnc5p8o0Nlb6ws7Nr32fqL7o/K+ik0jr7FcfEGvACKrl5s2b6HQ6wsLCjO4PCwsjKyuLtLS00ik0gwYNYtq0aQC8++67LFiwgIMHD9KoUaMaHVOlUrFo0SKCgvQj+S+//DKffFIWfv7pp58yb948Ro0aBUBAQACRkZH88ssvPP105SOYvr6+LFiwAIlEQsOGDbl8+TILFixgypQp3Lx5k82bN3Ps2DE6ddI3YH///Te+vr5s3LiRMWPG4O3tbeAIeuWVV9i5cydr1qyhffuyl7fg4GDmzp1b+v/7779PYGBghWN/9dVXVZaDVqtl6dKl2NnppyE89dRT7Nu3j88//5zc3FyWLVvGihUr6N27N6CPCvLy8qoyz+LiYoqLDUdYLCwsgIpzkYvys9BpNVjZGq7xY2XnTEFuepXHuc/Fw3+gKikgqPnAGtnXllKNdoYare2ciauhxguHHq3GnJxstFotDg6GoyYOjo4os7KMpklMiGfZ0t/5cu4CZDLjnfrk5GQuXbxAj569mTn7cxITE1i08Ac0Gg2PP2HcaVMVdtZSZFIJ2XmGLz85eVoUQcYbNYWtlJxy9tl5WuQyCbbW0gp5BXjJ8XGX88dm0+a45+Yo0Wo1KBwMoz4UCieylRlG0yQnxrJq2U98/OUvyGTGmz2lMgP7cnnaOziRnWU8z6qwt5Ujk0nIyjFcZyErV0MrhfHjOyrkZOUadr6yctTI5RLsbeVkZatxVMhRlstTmaPG0d60przw3rNjbV/+2XGhILdm01zOHViCqqSQ0JaGz05xYS6/fdwNjboEiVRKrzEz8WvUuZJc/l0s3F0oTjF89ktSM5CamWHu4khxchoWHi4Upxhe2+KUDCw8aj/dUP98a1A4lrsnHZ1Qnjd+/yQlxLFy2SJmffVTpfdkeVYs+xknZ1eatjD+clQdBblZaLUabMpdb1uFM3lXalZXHt/1ByXFBTRuV3a9g5t04cSupfiHtsHRrQG3o05wPWI/Wm3tXyasLUAmlZBXaLg9v1CHrZXpHWsnOwkOnhIuRWv5c68aZ3sJQ9vLkErhwMXarbFiYym5p9HQMZJXoMPO998Lfx/cwZzsfB034017KbO11uvMyTc8v9x8HQqbSupzGym5+YbnlZN/rz63kpCdr+NMZAl21lLenah3BMplEg6cK2LnidpHNBYVVNLHsK15H+PSkT9QqwoIalZ2TxbmpWNdLk9rW+ca12sPcr9dLF+O2fk6mtgaL0d7WynZlZVjZe2im5ylW0xfzys/R/982ykMz9tO4UyOsuqynDmtN3k5mWg1GgY8No2OvR4z2F9YkMvMF3uhVquQSqU89uyHNCzn6KkpTg76wZysbENPkzJHjZtzxX7ofRwd9O3gg9xvFyvj+Qk+XL6ex5342t+b9UWnoH4iHDCCh+Z+5MuDa7g0a1Y2j14ikeDh4VHtWhcPYm1tXep8AfD09CxNn5aWRlxcHJMnT2bKlCmlNmq1utqFfDt06GCgs2PHjsybNw+NRkNUVBRyudzAkeLs7EzDhg2JiooCQKPR8OWXX7J69WoSEhJKnRk2Noae7TZtDDvIUVFRRo9dHf7+/qXOl/LlEBMTg0qlol27dqX7FQoFDRs2rDLPOXPmMHv2bINtM2fOxL7lzMoTlR8m1FGjNXtuRWzl3J4f6T/ppwodrH8bSbl5n/rbsnqNNyO2cmb3jwx85ies7R6xRkl5jbqKZYv+Pvt67hyemDARbx+fSvPTabUoHBx46ZXXkclkBIeEkpmRwfp1a0xywFSuG6oagy2/7/556owk6trKivgUNbcTK18EsmaaypUlOoxdb61Gw0/fzGT0E1Pw9G5QdZ7l0+t0D7c2Vbnzl2C8TB48Xnl7/eay7RXLuuprUzPKn6PxsizPtXNbObnzR4Y9t7DCs2NuYcOEdzZSUlxA3I0THNr4JfbOvviGmL44dK0oX9D3r+OD243ZVHmBqqZiHWT8/tFqNHz/zWzGPDEZr2ruyftsWvs3xw7tZeacHzA3t6g+QVU6K9RDRu59I1w+uZWDG3/k8Vd/wvYBJ87AJz5g89KP+OH9QUgkEhzdfGnRZRQXjlY9JbB2oh8+eX4hbDyhQaeDxAwddlbQtYms1g6Y+1S4Vf7FpQd6tjCjZYichZsKTV7Y9j7G7uiqqyEjFdcDaUIbyBnUyYq/d+ZzO1GNm6OMcX2tyc6zYtuxcp6zGlKxPsdo21ieWxf0fYx+TxvpYxjJ81+tz6utLqqvz+/TpYUl8akP3y6WCjNQUX079uqsZRQXFXD35iW2rFyAi0cDWncu+yiEhaUNb3+1juKiAm5eOcnG5V/j7OZDSON2VeSqp1cnR157xrf0/w/nxdwXVoHqal+j1XoliV5+2ocAX0umf3rTuEE91Sn4v4FwwAiqJTg4GIlEQmRkJCNGjKiw/9q1azg6OuLiUrbwp5mZ4XQFiUSCVlvzTo6x9Pcbrfv5/PrrrwbOEqDSSIGaYKxRvL/9fuM1b948FixYwLfffkvTpk2xsbHh9ddfr7DQbnmHTGV5V0dV5WjM8VWTY82YMYPp06cbbLOwsOCnnRVtLW0ckUhlFJYbiSrMy6jWoXLrwnYOrf2QPk9+i0+IaSMlNeG+xvKjZYV5GdU6VG5e2M6Bfz6k31Pf4hv66DTa2yuQSqVkZRkuVp2tVBr99HhhYSG3bt4gJvoWi37+EdBfV51Ox/Ah/fnksy9p3qIljk5OyOVyg/vex7cBWVmZqFSqCvdPdeQWaNFodSjKjerZ2VSMcik9hzxtBXt7GwlqjY78QsM05nJo19iCjQcNp+bUBjt7B6RSGcpykSk52VkVomIACgsLiLkVxZ2YGyz7ZR4AOp0WnU7HUyM6897s72jcvA0ODs4VImhysrMqRMXUhJw8NRqNrsKIl4OdrEIEy32ysitGsjjYy1GrdaVhycZsFHYVo2JqitX9ZyfH8NkpyM3A2q7qhZyvn9/O3pUfMPiZ72jQsOKzI5FKcXD1A8DNJ4zMlGjO7F38P3HAFKekV4hkMXd1QqtSUZKh1Nskp2PhYXiOFm5OFSJnaoL++TZyTyqruCdvXuNO9E2WLFoAlN2Tjw/rzgefzjdYlHfL+hVsXLOcDz/7Fr+A4Frru4+1nSNSqYy8bMNzzM/JwEZRdV155dR2Nv3xIWOnfUtQY8PrbWPvxOOv/oRKVUxhnhI7Bzf2rJmHg0vlzuPKKCgGjVaHbblZdTaWFSNOakNuoQ6t1vDFKC1bh521BJkUNLXwweQX6dBo9WkfxNZKQm7Bw7tDe7SQ07u1GYs2F5GUYXp+eQV6neWjXexsKkZz3Cc7X4t9+frcWnqvPtdrGdHdmpNX9OvKACSkaTA3g6cG2bL9WGGtHMKW1sbb76K8jAoRLOWJvqjvY/SdULGPYWXrYrRPYGVb+wXq77eLFcul8nLMydMaKXfDcrzP/XZx0yETV4S+h429/vnOLRftkpedWSEqpjzObvpn1atBKLnZGexcu9DAASOVSnH10DuLffwbkZIQw95Nv9XIAXPifDbXbpW1+WZm+nJxdDAj84FIEQd7OcrsyudfZSnVODlUbCPLR5oCTHvKh44tFbz5+U3Ss2o2p6u+6Kw31JOpQHWFKB1BtTg7O9O3b18WLlxIYaHh6EZycjJ///0348aN+599xcjd3R1vb29iYmIIDg42+AUEBFSZ9uTJkxX+DwkJQSaTER4ejlqtNljPJSMjgxs3bpROvzpy5AjDhw/nySefpHnz5gQGBhos0lsZ4eHhRo/9MAQFBWFmZsbp06dLt+Xk5FSrx8LCAnt7e4OffgpSRWRyc1y9GxN/87jB9vibx3H3r3ythFsRWzn4zwx6Pf4NfmE9an5SJnBfY9yNchpvVK3xZsRW9q+aQZ8J3+Af/mg1mpmZERwcSkSE4fo8FyLOExZWcfFNa2trfly4mO9/XFT6GzBoCN4+vnz/4yIa3pvKFx7emKTERAPnZmJCPE5OTrV2voD+JeRuoprwQMPw2saB5tyKN945iI5X0bi8fZA5dxLVFV5q2ja2xEwu4cQl08Ns5WZmBAQ35MqF0wbbL184TUijip/0trK24csf/uaL7/4s/fUeMBJPbz+++O5Pghrqyz+4URMul8vzUsQpQo3kWR1qDdy6W0SLMENHbItwW65FGx8hvhZTSItwW4NtLcNtuHW3kPtL+lyLKaBluE05G1uiKsmzOmRyc9x8GxN73XC9lNjrx/EMqPzZuXZuK7tXvMeAifMIaNyjZgfT6dCoa79GhCkoT17ApbfhC5lr3y5kn7uCTq3vBGedvIBLb8MpUS59upB1ombrTjyI3MyMwOBQLl04Y7D90oWzhDaquOCzlbUNX//4J199/0fpr8/A4Xj5NOCr7/8w+Mz05nUrWLdqGTNmf0NQSM2m8FaqU26Op39joq8a1pUxkcfxDar8el8+uZUNv89g9PPfENq8R6V2ZmYW2Du6o9WoiTq3m0Yte9Vao0arj04J9jLsngZ7SYmt5DPUNSE2VYeTvWGcj4u9hJwCXa2cL/c1xqdpCfU1HPAJ9ZFxJ+XhwlV6tDCjT2tzFm8tIj7t4T4/rdHC3SQ1YQGGbUF4gBnR8cadtjEJasLL2weacTeprD43l0sqjPDro6iodRSQTG6Oi3djEoz1Mfyq6GNc0Pcxej/+DQ2M9DHc/VpUyDPhxjHc/VrUTiBl5Vi+nQsPNOdWJeUYnWC8HX2wHO/TNtxC3y5efrjpJ3K5GT4B4Vy/fMJg+/XLJ/APbV7jfHQ6HWpV1XV1TWzuU1ikJTG1pPR3N6GIDKWKVk3KorvlMgnNGtkSebPywZnIW/kGaQBaN7GvkOaliT50aaPg7Tm3SE6reZtTX3QK/m8gHDCCGvHjjz9SXFxM//79OXz4MHFxcezcuZO+ffvi7e3N559//j/VM2vWLObMmcN3333HjRs3uHz5Mn/88Qfz58+vMl1cXBzTp0/n+vXrrFy5kh9++IHXXnsNgJCQEIYPH86UKVM4evQoFy9e5Mknn8Tb25vhw4cD+migPXv2cPz4caKionj++edJTq76M6MAL7zwAtHR0aXHXrFiBUuXLn2oMrCzs+Ppp5/m7bff5sCBA1y9epVnn30WqVT6rzrDmnadxLXTa7l2Zh1ZKdEc3zyHPGUS4R3GA3Bqxzz2r3q31P5WxFYOrH6PjkPexd2vOQW5aRTkplFcWDa3WaMuIT0xivTEKLRqFfnZKaQnRpGdftckjc27TyLq9FqiTq8jMyWao5vmkKtMosk9jSe2z2PvyjKNNyO2sm/le3Qe+i4eDZpTkJNGQY4RjQlRpCdEodHc05hgusYRI0ezZ9cO9uzeSVzsXX5d/DNpaakMHDQEgGV//M78b/RrAkmlUvz8Awx+DgoHzM3N8PMPwNJSPzw8cPBQcnNz+PWXhSTEx3Pm9CnW/LOSQUOGmaQRYNfJArq1sqJLC0s8XWSM72+Lk0LKwbP6l/zRvW14bkRZ5+Lg2UKcFTLG9bPF00VGlxaWdG1pxa4TFUfzura05Py14gojgLVl4PDHObBnMwf3bCEh7jbLf/uWjLQUeg8cCcCqZQv5eYF+mp1UKsXXL8jgZ69wxMzcHF+/oNKyHDB0HJcjTrNl3Z8kxt9hy7o/uXrxDAOGjTNJ48Y9GfTr6kjfzg74eJjz3Fh3XJ3M2H5Iv+bP0yPdmP5s2XpNOw5l4eZsxnNj3fHxMKdvZwf6dnFk/e6yqIrN+zJpGW7L6AHO+HiYM3qAMy3CbNi0N7PC8WtKqx7PcOXkWq6eXEtmcjSH1n9BblYSzTrrn52jW+ax6693Su2vndvK7r/epdvwd/H0b05+Thr55Z6d03t+4e61Y2Snx5GZEs35A38QdWYTYW1Muy9lNtbYN2+EfXO9A8I6wAf75o2w9PUEoOFn02n+R9l6WncXr8LKz4uwr9/DtlEgPpNG4/vMaGLmLym1ufPjn7j07UzgW1OwaRhI4FtTcOndkTs/mPaVlMEjxrN/91YO7N5KfNwdlv36PelpKfQdNAKAFUsX8eO8TwH9PdnAP9Dgp1A4YmZmTgP/wNJ7ctPav1m9/FdefG0Gbu6eKLMyUGZlUFRo+kh5p36TOH94LecPryMtMZodK+eQnZFE2576671nzTzW/1pWV14+uZX1v71H//Hv4hPUnNzsNHKz0ygqKLve8dEXiTy7m8zUOO7eOMvy+VPQ6bR0HvScSRqPXdXSOkRKq2AprgoY2FaGwgbOXNc7N/q2kjG6i6Hzw8NJgoeTBHM52Fjo/3d9YEby6WsarC1gUHsZzvYQ6iOhezMZp66Z5jA5fFFF+zA57RrJcXOUMKyzOY52Ek5c0b+QD+pgxuO9DV/AvZyleDlLsTDTR8t4OUtxdyxrq3u2MGNgezNWHygmK0eHnZUEOyv9OZnKntNFdG1hQedmFng4yxjbxxonexmHzutf9kf2sObZoWWO30Pni3C2lzG2tzUezjI6N7OgS3MLdp8qcw5cvFVC91YWtA03x0UhJczfjOHdrLl4s8SkGXzNuk7i2pkH+hhb9H2MsHvt9+kd8ziw+oE+xgV9H6PDkHdxa1DWxyh5oA5q0vkp4m8e48LBX1GmxnDh4K/E3zpB0y6mfeVs98lCura0pEtzfbs4rq8NTgoZh87p28VRvWyYPPyBdvHcvXaxr42+XWxuSdeWlkbbxS4trYi4/vDtIkCPwRM5uX8dJw+sJzkhmg3LviIrPYnOffTt2JaVC/jrpxml9kd2reTKuYOkJd0lLekupw5u4MDWpbTpOqTUZs/GX7l+6TjpKXGkJMRwYNsyzhzZYmBTWzbsTOXxoe50bq3A38eSt6Y2oLhEx/4TZWvivf28H8+O9Sz9f+PuNFo3sWfsYDd8PS0YO9iNlo3t2LCrbHmDV572oXcnR+b8fJfCIg2OCjmOCjnmZqb1ieuLzv8iOomkzn71ATEFSVAjQkJCOHv2LLNmzWLcuHFkZGTg4eHBiBEjmDlzJk5Opn8G1RSee+45rK2t+frrr3nnnXewsbGhadOm1X5+eeLEiRQWFtKuXTtkMhmvvPIKU6dOLd3/xx9/8NprrzFkyBBKSkro1q0b27dvL40m+Oijj7h9+zb9+/fH2tqaqVOnMmLECLKzs6s8boMGDVi3bh1vvPEGCxcupF27dqWf6n4Y5s+fzwsvvMCQIUOwt7fnnXfeIS4uDktL45+YNIXgFoMoLlBybu9PFOSk4eQRwsBnf8HO0RuAgpw08pSJpfaRp1aj1ao5uvETjm4sWzg5tPUIeo778l6aVNZ9O7J036XDS7h0eAmegW0Z9sLyWmsMaTGI4nwlZ/f8RH5OGs4eIQyZ/At2Tg9ozCrTePWEXuPhDZ9weEOZxoZtRtB7vF5jfk4q/ywo03jh0BIuHFqCV2BbRkyrvcau3XuQk5vDqhV/kZmZiZ+/PzNnf46buzsAmVkZpKXVfJ0kAFdXNz757Et+W/wzr7w0FWdnF4YOH8nox0xzGgCcuVqMrVUew7rboLCVkpCq5tu/s8nI1g/bKWylOCnKXn7SlVoWrFDyeH9berW1QpmrZcWOXM6V+5Smu5OMUD9zvllufNHh2tCxa1/ycrPZsPp3lJkZ+PgF8vbH83F103eClFnpZKRV7xh9kNCwZrz89qes+esX1vy9GHcPb155+zOCjXyyuiYcOZuDna2M8UNccFLIuZtYzKzvY0nL1EcSOTrIcXUqG2lOSVcx6/tYnhvrzuAejmRkq1m8Kpnj58teKq5FFzJ3cTxPjnDjyeFuJKeV8NXieG7cNi0CBqBhq0EU5WdxctdCCrJTcfYMZfjzi7G/9+zk56SRk5VUan/5uP7ZObD2Ew6sLXt2wtqNpP8E/bOjLingwJrZ5GYnIzezxMktkP5PfU3DVoMwBUXrJnTcV/bMhX/zPgBxf67n0uQZWHi6YuVb1gEuvBPPmaFTCZ83A78XJ1CcmMrVNz4necPuUpusExFETJhOw9mv03D2qxRExxHxxBsoT18ySWOnbr3Jzc1m3aqlZGVm4OsXwHuzvsbVzQMAZVYGGWkptcpzz/YNqNUq5s/50GD7Y48/w5gJxr/mVR1N2g+iIF/Joc0/kZudhpt3CBPe+AUHF/31zstOIzujrK48e3A1Wo2abcs/YdvysuvdovMIRj5373qritm/4TuyUuMwt7QmpFl3Rk35Citr077WdOWOFmsL6NlChp2VjJQsHcv3qlHeG0C2swYHW8NO9svDyp4lbxdoHiQjK0/HvLX65y27AJbuVjOonYyXh5uRmw8nIjUcvmJalMmFWxqsLUro28YMextzkjK0/La1iKw8/Uu0vbUEh3JTVt4cVzavytcNWoXKyczR8vlf+ue3UxM5cpmESQMM2+9dZ0rYfca06Qlno0qwtcpnSBcrFLZSEtM0fL86h8wc/Xk72Epwsi/TmZ6t5ft/chjbx4YerS3JztOyanc+56+XjdBvO1oIOhjRzRoHOym5BVou3VKx4aBpjsGg5oMoKlByft8DfYxnHuhj5Br2MaJOrUanVXNs4yccK9fH6DFWf096+Lei9+PzOLP7O87u/h57J1/6TJiPW4OaR4I8yJnIYmytJAztZq1vF9PUfLeyrF10sJUalqNSy7crsxnfz4aebe61izvzOHfNMNLB3UlGaAMz5v1l+rTcB2nVaSAFednsWreIHGUanr4hPP/ezzi56p39OVnpZKWX1ec6nZatK78lMy0BqVSGi7svQx5/nU59xpbalBQXsmbJZ2RnpGBmboGbVwBPvjSHVp1M/2jBP9tSsTCX8vIkX+ysZVyLyWfG3FsUFpU9j27OZgZT6iNv5vPFT3eY9JgnTz/mSVJKCZ//dJtr0WX33dA++qmn8z4IMTje14vvsudI7Qcq6otOQf1DojN1cQqBQPCfIz8/H29vb+bNm8fkybXroM/f9N+uCqYPl/Ddlv+2xteGSrgRHVvXMqolNKgBz86unbPnf82SmW6cvf7wzppHSZuGjgyZElnXMqpl66/h/Gxkjaf/Ei8OgG1mVS8gXtcMVl3nws3af0Xlf02LEFdWHf9v15XjO0n4cOl/O+z+s0nmvLnw33kxfpTMm2bDlC9q/7W2/yW/vu/MvI3/7XvyzRESJn/633++f//IlR0R/+31Qga2NKPfU7Wfzvm/ZPfylv95jaDXWR/Juniozo7t2Lx7nR27pogIGIGgHhMREcG1a9do164d2dnZpZ/qvj9lSiAQCAQCgUAgEAj+V+jEIrxVIhwwAkE955tvvuH69euYm5vTunVrjhw5YvBFKoFAIBAIBAKBQCAQ1D3CASMQ1GNatmzJuXPn6lqGQCAQCAQCgUAgEEA9WQy3rhDxQQKBQCAQCAQCgUAgEAgEjxgRASMQCAQCgUAgEAgEAoHgoRFrwFSNKB2BQCAQCAQCgUAgEAgEgkeMcMAIBAKBQCAQCAQCgUAgEDxixBQkgUAgEAgEAoFAIBAIBA+NDrEIb1WICBiBQCAQCAQCgUAgEAgEgkeMiIARCAQCgUAgEAgEAoFA8NCIRXirRpSOQCAQCAQCgUAgEAgEAsEjRqLT6XR1LUIgEAgEAoFAIBAIBAJB/Sbt6qk6O7Zr4/Z1duyaIqYgCQQCAGb+qaprCVUye6IZHy8rqWsZVfLJ0+a88WNeXcuolgUv2zJi2o26llElGxeGMuaN23Uto0rWLAhg6PNRdS2jWrb8Ekbu2Z11LaNK7NoM4MLNtLqWUSUtQlzZZtawrmVUy2DVdQqOrKlrGVVi3XUM7ywqrGsZVTL3BStenp9d1zKq5cfpCiZ/+t9+dn7/yJWv1mrrWkaVvPuYlGdnp9a1jGpZMtONovXf1bWMKrEc9Rp9Hj9b1zKqZO/KNv95jaDXWS+RiEV4q0JMQRIIBAKBQCAQCAQCgUAgeMSICBiBQCAQCAQCgUAgEAgED41OxHhUiSgdgUAgEAgEAoFAIBAIBIJHjHDACAQCgUAgEAgEAoFAIBA8YsQUJIFAIBAIBAKBQCAQCAQPjU4swlslIgJGIBAIBAKBQCAQCAQCgeARIyJgBAKBQCAQCAQCgUAgEDw0OomI8agKUToCgUAgEAgEAoFAIBAIBI8YEQEjEAgEAoFAIBAIBAKB4KHRIdaAqQoRASMQ1DEbN24kODgYmUzG66+/XtdyBAKBQCAQCAQCgUDwCBARMII6IzU1lY8++ogdO3aQkpKCo6MjzZs3Z9asWXTs2PFfO46/vz+vv/76f9a58fzzz/PMM8/w6quvYmdnZ3I+d+7cISAggIiICFq0aPHvCQTaNpTSOVyKrTWkKWHHGQ2xqTqjtrZW0L+NDC8nCU72cCpKy86z2gp2lmbQu6WUsAZSLC1AmQu7zmm4mWA835po7NJYdk+jjh2nNdytQuOANjK8nKWlGnec0RjX2EpG+AMad55Vm6yxcxM5PVuZY28tITlTy8YjxcQkVSwbAHtrCcO6mOPrKsPFQcKRiyo2Hi0xsOkQLqdtIzM8nPS+9Pg0DdtOlBCbajzPmjKwm4IRfZxwVMiISyrh9zVpREYXVmrfOMSKZ0e74utpTma2mg17sth1JLt0v6+nOU8McSaogSVuzmb8viaVLQeUD6WxX2c7hvdU4GAvIz5ZxR8bM7gWU1ypfXiQJU8Pd8LHw4ysHA2b9mez53hu6f52Ta0Z1dcBDxc5MqmE5HQVWw7mcPhsnskaB3V3ZFQ/JxwVcmITi/n1nxQib1Vejk1CrJk8xo0GXhZkKtWs253BzsNKA5tOLe2YMMwVT1czktJULN+UxskLucYzrCFr9hxh+bb9pCtzCPT24M2nRtGyUZBR27ORN3nh8x8rbF/79fv4e7kDMPWzHzgfdauCTecW4Xz39vMmady1bT1b1q9EmZmBTwN/np7yGmFNmleb7lrkJWa/9wq+fgHM/WFp6fZ9OzdzeP9O4u7GABAQ3JDHJz5PcMNwk/Q5dWlD4JuTUbRqgqWXG2dHTyNl876q03RtS/g372EbHkJxYirR834jdvEqAxuPkf0InfUa1kENKIiO5frHC0jZtNckjff558Aplu06QroyjyAvN94aP4hWof6V2peo1CzecoBtJy+QkZOHu6M9kwf3YESX1gBEJ6SwcNM+ou4mkpSh5K1xg5jQt9NDaezYWEb35nLsrCWkZOnYfEzFnWTj9ZqdNQzpaIaPqxRnhYRjlzVsOa4ysGkSIKVXSzOcFRJkUkjP1nH4oprzNyvW+zWla3NzerexQGEjISlDy7qDhUQnGM/P3kbCqO6W+LrJcHWUciiihHUHiwxsPJylDOmkt3FWSFl7oJCDESVG86sNPVtb0r+jNQ52UhLS1Kzalc/NOFWl9qENzBjXzwZvVznKXC07jhdw6HyZ1refUtDI37xCuks3i/luVY5JGqNOruDy0SUU5qbh4BZM+8Ez8PBvY9S2ICeV0zvmkp54lZyMu4R3fJIOg983sNFqVFw8tJhbEZsoyEnB3iWAtv3fxCe0q0n6AHq2sWJAp3vlmKpm5a48bsZWUY5+ZozvZ4u3271yPJbPwXNl5fjO0w5Gy/HijWK+W5ldYXtNWX3iCkuPRJCeW0CQmxPvDOlMqwCvSu1L1Bp+2XeGbRdukJ5bgLvClud6tmZkm7BSm7+OXuSfU1dJVubiYGNJ3yZBvNq/AxZmpr9GThztxaDeLtjZyLl2K5/v/7jL3fiiKtN0befApDHeeLpbkJRSzJLVCRw7qyzdP7SPK0P7uuLuYgHA3fhClq9P5MxF0+7L+qRTUL8QDhhBnTF69GhUKhXLli0jMDCQlJQU9u3bR2ZmZl1L+5+Rl5dHamoq/fv3x8ur8gayOkpKHr6TVhmN/SUMaCNl2ykNsWk62oRIebK3jJ82q8nOr2gvl0JBkY7Dl7V0DJcZzVMmhYl9ZeQXwepDGnIKdChsJBSrTHNsNPGXMrCtjK2nNMSmamkbKuPJPnJ+3KSqVGN+ERy6pKFTuPFAQJkUnu4n12s8qCa7VKNJEmkRLGdEVwvWHirmdpKGTo3NmDrUii9XFKDMq3jeMhnkF+rYc7aE7i3MjOYZ7C3j/A0Vt5O1qNU6erUy54XhVny1ooDsfBOdRK1tefYxN35ZlcK1mCL6d1Hw0UvevPLpHdKz1BXs3ZzlfDTNmz3HslmwNJlGgZY8P96dnFwNJy7onRcW5nqHxrHzeTz7mKtJuh6kUwsbnhnhzK9r07l+u5i+nez4YKoHb3wZT7qy4guQm5OcGVPc2Xcyl+//SqNhgAVTHnMhJ0/DqUsFAOQVaFm/R0lCigq1RkfrxtZMG+9Cdq6Gi9crd5pURpc2djw31p1FK5KJjC5gQDdHZr3SgJdmRZNmpBzdnc2Y+Yovu44qmbckkfAga154woOcXA3HI/QOloaBVrwzxZu/NqdxMiKXDi3teHeqN+/OvcONO1V3CCtj94nzzFu+gfeeGUPz0ADW7z/Oq3MXsWbuDDxcnCpNt+6bD7Cxsiz939HetvTvr19/FpW67Dpk5+XzxIy59GnXwiSNxw/vY9mv3zP5xTdpGN6UvTs2MWfWW8xfuBwXN49K0xXk57Fw/mc0ad6abKVhu3L1cgSduvehYVhTzMzM2bzubz7/eDrzflqOk0vt71GZjTU5l64Tv2w9rddUdFCVx8rfh7ZbFhP3+xouPP02jp1a0eSHmZSkZZK8YTcADh1a0HLFAm7M/I7kTXvxGN6HViu/5USPJ1CevlRrjQC7Tl/m61XbmTFhKC2CG7Du8Ble/u5P1n3yKp7ODkbTvPPLKjJz8pg5aSQN3JzJzMlHrS1zhhSVqPBxdaJvmybMW73dJF0P0jxIxtBOZmw8one6tA+XM3mwOfNWFxutK+UyCflFsO+8mq7NjHdrC4ph33kVaUodai2E+UkZ09OMvEIdN+Jr77BuFWrG6B6WrN5XSEyihi7NzJk20obPluWSlWtMI+QW6Nh1qpierS2M5mkul5CerSXihopR3S2N2tSWtuEWjO9vy1/b87gVr6J7K0tef0LBRz9nkplT8bxdHKS8/riCwxGF/LYxl2AfM54cZEtegZZz1/T9jIVrcpA90LTbWkuZNdWRs5GVO8CrIubSdk5t/5KOQz/C3a8V186sZvey5xn12hZsHSr2izQaFZY2TjTv8TxXj/1pNM9ze74j+sIWOo/8BIVrIAk3j7Lv71cY8vwKnL1q72Rt29iCxwfYsnxbLrfiVPRobcUbExR8+FPl5fjGEw4cPl/IrxtyCPY146nBduQW6DgXpS+nn1ZnI5OVTdOwtZYw+wUnk8sRYOelm8zddpQPhnejhZ8Ha09FMm3pVja88TieDsYH+N5esYuMvEJmje6Jr7OCzLxCNA8839sibvDdrpPMHt2T5n4e3E1T8vHa/fq0Q7qYpHPcUA9GD3Ln60W3iU8qYsJIL756P5Rnpl+hsMj48xgWYsOHrwaxdE0CR88o6dLWgY9eC+T1Wde5Fq3v6KVllvDbygQSkvXtYb9uLnzyVjAvzIis1mlSn3X+FxGL8FaNKB1BnaBUKjl69ChfffUVPXv2xM/Pj3bt2jFjxgwGDx5capednc3UqVNxc3PD3t6eXr16cfHixdL90dHRDB8+HHd3d2xtbWnbti1795aNDvbo0YO7d+/yxhtvIJFIkFTxXXqlUsnUqVNxd3fH0tKSJk2asHXr1tL969ato3HjxlhYWODv78+8efMM0vv7+/PZZ58xceJEbG1t8fPzY9OmTaSlpTF8+HBsbW1p2rQpZ8+eBeDgwYOlES+9evVCIpFw8ODBWh1r0qRJKBQKpkyZQkBAAAAtW7ZEIpHQo0ePWlyRyukUJiXilpbzt3SkZ8POs1py8qFtqPHqQ5kPO85ouRijo6jEuBOgZbAUKwsJKw9oiEvTkZ0Psak6UrJM1Bgu5fwtLedvaknP1kfo5ORD24bGHUB6jRouxmgpqsShcl/jiv1qYg00mubY6NHCjFORak5FqknN0rHxaAnKPB2dmxp3rmTl6thwpISz19UUVeJf+2tPMceuqElM15Kq1LH6QDESCYT4GD/vmjC8lyN7j2ez93gO8ckl/L42jXSligHdHIzaD+jqQFqWit/XphGfXMLe4znsO5HN8D6OpTa37hazbEM6R8/lolabVn4PMqSHPftP5bL/VB4JqSqWbswkXammX2d7o/Z9O9mRrlSzdGMmCakq9p/KY//pXIb1VJTaREYXcfpyAQmpKlIy1Gw/nMPdpBIaBRp/WaqOEX2c2XNMye5jSuKTS/jtnxTSs1QM7O5o1H5AdwfSMlX89k8K8ckl7D6mZO8xJSP7lTlBhvd24kJUPmt3ZhCfUsLanRlcvJbPsN6VO0qq4+8dBxneowMjenYk4F70i7uzI2v3HqsynZO9LS4O9qU/mbSsPlDY2hjsO3X5OpbmZvRp38Ikjds2rqJX3yH07j8UH19/Jk19DWcXN3Zv31hlusU/fk3n7n0JbdS4wr5X355J/8Gj8A8MwdvXj+dfeRedVsvli2dN0pi26zA3Zn5L8sY9NbL3mzqeotgkIt/8grxrMcQtWUvc0vUETn+21CbgladJ33uc6LmLyb8eQ/TcxaTvP4n/K0+bpBHgrz3HGNGlNaO6tSHQy423xw/Gw1HBmoOnjdofu3KDc9fv8MOrE+kQHoyXiyNNAn1oEdyg1KZxgA9vjBnAgHbNMJM//Lhe12ZyzlzTcPqahlSlji3HVSjzdHSoxKGflauPkDl/Q1NpmxOTqOXqHX09mZmj49hlDckZOvw9TesG92ptzokrJZy4oiIlU8u6g0Vk5Wrp2rxiRANAZo6OdQeLOB2loqjYuMbYFA0bDxdx7roKtemBOQb062DFkYgijlwoIildw6rd+WTmaOjRxsqofY/WVmTk6O2S0jUcuVDE0QtF9O9oXWqTX6QjJ7/sFx5gTolKx5ko0xwHV44tI7T1KBq2HYODWxAdBr+PjcKDa6dWGbW3c/Smw5D3CWk5AnNLW6M2ty5splmPqfg27I69ky9h7R/HO6QLV44uNUlj/w7WHIko5EiEvhxX7sojM1tLz7aVlGMbKzKy9XZJ6Rr9NYgwVo7a0l/jwHvlGGn6C/jyIxcZ2SaMUW3DCXRz4p2hXfBQ2PLPyStG7Y9dj+Xc7UR+mjSYDsG+eDva09TXnRZ+nqU2F2OTaeHnwaAWoXg72tMptAEDmodwNSHNZJ2jBrqxYmMSR88ouRNfxNyfb2NpLqVX58rbstED3Tl3OYeVm5KJSyxi5aZkIq7mMmqQW6nNyfPZnL6QTUJyMQnJxfzxTwKFRVrCgo3fJ/9XdArqH8IBI6gTbG1tsbW1ZePGjRQXG2+0dTodgwcPJjk5me3bt3Pu3DlatWpF7969S6Nk8vLyGDRoEHv37iUiIoL+/fszdOhQYmNjAVi/fj0+Pj588sknJCUlkZSUZPRYWq2WgQMHcvz4cf766y8iIyP58ssvkd0b5jl37hxjx45l/PjxXL58mVmzZvHRRx+xdOlSg3wWLFhA586diYiIYPDgwTz11FNMnDiRJ598kvPnzxMcHMzEiRPR6XR06tSJ69evA3qHS1JSEp06darxsb7++muaNGnCuXPn+Oijjzh9Wt+B3rt3L0lJSaxfv96ka/MgMil4Oku4lWjYYYxO0uLravoCWw19JMSl6RjcXsbbY+RMGyqnaxMpVfjHqtUYnWg4GnErUUuDh9DYyFdKXKqWIR1kvDPWjJeGyenW1HSNPm5SrscZRj5cj1Pj72G6s6Q85nKQSqGgkg5+dchlENTAkgtRBQbbL0QV0CjQ+Ihsw4CK9hGRBQT7WSJ7BC2MXAaBPhYVolIuXS+kob9xZ0movyWXytlfvFZIoK9FpRqbhFji5WpGVHTtO8NyGQQ3sCQi0jD8KiIyn7Ag4x32RoHWFezPR+YT7GdVqrFRoFXFPK/mExZkjSmo1Gqu3Y6jQ9OGBts7NG3IpZu3q0w74YOv6f/SR7z4xY+cvXqzSttNB0/Sr2MrrCxr78xSq1TE3LpBs5ZtDbY3b9mWG9eMv1QAHNizjZTkBB574pkaHae4uBi1Ro2tnXEn3r+NQ4cWpJVzcqXtPoKidRMk95wYjh1akL73qIFN+p4jOHZsadIxVWo1UXcT6dg42GB7h8bBXIyONZrm0IVrhPt7sXTnEfq99RXDP1jA/H92UFRiYihgNcik4O0q4UacoQfiZrwWf49/r0IJ9pbi6iDhdiVTQKtCJgVfdxlRdw3r86i7agK8/juB5TIp+HnKuRpj6MGPjC4h2Me4ziBvOZHRhvZXokvw85RXWld2bWnJ6avFmHJLaNQlZCRexSu4s8F27+DOpMZG1D7De2jVJcjlhvWNzMyClLvnap2XTAp+XnKuliuXqzElBPsYH0AJ8jGrUO5Xo4vx96qqHK04fcW0cgRQqTVEJabRMcTXYHvHEF8uxqYYTXMw6jbh3m78cTiCPnOWMfSbv5m3/RhFqrJ7u6W/J1EJaVyO0+cRn5nN0et36drQzySdnm7mODuac+5y2TQrlVrHpahcGodW7oAID7Hh3CXDKTpnL+bQOMR4GqkEenR0xNJCSuTN2k8lri86/6voJJI6+9UH/jstheD/K+RyOUuXLmXKlCksWrSIVq1a0b17d8aPH0+zZs0AOHDgAJcvXyY1NRULC31D+s0337Bx40bWrl3L1KlTad68Oc2bl60D8Nlnn7FhwwY2b97Myy+/jJOTEzKZDDs7Ozw8Kg9V37t3L6dPnyYqKorQ0FAAAgMDS/fPnz+f3r1789FHHwEQGhpKZGQkX3/9NZMmTSq1GzRoEM8/r1/j4OOPP+bnn3+mbdu2jBkzBoB3332Xjh07kpKSgoeHB25ueo+4k5NTqb6aHqtXr1689dZbpf/fuXMHAGdn5yrPtbi4uILTS1++FXsF1hYgk+rDux8krxBsvUyv5BztJATYwuUYHX/tU+NsL2FwexlSKRy6VLsO8X2NeeVmieQX6bC1Mr3D7mgnIcBTwqUYLcv36jUOaS9DKoGDtdRoYyVBJpWQW2DoGMkt0GFv/e81FkM6mpOdp6vw8lJT7GxlyGQSlLmGLxbZORoc7Y03Fw72crJzDB0wylw1cpkEe1sZWTn/0lDufY029zUa5qvM1eBgb9yZ5WAnM2ovl0mws5WhvKfR2lLCL7MaIJdL0Gp1/LY2g0s3au+AsbeV6zXmGJajMleNg72N0TSO9rIK5a7MuV+OcrJy1DjYyyvmmaPGsZLzrg5lbj4arRYnhaHTwUlhR3q28XVlXBzs+WDyOMICfClRq9l+9AwvzvmJXz54mVZhwRXsr0TfJTo+iY+mPm6SxpycbLRaDQpHwxFHhaMTyvMZRtMkJcSxctkiZn31EzJZzbo5K5b9jJOzK01bGF934t/Gwt2F4pR0g20lqRlIzcwwd3GkODkNCw8XilMMz7E4JQMLD9Om8WXlFeivt73hi4CzvQ0Z2cY7/glpWVy4GYuFmRnzp00gKy+fOX9vISe/kFnPjDJJR1XYWBqvz3MLdNj5PpwDxtIcPnjKErkUtDrYcETFTROmH9ner8/zH219/rDYWUuRSSXk5BueY3a+jia2xsvS3lZaYfpqTr4WuUyCrbWU7DzDvAK85Pi4yVm6xbR1qIoLlOi0GqxsXQy2W9k6U5CXXkmq6vEO6cKVY0tx92+DvVMDEmNOEBu1H5229u3R/XIsf+45eVoUQcbLUWErJaecfXZeNeXoLuePzaavAZJVUIRGq8PZ1tDJ72xrTXpunNE08Zk5RNxNwlwuY8GTA1DmF/HFpsNkFxTzyWO9ABjYPISs/EIm/bIBdKDWahnbvjGTe7QySaejQu+0yso2bMuystW4uxiPIANwdDAjK9vQO5WVrcLRwdAJFuBrxfefNMLcTEphkYZZ86OJTah9O15fdArqJ8IBI6gzRo8ezeDBgzly5AgnTpxg586dzJ07l99++41JkyZx7tw58vLycHZ2NkhXWFhIdHQ0APn5+cyePZutW7eSmJiIWq2msLCwNAKmply4cAEfH59S50t5oqKiGD58uMG2zp078+2336LRaEojZe47jwDc3fULUjZt2rTCttTU1EqdJDU9Vps2pr0ozJkzh9mzZxtsmzlzJgR+UGkaXbmACokEHmYiiUSiX4Nl80kNOh0kZeqws9LSubG01g6YqngojUB+IWw+UabR3ho6N5bV2gFTlZ6Hn5Cjp1dLM1qGmvHThsKHD18vL0pS8R4wNDfcKSnd/ggpf09SjUYj93D5fAqLdbz9TQKW5lKahFry9AgnUjLURJoQBWNEYrUfZaxM44PlW+EUH/JZfPA4D+qoTKu/l3vpYrsAzUICSMlQsnz7AaMOmE0HTxLk40mTINNGS0s1llOk0+mMTinVajR8/81sxjwxGS/vBhX2G2PT2r85dmgvM+f8gLm5aVPOTKLSC66r2qaqG70GGL3elVxwrU6LRAKfPzcGO2t9FFyJSs3bi1bx3oShWJobjwB4WCo8Ow9/2hSXwLdrijE3gxBv/Tozmbk6YhL/nTZHwiOu80yl1rdQJfW5kURdWlgSn6rmdmLFda1qQ8V7Ulfhma8N7Ye8z7ENH7P+28EgkWDn5EtIq5HcPL/hoXQ+SHX9oIr3sP58jJV911ZWxKc8fDmCkboSXRXPt/5jwXPG98HuXoTim+pOvLViF+8P74almZwzMQn8duAcHwzvRlNfd2Izspm75Sgu+87yfO/q+6G9OjvxxnNl9f8Hc/URk6b0K421f+U3xiUW8fx7kdjayOjazpF3XvRn+ifXq3Vu1Bedgv8bCAeMoE6xtLSkb9++9O3bl48//pjnnnuOmTNnMmnSJLRaLZ6enqXrojyIg4MDAG+//Ta7du3im2++ITg4GCsrKx577LFaL0prZWV8WsB9jHX2jXVGzMzKOqP37Y1t02or7/DV9Fg2NsZH0qtjxowZTJ8+3WCbhYUFX6yuaFtQDBqtjnIDKthY6heINZW8Ah0anWHDlpatw85a/4UKTS36w5VrlDycxkIdGu2/ozG/UIdGW3F01M66YlSMKfRoaUafNub8vKmQpAzTXyZy8zRoNDocykW7KOwqRmfcR3kvMsPQXo5aoyM379+NfgHIzb+v0TDqQ2EnIzvX+PGUuZoKUSIKW5leY35ZGp0OktP153knsQQfd3NG9lHU2gGTk6dGo9FViBpS2FWMYLlPlpEoo/LlqI92MbRxsJOXRvDUFgc7G2RSKRlKw1HXrJxcnBU1/yJbk2B/dhyruHZKUXEJu0+c54XHBpqkD8DeXoFUKkOZZRgJkqPMQuFQcR5+YWEBMTevcSf6JksWLQBAp9Oi0+l4fFh3Pvh0Pk2aty6137J+BRvXLOfDz77FL6CiA+lRUZySXiGSxdzVCa1KRUmGUm+TnI6Fh2FkgIWbU4XImZriaGutv97lol0yc/MrRMXcx0Vhh5uDfanzBSDA0xWdTkdKVjZ+7i5G05lKfpG+PrcrV5/bWknIe4j6HPTvPxk5+jySMtS4OUro2VJOTGLt+gt59+pzOxvD+tz2X6rP/y1yC7T6dqdctIu9dcWomPvk5GlR2Bja29lIUWt0FdpTczm0a2zBpkOGEZC1wcLaAYlURkGu4T1dlJ+Jla1zJamqx8rGiT5P/ohaVUxxgRJrezfO7pqHnaN3rfO6X44K24rlUj7K5T7ZedoK9vY2knvlaJjmfjluPGjkiwG1wNHaEplUQnqe4fXIzCvE2db4NFVXOxvc7G1KnS8AgW6O6HSQkp2Hn4sDP+05zZCWDRnVVr94cYiHM/+PvbuOjuroGzj+XY27GwkxILg3uGtxh5bSUkpLFUpbqGHtU6FIgbohRYu7u0MgaEggISQQl43byvvHloRNNiFZ2ift+8znnD0nuTv33t9em7lzZ+YWFJcwb8sxJnVtiVRadUXZmTAVt+6U/TaFQp/e0V5OhqqspYi9rbxCy5FHZapKcLQzrPB1sK3Y2kSt0ZGQrG/lHRWTTz1/K4b2cWPxL/f+X8T5b6F7ggrU/wViDBjhHyUkJIS8PP0FsEWLFiQlJSGXywkMDDT4ODvrC30nTpxgwoQJDBkyhMaNG+Pu7l7aFechpVKJRlP1DUqTJk24f/8+UVFRlcZ18qRhX/zTp08THBxc2iLlr2LqupRKfZPIx/1WMzMzbG1tDT4Pu3iVp9FCYrqOgHLdjfw9pMSnml7QjEvV4Whj+JzG2VZCdr6uRhUbBjGWG0wxwFNK3JPEmKLD0dYwRqcniPF+ipZgH8Ob52AfObFJT1ZJ0bW5gl6tlPywvYD4J3z9tFoD0XGFNGtgWFhrVt+SWzHGKyEi7xbSrH659A0suXOvsMbbqboxxtwvokmw4R1ak2ALImONjycVFVtYIX3TehbExBdVGaMEUMhrXohQa+BOXCHNGxhWkjZrYEVEJa/zvhWTT7Ny6ZuHWHHnXkFpjLdiCoymiYg27QZIIZdTv64P565HGkw/dy2SJkF1q72cyNj7ONtXHDvlwNnLlKjV9G3f2shc1SNXKPAPDOZq+AWD6VfDLxJcv1GF9BaWVsxftpIvlvxW+unRdxCe3nX4YslvBq+Z3r5pDZvWrWDmnK8ICKpvcoymUJ0Nx7m74auaXXp2ICvsOjq1vpIu82w4zt0Nx8Zw7tGBzDOmjY2hkMtp4OvJ2ZuGrwg/e/MOTQOMtxZqFuhLalYO+YVl59a95HSkEgluDnZG53kSGi08SNUR5GOY1wV5SSt9DfWTkJuQfWu0EJ+soX4dw+t5fV/5X9KC4a+i0cK9RDUN/Q27S4T4K7lz33ic0Q/UhJRL39Bfyb1EdYVrZesQMxRyCWeumf7EXiZX4uTZkIQ7pw2mJ9w5jWsd08Y6epRcYYaVnRs6rZrYGweo06B7jZeh0cK9BOPb5c594zfi0fdLKmz3hgFKYhOMbMeG5vrtePXJWj4o5DIaeLpw9rZhd6Ozd+7TtI6b0Xma+bmTmpNP/iOvd7yXlqU/v+30lbKFxeoKDwVlEik6na5C61djCgq1JCQXlX7u3S8kPbOYFo3Lrh9ymYQmDWy4EVX5GCg3b+fRorFhPtOyiS03HjduiqSsMuX/Q5zC/w+iAkaoFenp6XTr1o3ff/+dq1evcvfuXf744w++/PLL0u43PXr0IDQ0lMGDB7Nv3z5iY2M5ffo0H374YembhAIDA9m8eTPh4eFcuXKFsWPHVmhd4ufnx/Hjx3nw4AFpacafHHbu3JlOnToxbNgwDhw4wN27d9mzZw979+4F4O233+bQoUPMmzePqKgoVqxYwbJlywzGYPmrmLouV1dXLCws2Lt3L8nJyWRlZVWZvrpOR2hpESileaAEZzvo00qKnRVciNJv5x7NpQxpb1iKdXfQf5RyfUsUdwdweaSsfiFSi6UZ9G0jxckGgrwkdGws5UKkaQXs0ze1tAiS0jxQqo+xtUwfY6S+cqNHCxlDO5SPUYK7gwSlHCzN9f8/GuP5SM2fMcpwsoVgLwmdGss4f8u0CpOj4SU8FSKnTQM5rg4SBndQ4mAt4fR1fcGnf6iSsT0MK8I8naV4OksxU+ifAHs6S3FzKMuguzVX0O8pJesOF5KRo2+dY2Mp4Ul6BWw7nEmPdnZ0D7XF213JC8NccHZQsO+ECoBnBjnz5nNl3ef2nlDh4qjg+WEueLsr6R5qS492dmw7WPZKK7kM6nqbUdfbDLlMgqO9nLreZri7mBbozqPZdH/Khq5trPFyVfDcYEecHeTsP60fh2BsfwdeG1v2ZP7A6RycHeQ8N8gRL1cFXdtY062tDduPlJ0jg7vb0STYHFcnOZ6uCp7ubEun1tYcv2jaoHhbD6bTs4M9PdrZ4e2u5MURrrg4KthzXL9dxg92YeqEsjdN7D2mwtVJwcQRrni7K+nRzo6e7e3Zsr/s9cnbD2XQPMSKYb2d8HZTMqy3E00bWLH9UEaF9VfXuL5d2HrkLNuOnuXugyQWrNpMUnomw/688V+2bgcff/d7afo1e45y9OJV4pJSiL6fyLJ1Ozh84Qoje3WssOxtx87SuWVj7G1Ma633UP/Bozm8fydH9u/kfnwsK35aQlpqMj37DdbHtPx7li2YB4BUKqWOn7/Bx87OAYVCSR0/f8zN9RVx2zauZv2qn3jlzZm4unmgykxHlZlOYYFplVkyK0tsm9bHtqm+Iseyrje2Tetj7qPfx/U+mUbT374oTX/vx3VY+HrSYP4MrOv74z1hGD7PDyNm4a+laWKXrcS5Z3v8p0/Cqp4//tMn4dw9lNilK0yKEeCZnu3ZciKMrSfDiElI4at1u0nKyGJ4F30l2ZJN+/nwl42l6fu2bYKdlQWzfttMdEIKYVF3WbxxL4M6tCjtflSiVhMZl0hkXCIlag0pqmwi4xKJSzY+Rs/jnLiqpk19Ga3qyXC1lzCgnQJ7Gwlnb+qvvX3ayBnV1fDa4eEkwcNJgplcgrWF/n/XR66VXZvLCfKW4mgjwcVeQscmcloGy7gcZdr1/HBYMe0aK3mqoQI3RylDO5vjaCPlxBV9a5qBHcx4to9hpa+XixQvl7LruZeLFHfHsmK4fgBifRq5DOxt9H8725teVN9/toCOzc3p0NQcD2cZo3pa4Wgn41iYviJ4aDcrJg4qa+12NKwAJzt9Og9nGR2amtOxuTn7zlQ8Lzo0t+ByZNETtTQFaNT+OaLCNhF1cROqlGjO7fqM3KxE6rcZBcDFfQs59sd7BvOkJ0SQnhBBSVE+hXmZpCdEkJlSVrGYEn+F2Bv7yc6IJyn2IvuWv4ROp6Vxx4kmxbjvbD6dWljQoZl+O47ubY2jnZSjF/XbcVh3K14c/Mh2vPjnduxlrd+Ozczp2NzC6Hbs2NycS7eefDsCPNuxKZsvRrDlYgQxKRnM33mSRFUOI9rqK6u/3nuGDzaUvSm0X9Ng7CzN+HjjYaKTMwi7m8DC3acZ3Ko+5gp9BWPnBr78ce46e67c5n5GNmdux/PNgXN0buBn8Pa7mti8J4Wxg9xp38oeP29z3n3Fj8JiLYdPleVl773ix8TRXo/Mk0yrJraMGuCOj6c5owa406KRDZt3p5SmeWGUF43qWePmrKSujwXPj/SiaYgNh06Zlkf+W+L8J9JJpLX2+TcQXZCEWmFtbU3btm1ZtGgR0dHRlJSU4OPjw6RJk3j//fcBfXed3bt388EHH/DCCy+QmpqKu7s7nTp1Kh1LZdGiRbzwwgu0a9cOZ2dn3nvvPbKzDZvTz507l8mTJxMQEEBRUZHR7jygfxPR9OnTGTNmDHl5eQQGBvL5558D+tY4GzZs4OOPP2bevHl4eHgwd+5cg0Fx/yqmrksul7NkyRLmzp3Lxx9/TMeOHY1236qpG7E6LM20dG4iw8YCUlSw+pCGrD9balpbSLArd3/1yoCywrGXMzTxl5KZq2PxZv1Tt+x8WHlAQ5/WUl4ZKCcnH85GaDl5w7QKmOuxWizMoEtTGTYWMlJU+sF9H8ZoYwF25ZqLTxloGGNTfxmZuToWbSp5JEY1fVrLmDJQ8WeMGk5cNy3G8DtqrMyhd2sltlYSEtO1/LizgMwc/fFoaynBwcYw43hndFnLEh9XGS3rKcjI1jJvpb4Q176xArlMwvN9DQv6e88Xs+98zZrVP3QqLBdbqxRG9XPCwVZGXGIx8759QGqGft852spwcSjLOlLS1cz79gEvDHOhXyc7MrI0/PxHCmfCyyouHO3kLHq/rG/1kJ6ODOnpyPWofD5cfL/GMZ4Oz8PaSsrw3vY42MqJTyzmPz8mk5apj9HBVobzozFmqPnsp2SeG+xI7w62ZGap+XVLOueulhWGzZVSXhzujJOdjOISHQ9SSlj6eyqnw01rFn7yYg62VsmM7u+Mo52cewlFzFkWV7Yd7eS4OJYdg8npJcxZGs+LI93o39mBjCw1P65P4vTlssEtb8UU8OXPD3h2kAvjBrqQlFrMlz89ICrW9CenvUJbkJWbx89b9pGmyiLA24Ov35mMh4u+e0+aKpuk9LLKtBK1hsVrtpGakYWZUoG/tzuL33mJDs0MX/V8LzGF8MgYls14xeTYHmrXqTs5OVlsWreczIx0fHzrMmP2fFxc9RWBqsx00lONv+WjMgd2b0GtLmHhZx8aTB8+5nlGjKv5TZpdy0aEHlpV+n/IV/p8LH7lZq5OnImZhwsWPmUVbgWx97kw4CVCFszE95VxFCWkcGPqpyRt2V+aJvPMZS6Pm0a9OW9Rb84b5EfHc3nsVFTnr9Y4vod6t2lMVl4+P+44QlpWDoGebix981k8nfSvR0/LyiHpzy5QAJbmZnw37Xm+WLOTZz75DjsrC3q2asyrQ3qUpklV5TB67jel/6/cd5KV+07SMtiPn999scYxXonWYGkOPVrJsbWUkJSh49fdxahy/7xWWkmwtzG8nk8dUdZFyttVSvMgORk5Wj5frW+5o5TDkI4K7KwklKghRaVl3eESrkSbVgFzKaoEKwsJfZ8yL72ef7slr+x6biXFsdz1fOazZTfoddyhdQMl6VlaZv2iP8ftrCUGaXq0MqNHKzNux6v5+g/TrkMXbhZhbSFhQCdL7KylPEhV8/XaLNKz9PmYvbUUR9uyONNUWhavzWJ0Lyu6trJAlaNlzd5cwm4Z5idujjKC6yhY8PuTdZsB8G/Sj6J8FeFHviU/JxUHtyB6jf8e6z+7C+XnpJKXZfgGy23flA0AnZ5wg5grO7G292TkO4cA0KiLuHRgCTmZ8ciVlngHd6LziC8wszDtLWcXbhRhbZHLwM5W+u2Yombx6rLtaGctxdGu7CFPmkrLojUqxvS2plvrP7fjnhzCyr2q281RRrCvkq9WZfJX6NMkiKy8In48dJHUnDwC3Zz4ZsLTeDroj6u0nHySVGV5s6WZgh9eGMjnO04w9puN2Fma0atxIK/1aluaZlLXVkiQ8M3+c6Rk5+FgZUHnBn4GaWpq/Y4kzJRS3nihDjZWciKi85jxnygKCsvKV67OZmgfKa7fvJ3HJ0tieH6kJxNGepKQXMQnS2K4FV12DDrYyZnxal0c7RXk5Wu4G1fAzM9vc+maaYMb/1viFP59JLrK7kYFQfifMmvl3/Na0b/KnPEKPl5hWqXCf8vc55RMXfbPf43gotesGTzFeHe7f4qt3wYzYmrVr0KubX8sqsuAyRG1HcZj7fihATkX99Z2GFWyadWH8NuptR1GlZoFubBLUe/xCWtZ/5JI8k/8UdthVMmy4wje/d54d7x/ii9ftuC1hX9NS9K/07Jpdkyc988+d375yIUvNv4NfVL/Qu8Nl/LCnJTHJ6xlv85ypXDz17UdRpXMh75JjzEVxwX7Jzm4ttU/PkbQx/lvFHe79spGdYIa1Nq6q+vf0U5HEARBEARBEARBEAThX0xUwAiCIAiCIAiCIAiCIPzNxBgwgiAIgiAIgiAIgiA8sX/LYLi1RWwdQRAEQRAEQRAEQRCEv5loASMIgiAIgiAIgiAIwhPTIXl8ov9hogWMIAiCIAiCIAiCIAjC30xUwAiCIAiCIAiCIAiCIPzNRBckQRAEQRAEQRAEQRCemBiEt2pi6wiCIAiCIAiCIAiCIPzNRAsYQRAEQRAEQRAEQRCemBiEt2qiBYwgCIIgCIIgCIIgCMLfTKLT6XS1HYQgCIIgCIIgCIIgCP9u0TExtbbuAH//Wlt3dYkuSIIgADBxXmpth1ClXz5yYfp3+bUdRpW+esWShdv++XXa0wZJ6P/i9doOo0q7fm7E2Bn3azuMKq353JsBkyNqO4zH2vFDAwqOrq3tMKpk0WUM607/s8+d0e0k5J/4o7bDeCzLjiPYpahX22FUqX9JJOG3/9l5TrMgFzae09Z2GI81vK2UUzdzazuMKrUPsWbqsn92jItesyYsKqO2w3islsGOFG74qrbDqJL5yOn0GHOxtsOo0sG1reg++nxth/FYh9a1qe0QhL+B6IIkCIIgCIIgCIIgCILwNxMtYARBEARBEARBEARBeGI6nRiEtyqiBYwgCIIgCIIgCIIgCMLfTLSAEQRBEARBEARBEAThielEG48qia0jCIIgCIIgCIIgCILwNxMVMIIgCIIgCIIgCIIgCH8z0QVJEARBEARBEARBEIQnpkMMwlsV0QJGEARBEARBEARBEAThbyZawAiCIAiCIAiCIAiC8MREC5iqiRYw/0JJSUn07NkTKysr7O3tAZBIJGzduhWA2NhYJBIJ4eHh1V7m8uXLS5cllJkwYQKDBw+u7TAEQRAEQRAEQRCEfznRAqaWTZgwAZVKVVp5Uh2LFi0iMTGR8PBw7OzsKnzv4+NDYmIizs7Of2GkpsVqqtmzZ7N169YaVSJVpUuXLjRr1ozFixfXaL6vv/4anU73l8Twdzt69Chdu3YlMzPzL69M69rSnN6hltjbSHmQqmbdvjxux5dUmj64joJRvazwcpGjytGy53Q+xy4VGqTp0caCrq3McbSVkZuv5WJEEZsO56HWmBZju4ZyujSTY2MpITlTx7ZTxdxN1BpNa2MJA9op8XaR4mwn4eQ1NdtPGf6eRnVldG8hx9lOikwKqVk6jl0p4VKUiQECN06v4cqxX8jPScXBLZB2A9/Ho24ro2ljru3n5tl1pCdEoFEX4+AWSKuer+FTr2Npmoyk21zcv4TUBzfIzUwgdMBMmnR8zuT4HjV2oCt9OjlgbSkj8m4B361OIC6hqMp52rWw5dnBrni4KElMLWbllmTOXM4xSNO/iyNDezvjaC8nLqGIH9clcuN2fo3j6/GUFU93ssHeRsaD5BJW7lQRGVtcafr6dZU8298eLzcFqmwNO47ncOhcXun3nVpa8vIIxwrzPffhfUrUNQ4PgH6dHRjayxEHO/1v/WlDMjfvFFSavlGQJRNHuFLH04wMlZpN+9PZe1xlkKZdcxvGDXTBw0VBYmoJq7alcjY8x/gCq2n90fOs2H+atKwcAjxdeWdkH1oE+VaavrhEzQ+7jrH73FXSsnNxs7flxX4dGdy+BQCbToSx8+wV7iSkABBSx4PXBnencV1vk2M8f3gNp/b8Qq4qFRevQPqOfR/fYOPnzs2L+7lwZB1Jcfpzx8UrkK6DXiOwcdm5o1GXcGLXj4Sf2kpOZjJOHnXpOWI6QY+kqakNR86xYt8J0lS5BHi6Mn10P1oE+1WavrhEzY87jrDrbDjp2bm4OdgysX8XBndoCUD0g2S+3XaIiHsJJKarmD6qH+N6tjM5PscOrfB/eyJ2LRph7unKxWFTSN5+qOp5OrYm5KsZWIcEUZSQQvSCn4n7cZ1BGvchvQie/SaWAXXIj44j8uNFJG87aHKcAPt2bWbH5rWoMtLxruPHc5PepEGjpo+d79bNq8yZ8To+vnX5cuny0umH9m7n+OG9xN+LAaBuYD3GjJ9MYL0Qk2M8e3ANJ3f/Sk5WKq5egfQfNxO/esaPydjIMPZtWEBqQgwlxYXYO3vSputI2veZYJDu+oX9HNy0hIyUOBxd69Bz+Js0bNXT5BgBDu/ZwN6tq1BlpuHl48+YidMJDmluNG3UzctsXLWUxPuxFBcX4uTiTpdew+g1cJxBuv071nBk70Yy0pKwtrGnVbvuDH/mNRRKM5NibN9ITtcWSmwtJSRlaNl6ooiYSvJvW0sJAzso8XGR4Wwv4cSVEraeNLz2PxUip3V9Be6O+ufM91M17DpTTFyK8WVWx4Fdm9i5eTWqzHS86tRl/KS3qN+w2WPni7x5hXkzX8XH15/Plqw0+O78qSP8sfpHkhMf4ObhxchnJ9M6tIvJMQKsP3eT5SevkJZbQICrA+/2fYoWfh6Vpi9Wa/jhyCV2XblDWm4+brZWvNi5OUNa1gOgRKPll+Ph7LgcRUpOPn5OdrzVuw3tg3yeKM7xwzzp190ZGys5t+7kseS3e9y7X1jlPB3b2DNhhBcebmYkJhfx6/oHnLqoKv1+QA8XBvR0wc1Zfxzeu1/Aqs0JXLiSbXqcw73o380FG2s5EXdyWfLrPe7drzwf18fpwPMjvUvj/GX9fU5dyCyLs6crA3u44ubyaJwPOB+eZXKc/zSiBUzVRAuYf6Ho6GhatmxJUFAQrq6uFb6XyWS4u7sjl4v6tZKSyisJqsPOzu5/vmVQ6xAzRve2ZtfJfOb8lMntuBLeGmuHo63xy4ezvZS3xthxO66EOT9lsutkPmP7WNOyvrI0TdtGZgzvbsX24/l8+F0Gy3fm0KahGcO6WZkUY9MAGQPbKzh4qYRFfxQSk6jhxf5m2FsbzwDkMgl5BToOhZWQmGa8gq2gSMehS2qWbi5kwYZCLtxSM6qrkmAf0y6bd8J3c3rHZzTv9jLD3tyCe91W7P7lJXIyE4ymT7x7Ee+gdvR94UeGvbEJz4C27F0+hbQHN0vTqEsKsXH0oW3ft7G0cTEpLmOG93FmSE8nvl+TyNRPosnMKuGTaX5YmFX+2+v7WzBjsg+Hz6h4bc4dDp9RMWNyHerVtShN07G1LZNGu7N+dypvzI3melQec970xcVRUaP4nmpiwfin7dl6JJv3lyRzK7aI9553xslOZjS9i4OMd5935lZsEe8vSWbr0WyeG2BP60YWBunyC7W88kmCwcfUypcOrWx4caQbG3an8+Ynd7lxp4DZr9fBxcH4ddnNScGs1324caeANz+5yx970nlplDvtmtuUpqnnb8G7k7w4ci6LN+bd5ci5LN57yYtgP3PTggT2XbjO/A17ebFfR9Z9+DLNA+vw6tLfScxQVTrPuz/9wflbMcwaP5Ctc17jsxeH4edeVuF/MSqWPq0b8dO051j53kTcHe145etVJGeaVgi+fm43e9d8RqenX+blOVvwDW7F7wtfQpVu/Ny5F3WRgIbteGbqj0yetYm69duy5uspJN4rO3cObf6ai0fX02/ch7z66S5adRnNuqWvGaSpiX3nrzF/3W4m9uvC2o+n0DzYl9e+XkliuqrSed79YR3nb0Uza8IQtn7yFp9NGoWfe9l5XFhcgreLI28M64WznbVJcT1KZmVJ9tVIbrw5t1rpLfy8ab3jRzJOhnGy9WDufPE9DRd9gPuQXqVp7J9qRvM1i3iwehsnWg7iwepttFi7GPs2TUyO8/TxQ6z4aQlDRo7n8yW/Ur9hUz6bPZ20lKQq58vPy+XbhZ/QqGnLCt/duHaZdp178PFnS5n31Q84u7jx6cfTyEhLNSnGq2d3s3v153QeOJlX527GL7glK76ajCrN+DGpNLPgqR7jmPTBKt76fBddB77MgY1LOH9kQ2mauNuXWf/NNJq3H8jrn2ylefuBrPtmGvHRV0yKEeD8yf2s/XUBTw9/gdkL1hAU0pxF814nPTXRaHozcwu69RvJjE9/4tOlGxkw/EU2r/mWo/s3l6Y5c2w3G1ctZdCoSXy6dCPPv/YR50/uZ+Pvy0yKsVmgnMEdzThwsZiv1ucTk6DhpQEWlebfMhnkFeg4cLGYhDTjFSqBXjIuRZXwzdYCvt6YT2aOjpcHWWBnZdpN4ZkTB1n582IGj5zAf75eQf2GTfli9rRqHZPfLZpHw6YVK+aibl1jyZcf0aFrHz5bspIOXfuw5IsPuRN5w6QYAfZei+bLPWeY1Lk5618ZQgtfd6as2kuiKrfSed5Zf4hzMQnMHtKJbW+O5POR3ajrYl/6/bKDF9h4IYIZT7djy+vDGdGmAVPXHCAiIc3kOEcNcGdYPzeW/RbHqx/cJENVwhfvB2NhXnkZo0GQFR++EcDBk+lMnnGTgyfT+ehNf+oHlJUbUzOK+XntA6Z8cJMpH9zk8o0c5k4PxNfbtDxy9EAPhvdzZ+lv95jy/g0yVSV8+X69KuMMCbLmozcDOXAijZfeu86BE2l8/GYA9QPL4kxLL+antfFM+eAGUz64weUb2cydHoSvt0WlyxX+fxEVMP8wXbp04Y033uDdd9/F0dERd3d3Zs+eXfq9n58fmzZtYuXKlUgkEiZMmFBhGca6IG3fvp2goCAsLCzo2rUrK1asQCKRoFKpDObdt28fDRo0wNramj59+pCYqM+kZ8+ezYoVK9i2bRsSiQSJRMLRo0eN/gadTseXX36Jv78/FhYWNG3alI0bN5Z+f/ToUSQSCYcOHaJVq1ZYWlrSrl07IiMjAX13qDlz5nDlypXSdS1fvhyArKwsXnrpJVxdXbG1taVbt25cuVJWOJk9ezbNmjXj119/xd/fHzMzM5577jmOHTvG119/Xbq82NhYNBoNEydOpG7dulhYWFCvXj2+/vprg99SvgvS4/YP6LuD/fDDDzz99NNYWlrSoEEDzpw5w507d+jSpQtWVlaEhoYSHR1tMN+OHTto2bIl5ubm+Pv7M2fOHNRqtcFyf/75Z4YMGYKlpSVBQUFs3769dJ937doVAAcHh0qPDVP0esqCE5cLORFeSGKahnX788jI1tCllfGMoktLC9Kz9ekS0zScCC/kZHghvUMtS9MEeCu4E1/CuetFpGdpuRGj/9vPs2Y34g91birn/C015yM0pKh0bD9VgipXR2hD4ze7mTk6tp0qISxKQ2Gx8QqY6AQt1+/ql5eerePkNTWJ6Trquhu/yX+cayeWU7/1MBq0HYGDWwDtB76Ptb07N8+uNZq+/cD3adblRVx9GmPn4kfbvtOwc/bl3s0jpWlcfRoT+vS7BDbrj1Ru2rYzZlAPJ9bvSuX0pWzuJRSx8NcHmCmldG5bscVd6Tw9nbl8M5c/9qRxP6mYP/akceVWLoN6OJWmGdLTmf0nM9l/IpP4xCJ+Wp9EWmYJ/bpUbHlSlX4dbDh6MY+jF/JJSFWzamcW6VkaejxlvAKve1tr0lUaVu3MIiFVzdEL+Ry9mMfTHQ1vanU6yMrVGnxMNbiHEwdOqdh/SsX9pGJ+3pBMWmYJfTs7GE3fp7M9qRkl/LwhmftJxew/peLgKRVDepVtm0HdHQmPyGPj3nTuJxezcW86V27lMbB7zbbfo1YdPMOQ9i0Y2qEl/h4uvDuqL+4Odvxx7KLR9Keu3+ZiVCzLXh/HUw0C8HJ2oHFdb5oF1ClN89nEYYzq0ob6Ph7UdXfh42cHotPpOH8rxqQYT+9fTvNOw2jZeQQungH0Hfs+to7uXDhs/NzpO/Z9OvR7ES//xji5+9Fj+DQc3XyJDC87d66e2UbHpycT3LQzjq4+tOk2hsBGHTi99zeTYvz9wCkGd2jJ0E6t8Pd05Z3R/fXb8eh5o+lPXY8iLDKWpW+M56mQQDydHWjk702zwLLt2LCuN1NH9KFPmyYo/oIHKqn7jhM1azFJWw9UK73vS6MpjEvk5tv/IfdWDPG/biR++Wb8p71Qmqbu68+RdvA00V/+SF5kDNFf/kja4bP4vW56S7xdW9fRrefTdO89AG8fPya89CZOzq7s3721yvl+XDaf9p17Ely/YYXv3nhnFr37D8XPPwgvH18mv/4eOq2Wa1eMH+ePc2rvClp2HkrrLiNw9Qqg/zPvY+fozrnD64ym9/QLoWlof9y8g3Bw8aJZ+4EENW7Pvciy9Z/et5KARu3oPOAlXDz96TzgJQJCnuL0vpVGl1kd+7b/Tsfug+jUcwiePnUZO3E6jk5uHNm70Wh6X//6PNWxD151AnB29SS0Sz8aNQvl9s3LpWmiI68RVL8pT3Xqi7OrJ42ahdK2Y29i75hWedmlmYJzN9Wcu6kmJVPH1pPFqHJ1tG9sPE/LzNGx5UQxFyPVFFbS6PH3A0Wcuq4mIU1LikrH+iNFSCQQ5G1a/r1761q69BxA194D8fLxY/ykqTg5u3Jwz+Yq5/v5my9o17knQfUbVfhu77b1NG7WmkEjnsPLx49BI56jYdNW7Nm+3qQYAVadvsaQFvUY2qo+/q4OvNsvFHdbazacN75vTt2OJyw2kW+e7c1TAV54OdjQ2NuVZnXcStPsunKHFzs3o2NwHbwdbRnZJoR2gd6sPHXN5DiH9nVlzdZETl5QEXu/kC+/u4u5Ukq39pXnZcP6uhF2LZu125KITyhk7bYkLt/IYWi/sgfRZy9lcT48iwdJRTxIKuK3DQ8oKNTSINC0Cuyhfd1YszWBkxcyib1fwBffxmBuJqV7e6fK5+nnRti1LNZuS/wzzkQuXc9mWF/30jRnLqk4H57F/cRC7icW8uv6+xQUagkJMu0hpPDvIypg/oFWrFiBlZUV586d48svv2Tu3LkcOKAvMF24cIE+ffowcuRIEhMTK1QYGBMbG8vw4cMZPHgw4eHhTJ48mQ8++KBCuvz8fL766itWrVrF8ePHiYuLY/r06QBMnz6dkSNHllbKJCYm0q6d8abQH374Ib/99hvfffcdN27cYOrUqTzzzDMcO3bMIN0HH3zAggULuHjxInK5nBde0BfqRo0axdtvv03Dhg1L1zVq1Ch0Oh39+/cnKSmJ3bt3ExYWRosWLejevTsZGRmly71z5w4bNmxg06ZNhIeHs2TJEkJDQ5k0aVLp8nx8fNBqtXh7e7NhwwZu3rzJxx9/zPvvv8+GDRuoSlX756F58+Yxfvx4wsPDqV+/PmPHjmXy5MnMnDmTixf1Ba7XXnutNP2+fft45plneOONN7h58yY//PADy5cv59NPPzVY7pw5cxg5ciRXr16lX79+jBs3joyMDHx8fNi0aRMAkZGR1T42HkcmBV8POTdiDEs5N6OLCfQ2fkMQ4CXnZrRh+uvRxfh6yJH9ecW5E1+Cr4ecup76ZTjbS2kcpOTq7aq7uFQWo5eLlKh4w5vlqHgNfu5/3SUu0EuKq72EmMSad0HSqItJfXAD7+D2BtO9g9qTHHu5krkM6bRaSoryMLOsvBLkr+DurMDRXsGlG2VPzNRqHdcj82gQaFnpfPX9Lbh80/Ap26UbuaXzyGUSAn0tuHzDSJqAypdbnkwGdb0UXL1t2FT52u1Cgn2NN38P8lVyrVz6q7cLqeutLD0mAcyVEr5+z52lM92Z/pwTviZWCMplEFjHnMs38wymX76ZR4MA4xWX9f0tK6S/dDOPQF+L0hj127jcMm/k1Wj7PapErSYiLoHQkACD6U+FBHAlOt7oPEevRtLQ15Pl+07R870FDPxoCQs37qOwuPLWhoXFJag1Wuysav50T60uJjH2BoENDc+dgIbtiY+u3rmj1WopLszDwqrs3FGXFCNXGB4vcqUZcbfDahxjiVpNxL0EQhsGGkx/qmEgV6LjjM5zLPwWIX6eLN97gl7Tv2DQB4tYuGFPldvxv83+qWakHjxlMC11/wnsWjZC8meFkMNTzUg7eNIgTdqBEziEGu/i8jjqkhJi7kTRpHlrg+lNm7cm6tb1Suc7cmAXyUkPGD72+Wqtp6ioCLVGjbWNbc1jVBeTEHuDwEaGx2Rg4/bE3a7eMZkQe5O4O+H41S/7nXF3rhDUyLBcFVSDZVaIs6SEe9G3aNjsKYPpDZs9xZ1bV6u1jHsxt7gTeZV6DVuUxdSgGbHREcRE6fdHStJ9roWdoknLDjWOUSYFb1cpkfGGTQ0j49X4mfiwwxilHKRSyC+qeZdydUkJd+9E0qR5G4PpjZu3JSqi8kqIowd3kpL4gGFjJhr9/vat6zQut8wmzdtyu4plVqVErSEiIY3QQC+D6aGBXlyJTzYe4617hHg689vJq/T4cjUDFq9nwd6zFD7S9LNYrUEpN9wXZgo54XFVt/6pjIerEicHJWHXyrrblKh1XI3IoWFw5RUlIUFWhF01bEV58Uo2DYOMzyOVQJdQB8zNpNy8XXkLoMrjNMPJQcnFq4ZxXonIoWGwTaXzhQRZG8wDcPFqVqW/TSqBrqGO+jijah7nP5UOSa19/g1EH5V/oCZNmjBr1iwAgoKCWLZsGYcOHaJnz564uLhgZmaGhYUF7u7uj1mS3vfff0+9evWYP38+APXq1eP69esVbu5LSkr4/vvvCQjQF8Zfe+015s7VN1W2trbGwsKCoqKiKtebl5fHwoULOXz4MKGhoQD4+/tz8uRJfvjhBzp37lya9tNPPy39f8aMGfTv35/CwkIsLCywtrZGLpcbrOvw4cNcu3aNlJQUzMz0BeevvvqKrVu3snHjRl566SUAiouLWbVqFS4uZU25lUollpaWBsuTyWTMmTOn9P+6dety+vRpNmzYwMiRIyv9jVXtn4eef/750mW89957hIaG8tFHH9G7d28A3nzzTZ5/vqyg+OmnnzJjxgyee+650m02b9483n333dJ1gb5FzpgxYwD4z3/+w9KlSzl//jx9+vTB0VH/5MDV1fUv6zZlYylFJpWQnWdYuZGVp6ORtfHKDVtrKVl5hoWc7DwtcpkEa0spWblazt8owtpSwowJ+jjlMglHLhaw53TV/WqNsTKXIJNKyMk3XGdOgQ4byye7EJsr4aPxFsiloNXB5hPF3L5f81YRhXmZ6LQaLKwNn5pY2DiRn1O9ZrxXjv9GSXE+AU371nj9NeFgp88WVNmGBWJVthoXp8orJBzs5GRmGc6TmaXGwVa/PFtrGTKZxMhyNaXrrA4bSykymYSsnHLHZI4Wu2Djx6S9tZSrRtLLZRJsrKSocrQkpKj5/o9M4pNLsDCT0Ke9NbNfdmHm1ykkpdesH5Kttdz4b81RY29r/AmXg60MVU7FbS6XSbC1lpOZrcbeVm50vzjYmnajkpmbj0arw7FcTE42VqRlGy8IPkjN5PKdOJQKOQtfHoUqN5//rN1FVl4Bc54bbHSerzcfxNXehrYN/GscY35OJlqtBitbw3PH2s6J3OvVO3dO7/uN4qJ8GrYpO3cCG3XgzL7l+AW3wsG1DncjzhB5+TBabc0rWPXbUYujrWEB28nWivSsyrdj+O04zBQKFk4ZR2ZuHp+t3kF2XgGznx9a4xj+DmZuzhQlG27j4pR0pAoFSmcHipJSMXN3pig53SBNUXI6Zu6mdYnMzs5Cq9Vg52D4JNzOwRHVpXSj8yQ+iGftiu+Z/cU3yGTVu5asWfEdjk4uNG5mfMyWquTnqNBqNVjbGY6zZ23rRG5W1cfkF292IS8nA61GQ7chr9K6y4jS73Kz0rC2Lb9MZ3Ies8zK5PwZp5294blja+9Elsr4tnzo7Rf7kpOViUarYdCol+jUc0jpd2079iYnO5PPPpgIOh0ajYaufYbTf1j1Kr8eZWVRSf6dr8P2CfPvRz0dqiQrV0dUfM3P75zsh9ux3DFp70CWKsPoPIkJ8axb8S2zPv++0mNSpUo3skxHVJlV75vKZOYXotHqcLI2rJB3srYgLcd42ep+Rg6X45JRymUsGtsTVX4h/9lxiqyCIuYO0ZfP2wV6s+rUNVr6eeDjYMu5mAccvRWLRmva+IgOdvpyhLHygpuz0tgs+vnsFWRmGVZQZ2aV4GBvWC6p62PBkrn1USqkFBRqmL0wmrgHVY8tU9n6Hq6j/DofjjFjjKO9wnhZyEicS+eFlMY5a8Ft7pkQp/DvJCpg/oGaNDHsO+3h4UFKSorJy4uMjKR1a8OnSW3atKmQztLSsrTyxdT13rx5k8LCQoPKCNBXijRvbvhE7NHf6eGhHyAsJSWFOnXqYExYWBi5ubk4ORkWJgoKCgy68/j6+hpUvlTl+++/5+eff+bevXsUFBRQXFxMs2bNqpynOvvn0TRubvqmnI0bNzaYVlhYSHZ2Nra2toSFhXHhwgWDSjGNRkNhYSH5+flYWlpWWK6VlRU2NjY13kdFRUUUFRm2NHlYoVWpcvmsRKLvrlHdGR4Wox4OaFzPV8HTHaz4fXcuMQkluDrIGNPbmqdzLdl5ouYDshojMRJ3TRUVw8INhZgp9E2XB7ZTkpFdRHSCiV1TJOUKlDp917LHuXN5J2EHltF7wjcVKnGeVJe2drz2rGfp/7OX3HsYmiETysISScXllD9uHn8sVXdlVLm/y3/1cLM/XPed+GLuxJe13Iq6l8Gnr7vSq50VK3eYNjBehXU+Lr2RbaNfTtkXxvbLk24+SbnIdFQeq1anQyKR8J+Jw7Cx0Pern16iZvqPG5g5pj/mSsNC5m/7TrL3wjV+fnsCZgrTu8mVP090uopxG3Pt7E6Obl3GmDe+wfqRSpy+Yz9g+/KPWPp+PyQSCQ6uPjTrMJTwk1V3Kag6RsP/dbqK0x7S6rRIJPDpiyOwsdRvx+ISNe98v44Z4wZU2I61ptKDUld1mic8qSsck38ed+VpNRqWfDWHEWMn4ullvOxQ3raNqzl17CCzPluK0sRBY/UxGtJRxQ7/06QPf6e4MJ/4O+Hs27AQJzdfmob2f2Sh5c9F47/7SSLVb8uq55jx6c8UFeYTHXmNjauW4erhw1Md+wBw6/pFdm78lWdfmoF/cCOSE+NZ+8tX2Dk4M3DkJJMiNHa0/FWvP+jWXEHzYAXfbCkweZB/wGj+bYxWo+Gb+bMYPvZFPB5zTFa4rhmZVlMVjssqr0P69gKfjeiGjbm+8uPtPhqmrz/I+0+3x1wh593+oczdeoLBX/+BRALeDrYMal6PbZcjqxVPt/aOTH2xbFD3D768XRqXQdzVyMuMlkvKTYxPKGTyjJtYW8no2MaBd1/xY9rcyMdWwnRv78TUSX6l/7//RZTxOOGxL+co/72x8mh8QiEvvXcdays5Hds48N4Uf6bNifh/Uwmj0/07WqLUFlEB8w+kKFdIlUgkaLWmj0VgrOBi7OJhbL01fQPQwzh37dqFl5dhM8jyN/mPru9hfFX9Tq1Wi4eHh9GxZx5t8WFlVb0+lBs2bGDq1KksWLCA0NBQbGxsmD9/PufOnatyvursH2O/rarfq9VqmTNnDkOHVnzyaW5eNnjYX3FsfPbZZwYtfwB9KxvZqxXS5uRr0Wh12JZr7WJrWbFVzEPZuVrsrAzT21hJUWt05BXoj6fBXaw4c1U/rgzAgxQNZso8xve3YdeJ/BoVvPIKdWi0FVu7WFtIyCl4siKcDkjP1i8jIV2Nq4OUbs0VRD/mbUDlmVs5IJHKKCjX2qUgN/2xFSp3wndzbOOH9HhmMd5Bpr8BpTLnwnOIvFtWgamQ67ejg61hixZ7G30rjMpkZqkrtGR5tMVGdq4GjUZXIY2djaxCq46q5ORr0Wh02NkYHmN21tJKx2xR5WqxL5fe1lp/TObmG59Hp4OY+8W4O9f8Rjg7V63/rbblf2vFFiwPZWZrjKZXa3Tk5OrvGvStXcptYxs5qmzT7iocrC2RSSWkl2vtkpGTh5Ot8ebSznY2uNrblFa+ANT1cEGng+TMbHzdyo7nFftP8cueE/zw1niCvavXYrM8SxsHpFJZhZYFednpWNlVfe5cP7ebbb99yMgpiwloaHjuWNk6MuaNbygpKaIgV4WNvSsH/liAvXPN39Sk347SCq1dMnLyKrSKeUi/HW1LK1/g4XbUkZyZha/bX/sWQ1MUJadVaMmidHFEW1JC8Z+DCxclpWHmbhirmatjhZYz1WVra4dUKqvQCiBblVmhtQBAQUE+MbdvERt9m1+/XwSATqdFp9MxZmBnPpi30GBQ3h2b17D1j1V8+MlifOsGVlhedVja2COVyiq0TMnLzjCo5DPG0UV/fLn7BJObnc7hLctKK2Cs7ZzJzTIcFDgvO/2xy6yMzZ9xZqkM48zJysD2MeeOi5u+/ObtG0R2Vgbb1v1YWgGzZc13tOvcr7RVjLdvEMWFhaz47hOeHj4RqbT6XX/zCvT5d/nWLjaWFVvFmKJLcwU9Win5blsBiemmlaNtbP/cjuWOyaysKo7JOxHExkSx/PuFQNkx+cygDsycu5iGTVthb+9k5DjPMLrM6nCwNEcmlZCWa/gQKyOvACdr490/XWwscbW1Kq18AfB3sddfz7Pz8HWyw9HKgsXjelFUokZVUISrjSWL95/H077ybjiPOhOm4tadsq6zCoV+Xzvay8lQlbUusbeVV2ht8qhMVQmOdob5sYNtxVYxao2OhGR9GS0qJp96/lYM7ePG4l/uVRnn6bBMIu6UXcMVCumfcSoM47RToMqqvMySoSrBsVxrF3u7ir+tLM4iomLyqBdgxdC+7iz6ObbKOIX/H8QYMP8D6tevz4ULFwymPRyHpCaUSiUaTdUF/ZCQEMzMzIiLiyMwMNDg4+NT/VfWGVtXixYtSEpKQi6XV1j24165bWx5J06coF27dkyZMoXmzZsTGBhYYWDc/5YWLVoQGRlZ4XcFBgZWuzCjVOoz0Mfto5kzZ5KVlWXwmTlzptG0Gi3cS1TT0N+wWWiIv5I7941nQNEP1ISUS9/QX8m9RDWaP8s/SkXFJxla7Z9PCWpYaa7RwoNULcHehtsp2FtGbJLpFZeVkZvQ20MmV+Li1ZD7t08bTL9/+zRufpWPlXDn8k6ObphJtzFf4dugS81XXA0FRVoSU4pLP3EJRWSoSmjesOzGUS6T0KieFRF3Km+ddCumgGYhhjebzUOsS+dRa3TcuVdAc2Npoqvf6kmjgbsPSmgcaPhWg0aB5kTdM14xdvteMY3KpW8SZM7d+8Wlx6Qxvh5KVDk1r9xQa+BOXCHNGxhWBjdrYEVEtPGm4Ldi8mlWLn3zECvu3CsojfFWTIHRNDXZfo9SyOU0qOPJmQjD6965iGiaBhi/XjcL8CFVlUN+Ydm2vpecjlQiwc2hbDyN5ftO8dOu43z7xjM09PMytqhqkcuVePg1JPqG4bkTc/M0PgGVnzvXzu5kyy8zGTb5K4Kbdqk0nUJhhq2DG1qNmoiw/dRv3q3GMSrkchr4enL25h2D6Wdv3qFpgPEn4M0CfUnNqmw7/r3jPFWX6mw4zt0NK65cenYgK+w6uj8HiM88G45zd8OxUJx7dCDzjGnjlsgVCvwDg7kablhmuRp+kWAjA5laWFoxf9lKvljyW+mnR99BeHrX4Yslvxm8Znr7pjVsWreCmXO+IiCovknxgf6Y9PRryJ3rhsfkneunqRNU/bFvdDodanVZq7s6gU0rLPN2DZdpEKdCgW9AfW5eMXyodOPKOQLrV/8tVTqdDnVJWZzFRYVIypVLJDKpPk+v4UM7jRbup2gJ9jGsWA72kROb9CTNVaBrcwW9Win5YXsB8U/w+mm5QkHdwHpcu2x4TF4PP09wg8YV0ltYWvHFst/5bMmK0k/3PkPw8KrDZ0tWEFBPP0h0UP1GXCt3nF+7fJ4gI8usDoVcRgNPZ85GPzCYfjb6AU193IzO06yOG6k5eeQXlVUO3EvP0l+HynVNNVPIcbO1Qq3VcehmLF0b+FUrroJCLQnJRaWfe/cLSc8spkXjsuucXCahSQMbblQxBsrN23m0aGw4ZlPLJrbceNz4LpKySp+axVlAemYxLR9Zp1wmoWkDG25E5VQRZy4tGxtew1s1savyt4G+BVB14hT+fxAVMP8DJk+ezK1bt3jvvfeIiopiw4YNpW8VqklTRz8/P65evUpkZCRpaWlGX/FsY2PD9OnTmTp1KitWrCA6OprLly/zzTffsGLFihqt6+7du4SHh5OWlkZRURE9evQgNDSUwYMHs2/fPmJjYzl9+jQffvjhYyuU/Pz8OHfuHLGxsaSlpaHVagkMDOTixYvs27ePqKgoPvroowoVVf8tH3/8MStXrmT27NncuHGDiIgI1q9fz4cffljtZfj6+iKRSNi5cyepqank5hq/2JuZmWFra2vwqaoL0v6zBXRsbk6HpuZ4OMsY1dMKRzsZx8L0N5JDu1kxcVDZk5CjYQU42enTeTjL6NDUnI7Nzdl3puwm8UpUMV1amtOmoRnO9lJC6ioY3MWK8Kgik1quH7uipk0DOa3ry3C1lzCwnQJ7Gwlnb+hvEvq2VTC6m2GlkKeTBE8nCUoFWJvr/3ZzKDsfujWXE+QtxdFGgou9hE5N5LQKlhF227T3EjfuOIFb5zdy68ImMpOjOb39M3JViYQ8NRqAc3sWcHjde6Xp71zeyZH1Mwh9+j3cfJuSn5NKfk4qRQVlGb9GXUxaQgRpCRFo1SXkZSWTlhBBVlrVT3oeZ9vBdEb2cyG0uQ2+nmZMfcGLomItx86VdcWZ9oIXzw0tK9RtP5hGixBrhvdxxttdyfA+zjRrYM22g2VP+LYcSKNXRwd6trfHx8OMSaPccXFUsPuo8X70ldl9Moeura3o3MoSTxc5zzxth7O9jEPn9E/ZRvW25ZWRZW8bOnQuF2cHGc/0t8PTRU7nVpZ0aWXFzhNl58jQ7jY0CTLD1VGGr4eCl4Y74Oup4NBZ0wbF23ownZ4d7OnRzg5vdyUvjnDFxVHBnuOZAIwf7MLUCR6l6fceU+HqpGDiCFe83ZX0aGdHz/b2bNlftm22H8qgeYgVw3o74e2mZFhvJ5o2sGL7oZptv0c92yOULScvsfXUJWISU5m/YS+JGVkM76QfG2PJloN8+FtZt5x+bRpjZ23Jxyu2EZ2QQlhULIs27WdQ++al3WZ+23eSb7YfZvZzg/B0sictK4e0cpUNNdGu1wQuHd/IpeObSE2IZs/az8hKT6R1V/25c+CPBWz+qezcuXZ2J5t/nkHv0e/hHdCUnKxUcrJSKcwvO3fuR1/h5sX9ZKTEcy/qIqsWTkKn09K+34smxfhMz/ZsORHG1pNhxCSk8NW63SRlZDG8i77775JN+/nwl7I3z/Rt2wQ7Kwtm/bb5z+14l8Ub9zKoQ4vS7ViiVhMZl0hkXCIlag0pqmwi4xKJSzZtjAiZlSW2Tetj21Rf+WBZ1xvbpvUx99Efh/U+mUbT374oTX/vx3VY+HrSYP4MrOv74z1hGD7PDyNm4a+laWKXrcS5Z3v8p0/Cqp4//tMn4dw9lNil1c/vy+s/eDSH9+/kyP6d3I+PZcVPS0hLTaZnv8EArFn+PcsWzANAKpVSx8/f4GNn54BCoaSOnz/m5von/9s2rmb9qp945c2ZuLp5oMpMR5WZTmGBaZWX7fs8R9ixTVw8tomUB9HsWq0/Jtt0GwXAvg0L+eOHsmPy7MHVRFw+QlpSLGlJsYQd38zJPb/RrN2A0jShvcdz5/ppju/8idSEGI7v/InoG2do13u8STEC9B74DMcPbuXEwW0kxN9l7a8LyEhLokvv4QBsXLWUn77+uDT9od0bCL9wnOSEOJIT4jhxaDv7tq0itHO/0jRNW3fiyN6NnDuxj9TkB9wIP8vWNd/RrHUnpLKaP6E4Gl7CUyFy2jSQ4+ogYXAHJQ7WEk5f15cx+4cqGdvDsIzi6SzF01mKmULf2tXTWVou/1bQ7ykl6w4XkpGjbyFrY6nP703Rb/AYjhzYztEDO3gQH8uqnxaTlppM9776VkDrVnzLtwv1LYulUik+vgEGH1t7B5RKM3x8A0qPyT4DR3Lt8nm2b1zFg/hYtm9cxfUrF+g7cJRpQQLPtmvM5rBItoRFEpOSyfzdZ0jMymVEmwYAfL3/PB9sLHsbXL8mgdhZmPPxlmNEp2QSFpvIwn3nGNwiGHOFvlLsanwKB2/c5X5GNpdiE5mycg9anY4JHUx/1fzmPSmMHeRO+1b2+Hmb8+4rfhQWazl8qiwve+8VPyaO9npknmRaNbFl1AB3fDzNGTXAnRaNbNi8u6wb/gujvGhUzxo3ZyV1fSx4fqQXTUNsOHTKtDxy855kxg72pH1rB/y8LXh3ij+FRVoOnSq7Br83xZ+Jo70N5mnVxI7RAz3w8TRn9EAPWjSyZdOeskGLJ472pnF9a9xc9HG+MMqbpiG2HDpp2rX9n0gMwls10QXpf0DdunXZuHEjb7/9Nl9//TWhoaF88MEHvPLKK48f++MRkyZN4ujRo7Rq1Yrc3FyOHDlCly5dKqSbN28erq6ufPbZZ8TExGBvb0+LFi14//33q72uYcOGsXnzZrp27YpKpeK3335jwoQJ7N69mw8++IAXXniB1NRU3N3d6dSpU+k4K5WZPn06zz33HCEhIRQUFHD37l1efvllwsPDGTVqFBKJhDFjxjBlyhT27NlT7Tj/Kr1792bnzp3MnTuXL7/8EoVCQf369XnxxerfDHh5eTFnzhxmzJjB888/z/jx40sr2p7EhZtFWFtIGNDJEjtrKQ9S1Xy9Nov0LP0TJXtrKY62ZXW5aSoti9dmMbqXFV1bWaDK0bJmby5ht8qeoD0c52VwFyscbKTk5Gu5ElXM5iOGb3iprivRGqzMS+jZUoGtlYSkDB2/7CoiM1dfm2NrKcHB2vCiPG1kWZNcH1doESwnI1vLf1bru0UpFRKGdlRiby2hRA0pKi1rDhVzJdq0p3KBzfpRlK8i7OA35Gen4ugeRN8XfsDGQV/AyM9OJVeVUJr+5rn1aLVqTm6dy8mtc0unB7ccTNdRn/85TwqbFpcNjnj1+K9cPf4rHv6tGfjyKpPiBNi4Nw2lUsqUcZ5YW8mIjCngo4WxFBSVPUV0cVIaVJZFRBfwxY/xPDvYjWcGu5KUWswXP8YTebesxceJC9nYWiUxZoArjnZy7iUUMevre6Rm1OzNL2evFmBtqWJod1vsbWTcTyrhy+VppKn0+8beVoaTfVn2lpqp4cvf0nj2aXt6hlqTma1hxQ4VF66XxWZpIWXiUAfsbWTkF2q5l1DCvB9Sib5v2ltpTl7MwdYqmdH9nUt/65xlcaRm6CvwHO3kuDiW3Q0kp5cwZ2k8L450o39nBzKy1Py4PonTl8sqDW7FFPDlzw94dpAL4wa6kJRazJc/PSAq1vQ+471bN0KVl88Pu46RlpVLoKcry14bh6eTPQCpWTkkZpRVvFmam/H9W8/y+bo9jPvPj9hZW9KrZUNeHVTWcmTDsQuUqDVM/8HwjXKTn+7MKwO61jjGRm37kZ+n4tj2b8jJSsXVK4hxU3/A3ll/7uRmpZKVXnbuXDy6Hq1Gza5Vc9m1quzcadZ+MENe1J876pIiDm/5msyUeJTmlgQ16czQSV9gYVnzt+IA9G7TmKy8fH7ccYS0rBwCPd1Y+uazeDrpKwLTsnJI+rPbDui343fTnueLNTt55pPvsLOyoGerxrw6pEdpmlRVDqPnflP6/8p9J1m57yQtg/34+d2aVxTZtWxE6KGy60LIV/o8OX7lZq5OnImZhwsWPmWVggWx97kw4CVCFszE95VxFCWkcGPqpyRt2V+aJvPMZS6Pm0a9OW9Rb84b5EfHc3nsVFTnq/eWHWPadepOTk4Wm9YtJzMjHR/fusyYPR8XV303NlVmOumpxt/qUpkDu7egVpew8DPDhxrDxzzPiHHG31JTlSZP9SM/V8WRbd+So0rFzTuI8W9/j8Ofx2SOKpWs9MTS9Dqtjv0bFpKZ+gCpTIajqw+9R06jddeym23foOaMmrKAA5u+5uCmpTi6+jB6ygJ8AprWOL6H2nToRW6Oiu0bfiIrMw2vOgG89eESnF31+zkrM42M1LIbQ51Oy6ZVy0hNeYBMJsPF3Zvhz75O517DStMMGDERiUTCljXfkpmRio2tPU1bdWLYMxW7MVdH+B01VubQu7USWysJielaftxZQGbOI/l3uS6k74wuG2jWx1VGy3oKMrK1zFupL1u0b6xALpPwfF/Drjd7zxez73wl766uQmjHHuRmZ7F53a+oMtLx9vXn3VkLcPlzO6oyan5MBjdowuvvzmXDqh/4Y/WPuLl78fq7nxBYr+Jr1KurT+MAsvKL+PHoJVJz8gl0c+SbZ/uUdhdKy80nKausnGVppuCHCf34fNdpxn6/BTsLc3o18ue1HmWDUxerNXxz6CL3M3OwVMrpEOTDp8O6YGth+vhJ63ckYaaU8sYLdbCxkhMRnceM/0RRUFhWxnB1NuPRcX5v3s7jkyUxPD/SkwkjPUlILuKTJTHcii77PQ52cma8WhdHewV5+RruxhUw8/PbXLpm+Pak6lq3PRGlUsqbL/jq47yTy3v/iSwXp9JguIabUbl8suQOz4/0ZsJILxKSi5j3dbRBNywHOwUzXg0ojTMmLp+Zn0USZmKcwr+PRFfTQT6E/xc+/fRTvv/+e+Ljjb9qVPjfM3Fe6uMT1aJfPnJh+nd/zQC9f5evXrFk4bZ//iV12iAJ/V+s/JWu/wS7fm7E2Bn3azuMKq353JsBkyNqO4zH2vFDAwqOrq3tMKpk0WUM607/s8+d0e0k5J/4o7bDeCzLjiPYpahX22FUqX9JJOG3/9l5TrMgFzae++u7sf7VhreVcurmP/v1te1DrJm67J8d46LXrAmLMr014X9Ly2BHCjd8VdthVMl85HR6jKn5UAf/TQfXtqL76PO1HcZjHVpX8aUp/wbX75j2mvK/QqNA08ac+28SLWD+R3z77be0bt0aJycnTp06xfz583nttddqOyxBEARBEARBEARB+J8gKmD+R9y+fZtPPvmEjIwM6tSpw9tvv13pwKuCIAiCIAiCIAiCUFP/lrFYaouogPkfsWjRIhYtWlTbYQiCIAiCIAiCIAjC/yTxFiRBEARBEARBEARBEIS/mWgBIwiCIAiCIAiCIAjCE9PpRBekqogWMIIgCIIgCIIgCIIgCH8z0QJGEARBEARBEARBEIQnphWD8FZJtIARBEEQBEEQBEEQBEH4m4kKGEEQBEEQBEEQBEEQhL+Z6IIkCIIgCIIgCIIgCMIT04kuSFUSLWAEQRAEQRAEQRAEQRD+ZqIFjCAIgiAIgiAIgiAIT0y8hrpqEp1Op6vtIARBEARBEARBEARB+He7FJVea+tuEexUa+uuLtECRhAEAMZ/lFjbIVRp5TwPXl+cXdthVGnpW7ZMXZZb22E81qLXrJkwO7m2w6jS8tlujJp+r7bDqNL6r3zpMeZibYfxWAfXtvpXnN8fLi+u7TCq9MkEJe9+X1DbYTzWly9bEH47tbbDqFKzIBd2KerVdhhV6l8SyZFr//z93bWxBckRYbUdRpXcGrTkp4O1HUXVJvWAzCvHajuMx3Jo2pm3v82r7TCqtGCKFd1Hn6/tMKp0aF0buo48V9thPNaRDW1rOwSTiDFgqibGgBEEQRAEQRAEQRAEQfibiQoYQRAEQRAEQRAEQRD+p3z77bfUrVsXc3NzWrZsyYkTJ6o136lTp5DL5TRr1qzG6xQVMIIgCIIgCIIgCIIgPDGdTlJrn5pYv349b731Fh988AGXL1+mY8eO9O3bl7i4uCrny8rKYvz48XTv3t2k7SMqYARBEARBEARBEARB+FcrKioiOzvb4FNUVGQ07cKFC5k4cSIvvvgiDRo0YPHixfj4+PDdd99VuY7JkyczduxYQkNDTYpRVMAIgiAIgiAIgiAIgvDEdEhq7fPZZ59hZ2dn8Pnss88qxFhcXExYWBi9evUymN6rVy9Onz5d6W/77bffiI6OZtasWSZvH/EWJEEQBEEQBEEQBEEQ/tVmzpzJtGnTDKaZmZlVSJeWloZGo8HNzc1gupubG0lJSUaXffv2bWbMmMGJEyeQy02vRhEVMIIgCIIgCIIgCIIg/KuZmZkZrXCpjERiOG6MTqerMA1Ao9EwduxY5syZQ3Bw8BPFKCpgBEEQBEEQBEEQBEF4YjUdDLc2ODs7I5PJKrR2SUlJqdAqBiAnJ4eLFy9y+fJlXnvtNQC0Wi06nQ65XM7+/fvp1q1btdYtxoARBEEQBEEQBEEQBOF/glKppGXLlhw4cMBg+oEDB2jXrl2F9La2tly7do3w8PDSz8svv0y9evUIDw+nbdu21V63qIAR/iuOHj2KRCJBpVLVdiilunTpwltvvVXbYVTg5+fH4sWLazsMQRAEQRAEQRCEGtHW4qcmpk2bxs8//8yvv/5KREQEU6dOJS4ujpdffhnQjyczfvx4AKRSKY0aNTL4uLq6Ym5uTqNGjbCysqr2ekUXJKFUfHw8s2fPZs+ePaSlpeHh4cHgwYP5+OOPcXJyqu3w/mdcuHChRifxf0P3Npb062CFnbWMBylqVu/JIupeSaXp6/kpGdvHFi9XOaocDbtO5nHkQr5BGktzCcN72NAqxBxLcylpKg1r9mRz9bbxV8U9TscmCrq3NMPWSkJiupbNxwqJTtAYTWtrKWFIJ3N8XKW4OEg5Fl7M5mOG63V3lNI/1AwfNxlOtlI2HSvk6OVik2J7qH0jOV1bKLG1lJCUoWXriSJiEo1nF7aWEgZ2UOLjIsPZXsKJKyVsPWm4/qdC5LSur8DdUV+Xfj9Vw64zxcSl1DQLMtSttQV921lhbyPlQYqaNXtziIqrYn/7KhjT2wYvVzmZORr2nMrnyMWC0u9nTHCgvp+ywnxXoopYtEZlUoy92lkzoIsd9jYy7icXs2JbJrfuVn7sNPA3Y/xAB7zdlGRmq9l+NJuDZ3KNpm3XzJI3n3HhwvV8vlqealJ8jxo/zJN+3Z2xsZJz604eS367x737hVXO07GNPRNGeOHhZkZichG/rn/AqYuq0u8H9HBhQE8X3Jz1/Zzv3S9g1eYELlzJrnF8/4bzu009KR0bybC2hJRMHbvPa7iXojOa1toC+raW4ekkxckWzkZo2X2+4rXAXAk9msto6CvF3Awyc2DvBTVRD4wv93FCG8ro3FSOjaWE5Ewd20+VEJtk/Fy0sYSnQxV4u0hxspNw6pqGHacNt3mjulK6NVfgZCdBJoW0LB3Hr6i5dNv4da269u3azI7Na1FlpONdx4/nJr1Jg0ZNHzvfrZtXmTPjdXx86/Ll0uWl0w/t3c7xw3uJvxcDQN3AeowZP5nAeiEmxefYoRX+b0/ErkUjzD1duThsCsnbD1U9T8fWhHw1A+uQIIoSUohe8DNxP64zSOM+pBfBs9/EMqAO+dFxRH68iORtB02KEeDo3vUc2L6CrMw0PH0CGDHhHYJCWhhNeyfiMpt/X0zyg1iKiwtxdPagY89h9BjwrEG6/Lxstq1ZxuVzh8nPy8bZ1Ythz02jcYuOJse5ZfcB1m7dSUamCj8fL16fOJ6mDesbTXv52k3e/OiTCtNXLZuPr7cXADv2H2bfkRPExMUDUC+gLpOeGUVIcKDJMV4+vpoLB38hLysVZ48gug5/H+/AVkbTRoXv58qJtaTcj0CjLsbJI4h2/V6jbojxbXTr4i52/jaNwCbdGTz5W5Nj3LjvKKu37yNdlUVdb0+mThhFswZBRtOG3Yjk1TkLKkxft2gOfl4eAOw8eppPvl1eIc2x37/BTKkwOc52DeV0aa4oLWdsO1XM3UrKGTaWEga2U+LtIsXZXsLJq2q2nTIsZ7RtIKdVPfkj5Qwtu88VE/+E5Yzxw73o380FG2s5EXdyWfLrPe7dL6hyno5tHHh+pHdpvvjL+vucupBZ+v2Anq4M7OGKm8uj+eIDzodnmRzncyO8eLq7qz7O27l8/UsssY+Js1NbB54f5YOnmxkJyUX8sjaek4/E+aixgz2ZNNaHjbsS+WZFnMlxCqYZNWoU6enpzJ07l8TERBo1asTu3bvx9fUFIDExkbi4v36/iAoYAYCYmBhCQ0MJDg5m7dq11K1blxs3bvDOO++wZ88ezp49i6OjY22HWWM6nQ6NRvNEI1X/VYqLi1EqK96Elufi4vJfiKb62jYyZ1xfW1bszOJ2XAldW1ky/VlHZi5NJT2rYgbsbC9j+rMOHL1YwA+bVATVUfDc03bk5Gm5eFN/0ymTwbvPOZKdp2XpukwysrQ42UkpKDbtxqdFsJyhnc3ZcLiQmAQN7ZsoeGWwJZ+uyiUzp+Iy5XLILdCy/4KaLs2N7xOlAtKytFy+XcLQzuYmxfWoZoFyBnc0Y+OxIu4mamjXUMFLAyz4fE0+qtyKMcpkkFeg48DFYjo3M14YC/SScSmqhLtJWtRqHd1aKHl5kAVfrMknK8+0bdmmoRlj+9iwclcOt+OK6drKgmnP2PP+N+lkGN3fUqaNc+DYpXx+2JxFUB0l4/vb6Pd3hP5me+l6FXJZWX9gKwsJ815x4sLNqishKhPa1JLnBjryy+YMImML6fGUDTNfdGXa/ATSVRVvTl0c5cx40ZXDZ3NZtiaNen7mTBzqSHaulvPXDCsOnB1kPPO0AxExpsVW3qgB7gzr58b87+9yP7GQcUM8+eL9YJ6fdp2CQuMF2AZBVnz4RgDL/3jAyQsqOrS256M3/XlrdiS3ovMASM0o5ue1D3iQpI+zVydn5k4P5OWZNx9bufOof8P53chPSr82Mnac1RCXoqV1PRnje8pZsrWErLyK6eUyyCuEY1c1tAsx3tBXJoUJveTkFcDao2qy83TYWUkoqrzeqUpNA2QMaKdg6wl9pUvbEDkT+ytZsL7I6Pktl0nIK4RDl9R0bGI8f8ovgkOXSkhV6VBroYGvlBFdFeQW6Ii6b9rNz+njh1jx0xImvvI29UIac3DPNj6bPZ2F367C2dW90vny83L5duEnNGrakixVhsF3N65dpl3nHtRr0BiFQsn2Tav59ONpLPhmFY7ONc/PZFaWZF+N5P6KzbT8Y9lj01v4edN6x4/E//IH4c+9g0O7FjRaOovi1AyStuwHwP6pZjRfs4ioWV+TtO0g7oN60GLtYs50GYvq/NUax3jx1D7+WD6fMS++T0D9Zpw4sJFl/3mVWYs24+jiUSG90syCrn1H4+UbhNLMguhb4az+YR5m5hZ07DkcAHVJCV/PfRkbO0demj4fByc3MtOSMbewrHF8Dx06eYalv65k2uQXaFQ/mO37DvHuvC9YuXQ+bi7Olc63+psFWFpalP5vb2tb+vfl6zfp3rEdb9YPQqlUsHbLTqbP/pwVS7/Exanm5cRbYbs5svEzeoyahVdAC66cXMembybx/Ee7sHX0rJD+/p0L+NZvR4eBUzG3sOX6mc1s+f4Vxr2zATcfw0q/rPQHHN3yBd4BxitzquvA6QssXr6ed14cS5N6gWw9eJyp/1nC2kWzcXeu/AHlhsXzsLIsKz/Y29oYfG9lYc6Gr+cZTHuSypdmgTIGdVCy+Xgxd5M0hIYomPS0OV+uLajkOgS5hToOXiqhcyXXoUAvGZdvq4lN0qLW6OjaXMHkAeZ8ua6AbBPLGaMHejC8nztffhfD/cRCnhnqyZfv12PCtKuV5oshQdZ89GYgv224z8kLmXRo7cDHbwbw5uwIbt3RZwRp6cX8tDaehGR92UOfLwYxecaNx1buGI1zkAcj+nvwxbfRxCcW8uxQL+Z/WJ/xb12pMs6P3wri1/X3OXE+g45tHJk1NZA3Pr5JxB3DDKtegBVP93AhOtZIRib810yZMoUpU6YY/W758uVVzjt79mxmz55d43WKLkgCAK+++ipKpZL9+/fTuXNn6tSpQ9++fTl48CAPHjzggw8+KE3r5+fHf/7zH1544QVsbGyoU6cOP/74Y7XWc+rUKZo2bYq5uTlt27bl2rVrBt9v2rSJhg0bYmZmhp+fHwsWGD5B+P3332nVqhU2Nja4u7szduxYUlJSSr9/2NVp3759tGrVCjMzM06cOEFeXh7jx4/H2toaDw+PCss15sqVK3Tt2hUbGxtsbW1p2bIlFy9eLP3+9OnTdOrUCQsLC3x8fHjjjTfIyyu7iPr5+fHJJ58wYcIE7OzsmDRpEqGhocyYMcNgPampqSgUCo4cOVI636NdkFQqFS+99BJubm6lzdx27txZ7TieVJ92Vhy7lM+xsAISUtWs3pNNRraWbm2Mt9Lp1saS9Cwtq/dkk5Cq5lhYAccv5dOvfVn6Ti0ssbKU8vWaTG7HlZCepSEqroT4JLVJMXZtYcaZGyWcuVFCcqaWzceKyMzV0qGJ8cqVjGwdm44VcT6ihMJKbgrjkrVsO1nEpSg16id74AxAl2YKzt1Uc+6mmpRMHVtPFqPK1dG+sfHCVmaOji0nirkYqaawkoY3vx8o4tR1NQlpWlJUOtYfKUIigSBvmclx9g614vilAo5fKiAxTcOavblkZGnp1sr4TUDXVpakZ+nTJaZpOH6pgBOXC+jTrix9XoGOrFxt6adRgBnFJTrO3zCtkqN/Z1sOn8/l8PlcHqSoWbE9k3SVhl6hNkbT9wy1Jj1Tw4rtmTxIUXP4fC5HLuQyoLOtQTqJBF4f68wf+7NITjftWCxvaF9X1mxN5OQFFbH3C/nyu7uYK6V0a1/5jcqwvm6EXctm7bYk4hMKWbstics3chjaz7U0zdlLWZwPz+JBUhEPkor4bcMDCgq1NAi0rlF8/4bzu31DKWG3tYTd1pKaBbvPa8jKgzb1jB/nqlx9mvBobaUVKi2CpFgqJaw+rCYuRYcqD+6l6EjKNO2GomMTORduaTh/S0OKSseO0yWocnU8FWI8xswcfQuZS1GaSq9BMQlabsTqz+2MbB2nrmlIStfh52F60W3X1nV06/k03XsPwNvHjwkvvYmTsyv7d2+tcr4fl82nfeeeBNdvWOG7N96ZRe/+Q/HzD8LLx5fJr7+HTqvl2pWLRpb0eKn7jhM1azFJWw88PjHg+9JoCuMSufn2f8i9FUP8rxuJX74Z/2kvlKap+/pzpB08TfSXP5IXGUP0lz+Sdvgsfq8/Z1KMB3eson23IXToMRQPb39GPv8uDk7uHNv/h9H0dfzr07pDXzx9AnF29aJtp/6ENG3HnYjLpWlOH95KXm42r7y7iMD6zXFy8SSwQXO8/eqZFCPAhm276d+jC0/37IqfjxdvvDgeF2cntu6tuuWPvZ0tTg72pR+ZrOyY+3jaawzp15Mgfz98vb14Z8oktDodYVevmxTjxUO/0Th0GE3aj8DJPYBuwz/AxsGd8BNrjabvNvwD2vSchIdvExxc/eg4aBoOLr5EXztskE6r1bB7+XTa938dO2cfk2J7aO3OAwzo1oFB3TtS19uDqRNG4erswOb9x6qcz8HOBid7u9KPTGp47kokEoPvneztnijOTk0VnI9Qcy5CX87YdkpfzmjXyHjlSmaOjm0niwmLVFNQSTlj9cEiTt9Qk5CuvxZtOFr8xOWMoX3dWLM1gZMXMom9X8AX38Zgbiale/vKK7OG9nMj7FoWa7cl/pkvJnLpejbD+pZVHJ+5pOJ8eBb3Ewu5n1jIr+vvU1CoJSTItFblw/u58/uWB5w4n0lsfAGffxONuZmUHh0qr7wc3t+di1ezWLM1gfiEQtZsTdDH2d+wgtvcTMoHrwfw1Q93ycn7CwqZ/zA6naTWPv8GogJGICMjg3379jFlyhQsLCwMvnN3d2fcuHGsX78ena6skLhgwQJatWrF5cuXmTJlCq+88gq3bt167LreeecdvvrqKy5cuICrqysDBw6kpERfQg4LC2PkyJGMHj2aa9euMXv2bD766COD2sfi4mLmzZvHlStX2Lp1K3fv3mXChAkV1vPuu+/y2WefERERQZMmTXjnnXc4cuQIW7ZsYf/+/Rw9epSwsLAqYx03bhze3t5cuHCBsLAwZsyYgUKhv1m+du0avXv3ZujQoVy9epX169dz8uTJ0lGxH5o/fz6NGjUiLCyMjz76iHHjxrF27VqDbbl+/Xrc3Nzo3LlzhRi0Wi19+/bl9OnT/P7779y8eZPPP/8cmUxWozhMJZOBn6eC63cMuw1cu1NEkE8lrTJ8FFwzkt7PS8HDMlyL+mbciS9h/NN2LH3Plf+85syATlYYeevb42OUgo+rlFv3DG/ubt1TU9fD9ALCX0kmBW9XKZHxhjFGxqvxc//rYlTKQSqF/CLTbiL1+1vO9WjDktj16GICq9jf5dNfu1OMn2fZ/i6vY3Nzzl0vpNiE1gYyGfh7KbkaZfg060pUAcF+xl87GOxrxpXy6SML8PdRGsQ4vKcd2blajpw33jWppjxclTg5KAm7Vtb8uUSt42pEDg2DK68oCQmyIuyqYVeii1eyaRhkfB6pBLqEOmBuJuXm7erH/m85vz2dJNxJMHzaeCdBSx1X0wta9X2kxKVqGfCUjBmjFLw+SE7nxlKTY/RykRAVb1iIvn1fi5/7X1fMCvSS4mIvqbQ7weOoS0qIuRNFk+atDaY3bd6aqFuV3zwfObCL5KQHDB/7fLXWU1RUhFqjxtrG9vGJ/wL2TzUj9eApg2mp+09g17IRkj9bvzo81Yy0gycN0qQdOIFDaPMar09dUkJcTAQNmoYaTG/Q9CliIq9UaxlxMbeIibpCUEjL0mlXLh7FP7gJa3/+jHcmdmPu1GHs2fQzWo1pN2clJWqiou/SulkTg+mtmzXm+q2oKuedOO19Bj8/hbc++pRL125UmbaoWL+/ba1rVvkLoFEXkxx/A78GHQym+zVoT0LM5UrmMqTTaikuysPc0t5g+pnd32Bh40jjdiNqHNejStRqImPiaNvUsHVN2yYhXIuMrnLe8e/Oo/9L03lt7kLCrlcsIxcUFjF4ygwGvPwub3++lMi7pnd1kEnB20VKZLnrUGS8Bj+3v7acIZNCfqFp5QwPVzOcHJRcvGqYL16JyKFhsPGHKKBvWfLoPAAXr2ZVmpdKJdA11FGfL0bVPE8vjfNKuThv5tCwXhX5d3DFOC9cyarw29560Y+zl1VculbzbsPCv1/t98sQat3t27fR6XQ0aNDA6PcNGjQgMzOT1NRUXF31T2D79etX2lzrvffeY9GiRRw9epT69Y33K35o1qxZ9OzZE4AVK1bg7e3Nli1bGDlyJAsXLqR79+589NFHAAQHB3Pz5k3mz59fWsnywgtlT7T8/f1ZsmQJbdq0ITc3F+tHMv+5c+eWric3N5dffvmFlStXVlh3VeLi4njnnXdKf1NQUFlf3/nz5zN27NjSQXyDgoJYsmQJnTt35rvvvsPcXN/ktFu3bkyfPr10vlGjRjF16lROnjxJx476/spr1qxh7NixSKUVC+oHDx7k/PnzRERElL5z3t/fv8ZxPKqoqIiiIsMbKDMz4zeuNpZSZDIJWbmGBf7sXA12NsbnsbeWcS3XcPlZuVrkMgnWllKycrW4OMhpUFfGmasFLFiVgZuTnOeetkMqlbDtaM0ySisLCTKphJx8w8JATr4OW8t/Rk34fyvGp0OVZOXqKtwIVpeNpRSZVEJ2Xrn9nafBztp4ayI7aynZ5Z7eZOcZ7u9H1fWS4+Om4NftphU6bK1k+mMyx3C5WTka7G2MFzLtbGRk5WjKpdfHaGMlQ5WjoZ6fGV3bWPPewkST4jLGwU5fiZGZZVjxlpmlxs258u6IDvYKMrMMa6cys0pwsDesFKnrY8GSufVRKqQUFGqYvTCauAfVb1X0bzi/Lc1AJpWQW671eF6BDmsL0ys3HG0k2HtIuBqtZeVBNU62Ega0lSGVwpErNavgsDI3HmNOvg4bnyergDFXwgfPmiOXglYHW06UcNvE7kfZ2VlotRrsHAxbX9k5OKK6lG50nsQH8axd8T2zv/gGmax6RcY1K77D0cmFxs2erNtHdZm5OVOUnGYwrTglHalCgdLZgaKkVMzcnSlKNvyNRcnpmLnXvItUbk4mWq0GWzvD7Whr50S2Kq2SufRmvNSL3OxMNFoNT494mQ49hpZ+l5b8gMjrF2jTsR+vvb+MlMQ41v38GVqthv4jJtc4zqycHDRaLQ7lWlU42tmRkWl8TAwnR3vemfIiwQF1KSkpYf/Rk0z9+D98/cmHNGtovIz4/cp1uDg60rJpoxrHWJCbiU6rwdLWsOWDpY0zednVG3/rwqFfKSkuoF7LvqXTHkSHce3MRsbP3FrjmMpTZeei0WpxtDOsUHS0syVdZTwfc3awY8ZLz1Lfvw4lajV7jp/ltXmL+HbW2zQP0Zfl/Dzd+XDKBALreJFXUMj63Yd46aMvWDX/Y+p4VHwF7uNYmUv+vA4ZljNy83XY+Px15Yz+TynJytNx+75p5YyH+ZixPO7hmGbGONorjOalxvLFpfNCSvPFWQtuc68G+eKj66s8zsrzb0d7BZmqcvOoSkqXB9C1nSNBda14eaZprcb+DXT8M8rf/1SiAkZ4rIetNSSPPBps0qTsiYpEIsHd3b20K1Dfvn05ceIEAL6+vty4Ufb0JDS07ImRo6Mj9erVIyIiAoCIiAgGDRpksO727duzePFiNBoNMpmMy5cvM3v2bMLDw8nIyECr1RdE4+LiCAkpezrRqlVZwS86Opri4mKj667KtGnTePHFF1m1ahU9evRgxIgRBAQEAPrWOnfu3GH16tUG20mr1XL37t3SyqxH4wD9+C49e/Zk9erVdOzYkbt373LmzBm+++47ozGEh4fj7e1dWvlSXnXjeNRnn33GnDlzDKbNmjULqEEBTyJBV8XDj/JflX+qLJVATp6WX7dlodNBbIIaBxsZ/TpY1fgGrbJ1/hMZi/GvirtbcwXNgxV8s6XgibtMld+3ksdkpFUdC+V1am5BfHIJdx88WRcfXbktJ5HUbFs+PCZ16DA3k/DaWGd+3JhOTr7pAwt2a+/I1Bd9S///4Mvb+nWU357ViLXC95KKE+MTCpk84ybWVjI6tnHg3Vf8mDY3skaVMEb9A8/vijE++ex5BbD1jAadDhLSddhYQMdGshpXwDxkbLvU5NwwpqgYFv9RhFIBQV76cWYycnTEJJh+nJY/n3U6nUH+/pBWo2HJV3MYMXYinl51qrXsbRtXc+rYQWZ9thSlsvKbqb+csZOs/HSjJ6LpO6j8NtNfk6o+MKfP+42iwnxioq6ydfUSXD18aN2h75/habGxc+SZyR8hlcnwDQghKzOV/dtWmFQBUxpnuf91VDxnH6rj5Ukdr7JxVxrVDyYlLZ11W3cZrYBZs3kHh06cZsknH2FWjTHuKo+xYpTGjsnyIi7u5PTuZQyZ/C1WNvpKnOLCXHateIdeY+dhaf3XjV1YPhwdukq3o6+nO76eZV1OGgcHkJyWyeod+0srYBoF+9MouOyBWpN6ATz33if8secIb78w2uQ4KxzSf+F9cNdmCpoHyfl2W/XLGd3bOzF1kl/p/+9/oW99VbGcgUHrcGPKfy8Bo/niS+9dx9pKTsc2Drw3xZ9pcyIeWwnTo4MT016qW/r/zM8ijcaJCfm35JH828VJyWsT/Hj301uUlPwbSq7C30FUwAgEBgYikUi4efMmgwcPrvD9rVu3cHBwwNm5rM/jw644D0kkktLKkJ9//pmCggKj6Yx5mMkaKwQ+erHNy8ujV69e9OrVi99//x0XFxfi4uLo3bs3xcWGXSAefYvQ4y7olZk9ezZjx45l165d7Nmzh1mzZrFu3TqGDBmCVqtl8uTJvPHGGxXmq1OnrKBq7G1G48aN480332Tp0qWsWbOGhg0b0rSp8TdQlO8SVl5143jUzJkzmTZtmsE0MzMzJn2SUSFtTr4WjUaHnbXhU1xbKynZucZzX1WuBjtrWYX0ao2O3D9vblU5GjRaw4wtIVWNvY0MmQxq0uI6r0CHRluxJYmNpYTs/H9G5lZVjOVbxZiiS3MFPVop+W5bAYnppt+Y5eRr0Wgr7m8bq4otWR7KytU+dn8/pFToB33dcsT0m/DsPA0aja5Caxdb64qtXEpjzNFgVyH9nzHmafF2V+DqKOfd58vGWHl4KVrzRR2mfplQrTFhzoSpSgcDBFAo9AtxtJeT8cgTMXtbeYWnao/KVJXgaGd47XSwrdgqRq3RlQ42GBWTTz1/K4b2cWPxL/ceGyv8O87v/CLQaHVYl7sUWplXfNJbEzkFOrTlYkzN0mFjqX/jkKYGp1FeoT5Gm3IxWls8WYygL7OnZ+uXkZiuxtVBQtfmcmISav5GNltbO6RSGapMw5Yg2apM7Owr3qgWFOQTc/sWsdG3+fX7Rfp4dFp0Oh1jBnbmg3kLadS0rAvNjs1r2PrHKj78ZDG+dU1/I05NFSWnVWjJonRxRFtSQnG6Sp8mKQ0zd8NxG8xcHSu0nKkOaxsHpFIZWSrD7ZiTlYGtfdVvjHR2079JyMs3iJysDHZu+L60AsbOwQWZTI5UVnZ+uXvVJVuVhrqkBHk1ylOPsrOxQSaVkqEybO2SmZVVoVVMVULqBbH/2MkK09du3cnvG7excO77BPhVr4KuPAtrByRSGXnZhvshPycdS5vKx9kA/eC9+37/gAEvfo1v/Xal01Wp8WSnP2DL96+UTtPp9Cf0gtdDmPjxXuxdqh+vva01Mqm0QmuXzKycCq1iqtIouC57T5yr9HupVEqDAD/ik5KrvcxH5RXqyxk25coZ1hZ/UTmjmZzuLRV8v72QxPTqL+90WCYRd8ryfIVCn9842isM80U7BaqsyvPZjHKtSPTzVMxLy/LFIqJi8qgXYMXQvu4s+jm2yjhPXcw06MKrrCROY3nx4+NUkPHnPMH+VjjaK/jh87IWYzKZhCYNbBjSx51eY8+j/WcUXZ/Iv2UsltoiKmAEnJyc6NmzJ99++y1Tp041uOlPSkpi9erVjB8/vlpPIwC8vLwq/e7s2bOlFQOZmZlERUWVdvEJCQnh5EnDTP706dMEBwcjk8m4desWaWlpfP755/j46AdUe3RQ3MoEBgaiUCiMrtvYuCuPCg4OJjg4mKlTpzJmzBh+++03hgwZQosWLbhx4waBgTUvZA4ePJjJkyezd+9e1qxZw7PPPltp2iZNmnD//n2ioqKMtoIxJQ4zM7NKuxyVp9FAbEIJjQLMCIso63bQKEDJpVvGXyd7J76E5vUMl98o0IzYByWlNzVRcSWENjE3eADp7iQjM1tTo5sz0N8oxadoqV9HztXossy7Xh0512L+moFUn5RGC/dTtAT7yLkWU/YDg33kXL/7ZDF2ba6gZyslP2wveOLXQur3t5qG5fZvwwAll6vY383K7+8AJbEJJRVuYts0NEchl3D6quktNDQaiHlQTJNgCy5cL+vz0STYnIvXjb/lIOpeES1DDO+OmwRbEBNfjEYLCSklTP8qweD7UX3sMTeTsGJbJmmq6u2jgkItBYWG2yk9s5gWje24E6uPTf5nQeuntfcrXc7N23m0aGzLpj1lBfGWTWy58bjxXSRllT7V8W85vxPSdQR6SomIK5tZ/7/px3tcio4m/lKDhkXOtvpK25pUvjyM8UGqjiAfGTdiy2YO8pJyI/avH1xRbuJwDnKFAv/AYK6GX6BNu7K872r4RVq17VAhvYWlFfOXrTSYtn/3Zm5cvcTUGZ/g6l72ttPtTTAAAQAASURBVJ/tm9awef0K3p+7gICgqrsi/9VUZ8Nx7d/VYJpLzw5khV1Hp9afu5lnw3Hu3p67X68oTePcowOZZ6o3zsij5AoFdfwbEHH1DM3bdiudHnH1HE1bd6n2cnQ6HSUlZRVpAfWacv7kHrRabWmX5OTEe9g5uNS48gVAoZATHFCXi+HX6PRU2bg/F8Ov06FtyyrmNHQ7JhYnB3uDaWu37GDlH1v5atYM6gf6G5+xGmRyJW4+DYm9dYqgZj1Lp8feOk1gk+6VzhdxcSf7fn+f/s8vJKBRF4PvHN39ee6DHQbTTu1YTHFhHl1H6Af4rQmFXE49/zqcv3qTLm3Kxgw6fzWCTq0f//r2h6LuxuNcRcWXTqfj9r14AnwqL0NXRaPVvyI62EfG9buPlDO8ZdyIfbJyRpdmCnq0VPDjzkLup9bsAllZvtiysS13YvVvIZTLJDRtYMNPa+IrXc7N27m0bGzHpt1l+WKrJnbceMz4LpJq5ouVxdmqiZ1hnCE2/Li6ijij9HFu3JVULs4cAC5dy+L5tw3fvPbeK/7EJRSydlvC/4vKF+HxxCC8AgDLli2jqKiI3r17c/z4ceLj49m7dy89e/bEy8uLTz/99C9Zz9y5czl06BDXr19nwoQJODs7l7a6efvttzl06BDz5s0jKiqKFStWsGzZstIxVOrUqYNSqWTp0qXExMSwfft25s2bV8Xa9KytrZk4cSLvvPOOwbqNjbnyUEFBAa+99hpHjx7l3r17nDp1igsXLpR26Xnvvfc4c+YMr776KuHh4dy+fZvt27fz+uuvPzYeKysrBg0axEcffURERARjx46tNG3nzp3p1KkTw4YN48CBA9y9e5c9e/awd+/eJ46juvaezqNzS0s6tbDA00XO2L42ONnJOHxenyGN6GnDS8PKChWHz+fjbC9jbB8bPF3kdGphQecWluw+lfdImjysLaU8088WdycZTYPNGNDZmoPn8yusvzqOXCoitJGCp0IUuDlIGdrJDEcbKSev6gu3A9qb8Wwvw/FwvFykeLlIMVNIsLbQ/+3uWHZM6AfW1E+XS8HOSoKXixRnO9Nq9Y+Gl/BUiJw2DeS4OkgY3EGJg7WE09f1T0X6hyoZ28PwxtbTWYqnsxQzhf4plqezFDeHsvV3a66g31NK1h0uJCNH/+TLxlLCE7zFkn1n8ujcwoKOzc3xcJYxprc1TnZSjlzU75vh3a2ZNKTsqd+Ri/k428kY3dsaD2cZHZub06mFBXtPV9yXHZtbcOlWEXlP2Cpg17FsurWxpktrK7xc5Ywf6ICzvZwDZ/UFnDF97Xl1dNmT6ANncnF2kPPsAAe8XOV0aW1FtzbW7Dimf6JZoob4pBKDT16BlsIiHfFJJTWuNHjU5j0pjB3kTvtW9vh5m/PuK34UFms5fKqsxdl7r/gxcbTXI/Mk06qJLaMGuOPjac6oAe60aGTD5t1lb3x7YZQXjepZ4+aspK6PBc+P9KJpiA2HTlVsyVaVf8P5feqGlpZBUloESnGxg76tZdhZwYVI/Y7p2ULGsA6GtRLujhLcHSUo5WBlpv/f5ZF7n/O3NFiaQb+2MpxsIdhbQucmMs7dMm1nn7iqpk19Ga3qyXC1lzCgnQJ7Gwlnb+qX16eNnFFdDU9MDycJHk4SzOQSrC30/7s+cn53bS4nyFuKo40EF3sJHZvIaRks43KU6Qdk/8GjObx/J0f27+R+fCwrflpCWmoyPfsNBmDN8u9ZtkCfr0qlUur4+Rt87OwcUCiU1PHzx9xcX6m5beNq1q/6iVfenImrmweqzHRUmekUFpi2v2VWltg2rY9tU31FjmVdb2yb1sfcR1/hU++TaTT97YvS9Pd+XIeFrycN5s/Aur4/3hOG4fP8MGIW/lqaJnbZSpx7tsd/+iSs6vnjP30Szt1DiV26AlP0GPAspw5t4dShrSTej2HDb/PJTEukUy/9K6W3rF7Cb0s+LE1/dM86rl48RnLiPZIT73H68FYO7FhJ2079S9N06j2SvJwsNvz2JckJ97gWdpy9m3+hc5+RJsUIMHJQP3YePMKug0eJjX/A0l9WkZKWxqDe+sqNH1at49PF35am37B9DyfOXiA+IZG7cff5YdU6jp05z9B+vUrTrNm8g59X/8F7r03G3dWF9EwV6Zkq8gtMq1hv1f15rp3eyLXTG0lPiubIxv+Qk5FI0w76bjjHty1g94p3S9NHXNzJnhXv0Xnoe3j6NSUvK5W8rFSKCvTXf7nCDBfPYIOPmYUtSnMrXDyDkclr3lVqzNM92X7oJDsOn+Tu/UQWL19PcloGQ3rqKzK/XbOZOcvKjrd1uw5y7Pxl4hKTiYlP4Ns1mzly7hLD+5RVFP78xw7Oht/gQXIqUbHxfPrdCqJi4xnSq+oHg1U5fqWEtg3ktKmvL2cMbK/EwUbCmev6Cph+TykY093w93s6SfF0eqSc4WRYzujaTEHftgrWHykiM1uHjYUEGwv9tdVUm/ckM3awJ+1bO+DnbcG7U/wpLNJy6FRZq7L3pvgzcbS3wTytmtgxeqAHPp7mjB7oQYtGtmzaU1bRMXG0N43rW+Pmos8XXxjlTdMQWw6dND7G1eNs3J3EuCGedGjtgJ+PBTNe1cd58GRZi62Zr/rz4piyt2xt2p1E66Z2jB70Z5yDPGjZ2JZNf1bIFBRqiY0vMPgUFmnJzikhNr7mr8oW/p1ECxgB0A/eevHiRWbPns2oUaNIT0/H3d2dwYMHM2vWLBwd/5p+tJ9//jlvvvkmt2/fpmnTpmzfvh3ln/2GW7RowYYNG/j444+ZN28eHh4ezJ07t3QAXhcXF5YvX87777/PkiVLaNGiBV999RUDBw587Hrnz59Pbm4uAwcOxMbGhrfffpusLOOD0AHIZDLS09MZP348ycnJODs7M3To0NKxU5o0acKxY8f44IMP6NixIzqdjoCAAEaNGlWt7TBu3Dj69+9Pp06dKu0q9NCmTZuYPn06Y8aMIS8vj8DAQD7//PO/JI7qOHe9EGvLbAZ1scbeRsb9ZDULVmWSnqW/CbC3luJkV3bzk6bS8NWqTMb1taV7WytUORpW7c7m4s2ywllGtpb5KzIY29eWT151ITNHw/4zeew8Ydrrsy9FqbEyL6TPU2bYWkpITNfy3bZ8MnP0N/p2VhIcbA0r3GaMKxu0uY6bjNb1FaRna5n9q/5pip21xCBNj1Zm9Ghlxu37apZsrPmNRfgdNVbm0Lu1ElsrfYw/7iwojdHWUoKDjWGM74wue5Wzj6uMlvUUZGRrmbdSv/72jRXIZRKe72vYumPv+WL2na95FwWA8zeKsLbMYVBna+yspTxIUbNwtYr0LP1TL3ub8vtby8LVmYzpY0P31paocrSs3pPDxQjDJ0luTjLq+SqZvzLTpLgedeZKPjZWGQzraY+DrYz4pGI+/yWFtMw/j0lbGU4OZdlbaoaaz39O4bmBDvRub0NmtobftmVw/pppN4g1sX5HEmZKKW+8UAcbKzkR0XnM+E8UBYVlTxFdnc0MnnrdvJ3HJ0tieH6kJxNGepKQXMQnS2K4FV12fjjYyZnxal0c7RXk5Wu4G1fAzM9v1/iNCv+G8/t6rBZLM+jaTIaNhYzkTB2rDqpR/bk4G0uwtzasGH1tYFllh5czNA2QkZmrY8FGfYVnVj4s36+mXxsZrw1SkJMHZ25qOH7dtFY1V6I1WJpDj1ZybC0lJGXo+HW3/hWwALZWEuxtDGOcOqKsUtjbVUrzIDkZOVo+X60/d5RyGNJRgZ2VhBI1pKi0rDtcwpVo0ytg2nXqTk5OFpvWLSczIx0f37rMmD0fF1d9qwBVZjrpqTXrAnFg9xbU6hIWfvahwfThY55nxLiJNY7RrmUjQg+tKv0/5Kv3AYhfuZmrE2di5uGChU9Z65uC2PtcGPASIQtm4vvKOIoSUrgx9VOStuwvTZN55jKXx02j3py3qDfnDfKj47k8diqq84ZPoqurVfve5Oao2LXxB7Iz0/CsE8hr7y/DyUU/fkpWZioZaWUDeut0OrauXkJaygOkMjkubt4MGfcGHXsOL03j6OzOmx99xx/Lv2Le2yOwd3SlW7+x9B5cvbdPGdO9QyjZ2bmsWL+Z9EwVdet488VH7+Luqu+ylZ6hIjm17OZUrVbz7fI1pGZkYKZUUtfHmy8+fIfQVmUtP7buOUCJWs3HXy42WNeEUUN5Ycxwaqp+y34U5GVyZs+35GWn4OwRzNApP2LnpK+UzstKJTuzbFteObkerVbNofVzObR+bun0hm2H0Hf85zVef3X0bNearJw8ftm0i/TMLPx9PFk483U8XPQV/WmZWSSllVV+l6jVLF21kdQMFWZKBXV9PFk443XatWhcmiY3L5/Pf1xFuioba0sLguv68P2cd2gYWLfC+qsr/I4GS7NierZSYGulJDFdy887C8nMLStn2Jfrcvr2qLLyg48rtAiWk5Gt5dPf9ZUB7RrJkcskTOhj+BBr34Vi9l8w4VWGwLrtiSiVUt58wVefL97J5b3/RJbLF5UGQwjcjMrlkyV3eH6kNxNGepGQXMS8r6MNuv062CmY8WpAab4YE5fPzM8iCTPxTUPrtiVippTy1ot+pXG+8+mtKvPvG1G5zF18h4mjvXlhlDcJSUXMXXyHiDum5X//VmIQ3qpJdKYOkCEIwv8r4z/6697+8ndYOc+D1xf/s1/Xt/QtW6Yu+4sGGf0bLXrNmgmzTetn/t+yfLYbo6ZXbyyT2rL+K196jHl8N8jadnBtq3/F+f3hctMqDf9bPpmg5N3v//lPKL982YLw29V7g0xtaRbkwi5F1QPh17b+JZEcufbP399dG1uQHBFW22FUya1BS346WNtRVG1SD8i8cqy2w3gsh6adefvbf/bN/IIpVnQffb62w6jSoXVt6Dqy8jF5/imObGhb2yGY5OTN2jtGO4RUHH/zn0a0gBEEQRAEQRAEQRAE4YmJsWyqJsaAEQRBEARBEARBEARB+JuJChhBEARBEARBEARBEIS/meiCJAiCIAiCIAiCIAjCExOD8FZNtIARBEEQBEEQBEEQBEH4m4kWMIIgCIIgCIIgCIIgPDGdTrSAqYpoASMIgiAIgiAIgiAIgvA3Ey1gBEEQBEEQBEEQBEF4YjrxGuoqiRYwgiAIgiAIgiAIgiAIfzNRASMIgiAIgiAIgiAIgvA3E12QBEEQBEEQBEEQBEF4YlrxGuoqSXQ60UtLEARBEARBEARBEIQnc+haYa2tu3tj81pbd3WJFjCCIAAw5t242g6hSmu/rMO73xfUdhhV+vJlC2atLKntMB5rzngFg6dE1XYYVdr6bTCvL86u7TCqtPQtW/q9cK22w3is3b82ZuTbsbUdRpU2LPDj7W/zajuMKi2YYsVrC7NqO4zHWjbNjo3ntLUdRpWGt5Vy5No/+3retbEFuxT1ajuMx+pfEsnxG//sc6dTQys+XF5c22FU6ZMJyn/8dgT9tnxlvqq2w6jSd+/Y/yvKGP/0GEEf57+ReA111cQYMIIgCIIgCIIgCIIgCH8zUQEjCIIgCIIgCIIgCILwNxNdkARBEARBEARBEARBeGJihNmqiRYwgiAIgiAIgiAIgiAIfzPRAkYQBEEQBEEQBEEQhCemE6+hrpJoASMIgiAIgiAIgiAIgvA3Ey1gBEEQBEEQBEEQBEF4YloxBkyVRAsYQRAEQRAEQRAEQRCEv5mogBEEQRAEQRAEQRAEQfibiQoYQfiHmT17Ns2aNavtMARBEARBEARBEGpEp5PU2uffQIwBIwAwYcIEVCoVW7dure1Q/udNnz6d119/vbbDMNAz1JqnO9tibyPjfnIJK7dnEhlbVGn6Bv5mPPO0A95uCjKzNew8ls3Bs7lG04Y2teSNcc5cuJ7PwpVpJscY2lBG56ZybCwlJGfq2H6qhNgkrdG0NpbwdKgCbxcpTnYSTl3TsON0iUGaRnWldGuuwMlOgkwKaVk6jl9Rc+m2xuQYW9eT0j5EirUlpKpgzwUNcSnGO8paW0DvVjI8HSU42sK5CC17L1b8PeYK6N5cSoM6UszNQJUD+8I03H5gegfcvp3sGNzDEQc7GfGJxfzyRyo3owsqTd8wyIIXhrng46EkI0vNlgOZ7DuRVfq9j4eSsU87EVDHHFcnBb/8kcKOIyqT4wPo2ERB95Zm2FpJSEzXsvlYIdEJxveNraWEIZ3M8XGV4uIg5Vh4MZuPGR6/7o5S+oea4eMmw8lWyqZjhRy9XPxEMT40bpArfTo7Ym0pIzImn29/TyAuofLzB6B9S1ueHeKGh4uSxNRiVmxO5syl7NLvGwVbMqyPC4F+FjjZK5i39B5nLmdXscTK9Wpnw8AuttjbyrmfVMzybRnculv1+f3cQEe83ZVkZqvZfiSbA2dySr9v09iSId3tcHdWIJNCUpqaHceyOBGWZ1J8AO0ayunSXIGtpYSkDC3bThVzN7Gy81vCwHZKvF2kONtLOHlVzbZThvuybQM5rerJcXfUP4e6n6pl97li4lOML7M6OjZV0r2VGXZ/HpObjhYQ/aCSY9JKwtDO5vi4yvTH5OViNh0tNEjj7iTl6Xb6NE52UjYeKfhLjsmzB9dwcvev5GSl4uoVSP9xM/Gr18po2tjIMPZtWEBqQgwlxYXYO3vSputI2veZYJDu+oX9HNy0hIyUOBxd69Bz+Js0bNXT5BiP7l3Pge0ryMpMw9MngBET3iEopIXRtHciLrP598UkP4iluLgQR2cPOvYcRo8Bzxqky8/LZtuaZVw+d5j8vGycXb0Y9tw0GrfoWOP4HDu0wv/tidi1aIS5pysXh00hefuhqufp2JqQr2ZgHRJEUUIK0Qt+Ju7HdQZp3If0Inj2m1gG1CE/Oo7IjxeRvO1gjeN71JE9G9i3beWf29KfUS9MJ7iSbXk74jKbVi4h6c9t6eTiQadeQ+k54JnSNPM/mkTUjbAK8zZu0YE3PlxiUoxt6knp2EiGtSWkZOrYfV7DvSryxr6tZXg6SXGyhbMRWnafNzzPmgdKGdah4i3O7FXFqE3Mwv8N2xGgUzMlPVubYWctJTFNwx+HC7hTxXVoeBcL6rjrr0NHw4r540jFvL55sIIB7c1xtpeSptKy7WQhV26XGFli9fwbyhj/hhiFfy9RASP8Y5SUlKBQKGo7jL9NdX+ftbU11tbW/4WIquepppaMH+DAr1sziIwtokdba2ZMdGH6gkTSVRUzdRcHGe++4MKRc7l8sy6Nen5mvDDYkexcDeevG2ZezvYyxvW3JyKmsMJyaqJpgIwB7RRsPaGvdGkbImdifyUL1hehyq1YiJPLJOQVwqFLajo2MX4ZzC+CQ5dKSFXpUGuhga+UEV0V5BboiLpf85u0hn4S+rSSsuuchrhUHa2CpDzTXcY329VkGbkvlUshv1DH8WtaQkNkRpcpk8L4njLyCmH9MQ3Z+TrsrCQUlZhe+dK+pTUvDHflh3XJ3IoppHcHOz561YvX58WSlqmukN7VSc5HU7w4cCqLRcuTqO9vzuTRbmTnaDgTrq90M1NKSEor4dSlXF4Y7mJybA+1CJYztLM5Gw4XEpOgoX0TBa8MtuTTVblk5hjZ33LILdCy/4KaLs2VRpepVEBalpbLt0sY2tn8iWN8aHhfZ4b0cmbhL/d5kFzE6Kdd+XR6XV56P4qCQuPHUf0AS2a8XIdVW5I5fSmbdi1smflyHd75PJrIGP05ZG4m5W58IQdOZvLha74mxxfazJIJgxz5eXM6kXeL6BFqw/uT3Jj65QPj57ejnJkvunHoXC5L16RRr64ZLw51IjtXw7lr+QDk5mvZfDCLhJQS1BodLUIsmDLKmexcDVcia36uNwuUMaiDks3Hi7mbpCE0RMGkp835cm1BJec35BbqOHiphM6VnN+BXjIu31YTm6RFrdHRtbmCyQPM+XJdAdl5NT9/WgQrGNbFnPWHCohJ0NChiZIpQ6z4ZEWO8WNSBjn5OvadK6JrSzOjy1TKJfpjMuqvOyavnt3N7tWfM+C5j/ANasGFI+tZ8dVk3vxsB/bOnhVjMLPgqR7jcPcJRmlmyb2oMLb+NhuFmSVtuo4EIO72ZdZ/M40ew94gpGUPboYdZN0303jpw9/xCWha4xgvntrHH8vnM+bF9wmo34wTBzay7D+vMmvRZhxdPIzG2LXvaLx8g1CaWRB9K5zVP8zDzNyCjj2HA6AuKeHruS9jY+fIS9Pn4+DkRmZaMuYWljWOD0BmZUn21Ujur9hMyz+WPTa9hZ83rXf8SPwvfxD+3Ds4tGtBo6WzKE7NIGnLfgDsn2pG8zWLiJr1NUnb/o+98w6L6vge97sFlrIsSy/SRECwYsHee+waNZZEY4opphqj6T0xzfTENEtibLGXGHuJHcUuiAIqKL33suX3x+quCwvCar7G32fe57nPA/eeO/fsmZk7c8+cmdmB94h+tF32FYd6TSQ/+rRVeh7dv5UVCz9n0uOvEhLRmr1bV/PNB8/y7tercLNgS4XCnt6DH8AvMBSFnT0JcSdY/OOHKBT29BhwPwBPz/ocjcb08V1cVMB7M8bTrks/q3RsESRlcAcZGw9rSc7UEdVUxuT+cr5ZV2W5bZRBSTnsPa2lS7PaA/nLK/V8tdbcSWCt8+VesCNAu6Y2jO1jz/LtZSRe09C9tYLpY5S8t6CwlveQhKIyPX8fLqdvLe+hxr4yHh3mwMb95Zy8WEVkqA2PD3Pg82XFXE5ruEHvhT7GvaDjfx29WIS3TsQUJEG9iI2NZfDgwSiVSry8vHjooYfIzjZFKxQVFTFp0iQcHR3x8fHhyy+/pFevXrzwwgu1pnljqs2CBQsIDg5GoVCg1+tJTk5mxIgRKJVKVCoV48aNIyMjw+zeefPm0aRJE2xtbWnatCmLFy82uy6RSPjpp58YOnQoDg4OREREcOjQIRISEujVqxeOjo507tyZxMTEWvWrrKzkmWeewcfHBzs7O4KCgpgzZ47xekFBAdOmTcPT0xOVSkWfPn04depUnb/vp59+olGjRuh05h9ew4cPZ8qUKWb33cyCBQto3rw5CoUCHx8fnnnmmXrrcbsM6e7E7qPF7I4uITVTw+8b88nJ19K/k2UnUb9OTuTkafl9Yz6pmRp2R5ew51gxQ3qqzOQkEpg+wY1V2wvIzK3ZoDWE7q3kHD2vJfq8lsx8PRsPVpFfrKdTLY6LvCJDhMzxC1rKKy23EkmpOs5d1pGZrye3UM+BM1rSc/QE+Vj32uwSIeVEgo7jCXqyC2DLMR2FJRAVZjm9/BL4+6iOU0n6WnVsEyLFXiFh2W4tKVl6CkogOVNPRp5VKgIwoo8LOw4WsONgIVfTK5m/Kovs/CoG9VBblB/UXU1WXhXzV2VxNb2SHQcL2XmogBH9XIwyCVcq+G1tNvtjitBobr9V7t1WwaFzVRw6V0VGno41eyvIK9bRrZVl50puoZ7VeyuIjquq1ZbJGTrW76/g+AWN1Z10S4zs787yTZkcPF7IlWsVzJ1/FYWtlF4d1XXc48aJ2GL+3JzF1fQK/tycxcm4Ykb0dzfKHDtTzO/XHTS3w9AezuyKLmLXkWKuZVbx2/pcsvM1DOjiZFF+QGcnsvM1/LY+l2uZVew6Uszu6GKG9TLV79jEco6eLeVaZhUZORr+3lfElbRKwhtb50To0dqG6DgNR+I0ZObpWX+gkvxiPV1aWHau5BXpWb+/kph4DWW1BIws2VHBwXMaUnMMdfzPPZVIJBDqZ/mdcSv6tLPl0NlKDp2tIiNXx+o95eQV6ejeuo4yuafcUCYraiuTWtb9U05MfNUdK5MHtvxGu56jieo1Fs9GTRjy4Gs4u3pzZNdyi/K+Qc1o3XkIXn6huHg0IrLrcEJbduVK/DGjzMGtv9OkRRd6DpuGh28wPYdNo0mzThzc+rtVOu7YuJiufUbRrd9ofPyCGTd1Fi5u3uzdttKifEBwOFHd7sPXPwR3z0Z07DGEZq27kBB3wqTjrnWUFBfy1KwvCQlvg5uHLyERbfALamqVjllb/+HC21+Rvm57veQDp42nPDmN2Jc+ovh8EikLVpGyaA3BMx4xyjR+dgrZOw6S+OnPlMQnkfjpz2TvOkzQs1Os0hFg+8YldOs7ku79R+HjF8z4R1/Gxc2LvVtXWZQPCA6nY/dBNApogrunL516DqF5ZGcu3mRLRydnnF3cjUfcqcPYKuxo38W6iKeuzaXEXNQRc1FHVgFsjtZSUAIdmlqui/nFBpmTiToq6gjC0APFZeaHtdwLdgTo217BwTOVHDhTSXqujpW7y8gr0tEj0rJzJbdQx8pdZRw5V0VZLUGPfdopOH9Zw9YjFWTk6th6pILzyRr61OKwuRX3Qh/jXtBRcG8jHDCCW5KWlkbPnj2JjIzk2LFjbNmyhYyMDMaNG2eUmTFjBgcOHGDDhg1s376dffv2cfz48VumnZCQwJ9//snq1as5efIkACNHjiQ3N5e9e/eyfft2EhMTeeCBB4z3rF27lueff56XXnqJs2fP8sQTTzB16lR2795tlvb777/P5MmTOXnyJOHh4UycOJEnnniCV199lWPHDJ3Hmx0Z1fnmm2/YsGEDf/75J/Hx8fzxxx8EBQUBoNfrGTJkCOnp6WzevJmYmBjatm1L3759yc3NrfX3jRkzhuzsbDNd8/Ly2Lp1K5MmTbKox7x585g+fTrTpk3jzJkzbNiwgZCQkAbpYS0yGTRuZMvpC+aj1qcvlhMWZLnxDQ205fRFc/lT8eUE+9kiu+mNc38/Z4pKdOw5av20BDBEgTTykHAhxfwL5eJVHUHed+4VF9JIiodaUuu0h7qQScHHTUJCqnmjm5imw9/D+vmqTf0kpGTpGdJRxstj5Tw9TE73FlIkViYpl0GTADtOxpWanT8ZV0p4sOWP56aNa8qfiC0lJNDOLL/vFDIp+HtKOX/F3Gl3/oqGxj7WfTz/W3h72OCqtuH4OdP0O41Gz5n4EiJCah95D2/iwPGzRWbnjp8tolkT60bra0Mmg2A/2xpRKafjy2kaZDm/QwMVnK4mfzK+jGB/Ra353SLUDl8PG2KtiHSTScHPQ0p8tfodn6IlyOvO5bet3PCs0vKGd4xlUvD3khFXrUzGXdHQ2Pe/E2is0VSSevkcIS26mp0PadmV5IsnarnLnNTLsSQnnCQoPMp4LjnhFKEtupjJhTYgTTMdq6pIToojonVns/MRrTuRFF+/gYXkpPMkXThFaLN2xnOnju0hOKwVy36dw8uP9uG9F+/n79W/otPeQW9rHag7RZK144DZuaxt+3Bu1wKJ3FBGXDpFkr1jv5lM9vZ9uHRuY9UzNVVVXEmMo1nrTmbnm0d2JvF8/W2ZGH+asJtsWZ39O9cT1W0ACjv7Busok4Kvm4SEVPN2NSFVR4Dn7a3lYCuHmWNseHmsDQ/2lePjal1694IdwWDLAG8ZsZervYcuawhuZP17KNhXXiPN2Esagq14t90LfYx7QUfBvc9/p2cg+M8yb9482rZty0cffWQ8t2DBAvz9/blw4QI+Pj789ttvLF26lL59+wKwcOFCfH1rhjNXp7KyksWLF+PhYQjH2759O6dPn+bSpUv4+/sDsHjxYpo3b87Ro0eJiori888/5+GHH+bpp58GDM6fw4cP8/nnn9O7d29j2lOnTjU6iWbPnk3nzp158803GThwIADPP/88U6dOrVW35ORkQkND6datGxKJhMBAU5j/7t27OXPmDJmZmSgUBkfE559/zrp161i1ahXTpk2z+PsABg0aZGarlStX4urqavy/Oh988AEvvfQSzz//vPFcVFRUg/S4mYqKCioqzIc6btxbHZWjDJlMQkGxeSe1oEiLs5PlhkjtJKOgyPxDq6BYi1wmwclRSn6RjrBAW3pFOfLqV+kW02gIjnYgk0pqjG4Vlepx8r+9ls/OFl5/yA65FHR6WLuviotWTD9yUBh0LKn2/VlcBkpf6zuZLk4SGivhTJKeP3ZqcFNJGNJRhlQKe083XE8npSG/84vMO1sFhVpcVJabC7VKTkGheccjv0iDXCZBpZSRV3hnP3Ac7SXIpBKKSs0/lItK9agc/luLr7moDFMO8wvN7ZlfqMHTrfbpiC7Ocov3uDjf2Sa71vpdrEXtZNm5oVbJKIivKW+o3zLyiwzX7O0k/PSWP3K5BJ0O5q/J4cyFhjtgHO0k1+u3eX4Xl+px8r9z+T2kky0FJXouXm14eVXeKJMl/+0yWVqUj06nRensbnZeqXKjuKDu9bc+eb4XJUW56LRa+oyaTlSvscZrxQXZKFXV03Sn6BZpWqK4KA+dTovK2dXsvMrZjcL8utN7ZdoAigvz0Oq0DB37JN36jTZey864RvzZo3ToPphnXvuOzLRklv86B51Oy5CxTzRYz4ai8HKnIsNc/8rMHKQ2Nti6u1CRnoXC252KjBwzmYqMHBTe1k1XKL6e3yq1m9l5J2dXCvJzarnLwMuPDTLacvi4J+jef5RFuUsXz3ItOYEp09+ySscbbWP19rukTI/S3vr2O6tAz5r9WjLy9ChsoHMzGY8PlvP9+ipyim59/83cC3aEm99D5m1/UYkOZ0fr2w6Vo4Si0mpplupQOTb83XYv9DHuBR3vBXT8d9q+/yLCASO4JTExMezevdviuiSJiYmUlZVRVVVFhw4djOednZ1p2vTWob2BgYFmzom4uDj8/f2NzheAZs2aoVariYuLIyoqiri4uBqOha5du/L111+bnWvVqpXxby8vLwBatmxpdq68vJzCwkJUKvPpMWBYmLh///40bdqUQYMGMXToUAYMGGC0SXFxMW5u5g1yWVmZ2bSm6r8PYNKkSUybNo0ffvgBhULBkiVLGD9+PDJZzQ+ezMxMUlNTa3XO1FePm5kzZw7vvvuu2bm3334beMSiPGCI5b0JiaRh8ztvvIb1erBTSJg+wZ1fVufWaNRvh+rqNFRHS1RUwlcrK7C1gdBGhnVmcov0JKVap3d1fSSSmno3BInEMBd+w2Etej2k5epxstfRtbnUKgeMSdHqD6rblvpqNxjz23oNbsl/MYC3Vyc1z042OZ7f/uoKYCHfLZyrTo3LEsm/9pst6VLXsyz9nur3lFfoeXluKnYKKS1D7Zg83JWMHA2xidat91RDxzvYt+sdaUObUDk/rC+7o9PPJPw3y2l10+nRc6uwucff+IPK8lJSEk6y9c8vcPMKpHXnITclan6/Hj0Sa0PxoMa9hndM3enNfH8hFeWlJF04zbol3+Dp409Ut/sM9+t1ODm78uATbyKVyQhs0oyCvCy2rf/t/8QBc10J8/9v/Mabz1tsJG6vFNXMhlvnzawP51+35RnWLP4WDx9/OnYfVENu/451NAoIoXFoi9vSsQa3Wb+vZum5mmWyW3KmhqeHy+kUIeOvaOsq+b1ix5ptx+33he74eh73QB/jntBRcM8iHDCCW6LT6Rg2bBiffPJJjWs+Pj5cvHgRsNBhqscb29HRscY9lhq06uctPav6uZsXvL1xzdK56uux3KBt27ZcunSJv//+mx07djBu3Dj69evHqlWr0Ol0+Pj4sGfPnhr3qdXqWn8fwLBhw9DpdPz1119ERUWxb98+vvjiC4s62NvXHYpaXz1u5tVXX2XGjBlm5xQKBQ+/mVFDtrBEi1arx7naaLhKKaOw2HInJr9Ia1Feo9VTXKrDz8sGT1c5Lz9sckzdyLo/5vgz47O0Bq0JU1IOWp0ep2qmUtrXHDVvKHogp9CQRlqOBk8XCb3byElKbdhOJKUVBh2V1XR0tDOM9FlLcakerd68U5BVoMfJwbBzk7aBPpiiYkN+q6uN8jg7yWqMBt0gv1BjQV6ORqunqJYycjuUlOnR6mpGFjg5SCgsvbtdnSMnC4lPMo2C2cgNOro4y8krMNnPWVUzwuVm8go0NUba1E4y8gtub62k6tyo39WjXZyVMgqKaqnfhTWjY4z1u8R0j14PGTkGfa+kVtLIy4aRfZ0b7IApKTfkt1O1/Fba14yCsoZekXL6trPhxw3lpOVYl17x9TLpVG1EWOlwZ3S8Uzg4qZFKZTUiU0oKc1Gq3Gq5y4Crhx8A3v5hFBfmsGvtd0YHjNLZneKCrGpp5twyTUsonVyQSmU1IguKCnJrRCBUx92rEQCNAkMpKshl058/Gh0wzi4eyGRypDcNdHg3akxhfjaaqirk//IGABUZ2TUiWWw9XNFVVVGZk2+QSc9G4W0eSaTwdK0ROVNflNfzuyCvui3zakQYVcfjui39AkMpzM9l44qfajgOKirKOHpgG8PHP2mVflBX23j77ffN6IFr2XrcVA337NwLdgTTe0jlKAVM72InB+lttY2FJTfSNOHkILVqsfJ7oY9xL+h4LyAW4a0bMTNNcEvatm3LuXPnCAoKIiQkxOxwdHSkSZMm2NjYEB0dbbynsLDQ6JhpCM2aNSM5OZmUlBTjudjYWAoKCoiIiAAgIiKC/fvN50kfPHjQeP1OolKpeOCBB/jll19YsWIFq1evJjc3l7Zt25Keno5cLq9hE3d39zrTtLe3Z/To0SxZsoRly5YRFhZGu3aW5wU7OTkRFBTEzp2Wt7e0Rg+FQoFKpTI7apuCpNXCpWuVtAo1n27UMtSOC7VsQ33xSiUtq8m3CrMj6WolWh2kZlXx8tw0Xvkq3XjExJYRm1jBK1+lk9PAj0ytDq5l6Qn1N/8oDG0krXUb6ttBbsWyE1odpOXoaVJtulGwj5SULOtbqeQsPa5OErPBQneVwRHRUOcLGHaISEwuJzLCfK2RyHAHzteyfkf8pXIiw6vJRziQcKXcKh1uhVYHKZk6wgPMOztNA+RcsmJHhjtJWbmOtMxK45GcWkFufhVtm5miB+UyCS2bOhKXUFprOucTS2nT3HwR3LYtnIhNrP0ea9BqIelqJa3CatbX+MuW8/vilYoa8q2b2pGUUlFnfksAG1nDP360OsMW0WHV6neYn4zLGbeX370ibejXzpafN5VzNcv6wqrVQUqGtkaZDA+Ucyn1zjrNbge53BbfoOYknD1odj7h7EECQuu/zoher0ejMTmhA0Ja10jzYgPTNOpoY0NAcARxpw+ZnY87fYTgpvXfUUmv11NVZdKxSdPWZKYnmw24ZKRdwdnF4193vgDkHz6Je1/zdXI8+nejIOYseo2hjOQdPol7X/P1edz7dSPvUMPX0gGDLQObRBB36ojZ+dhTh2kS3oDdqfR6NFU1Bx2OHdhOVVUlnXoOtko/MNSd1Bw9Ib7mnyMhvlKSa9mG2lq8XQ07/jSUe8GOYLBlcrqWiEDz91BEoJyka9a/h5JSNUQEmafZLEhOkhXvtnuhj3Ev6Ci49xEOGIGRgoICTp48aXYkJyczffp0cnNzmTBhAtHR0SQlJbFt2zYeeeQRtFotTk5OTJkyhZdffpndu3dz7tw5HnnkEaRSaYNDkPv160erVq2YNGkSx48fJzo6msmTJ9OzZ0/at28PwMsvv8yiRYv48ccfuXjxIl988QVr1qxh5syZd9QeX375JcuXL+f8+fNcuHCBlStX4u3tjVqtpl+/fnTu3JmRI0eydetWLl++zMGDB3njjTeMC/zWxaRJk/jrr79YsGABDz74YJ2y77zzDnPnzuWbb77h4sWLHD9+nG+//RbgtvWoD3/tK6J3ByW92jvi6ynnoWFq3NUydhw2LCw6fpAzTz1gGpnccbgIdxcZDw5V4+spp1d7R3pHKflrr2G3lioNXM2oMjtKy3WUVei4mlGFNWsi7jutoUO4jPZNZXiqJQzrYoPaScLhWENigzrIeaC3eSfbx02Cj5sEhVyC0t7wv6eLqbz2biMn1E+Kq5MED7WE7q3ktAuTceKCdR99B+N0tA2R0iZEgrszDGovxdkRjl4wtM792kgZ1dX8I9PbxXDYyg0jgt4u4OFsun40XoeDAu7rIMXNCUIbSejeUsrReOtb/PW78ujXxZm+nVX4edvyyP0euLvYsHVfPgAPjnDn+SneRvkt+/LxcLVh6v0e+Hnb0rezin5dnFm/w7QVk1wGjf0UNPZTIJdJcFXLaeynwNvDug+f3ccr6NzChk7NbPBykTK6hwJXJyn7Txs6t8O6KnhogLmToJGHlEYeUhQ2EpT2hr+9XU1NoGExZ8N5uRScHSU08pDi7nx7sfDrtmczbqgnnduqCGykYMajflRU6thzJN8o89Jjfjx8v5fx//Xbc2jbXMmY+9zx81Yw5j53IiOUrN9uGgm3U0gJ9rcj2N/wO73cbQj2t8PDtWE23fRPAX07OtG7g5JGnjZMGe6Cu4uc7YcMCyVMGKxm+gSTM3fboSLcXeRMHu5CI08bendQ0qeDExv3mHZjGtnHmZZhdni6yvH1tGFIDxU92ivZd7y4xvPrwz+nqugYIadDuBxPFwnDu9ri4iTh0FnDB8DgTjZM6Gu+25CvmxRfNykKG0O0jK+bFK+b63ekDfd1tGHF7gryCvU42Utwspdga2Vc8K6YSrq0tKVTcxu8XKWM7mmHq5OUfacMZXJ4NwUPDTIf5jeVSYOOdZZJGaidDH+7q63vunUdNIWYvas5tnc1mdcS+WvJHApy0ujQx7DQ/dY/v2DlT7ON8od3LCHuxG6y0y+TnX6ZmH/WsP/vhUR2GWaU6TxwMglnD/LPpl/ISk3in02/kHjuEF0GTrZKx37DHuLAzrUc2LmOtKtJ/LnwM/Ky0+gxwLCl9Nol37DwmzeM8nv+Xs7pY3vJSLtCRtoVDu5ax/aNv9Oxh2mKVI+B4ygpKuDPhZ+SkXqFMzH/sGXNfHoOGlfj+fVB5uiAqnU4qtbhADg09kPVOhw7f8OWxE0/mEHrhaao4Ss/L8c+0JeIz15BGR6M38P34z/1fpK+WGCUufzd77j370rwzMdxbBpM8MzHce/bmcvf/maVjgD9h01i38617L9uyxULPic3O52e17dCXvPHt8z/+k2j/O6/V3Dq6F4yUpPJSE3mwM71bNuwmI4WnAP7d66jTYdeKJ3UVusHcOCcjnahUtqGSPFwhvuiZIa28fpaU/3byri/W7W20VWCt6uhvjoqDP/f3Db2bi0lxFeCi9JwbVRXGT6uEqKtbBvvBTsC7DxWQddWtnRuYYu3q5Qxve1wUUnZd8owYDaiux1TBps7Cvw8Zfh5ylDYGqL2/DxleLuZ3jG7YyqICJIzoIMCL1cpAzooCA+Usyumlm2TbsG90Me4F3T8r6PXS+7acS8gpiAJjOzZs4c2bcxHrKZMmcKiRYs4cOAAs2fPZuDAgVRUVBAYGMigQYOQSg0v6S+++IInn3ySoUOHolKpmDVrFikpKdjZNWzbUYlEwrp163j22Wfp0aMHUqmUQYMGGR0OYNgl6euvv+azzz7jueeeo3HjxixcuJBevXrdtg1uRqlU8sknn3Dx4kVkMhlRUVFs3rzZ+Js3b97M66+/ziOPPEJWVhbe3t706NHDuN5MXfTp0wdXV1fi4+OZOHFinbJTpkyhvLycL7/8kpkzZ+Lu7s6YMYaOqEQiuS096sPhU6U4OUgZ3c8ZtUpGSnoVnyzIIjvf0DlSq2S4q02do6w8LZ8uyOKhYS4M6OJEXqGW3zbkEX32NvaAvAWnErU42EG/9nJUDhLSc/Us2GzYqhYMi8ipncxfyi+ONZVNP08pbULl5Bbp+HiJoVNhK4dR3W1wdpRQpYHMfB3Ld1VxKtE6B8y5y3ocFDp6tpLhZA+Z+bBkp2G7TTB8gDlXm7H21DBTw9zIHVoFS8kr1vPVGsOHZ2Ep/L5dy6AoKU8Nl1NUCofjdOw/Z70D5kBMMSrHTB4Y7IaLSkZyWiXv/3CNrOvTwlxVMjxcTE1HZo6G93+4xiP3ezC4hzO5BVp+XZnJoZOmj21XZzlfvmZaxHpUf1dG9Xfl7IVS3vjqaoN1PH5Bg6NdOYM6KVA5SEjL0TFvfSl5RYb8dnaU4KIy/0h9ZZIpCiXAS0ZUuA05hTreWWDQ01kpMZPp115Bv/YKLl7V8M0q6yNPVv2djcJWyvQHfVE6yohPKuWNuZcoKzflkYerDTfPhIxLLOXjH5OZPNqLh0Z5kZZZycc/JhOfZKpDoUH2fDI72Pj/tAmGtWe278/jywX1t+mhk6U4OeRyf381LioZKWmVzPk1g+w8Qzl3UclxV5vyOytXw5xfM5gywpWBXVXkFWhYuC6XI2dMNlLYSnhstBtuahmVVXquZVbx7dIsDp20zo4nE7Q4KCrp394GlaMtaTk6ft1UTt6N+u0gQa00z++XHjA5O/w9oW2YnNxCHR/+YbBhlxZy5DIJDw8yb6O2Hq1k29E69ratheMXqnC0l3BfJztUjoYy+cPaEmOZVDlKcXUy1/HVh0xRTgHeEBVhS06BjrfnG5xfzkqJmYyxTKZo+HqldbvHteo0mNLifHav/4Gi/Cy8/EKZ/NKPuLgbpkoU5WdRkJNmlNfr9Gz78wvysq4hlclw9fRn4LgZRPU27UwYGNqGB56ey/bVX7Nj9be4evoz/um5+DdpQHTATbTvOpDionz+WvUThXnZ+AaE8Mxr3+HmYSjjBXlZ5GbfpKNez7ol35CdeQ2pTI6Hlx+jJj1H9/5jjDKu7t48/+Y8Vi76nPdfGova1ZM+gycycGTtC/HXhXO7FnTeudj4f7PPXwMg5fc1nH70VRQ+Hthfd8YAlF2+ytFh02g291UCn5pERWom5178kPS124wyeYdOcGLSDJq++wJN332O0sQUTkx8kfzo01bpCBDVbSDFRQVs+vMXCvKy8Q1ownOvf4Obp8GW+XnZ5GabFsPX6fSs+eM7sjOvIbtuy9EPPkuP646GG6SnXiEh7iQvvvWD1brd4Oxlw0BC70gZTvYyMvL0LN6hIf96EXdyALXSvP1+Zrh529i6iYy8Yj1zVxnqrp2thJFdZCjtobzSsD7ar39ruJZtXVTNvWBHgJj4KhztyxjS5fp7KFvL96uLyb0+ldpZWfM99PoU0zsm0Bs6NDO8h9742eBUT0rVMn9jKcO72TGsmx1Z+Tp+3VjKZSsjTu+FPsa9oKPg3kair89CHQJBAykpKaFRo0bMnTuXRx999G6rI6gHE2Yl320V6mTZpwHM+vHfc+LcCT590p63f2/4x9v/Ne9OtmHk0xfuthp1su6HMJ79qvDWgneRb19QMfiRM3dbjVuyeUFLxr10+W6rUSd/zg3ipR9ub0v6f5u5TzvyzBcFd1uNW/LdDGdWHflvx72P6Shl95n/9vu8d0t7/rK59WYCd5shVfH8c+6/XXd6NHfkjUUNWzvt/5oPHrb9z9sRDLZ86rP8u61Gncx7WX1P9DH+6zqCQc97kQ3H7t6U8OHtrVgr4P8YEQEjuCOcOHGC8+fP06FDBwoKCnjvvfcAGDFixF3WTCAQCAQCgUAgEAgE/xfoRHhHnQgHjOCO8fnnnxMfH4+trS3t2rVj3759t1yQViAQCAQCgUAgEAgEgv8FhANGcEdo06YNMTExd1sNgUAgEAgEAoFAIBDcJcQCJ3UjdkESCAQCgUAgEAgEAoFAIPiXEQ4YgUAgEAgEAoFAIBAIBIJ/GTEFSSAQCAQCgUAgEAgEAsFto0dya6H/YUQEjEAgEAgEAoFAIBAIBALBv4yIgBEIBAKBQCAQCAQCgUBw24htqOtGRMAIBAKBQCAQCAQCgUAgEPzLiAgYgUAgEAgEAoFAIBAIBLeN2Ia6bkQEjEAgEAgEAoFAIBAIBALBv4xErxc+KoFAIBAIBAKBQCAQCAS3x8rDurv27LGd/vvxJWIKkkAgAKDHqP13W4U6+WdtN6a8lX631aiT397z5sXviu+2Grfky2eUPPJu5t1Wo04WvO3JAzOv3G016mTF54EMfTz2bqtxSzb90oxxL12+22rUyZ9zg3j8o5y7rUad/PKaG4++n3W31bgl89/04EDsf/s91LWZkoy4mLutRp14RbTjn3Mld1uNW9KjuSN/2TS922rUyZCqeOZtudta1M1Tg6Bs1+K7rcYtse/zEE99ln+31aiTeS+rGfzImbutRp1sXtDyP68jGPS8FxHhHXXz33cRCQQCgUAgEAgEAoFAIBDc44gIGIFAIBAIBAKBQCAQCAS3jU4vudsq/KcRETACgUAgEAgEAoFAIBAIBP8ywgEjEAgEAoFAIBAIBAKBQPAvI6YgCQQCgUAgEAgEAoFAILhtxCK8dSMiYAQCgUAgEAgEAoFAIBAI/mVEBIxAIBAIBAKBQCAQCASC20ZEwNSNiIARCAQCgUAgEAgEAoFAIPiXEREwAoFAIBAIBAKBQCAQCG4bnYiAqRMRASP4n2LRokWo1eq78uw9e/YgkUjIz8+3qMs777xDZGTkXdFNIBAIBAKBQCAQCAT/LiIC5n+Ehx9+mN9++834v6urK1FRUXz66ae0atXqLmomuMHMmTN59tln77YatTL1gQCGDfDCyVFO7MVivvw5kcsppXXe07OTG49ODMTX247U9HJ+WXKFfUdyzNKcOj7A7J6cvEpGPRLdYP36RNkzuJsjzkoZqVkalvxdyIUrVbXKNw2yYeIgFb4ecvKLtGzeX8LuY2VmMg52Eu7vq6R9Mzsc7KRk52tZtqWQ0xcrG6wfQNcWcnq3tUXlICE9V8e6fRUkpeksyqocJAzvZou/hwx3tYR9p6pYt9/8uZ2ayYkKt8Hb1eBLv5ql5a9DlSRnWk6zvvRub8+gLg6onaRcy9SwbGsxF5Nrt2VYoA3jByhp5Cknv0jH3wdK2BNTbrw+a4qa8CDbGvedulDB18sKrNJxQBclw3o5o3aScTWjkt/W53H+UkWt8hHBCiYPd8HPy5a8Qg0b9hSy41CxRdkukQ48/6AHR8+W8vmiLKv0Axjcy4XRA91wdZaTnFrBLysyOHex9jrTIsyBx8Z5EeCrIDdfw+qtOfy9N89ct7ZOPDjCEx8PG9Kyqli8LpNDJ4qs1hFgQBcnhvdSoVbJuZpeyaL1ube05ZThrvh5X7fl7kK2HzLp0KGlA6P6OuPtboNMCunZGjbuLWBfTInVOvZqq2BgJ3uclVJSs7Ss2FHCxRRNrfJhAXLG9XXE10NGfpGOrYfL2HvC/Df1jbKjV1s7XFVSist0xJyvZM3uUjRa63Ts3c6OgZ2v15ssDcu3lnAxpY56E2DDAwMcaeRxvd4cLGXvcVO9efkhZ4v15vTFCr5eXmidksCuv/9ky7rF5Odl08g/mAmPziSsWRuLshdiT7Bq8bekXb1MZWU5bh7e9BpwPwOGTzKT27ZxKbu3rCI3Ox2lk5r2Xfoy5sFnsLFVWKXj2s3bWbZuE7l5+QT5N+LZRyfTunm4RdkTZ2J5/s0Papxf/N1nBPo1AmDjtl1s3b2PpOQUAJo2aczjDz5As7AQq/QD2P33n2xd/zsFedn4+gfzwCMzCWvW1qLsxbgTrP79G9Kv3bCjDz0GjKb/sAeNMp+9+TgXzsXUuLdl224898Y3DdbPtVt7gl96FOe2LbDz9eTY/U+TsWFn3fd0j6LZ56+gbBZKRWomiXN/Jfnn5WYy3qMGEPbO8zg0CaA0MZn4t74kY/2OBut3M6f2LSFm13xKCrNw8w6l5+jXaNSkvUXZhFPbOL1/GVnX4tBqKnH1CaXToGcIiuhuJhO9/Ufys5PRaTWoPQJp13sqEVEjrdZxxd5j/Lb9ENkFxTTx8eDlsQNoGxpQq3xllYafNu9jc/QZsgtL8FI78dh93RjZJRKAnSfOM3/LAZKzctFodQR4ujK5X0eGdry9PnmPSFv6RylwVkpJy9ayclcZCdcsv9RUjhLG9LInwFuGh4uUPTGVrNxdVkOuTZgNw7ra4a6Wkp2vY/3+ck5drP3dVh8mjfBkUE9XlA4y4pNK+eGPVJJTa293ALq2U/HQKC98PGxJy6rktzUZHDpuehe2CHPg/kEehATZ46a24f1vr3DohPXvyntJT8G9hXDA/A8xaNAgFi5cCEB6ejpvvPEGQ4cOJTk5+S5rJgBQKpUolcq7rYZFJo5qxLjhvsz59iIpqWVMHuPPF+80Z9L045SVW27Ymzd14u2Z4cxfanC6dO/oxrszmzL9tdPEXTR9+CYllzDj7bPG/7VWxC12aGHHpPtU/L6pkAvJlfSOcuClB1149btscgtqOiPc1TJeetCFPTFl/Lgqn7AAWyYPVVFUquNYrKFhlcng5SmuFJZo+W5FPrkFWlydZZRXWBdXGRkiZ2R3Bav2VnApTUuX5jZMG2bPx0tLyS+umaZMBiVlerYfq6RnpI3FNEMayTh+oYpL6To0Gj192try5Ah7PllaSkGJdXpGNVcwYZCSxX8VkZBSRa929rw4yZk3vs8lt9CSLaW8OFHNP8fL+GVtISH+Njw0xImiUj0xcQZbfr+iAJlMYrxH6SDh3SddjbZuKJ1bOzBluCvz1+QSf7mcfp2cePUxT2Z8lkpOfs3y6OEq55XHPNl1uJjvlmbTNMiOR0e7UlisI/qMuUPE3UXGg0NdiEsqr5FOQ+jeXsXjD3gzb0kasQml3NfThXeeC+DptxPIyq3pOPByt+Gd5wLYui+Pz3+9RrMQB56a5ENBkYaDxw3OjfBge2ZP8+OP9QanS+c2Tsye5sesTy9z4VLNTnN96BzpwMMjXPl1TQ7xlyro19mJ1x734sVPr9Vqy1cf82LnkWK+XZpN08YKHhvtRmGxliPXbVlcqmPNjgJSM6vQaPW0bWbP0w+4U1is5VR8w+3aPsKWB/o7smRLCQlXNfRso+C5B1S8/XO+5TLpLOW5cSr2nSzn1w3FhPjJmTTIkaJSPcfjDU7Mjs1tub+3A4s2FZN4TYOXq4ypQw3v3z931O1YtkRUMwXjByr5Y3MxCVer6NnWjhcmOvPmvNrrzQsTnPnnRBm/risixM+GBwcrKS41OIIAflhZiExmukfpIOWdaS5W1xuA6P3bWLZgLg9Ne4WQ8Ej2bFvNl+8/ywffrMTNw6eGvMLOnj6Dx+EfGIrCzp6LsSf57ccPsbWzp9eA0QAc2ruZVYu/5ZFn3iIkvDXpqVeY/807AEx45KUG67hz/yG+XfA7M554hBbhYWzYupNZ73/C799+hpeHe633Lfl+Lg4O9sb/1SqV8e8TZ2Pp270Lz4eHYmtrw7K1m5j5zsf89u2neLi5NljHo/u3smLh50x6/FVCIlqzd+tqvvngWd79epVlOyrs6T34Afyu2zEh7gSLf/wQhcKeHgPuB+DpWZ+j0Zg+aouLCnhvxnjadenXYP0AZI4OFJ6O5+pva2i38rtbytsH+RG18WdS5q/k5JSXcenSlhbfvk1lVi7pa7cBoO4USZulX3Lh7a9JX78D7xH9aLvsKw71mkh+9Gmr9Iw/vpm9a+fQZ+zb+DZuy+mDy1n34+M89OpfqFx9a8hfTTxKQHgXugx9EYW9itgja9jwy1OMn/Ennn7NAFA4ONOh/1O4egUjldtw6exuti19DXulm5mjpr5sPXaOz1Zu47Xx9xHZxJ9V+44z/ftlrHnrSXxcnS3eM+vXNeQUlvD2g0Px93Qlt6gErdb0LlA52vHYfV0J8nLHRi7lnzMJvP37RlydHOnSrEmDdQRo19SGsX3sWb69jMRrGrq3VjB9jJL3FhSSV1SzTyCXSSgq0/P34XL6trPsLG3sK+PRYQ5s3F/OyYtVRIba8PgwBz5fVszlNOu81WPuc2fUAHe+mH+VaxkVjB/qyYczGzPttQuUlVseQApv4sArTwaweG0GB48X0qWtilefDODljxOJTzK0f3YKKZdSytm+P483ngm0Srd7Uc//Inq95NZC/8OIKUj/QygUCry9vfH29iYyMpLZs2eTkpJCVpZphHf27NmEhYXh4OBAcHAwb775JlVV5l7uDz74AE9PT5ycnHjsscd45ZVXzKbOaDQannvuOdRqNW5ubsyePZspU6YwcuRIo8yWLVvo1q2bUWbo0KEkJiaaPefgwYNERkZiZ2dH+/btWbduHRKJhJMnTxplYmNjGTx4MEqlEi8vLx566CGys7NvaYutW7cSERGBUqlk0KBBpKWlGa8dPXqU/v374+7ujrOzMz179uT48eNm90skEn799VdGjRqFg4MDoaGhbNiwwUxm8+bNhIWFYW9vT+/evbl8+XKdOlWfgvTwww8zcuRIPv/8c3x8fHBzc2P69Olm+ZGWlsaQIUOwt7encePGLF26lKCgIL766qtb2qAhjB3aiMWrUvjncA6Xkkv56JsLKBQy+vfwqOMeX46dymPJmqskXytjyZqrxJwuYOywRmZyWq2e3Pwq41FQWPuodm0M6uLAP8fL2Hu8jLRsLUv/LiK3UEffKAeL8n2i7Mkp0LH07yLSsrXsPV7GPyfKuK+ro1GmRxt7lPYSvlmaz8XkKnIKdFxMriIlo+H6AfSKtOFIrIYjsRoy8/Ss219JfrGeri0tO1fyivSs3VfJsXgN5bUE3PyxvYIDZzWkZuvIzNezYncFEgmE+sks31APBnZyYN+JMvadKCctW8uyrcXkFujoHWVvUb5Xe3tyCgxyadla9p0oZ9+JcgZ2Ntm+pFxPYYnOeDQPtqWySs/RWOucHEN6qtgVXcyu6GKuZWr4bUMeOflaBnR2sijfv7OSnDwtv23I41qmhl3Rxew+WsywniozOYkEnp3ozsptBWTkWJfPNxjZ343t+/PYtj+fq+mV/LIig+y8Kgb3tPyxd19PF7Jyq/hlRQZX0yvZtj+fHQfyGD3AzSgzvJ8rJ2JLWPl3DlfTK1n5dw6nzpcwol/DPyBvMLSHM7uii9h1pJhrmVX8tj6X7HwNA7pYtuWAzk5k52v4bX0u1zKr2HWkmN3RxQzrZbJlbGI5R8+Wci2ziowcDX/vK+JKWiXhje2s0rF/Bzv2n6pg/6kK0nO0rNhRSl6hlp5tLafXs60duYUGufQcLftPVXDgVAUDOprkgxvZkHBVQ3RsJTkFOmIvVREdW0GQj3XjUgM62RvK/klDvVm+rYTcQi292tdSb9rZk1NokEvL1rLvZDn7T1qqN6ajWePr9SbOegfM1g1/0L3vCHr0H4Wvf2MmPjoTVzcvdm9ZZVE+MDicTt0H0SigCe6evnTuNZgWkZ25GHvCKJMYf4bQ8NZ06nEf7p6+tIjsTMfuA7mcEGuVjn+u38yQfr0Y2r83Qf6NeO6xyXi4u7FuS91RFmpnFW4uauMhk5m6uG/NeIZRg/sTGhxEoF8jXn76cXR6PTGnz9aRYu1s37iEbn1H0r3/KHz8ghn/6Mu4uHmxd6tlOwYEh9PxJjt26jmE5pGduRhnsqOjkzPOLu7GI+7UYWwVdrTv0t8qHbO2/sOFt78ifd32eskHThtPeXIasS99RPH5JFIWrCJl0RqCZzxilGn87BSydxwk8dOfKYlPIvHTn8nedZigZ6dYpSPA8T0Lad7pflp0HourdxN6jX4dpYs3pw8ssyjfa/TrtO/7ON6BrXDxDKLrsBmoPQJJOrvLKOMf2pGQ1v1x9W6C2j2ANr2m4O7blNSkmhFG9WHxziOM6hLJ6G5tCPZxZ9a4AXi7qFj5j+X0DpxL5NjFK3z3zHg6RQTTyE1Ny6BGRDbxN8pEhQXRJzKcYB93/D1cmdSnA6GNvDiRkGKVjgB92ys4eKaSA2cqSc/VsXJ3GXlFOnpEWnau5BbqWLmrjCPnqiir5bXSp52C85c1bD1SQUaujq1HKjifrKFPLQ6b+jCyvzvLN2Vy8HghV65VMHf+VRS2Unp1VNdxjxsnYov5c3MWV9Mr+HNzFifjihnR3+SUPXammN+vOz7uBPeKnoJ7D+GA+R+luLiYJUuWEBISgpubqYPv5OTEokWLiI2N5euvv+aXX37hyy+/NF5fsmQJH374IZ988gkxMTEEBAQwb948s7Q/+eQTlixZwsKFCzlw4ACFhYWsW7fOTKakpIQZM2Zw9OhRdu7ciVQqZdSoUeh0Bo9yUVERw4YNo2XLlhw/fpz333+f2bNnm6WRlpZGz549iYyM5NixY2zZsoWMjAzGjRtX528vLS3l888/Z/Hixfzzzz8kJyczc+ZM4/WioiKmTJnCvn37OHz4MKGhoQwePJiiIvMw/3fffZdx48Zx+vRpBg8ezKRJk8jNzQUgJSWF0aNHM3jwYE6ePGl0VDWU3bt3k5iYyO7du/ntt99YtGgRixYtMl6fPHkyqamp7Nmzh9WrV/Pzzz+TmZnZ4OfUhY+XAjdXW46ezDeeq9LoOXWugBbhlj/SwBABc/M9ANEn82jR1PwePx971syPYsWP7Xl7RlN8vBrWqMtkEORjw9lE897D2YQKQgJqhu8DhPjbcjahpnyQr2HKBECbcDsSUqqYPFTFN7M8+HC6G0N7OCKxwqkvk4Kfp5T4alMm4lM0BHlb7yypjq0cpFIotTJKRyaFQF855xLNPT7nkioJ8bPsKGriZ8O5pGryiRUE+cqR1dLCdG9jT/TZCiqtiGCWySC4kS2nL5hHfJy6UEZYkOWyExao4FR1+fgygv1tzXQc09+ZwmIdu6MtT02qL3IZhATacSLWfMrNiXPFhDex/EEeHmzPiXPmzz1+roSQQHtjFER4sAMnYqvLFBNRS5q3QiaDYD/bGlEpp+PLaRpk2bkRGqjgdDX5k/FlBPsras3vFqF2+HrYEGtFVJFMCoE+cmKTzAvLuUtVNPGz7CwJbiTn3KVq8klVBPqYymTC1SoCvWVGh4u7WkrLJjacTmj49MIbOlavB7GJlYTUomOTRnJiq9Wzs4mVZjpWp3sbO6LPWVdvADRVVVxJPE/zyE5m55tHdiLhfP2iF64knSch/jRNm5um2oRGRHI5MY6kCwZnRmb6Vc7EHKBVu24N1rGqSsOFxEtERZpPw4iKbMnZ8xfqvPfRGa8xcurTvPDmhxw/c65O2YrKCjRaDSorok4NdoyjWevqduxM4vlT9UojOek8ifGnCWvWrlaZ/TvXE9VtAAo76+p3Q1F3iiRrxwGzc1nb9uHcrgUSuaEcu3SKJHvHfjOZ7O37cOlseQrbrdBqKslMOUdgU/OyEti0K2mXTtRylzl6nY6q8hLsHNSWr+v1JMcfIi/zEo2aRDVYxyqNlrjkNDo3CzY73ykimFNJVy3es+f0BZoH+LBo2yH6v/I1w9/+gS9W76C8lsqr1+s5cv4SlzNy6pzWVBcyKQR4y4i9bN7PiLusIbiR9RMegn3lNdKMvaQh2Ne6NL09bHBV23D8pvZOo9FzJr6EiBDLg2ZgiCw5fta8H378bBHNmtR+z+1wr+j5X0Wvv3vHvYCYgvQ/xKZNm4xTXEpKSvDx8WHTpk1Ipabe3htvvGH8OygoiJdeeokVK1Ywa9YsAL799lseffRRpk6dCsBbb73Ftm3bKC42vaC+/fZbXn31VUaNGgXAd999x+bNm810uf/++83+nz9/Pp6ensTGxtKiRQuWLFmCRCLhl19+wc7OjmbNmnHt2jUef/xx4z3z5s2jbdu2fPTRR8ZzCxYswN/fnwsXLhAWFmbRDlVVVfz44480aWII8XzmmWd47733jNf79OljJv/TTz/h4uLC3r17GTp0qPH8ww8/zIQJEwD46KOP+Pbbb4mOjmbQoEHMmzeP4OBgvvzySyQSCU2bNuXMmTN88sknFnWqDRcXF7777jtkMhnh4eEMGTKEnTt38vjjj3P+/Hl27NjB0aNHad/eMFf6119/JTQ0tM40KyoqqKgwdz4oFLU7PdzUBidGbr55xyE3vwpvj9rvc1Xbklftnrz8KlxdTE6R2ItFfPT1BVJSy3BR2zB5bAA/zGnNlOePU1hUvwgEJwcpMpmEgmLzcNCCEh3OSstfMs5KKQUl1eSLdchlEpQOUgqKdXi4yIhobMuh02V8sTgPLzc5k4eqkElh/Z6GrWXhaC9BJpVQVGreMhSV6lE53LkwzaGdbSko1nMhxbqwYCcHKTJpTVsWFutwblK7LQur276aLW+msa8cPy85CzdYN/KjcpQZ8ruo2jOLtKidLDuznJ1kFBRpq8kbdHRylJFfpKVpkILeHZTM/iLNYhoN0lEpRyaTkFctmiuvSEtbZ8vNrouznLxqOuYVapDLJaiUcvIKNLg4y8mvlmZ+oQYXlXVNudGWxdVsU1y7LdUqGQXxNeVvtiWAvZ2En97yRy6XoNPB/DU5nLnQcAeM0sFQdwqr1deiEj3OjrWUSUcpRdWm4BWWXC+T9hIKSvQcja3EyUHK7MmGyB25TMLumHK2HGq4jjfqTXUdC0r0tKjlHaRSSmtMEzTqWFu98ZSzaKP16/0UFeWj02lxVruZnVep3SjIz6nlLgMvPXYfRQV5aHVaRjwwjR79Rxmvdew+kKLCPOa8/ijo9Wi1WnoPGsOQ+6c2WMeCoiK0Oh0uavNpHa7OzuTmWV4vys1VzctPP0ZYk8ZUVVWxbc9+XnzrI77+4A0im0dYvOfH35fj4epKu9YtGqxj8XU7qqrZ0cnZ9ZZ2fPmxQRQXGuw4fNwTdL/Jjjdz6eJZriUnMGX6Ww3Wz1oUXu5UZJhHEFdm5iC1scHW3YWK9CwU3u5UZJj/xoqMHBTetUfD1kVZSR56nRYHlbktHZzcKS2q3/pbMbsXUFVZRlib+8z1Kivi17d6oNVUIpFK6TP2bQLDuzZYx7ziUrQ6Pa5Ojmbn3ZwcyS6w7Ky/lp3HicQUbG3kfPHkGPKLy/ho2d8UlJTx7uRhRrmisnIGvPo1VVVapFIJr024j84RwRbTvBXKG/2MGu9KHc6O1n/uqRwlFJVWS7NUh8rRur6Li8owmGOpLfN0szzQA9Te/tXSpt4u94qegnsTURr+h+jdu7cxWiU3N5cffviB++67j+joaAIDDXMQV61axVdffUVCQgLFxcVoNBpUN82jjo+P5+mnnzZLt0OHDuzaZQj9LCgoICMjgw4dOhivy2Qy2rVrZ4xuAUhMTOTNN9/k8OHDZGdnG68lJyfTokUL4uPjadWqFXZ2dmbPuZmYmBh2795tcd2UxMTEWh0wDg4ORucLgI+Pj1nUSGZmJm+99Ra7du0iIyMDrVZLaWlpjbVybl682NHREScnJ2M6cXFxdOrUCclN4RKdO3e2qE9dNG/eHNlNiwD4+Phw5swZwJAXcrmctm1NI5EhISG4uLjUmeacOXN49913zc69/fbbgGGeef8eHrz0pGlhwtkf3hhJNP9YkEhu7WnW6+u+58jxmxYYTYZz8edYNq89g3p78ueG1LoTr/6sav9LuIV+1a5Vj2yRSgwdl4UbCtHr4XKaBrVKyuCujg12wNSmY23nrKFPGxvahNnw/doyqxcRrQ2JpG49a9j+ujEt2b97W3uuZmi4lHp7U3z0lspjA+6/kd969NgpJDwz0Z2fV+XU6GjeppLmz+RWZbLabzKeNp2vaevbL0OWdGqAmiY9bzpXXqHn5bmp2CmktAy1Y/JwVzJyNMQmWjftrKF1p/q7B2N+GwgLkDO4iz1LtpRwKVWDp4uMB/o7UFBsz18HrFtPx9I7pe535K3z+wbdIu24mnn79cb8Sabn3Sqy75UPf6WivJTE+DOsWvwdnj7+dOo+CIDzZ4+xadUCHpr2CsFhLchIS2HZ/M9xdnFn+LjH6064XhoaLFWbjgGNfAloZForpEV4GJnZOSxf95dFB8zSNRvZue8g33zwJgpby1GS9dKxhj56szbfErM+nE9FeSlJF86wZvG3ePj40/G6HW9m/451NAoIoXFowx1Et0WNeiOped6SzG0PO1vM8VvedT5mE4e3fMfwx37AwcnciWOrcGTSrHVUVpSScuEQe9d9jMrNH//QjtZpWC1v9RbO3UCnN5SFjx4ZiZO9oR87c0x/Zv6yilfHD8LO1vAB76hQsOK1xymtqCQ6/jKfr9pOI3c1UWFBVul4Qy9zxW8/e27n/l6d1Dw72VQ/3/7qisU0b9k+Yum3Se5YH+pe0VPw/wfCAfM/hKOjIyEhpg/rdu3a4ezszC+//MIHH3zA4cOHGT9+PO+++y4DBw7E2dmZ5cuXM3fuXLN0ajRCFt5Et5IZNmwY/v7+/PLLL/j6+qLT6WjRogWVlZVG+VulodPpGDZsmMWoEh+fmovg3cDGxtxzLZFIzNJ++OGHycrK4quvviIwMBCFQkHnzp2NutWVzg1HkiWbWIM1z7jVs1999VVmzJhhdk6hULBr/FEA9kfnEnvBFPprY2MYwXVV25KTZ4pocXG2Ia+g9nD93PxKs2gXALWzDXn5td9TXqEj6UoJfj71D7kuKtWh1epRVxtpVjlKa4xI36CguGZ0jMpRikarp/j6B3h+sSHdm82ZlqVB7SRDJgNtA5wcJWV6tLqa0S5ODjWjYqyhVxsb+rW3Zd76MtJyrHcgFJXq0Or0NWzj5FgzyuUGlm0pQaPVU1Jmfo+tHDo0V7DOSgcWQGGJ1pDf1SI0VMqaUS5GHYu0ONeQv57fJTr8vG3wdJUza6qn8fqN18/STwJ48dPUBq0JU1isQavV1xjxUjvJaoyM3SCvoGYki1olR6PRU1SirVXG2anmaFu99azFls512DK/sGZ0jEopu25L0z16PUabXUmtpJGXDSP7OjfYAVNcaqg71aNdnBxrRpzcoKBEh6p6mXSQXi+Thvo2sqcDh88a1pUBuJalxdYGHhqsZPOBsgZ1lm/Um5rPrF3HwmKdhd9kruMNbtSb9XsbvjiwWfpOaqRSGQX55lEORQW5qJzdarnLgIeXYe0uv8BQCgtyWb/8Z6MDZu3SeXTpOdgYFeMXGEpleTm/zfuAoWMeNYuyvRXOTk7IpFJy882jXfIKCmpExdRFs6ahbNu7v8b5Zes28ceq9Xzx3ms0CbJuqofyhh3zzCNBigryUDnXvR6TmR3zc9m44qcaDpiKijKOHtjG8PFPWqWftVRkZNeIZLH1cEVXVUVlTr5BJj0bhbf5QsgKT9cakTP1xd7RBYlURmmh+f2lRTk4ONW+4DIYFu/dsex1hkz9moCmXWpcl0ilqD0Mg4uefhHkZiRydMfPDXbAuCgdkEkl5BSaR7vkFpXgpnK0eI+7Somn2snofAFo7O1ueC/mFxHoaSgnUqmEgOt/h/t7cyktmwVbDlrlgCm+0c9wlAKmd7GTg5TC2+hnFJbcSNOEk4OUwnou9H/kZCHxSaZ3l43c0Li6OBsiO2/grKq7LbPYRjrJyC+4E07pe0fPewUr9tP4n0KsAfM/jEQiQSqVUlZmGO07cOAAgYGBvP7667Rv357Q0FCuXLlidk/Tpk2JjjbfIvjYsWPGv52dnfHy8jKT0Wq1nDhh+qDPyckhLi6ON954g759+xIREUFenvlWq+Hh4Zw+fdpsqszNzwFo27Yt586dIygoiJCQELPD0dFyo1gf9u3bx3PPPcfgwYNp3rw5CoWiXgv73kyzZs04fPiw2bnq/98u4eHhaDQaM9smJCSQn59f530KhQKVSmV23DwFqaxcy7X0cuNxOaWUnNxK2rdWG2Xkcgmtmztz9nzt4fDn4ouIuukegKhINWfja7/HRi4h0M+BnLz6r8Og1cLltCqaNzGfDtW8iYKEZMvpJKRU1pBv0UTB5dQqbmxScDG5Ek9Xudkop5ebnLxCbYOcLwBaHVzN1BHmb94oh/nLuZx+e+EqvdvYMKC9LT9tKCPlNref1urgSqqGZsHmjrPmwbYkXLU8dz3xahXNq8s3seVyqgZtNXWimtthI5dw6LT1OwxptZB0rZJWYeZOulZhdly4bHkVwQtXKmgVZldN3p6klEq0OkjNrGLm56nM/jLNeMTElnEusZzZX6aRnd+wjpNGCwlXyomMMH8PRTZTcj7RcnTF+aQyIpuZR/O1aeZIwpUyY3k7n1RKm2aO1WSUxNWS5q3QaiHpaqUF29gRf9lyHl20YMvWTe1ISqmokd83IwFsZLce0a6how6upGmIaGzujG7W2IbEq5bzJemahmbV5YNtuJJmKpO2ckmNUUy9/vqYewPVvKFj9XrQLNiWhFp0TLxmuZ7drOMNopopDPXmzO3tzCW3sSGwSTixp46YnT936ggh4fXf+lav16OpMr1bKyvKkVRzskhkUoMTq4GDETY2csKaNObYyTNm54+dPEuLcMtRrZa4mHQZNxe12bllazfy+59r+ezt2YSHWDfNA27YMYK4anaMPXWYJuGt659QNTve4NiB7VRVVdKp52CrdbSG/MMnce9r7sjw6N+Ngpiz6DWGcpx3+CTufc2n8bj360beofqt11IdmdwWT//mJMebrz2THH8Qn8a1rytzPmYT25a+wqDJc2ncvFf9HqbXo9U0fI0nG7mMiAAfDsVdMjt/JO4SrYP9LN4T2cSfrPwiSm9aQf9KZg5SiQQvde1r5+nRU6mx7kNdq4PkdC0Rgeb9jIhAOUnXrP/4T0rVEBFknmazIDlJ9YzGKyvXkZZZaTySUyvIza+i7U3tnVwmoWVTR+ISancyn08spU1zc9u1beFEbOLtOabvNT0F/38gHDD/Q1RUVJCenk56ejpxcXE8++yzFBcXM2yYYT5qSEgIycnJLF++nMTERL755hvWrl1rlsazzz7L/Pnz+e2337h48SIffPABp0+fNotWefbZZ5kzZw7r168nPj6e559/nry8PKOMi4sLbm5u/PzzzyQkJLBr164aERkTJ05Ep9Mxbdo04uLi2Lp1K59//jlgiq6ZPn06ubm5TJgwgejoaJKSkti2bRuPPPII2oZ+Id9ESEgIixcvJi4ujiNHjjBp0iTs7Ru2CN6TTz5JYmIiM2bMID4+nqVLl5otnnsnCA8Pp1+/fkybNo3o6GhOnDjBtGnTsLe3v2UYdENZuekaD47xp3tHNxoHOPDqs6FUVGjZ/o9pjvZrz4Ux7UHTdnqrNqXSPtKFiaMaEdDInomjGtG+lZqVG68ZZZ6eEkTr5ip8PBVEhCp5b1YEjg4ytuxu2ELCWw6W0rOtPd3b2OPjLmPiICfcnKXsOmpo8Mb2UzJttGn0dNfRMtzVUiYMcsLHXUb3Nvb0aGvP3wdMkRm7oktROkiYdJ8TXm4yWocpGNbDkZ3R1jWie05W0amZnA4RcjxdJIzsZouLUsLBswbHxpDOtkzsZ+4U8nWX4usuRWFjmN/t6y7Fy8WUt33a2DC4ky3Ld5WTW6THyUGCk4ME29qnJ9+SrYdL6dHWnm6Rdvi4yxg/UImrs5Q9xwwf+ff3deSxkabOxZ5jZbg5y3hggBIfdxndIu3o3saerYdq2ql7GzuOn6+oMcLfUP7aW0ifDkp6RTnSyFPO5OEuuKvlbD9scO5NuE/N9PGmEf3th4pxd5Hz0DAXGnnK6RXlSJ8OSjbuNaxDU6WBlPQqs6OkTEd5hZ6U9KoGO9wA1m3PYUB3F/p3VePnbctj47zwcLVh816Ds3nKKE9mPGIKd/57bx6ebjY8Ns4LP29b+ndV07+bC2u2mUbZN+zMpU0zJfcPcsPP25b7B7kRGeHI+h251pgRgE3/FNC3oxO9Oyhp5GnDlOEuuLvI2X7oui0Hq5k+wTQSve1QEe4uBps38rShdwclfTo4sXGPaU2fkX2caRlmh6erHF9PG4b0UNGjvZJ9x61b3Hh7dDndIxV0baXA203GuH4OuKpk7D1ucEiM6uXAI8NMneS9x8txU8kY19cBbzcZXVsp6NZawbYjJgfGqYRKerZVENXMFndnKRFBNozo4cCpi5VWhdtvO1xG9zZ2dGttqDcP9HfE1VnG3hhDvRndx5FHR9xUb2Ku15v+joZ609qO7m3sLNabbm3sORF/+/UGYODwB/lnxzr27VhPasolli2YS252Or0GjgFg1eJv+eVr07ojOzf/ycmj/5CRmkxGajL7dm5g6/rFdL7JOdA6qge7t6ziyL6tZGVc49zJw6xbOo/IqB5IZZbXEqqLcSMGs2nHbv7asYfLKdf4dv5iMrOzGTGwLwA/LV7Oh1/9YJT/c8Pf7Dt8lJTUNC4lX+WnxcvZeyia0YMHGGWWrtnIr0tWMvuZJ/D29CAnL5+cvHxKy6xzavUfNol9O9eyf+c60q4msWLB5+Rmp9Pz+pbSa/74lvlfv2mU3/33Ck4d3Wu044Gd69m2YTEdLThZ9u9cR5sOvVA6qa3S7QYyRwdUrcNRtQ4HwKGxH6rW4dj5GyKEm34wg9YLTRHEV35ejn2gLxGfvYIyPBi/h+/Hf+r9JH2xwChz+bvfce/fleCZj+PYNJjgmY/j3rczl7/9zWo92/aaytnDqzh3eBW56YnsXfMRRXlptOo6HoD9G+ey9Y9ZRvnzMZvY9sdseoyYjU9Qa0oKsygpzKKizDS4E739J66cP0BBdgq5GYkc372QuKPriWg/3CodH+rbkbUHTrDu4EmS0rL5bOU20vIKGNPdMAX8m3W7eGPReqP84KgWOCvteWvxRhLTsoi5eIUv1+xkRJfWxulH87cc4FBcElez8riUns3iHYfZdPgMQzq0tEpHgJ3HKujaypbOLWzxdpUyprcdLiop+65H+o3obseUweaLwfp5yvDzlKGwNay55ecpw9vN9Hm4O6aCiCA5Azoo8HKVMqCDgvBAObtirN+Nbd32bMYN9aRzWxWBjRTMeNSPikode47kG2VeesyPh+/3Mv6/fnsObZsrGXOfO37eCsbc505khJL1200DpHYKKcH+dgT7GwYJvNxtCPa3w8PVuk7RvaLnfxGxCG/diClI/0Ns2bLFODXHycmJ8PBwVq5cSa9evQAYMWIEL774Is888wwVFRUMGTKEN998k3feeceYxqRJk0hKSmLmzJmUl5czbtw4Hn74YbOIl9mzZ5Oens7kyZORyWRMmzaNgQMHGtcykUqlLF++nOeee44WLVrQtGlTvvnmG6MeACqVio0bN/LUU08RGRlJy5Yteeutt5g4caJxXRhfX18OHDjA7NmzGThwIBUVFQQGBjJo0KAGhTxXZ8GCBUybNo02bdoQEBDARx99ZLZLUn0ICAhg9erVvPjii/zwww906NCBjz76iEceeeTWNzeA33//nUcffZQePXrg7e3NnDlzOHfunNnaOXeCpWuvobCVMWNaE5RKOXEXi3jp3XOUlZu+TL08FGbTn87GF/Hu3PM8NjGQRycEkppRzjtz44m7aPoI83BT8PaMpjg72ZBfWEXshSKenH2KjKyGNezRZ8tR2ksY0UuJ2knKtUwNX/yRR06BYSjZ2UmGq7PpQyA7X8vcP/KYOEhF3w4O5Bdp+WNzIcdiTc/NLdTx2e95TBzkxAdPu5NfpGXb4VL+2mfd9JmTCRoc7WBglC0qRwlpOTp+3lRGXpHBZioHCS5O5uX25fGmjpK/p4x2TW3ILdTx/u+Gj7SuLW2QyyRMvc/cQbglupKt0Q0f6QM4eq4CpX0xw3s64qw02PKrJQUmWyql1Wyp48ul+UwYqKRPlD35RYbtvWOqbZXr5SojLNCWzxebR7tZw6FTpTg55nJ/fzUuKhkp6ZV8PD+T7DxDeVSrZLi5mJq3rFwNH/+ayZThLgzs6kReoZaF63OJPvPvjUjtO1aIk1LG+KHuuDrLuZJawTvfJJOVa3C4uajlZp2tjOwq3vkmmcfGeTGklws5BRp+Xp7OweOmj4rziWV8+vNVHhzpyYMjPEnPquSTn69y4ZKVa5YAh06W4uRwky3TKpnza4bRli4qOe5qc1vO+TWDKSNcGdhVRV6BhoXrcjlyky0VthIeG+2Gm1pGZZWea5lVfLs0i0MnrbP3sbhKlPYlDO1mj7NSSmqWlm9WFJJbaCiTaqUEV5Wp7mQX6Pjmz0LG9XOkVzs7Cop1LN9WwvF4U534a38Z6GFkDwfUTlKKSnWcTqhi7R7rdDwaW4HSXsKwHg6GepOl4etlpnqjVkrNdczX8dWyAsYPcKR3++v1ZksxMefN662Xq4ywABvm/mH9tL2b6dBtAMVF+Wz48xcK8rJpFNCEF974BndPQ9+gIC+b3Kx0o7xer2P14u/IyryGTCbDw9uPMQ89a3Q0AAwb+ygSiYS1S38gLzcLJ5Wa1u17cP+D063SsW+3zhQWFvPbijXk5OXTOMCPT96chbenYXpMTm4+GVkmx6RGo+GHRUvJys1FYWtLY38/PnnjZTq3N0VQrPt7O1UaDW99+pXZsx5+YDSPTBjTYB2jug2kuKiATdft6BvQhOde/wY3T4NTNT8vm9xskx11Oj1r/viO7MxryGRyPLz8GP3gs/S4yY4A6alXSIg7yYtv/cDt4tyuBZ13Ljb+3+zz1wBI+X0Npx99FYWPB/b+punaZZevcnTYNJrNfZXApyZRkZrJuRc/JH3tNqNM3qETnJg0g6bvvkDTd5+jNDGFExNfJD+6frtoWaJp28GUl+RxeOsPlBZk4uYTxognfkblapiuVVKYRWGeaXH0MwdXoNNp2L3qPXavMm2gENFhFAMnfQyAprKU3SvfpaggHbmNHa6ewQx86DOatrUuqmhg++bkl5Tx01/7yC4sJsTHg++mj8fXTQ1AVkExabmmaXMOdrb8+NwkPl6xlUlz5uOstGdA22ZMH97LKFNWUclHy/4mM78IhY2cIG93Ppw6goHtm1ulI0BMfBWO9mUM6WJn6Gdka/l+dTG5hYZ+hrNSimu1fsbrU0yO4UBv6NDMlpwCHW/8bHCqJ6Vqmb+xlOHd7BjWzY6sfB2/bizlcpr1A52r/s5GYStl+oO+KB1lxCeV8sbcS5SVm8L/PFxtuGnpSOISS/n4x2Qmj/bioVFepGVW8vGPycQnmdq/0CB7Ppltim6bNsFQH7fvz+PLBZZ3rPr/QU/BvYdEf6cWqxD8z9K/f3+8vb1ZvHixxes6nY6IiAjGjRvH+++/b/VzlixZwtSpUykoKGhwRMr/ClevXsXf358dO3bQt2/fBt3bY1TN+fL/Jf5Z240pb6XfWvAu8tt73rz43e1tYfx/wZfPKHnk3Tu7XfmdZsHbnjww88qtBe8iKz4PZOjjsXdbjVuy6ZdmjHvp8t1Wo07+nBvE4x/VvYPM3eaX19x49P367cxyN5n/pgcHYv/b76GuzZRkxMXcbTXqxCuiHf+cuzOOr3+THs0d+cum6d1Wo06GVMUzb8vd1qJunhoEZbss92P/S9j3eYinPsu/22rUybyX1Qx+5MytBe8imxe0/M/rCAY970UW7r57z57a++49u76ICBhBgygtLeXHH380RrQsW7aMHTt2sH37dqPMlStX2LZtGz179qSiooLvvvuOS5cuMXHixAY96/fffyc4OJhGjRpx6tQpZs+ezbhx44Tz5SZ27dpFcXExLVu2JC0tjVmzZhEUFESPHj3utmoCgUAgEAgEAoHgfwwR3lE3wgEjaBASiYTNmzfzwQcfUFFRQdOmTVm9ejX9+vUzykilUhYtWsTMmTPR6/W0aNGCHTt2EBFRczvIukhPT+ett94iPT0dHx8fxo4dy4cffninf9I9TVVVFa+99hpJSUk4OTnRpUsXlixZUmP3JIFAIBAIBAKBQCAQ3F2EA0bQIOzt7dmxY0edMv7+/hw4cKBOmfowa9YsZs2adWvB/2EGDhzIwIED77YaAoFAIBAIBAKBQCC2ob4FYhckgUAgEAgEAoFAIBAIBIJ/GREBIxAIBAKBQCAQCAQCgeC2EWvA1I2IgBEIBAKBQCAQCAQCgUAg+JcRDhiBQCAQCAQCgUAgEAgEgn8ZMQVJIBAIBAKBQCAQCAQCwW2j091tDf7biAgYgUAgEAgEAoFAIBAIBIJ/GREBIxAIBAKBQCAQCAQCgeC2EYvw1o2IgBEIBAKBQCAQCAQCgUAg+JeR6PXCRyUQCAQCgUAgEAgEAoHg9vhx69179pMD796z64uYgiQQCAAY99Llu61Cnfw5N4hH3s2822rUyYK3PZkwK/luq3FLln0awJOf5N1tNerkx9kujHgq/m6rUSfr5zWl97gjd1uNW7L7z4488XHu3VajTn56xZW56/7b40EvjZTwyar//sqCs8dIefG74rutRp18+YySX3bcbS3q5vF+8Maiyrutxi354GFb5m2521rUzVOD4C+bpndbjToZUhV/Vz8a68uTA+HD5dq7rUadvD5exoCHTtxtNepk2+I2/3kdwaDnvYgI76gbMQVJIBAIBAKBQCAQCAQCgeBfRkTACAQCgUAgEAgEAoFAILhtdCICpk5EBIxAIBAIBAKBQCAQCAQCwb+MiIARCAQCgUAgEAgEAoFAcNvc3T1+JHfx2fVDRMAIBAKBQCAQCAQCgUAgEPzLCAeMQCAQCAQCgUAgEAgEAsG/jJiCJBAIBAKBQCAQCAQCgeC2EdtQ142IgBEIBAKBQCAQCAQCgUAg+JcRETACgUAgEAgEAoFAIBAIbhud7m5r8N9GRMAI7jgSiYR169b9a+lfvnwZiUTCyZMn75oO/xaLFi1CrVbfbTUEAoFAIBAIBAKBQHCHEREwggaRnp7Ohx9+yF9//cW1a9fw9PQkMjKSF154gb59+95t9YykpaXh4uJyt9VoMA888ACDBw++22rUYEAXJ4b3UqFWybmaXsmi9bmcv1RRq3xEsIIpw13x87Ylr1DDht2FbD9UZFG2S6QjLzzkwdGzpXy2MNNqHXu3t2dQFwfUTlKuZWpYtrWYi8lVtcqHBdowfoCSRp5y8ot0/H2ghD0x5cbrs6aoCQ+yrXHfqQsVfL2swCod+3dWMrSnCrWTjKsZVfy+IY/4y3Xb8cGhLvh52ZBXqGXT3kJ2HC62KNu5tQPPTXLn6NlSvvg92yr9btCzjYL+HRQ4K6WkZmtZubOMhKuaWuVD/eWM6WOPr7uM/GId246Us+9kpfG6VAqDOtnRuYUtaicpGbla1uwpI/ZS7Wneivt6qBnV3wUXZznJaZXMX5lJbEJZrfLNQ+15ZIwnAT625BZoWLstly37TPno72PLxGHuNAmww8vNhl9XZrJxV57V+t3MlLGNGNrXEyelnLiLxXw9/zKXr9auK0CPji5MfcAfXy8FqRkVzF+Wwv6jlvWZONKXxyf6s+qvNL7/LbnB+vVso2BARztjfv+5o/SW+T22r4Mpvw+X889JUzmWSuG+znZ0bqFA7SQlPVfL2t1lnLtUe328FecOLeX03vmUFmXh4hVC52Gv4dO4vUXZS2e3EXtoOTlpcWg1lbh4hdCu3zP4N+1uJpd0ZivHtn1DYU4yKrcAoga+QOMW/a3WMe7wUs7sX0BZURZqzxA6DnkV7yDLOpYWZhL996dkp56jMOcKzTo/SKchr5nJ6LRVnNr7Mwkn1lNamIHKvTFRA1/CL6y7xTTrS9cWcnq3tUXlICE9V8e6fRUkpVkerlQ5SBjezRZ/Dxnuagn7TlWxbn+lmUynZnKiwm3wdjWM6V3N0vLXoUqSM60fAj3xzxKO7phPSUEW7j6h9B7zGn4hlm154eQ2Tu1bRuZVQ367+YTSZfAzNG5m2U7nj/3FpoUzCGnVl5FP/GC1jh2aSuneQobSATLz9GyO1nIl0/LCB0p7uC9Khq+bFDcVHI7TsTlaaybTJkTK/d1qdsvfWVyJRlvjdL05tW8JMbvmU1KYhZt3KD1Hv0ajJpZtmXBqG6f3LyPrmsGWrj6hdBr0DEER3c1korf/SH52MjqtBrVHIO16TyUiaqRV+rl2a0/wS4/i3LYFdr6eHLv/aTI27Kz7nu5RNPv8FZTNQqlIzSRx7q8k/7zcTMZ71ADC3nkehyYBlCYmE//Wl2Ss32GVjmCw47GdN9nx/tfwq8WOF2/Y8aYy2ek+czveTHzMX2z+bQZNWvZl+OPWl0mAdiESOoVLUNpDVgFsP6EjJcuyrNIO+raR4OMiwdUJjl7Qs/1EzTIcFSahXYgElQOUVUJcip7dp/RobyPK4aFR3gzu7Y7SUcb5xBK+++0qV66V13lPt/bOTBnjg4+ngrTMChatTONAjKkdHz/Mi67tnfH3saOySkfsxRJ+XZ7K1fTa+1n/v+gpuLcQETCCenP58mXatWvHrl27+PTTTzlz5gxbtmyhd+/eTJ8+/W6rZ4a3tzcKheJuq2FEq9Wiq0c8nr29PZ6env8HGtWfzpEOPDzClTU7C5j9RSpxlyp47XEv3NQyi/IernJefcyLuEsVzP4ilbU7C5g60pWOLR1qyLq7yHhomAuxiXU3ZrciqrmCCYOUbNpXwjs/5XIxuYoXJznjqrL8inNXS3lxopqLyVW881Mum/aVMPE+J9pFmMrM9ysKeOHzbOPxxg85aHV6jsVa10B2au3A5GEurNtVwKtfpxF/qZxXHvWo3Y4uMmY94kH8pXJe/TqN9bsLmDLchQ4t7C38HhmThqiJS7o9OwK0C7dhbF97/j5UzoeLCkm4quGZsUpcnCQW5d2cpTwzRknCVQ0fLipky6FyHujnQJswG6PMiO729IhUsGJHKe/+Wsg/Jyp4cpQSf0/Lv/1WdGvnxKNjPVm5JZcXP7pCbEIpb033w93F8piCp5sNb033IzahlBc/usKqLbk8Ns6Lzm2URhmFrZSM7CoWr8sit8B6x1B1xo/wYewQH75ZcJknXz1Lbn4Vn70Rjr1d7c1vs1Alb70QyvZ/snns5TNs/yebt18MISLEsYZs0yaODO3nQeLlEqv0ax9uy7h+Dmw+WM4HCwtISNHw7DgnXGqpO27OUp4d60RCioYPFhbw98FyHujvQJumpvwe2cOe7pF2LN9eyju/FBjye7QSfy/r8jvx1GYObZxDmz5PMvq5tXgHtefvBdMozku1KJ+WdIxGoV0YNPVnRj+3Gt8mHdn629NkX4s1ymRcOcHOpTMIbTucMS+sJ7TtcHYseZHM5FNW6Zh0ejNHNn9M655PMGL6GryC2rHttycozreso1ZbhZ2jK617PYGrd7hFmZjtXxMf/Sedhr7OqOc3Ed7hAXYueZac1FiL8vUhMkTOyO4Kth+r5PMVpSSlapk2zB610nL9lsmgpEzP9mOVpGZbbsNCGsk4fqGK79eV8fWqUvKK9Dw5wh5nR8tp3orzMZvZvWoOnQY+xeRX19EopB2rv3+cwlzLtryacJTA8C6MfvpnHpq9hoDQjqz98SkyUmraqSDnGnvWflLrh3N9aREkZXAHGXtOa/lhQxVXMvVM7i/HuWYVBUAug5Jy2HtaS3pu7atTllfq+XhFpdlxO86X+OOb2bt2Dh0GPMWkl9fh26Qd636sw5aJRwkI78KIJ35mwsw1+Id0ZMMvT5F51WRLhYMzHfo/xfgXVvDg7A007zCabUtf43LcPqt0lDk6UHg6nnPPv1cvefsgP6I2/kzu/hj2R40k4ZMfaf7l63iPGmCUUXeKpM3SL7m2ZD372o3g2pL1tF32FeoOrazSMf74ZvasuW7HWeto1KQd6+bVbsdrCUcJaNqFkU/+zMSX1+AX2pH1Pz9FpoUyWZh7jX/WfVKrU6whRPhL6N9GwoFYPb9u1ZGSpWd8Dymqmt0vwFC/S8vhQKyejHzLMs0DJfRpLWHfOT0//a1jU7SOZgESere2rn4DjBviyej7PPnu9xSefTuevAINH88OqbNdjAhx4PVnGrPzQB5PvX6enQfyeP2ZxoQ3Mf24luFKNuzI5vl3L/DKJ4lIpRLmzA7BTmHd5+69oud/Eb3+7h33Av//5LTgX+fpp59GIpEQHR3NmDFjCAsLo3nz5syYMYPDhw+byWZnZzNq1CgcHBwIDQ1lw4YNZtdjY2MZPHgwSqUSLy8vHnroIbKzTaP2Op2OTz75hJCQEBQKBQEBAXz44YcW9dLpdDz++OOEhYVx5coVwHwK0o0pS2vWrKF37944ODjQunVrDh06VOfvfeeddwgICEChUODr68tzzz1nvFZZWcmsWbNo1KgRjo6OdOzYkT179hiv35hKtGnTJpo1a4ZCoeCXX37Bzs6O/Px8s+c899xz9OzZ0+y+m9mwYQPt27fHzs4Od3d3Ro8eXW897gRDezizK7qIXUeKuZZZxW/rc8nO1zCgi5NF+QGdncjO1/Db+lyuZVax60gxu6OLGdZLZSYnkcBzkzz4c2s+mbm398E7sJMD+06Use9EOWnZWpZtLSa3QEfvqJrOCoBe7e3JKTDIpWVr2XeinH0nyhnY2dRAlpTrKSzRGY/mwbZUVuk5Gmudk2NIdyd2Hy1md3QJqZkaft+YT06+lv6dlBbl+3VyIidPy+8b80nN1LA7uoQ9x4oZ0rOmHadPcGPV9oLbtiNAvyg7Dpyu5MDpStJzdKzcWUZekY6ebSw7NHtEKsgtMsil5+g4cLqSg6cr6d/BzijTsbktfx8q52yShuwCHf+crCT2UhX9OljnJB3R14UdBwvYfqCAq+mVzF+ZRXZeFff1UFuUH9TdmazcKuavzOJqeiXbDxSw82ABI/u5GmUSrpSzaE0W+44VUaW5cy34mMHe/LH2Gvui87icUsbH3ydip5DSr5t77fcM8ebY6QKWrkslJbWcpetSOX62kPuHeJvJ2SmkvP5sEz7/6RJFJdZ9pfXrYMeBUxUcOF1Beo6OP3eWkldYe373bKMgt9AgZ8hvw70DOpjqWsfmCrYcKuNsUpUhv09UEHupiv5RdhbTvBWn9y2iadT9hHcYi4tXE7oMfw2lszexh5dZlO8y/DUiez2Gp39LnN2D6DBoBs5ugVyJ222UObP/d/xCutCm9xOoPYNp0/sJGoV04sz+36zS8eyB3whrN5qmUWNRezah05DXcHT25vyR5RblnVwa0Wnoa4S2GYmtneV3QMLJDbTqNQ3/pj1RufoT0XECjUK7cXb/Iqt0BOgVacORWA1HYjVk5ulZt7+S/GI9XVvaWJTPK9Kzdl8lx+I1lFdaFOGP7RUcOKshNVtHZr6eFbsrkEgg1M86h9uxnQtp2fl+WnUdi5t3E/qMeR0nF29O7rOc333GvE6H/o/jE9gKF88guo+YgYtHIIlndpnJ6XRaNi+aSdchz+Ls7m+Vbjfo2lxKzEUdMRd1ZBXA5mgtBSXQoanl35xfbJA5maijoo5AMD1QXGZ+3A7H9yykeaf7adF5LK7eTeg1+nWULt6cPmDZlr1Gv077vo/jfd2WXYfNQO0RSNJZky39QzsS0ro/rt5NULsH0KbXFNx9m5KaFGOVjllb/+HC21+Rvm57veQDp42nPDmN2Jc+ovh8EikLVpGyaA3BMx4xyjR+dgrZOw6S+OnPlMQnkfjpz2TvOkzQs1Os0vH47oW06HQ/LbsYymSv+w1l8vT+Wux4/+tE9TPZsZsFO4KhTP79+0w6D34WZ7fbK5MAHcMlnEzSczJJT04hbD+hp7AU2oZYdpYUlBhkzlzW11ou/dwgJRvOXdFTUAKX0g1/+7ha74AZNciTZevTOXCsgMtXy/nspysobCX06Vx75PqogZ4cP1vE8o0ZpKRVsHxjBidiixg10DRo+fpniWzfl8uVa+UkJZcx95dkvNxtCQ2y3Bf8/0VPwb2HcMAI6kVubi5btmxh+vTpODrWHOKp7jR49913GTduHKdPn2bw4MFMmjSJ3NxcwDA9qGfPnkRGRnLs2DG2bNlCRkYG48aNM97/6quv8sknn/Dmm28SGxvL0qVL8fLyqvHcyspKxo0bx7Fjx9i/fz+BgYG1/obXX3+dmTNncvLkScLCwpgwYQIajeUP1lWrVvHll1/y008/cfHiRdatW0fLli2N16dOncqBAwdYvnw5p0+fZuzYsQwaNIiLFy8aZUpLS5kzZw6//vor586d48EHH0StVrN69WqjjFar5c8//2TSpEkW9fjrr78YPXo0Q4YM4cSJE+zcuZP27U2jJPXR43aQySDYz5ZT8eZOh9Px5TQNsvwxFRqo4HQ1+ZPxZQT7K5Dd9MYZM0BNYbGW3dGWp9TUW0cpBPrKOZdo/nVwLqmSED/LHxVN/Gw4l1RNPrGCIF+5mY43072NPdFnK6i0YhaFTAaNG9ly+kI1O14sJyzI8oduaKAtpy+ay5+KLyfYz9ZMx/v7OVNUomPPUesiIMz0lEKAt4y4alNF4i5VEdzIcnRJcKOa8rGXqgj0liG9rqdcDlVac6dGlQZC/Bo+C1YugyYBdpyMNf+9J+NKCQ+23HkJD7bnZFyp2bkTsSWEBNrVmt93Ah9PBW4uthw7ZQo9rtLoORVbRPOmlj+6AZqFKTl22nya29FTBTQPM3d6vvBYEIdP5HP8TKFV+t3I79jL1fLvchVNas1veU15S/ldzYlVqdHTxL/h+a3VVJJ97Rx+oV3NzvuFdSXjyol6paHX6aisKEHh4Gw8l3HlJI3CqqfZjYwrJ63SMSf1HL4h5uk1CulKZnL9dLSETlOJXG7+fpDZKMi4Yt2HrkwKfp5S4lPM2734FA1B3tY5SyxhKzdMQyutaLgjU6upJCPlHEER3czOB0V0JTWpYflt56A2O39o8/fYO7nSssvYBut1MzIp+LpJSEg1jwhKSNUR4Gn9RykYbDdzjA0vj7Xhwb7y2/rI1WoqyUw5R2BTc1sGNu1K2qX627KqvKYtjdf1epLjD5GXeYlGTaKs1rUhqDtFkrXjgNm5rG37cG7XAonc8I5x6RRJ9o79ZjLZ2/fh0rlNg593o0wGhpvbMSC8K6kNsWNFCXaOarPzh7d8j73SlRadb69MgqHO+bjApXTzepeUrsfP3fpylJJtSNf3+niF2hFCfCQkpFo3UOHtYYub2oaYs6Zp6VUaPafPF9MstJYQMqBZiCMxZ83bupgzhXXe42hvaJSsGaC4V/T8r6LT373jXkCsASOoFwkJCej1esLDLYdKV+fhhx9mwoQJAHz00Ud8++23REdHM2jQIObNm0fbtm356KOPjPILFizA39+fCxcu4OPjw9dff813333HlCmG0YomTZrQrZt541dcXMyQIUMoKytjz549ODs7UxczZ85kyJAhgMFB1Lx5cxISEiz+puTkZLy9venXrx82NjYEBATQoUMHABITE1m2bBlXr17F19fXmPaWLVtYuHCh8XdVVVXxww8/0Lp1a2O6DzzwAEuXLuXRRx8FYOfOneTl5TF2rOXG98MPP2T8+PG8++67xnM30quvHtWpqKigosJ8Gk1t07VUjjJkMgkFxeaNQkGxFrWT5Q67WiWjIL6mvFwmwclRRn6RlqZBCvp0UDLrC8vhuw3ByUGKTCqhoNi8M1xYrMO5ieWva2ellMJq8gXFOuQyCUoHaY20GvvK8fOSs3CDdR+6tdqxSIuzk2VHltpJRkGRuQPGZEcp+UU6wgJt6RXlyKtfpVulV3WUDhJkUgmFpdVsWaJH5WjZlipHKYUl5h90haU6ZDIJSnsJhSV6Yi9p6BdlR0KKhqw8HeFBclqH2iCxok+oUhpsmV9k/sz8Ig0utcT/q1Vy8otKasjLZRJUShl5hf9Op8dVbXAA5hWYOyzyCqrwcq+5vtDN9+XlV7snv8qYHkDvLq6ENnbkyVfPWq2fMb9LzHssRSU6VI6WnZcqRylFJea6FZbozfM7qYp+UXZcvCm/I0Ntrcrv8tI89Dot9ko3s/P2SjdKi+q31tHpfQvRVJXSpNV9xnNlxdk4VEvTQelGaVEtiyXUQUVp/nUdzaOa7JVulBZbvx5To9BunD2wCK+g9qhcA0hNOkRy3C70OuvKq6O9Ib+LSqvld6kelcPtOQ5uZmhnWwqK9VxIabieZcWG/HZQVcsbJ3dKCuuXN0d3LqCqsoym7Uz5fS0xhjOHVjH51XUN1qk6DgqQSSU1olNKyvQo7a336GYV6FmzX0tGnh6FDXRuJuPxwXK+X19FjuUl1OqkrKR2W9a3nMfsNtgyrM19Zucryor49a0eaDWVSKRS+ox9m8DwrrWkcmdReLlTkWFeryozc5Da2GDr7kJFehYKb3cqMnLMdc7IQeHt0eDnGe3oZG5HRyd3rjTEjhXmdryWFMO5Q6t4cPa6ButkCQdbkEolFFcL0i2pMKz1Yi2xyXocFDC5rxQkhrIfc1HHoTjrvnRraxfzCzV4utXeLrqo5eRVmx6cV6DBxbn2T9knJvlxJr6Yy1cbHrl8r+gpuDcRETCCeqG/PqlOUs8edKtWpnm2jo6OODk5kZlpWGA1JiaG3bt3o1QqjccNJ0hiYiJxcXFUVFTcclHfCRMmUFxczLZt227pfKmuk4+PD4BRp+qMHTuWsrIygoODefzxx1m7dq0xWub48ePo9XrCwsLMfsPevXtJTEw0pmFra2v2TIBJkyaxZ88eUlMNjoclS5YwePDgWhcMPnnyZK12qK8e1ZkzZw7Ozs5mx5w5c2qVB8tzKutqeqvL3yg1esBOIeHZie78tDKHopJ/b586ieQWOtaQN2hp6bd2b2vP1QwNl1Jvc4pPdbtIGjZf1WhHvcGO0ye488vqXIpK76wda+TfLap9DVtW+//PHaVk5mp55zEV372s5oF+Dhw8U3Fbc3UtlTF9HQnWvHQ9v61XoQb9urmx+ff2xkMuq6VM3aJsWtJLIjGd9HCz5ZmHg/jo20Sqqu7AL2hgErXV7xus2FFKZp6Odx935vtZLozv78jB07eX39XbHr3h5C3vSzi5iZjt39F34pc1nDjV79dbeE7DdDT/X6/XI6lhnfrTcehrqNyCWPPVEBa93YpDGz8gtO0oJNLbi1axlA13qh70aWNDmzAbFv5dfltrl9S0m75eeRN3bBMHN3/HsEe+xPH6B3NleTF//fYyAya+j4PS9RYp3Aa36cO6mqXnVJKO9Dw9VzL1rNijIadQT6eI241OqmnL+ih7PmYTh7d8x+CHv6zhfLBVODJp1jrGv7SKLkNeZO+6j0m5eOQ29WwAtTVSN5+3JHN7L6FqKtTfjof+/o7BU012rCwvZsvvL9NvwvvY/5tl8rqGt1O/AzyhazMJW2L0zN+qY9U+LSG+Ero1r1+B79PFhfW/tDIeMtmNvKope8t20VK213LTM1P8aOxvx5zvL/9/pee9wr20BswPP/xA48aNsbOzo127duzbV/t6VmvWrKF///54eHigUqno3LkzW7dubfAzRQSMoF6EhoYikUiIi4tj5MiRt5S3sTEfPZVIJMZFaHU6HcOGDeOTTz6pcZ+Pjw9JSUn10mnw4MH88ccfHD58mD59+jRIpxsdudoWxvX39yc+Pp7t27ezY8cOnn76aT777DP27t2LTqdDJpMRExODTGbeMVIqTdMK7O3ta3QYO3ToQJMmTVi+fDlPPfUUa9euZeHChbXqbG9f+3zQ+upRnVdffZUZM2aYnVMoFDz0WloN2cISLVqtvka0i7NSRkGR5d51fmHN6BiVUoZGq6e4RIufty2ebjbMfsQ0H/aGmZZ9GsgLn1wjI6f+jo6iUh1anR5npbk/2cmxZpTLDQqKdTXkVY4SNFo9JWXm99jKoUNzBev2WD/F54YdnS3YpbC4FjsWaS3Ka7R6ikt1+HnZ4Okq5+WHTSN6N+z4xxx/ZnyW1uA1YYpL9QZbOkoBk15ODhIKa3GWFZboaiy26eQgRavVU1xmaAmLy/T8uLYEuQyU9hLyi/WM6mlPdkHDHUeFxQZbuqjMmy9nJzn5tUSy5BdqasirnQy2LKrF/tZw4FgesRdNU+psbQxlzFVtQ+5NES0uKpsao2o3k1st2gVA7WxD7vV7woIdcVXb8NPHLYzXZTIJrSKcGDXImwETo+sVhnsjv1XVFmB1cpTWmd+qGnVNUiO/560pNsvv0b3syc5vuK3tHFyQSGU1ol3Ki3NqRLBUJ/HUZvaueoP+k77CL7SL2TV7pXuNNMuKc2pEsdQHhYPaso4luTWdPg3A3tGVfg9+h6aqgorSfBxUnhzbOhcnl0ZWpVdSdj2/HarX15pRMdbQq40N/drbMm99GWk51jmF7ZWG/C4pNLdlaVEODk515835mM1s/eN1hj32NYHhpvzOz0qhMOcaa398ynhOrzfoN/fZZjz61hbUHgH11rG0ArQ6PcpqzbOjncRYB+4EeuBath43lXWeHXvH63XHClvGH9/MjmWvM2Tq1wQ07VLjukQqRe0RCICnXwS5GYkc3fEz/qEdrdK1IVRkZNeIZLH1cEVXVUVlTr5BJj0bhbf5b1R4utaInKkPtdqxuH523L70dYY88jWBN9kxPzuFwtxrrP+5Zpn86oVmPPx6w8okQGkl6HT6GtEuDgrDAtDW0rOllDOXDevKgGFnJRu5nsFREvafu3V5P3S8gPMJpv6TzfV20UVtY7bgvVolJ7+OdjEvX4Orulo7rpKTV1izn/P0Q350buPMSx9eJDuvfvPG7xU9BXeWFStW8MILL/DDDz/QtWtXfvrpJ+677z5iY2MJCKhZB//55x/69+/PRx99hFqtZuHChQwbNowjR47Qpk39pzgKB4ygXri6ujJw4EC+//57nnvuuRrrwOTn59dYB6Y22rZty+rVqwkKCkIur1kEQ0NDsbe3Z+fOnTz22GO1pvPUU0/RokULhg8fzl9//WVcyPZOYW9vz/Dhwxk+fDjTp08nPDycM2fO0KZNG7RaLZmZmXTv3vDtQCdOnMiSJUvw8/NDKpUap0VZolWrVuzcuZOpU6fWuGatHgqFot47RGm1kHS1klZhdhw9a1pDo1WYHUfPlVq85+KVCto1M++Ztm5qR1JKBVodpGZW8dJn18yuj7/PBTuFhEXrDAv8NgStDq6kamgWbMvx86Z1XZoH23Ii3vKORYlXq4gMM7dB8ya2XE7V1NhWMaq5HTZyCYdOW9+D0Wrh0rVKWoXaceycKW69ZagdMbXasZK21ezYKsyOpKuVBjtmVfHyXHOn2biBztgrpPy2IY8cK3by0eogOV1LRJCckxdNnYGIIBtOXbS8AmfSNS2tQmwA0++KaGzDlXQt1f2bGi3kF+uRSqFNUxtizteyqmcdaLSQmFxO6wgHDp8yOTsiIxw4csryekLnk8ro0MrcKRnZzJGEK+W3tY1mdcrKdZSVm5e5nLxK2rdyJuGyIZ/lMgmtmznx85KUWtOJvVBMu5bOrPrLNLWsfStnzl0wzEM4fqaAqS+dNrtn9lPBJKeWs2x9ar3nQJvy24aTF+qb3xpahpiHXzcLqk9+2xIT1/D8lsltcW/UnGsXD5ptEX314kGCmtXueE84uYm9K1+n78S5BET0qnHdKzCSaxcP0qr7w8Zz1y4cwCsw0iod3Xybk5pwkKDmJh1TEw4SEHHrwYFbIbdRIHf2Qqet4vK57TRuOciqdLQ6uJqpI8xfzpkkkzMszF/O2dvYEh6gdxsb+re35acNZaTcxvbTMrktXv7NuXz+AKGRJltePn+QkFa1R8XGHdvE1j9eY8jUL2jSopfZNVfvYKa8vtHs3IGNX1FZXkLvsYbFVBuCVgepOXpCfKXEJZvsaPj/zkYjertKyMizzqkjk9vi6d+c5PgDhLQ22TI5/iDBLWu35fmYTWxf9hr3Tf6Cxs171e9hej1aTcPrtzXkHz6J55DeZuc8+nejIOYs+uuRynmHT+LetyuXvjYtqu3erxt5h040+Hk3yuSV6nY8f5Amt7DjtqWvMXjKFwRXs6OrVzAPvWJeJg/+9RWVFSX0Gt3wMgmg00FaHjT2lhB/zVRmGntLuHDNesegjaxm8MaNNqY+QUWGdtG8bOTkV9G2hROJVwz9BrlMQqtwJfNX1D4tPTahhLYtnFizxTTtq10LFbEXzQfHpk/2o2s7Z2Z+lEB6Vv3L5L2ip+DO8sUXX/Doo48avze/+uortm7dyrx58yzODvjqq6/M/v/oo49Yv349GzdubJADRkxBEtSbH374Aa1WS4cOHVi9ejUXL14kLi6Ob775hs6dO9c7nenTp5Obm8uECROIjo4mKSmJbdu28cgjj6DVarGzs2P27NnMmjWL33//ncTERA4fPsz8+fNrpPXss8/ywQcfMHToUPbv32/hadaxaNEi5s+fz9mzZ0lKSmLx4sXY29sTGBhIWFgYkyZNYvLkyaxZs4ZLly5x9OhRPvnkEzZv3nzLtCdNmsTx48f58MMPGTNmDHZ2tU/Offvtt1m2bBlvv/02cXFxnDlzhk8//RTgtvWoL5v+KaBvRyd6d1DSyNOGKcNdcHeRs/2Q4WNwwmA10yeYRoG2HSrC3UXO5OEuNPK0oXcHJX06OLFxj2H9lCqNnpT0KrOjpExHeYXhvNaKgISth0vp0daebpF2+LjLGD9QiauzlD3HDI3m/X0deWykaQHTPcfKcHOW8cAAJT7uMrpF2tG9jT1bD9V0hnRvY8fx8xWU3ObI5l/7iujdQUmv9o74esp5aJgad7WMHYcNToPxg5x56gHTaPmOw0W4u8h4cKgaX085vdo70jtKyV97b9gRrmZUmR2l5TrKKnRczbDOjgA7jpbTtbWCLi1t8XaTMraPPS4qKf+cNHQQRvaw4+Ehpt2i/jlZgatKypg+9ni7SenS0paurWzZHm1yWAX5yIgMs8HdWUqIn5znxiqRSGDbEeu29F6/M4/+XdX07azCz9uWR8d44O5iw5Z9+QA8NMKdF6aYOrBb9hXg4WrDI/d74OdtS9/OKvp1cWbdjlyjjFwGjf0UNPZTYCOT4KaW09hPgbeH5bVQ6suqzelMGuVLtygXgvzteWV6MOUVOnbsN42mvjo9mMcmmHbAWL05najWzowf4YO/rx3jR/jQrqWK1dcdMmXlOi6nlJkd5RU6CouquJzSsG1TdkSX0621gi6trud3XwdcVVL+OWHIm5E97Xl4qMnhvvdEBW4qKWP7OBjyu5UtXVsr2BZtem6Qj4w2N+X38+OckEhg6xHrnJituj/M+aOrOH90NXkZiRzcOIfi/DQiOo0HIPrvuexeMdson3ByE7tXvEKnobPxDGhNaVEWpUVZVJaZFtJo0fUhrl48wMk9v5CfmcTJPb9wNeEQLbtNsUrHFl2ncCFmNReOrSY/M5Ejf82huCCN8A4PAHBs6xfsXTnb7J6c1DhyUuOoqiilvCSPnNQ48jITjNczU05x+dw2CnNTSL98jK2LpqHX62jZ/VGrdATYc7KKTs3kdIiQ4+kiYWQ3W1yUEg6eNTjghnS2ZWI/c+e0r7sUX3cpChtDRJOvuxQvF1NURp82NgzuZMvyXeXkFulxcpDg5CDB1sqq077vVM4cXMWZg6vISU9k96qPKMpNo3U3Q37/s34um3+bZZSPO7aJv3+bTc/Rs/ENak1JQRYlBVlUXM9vuY0CD98ws0Nhr8LWzhEP3zBk8trXc6iNA+d0tAuV0jZEiocz3Bclw9kRjl5f/6x/Wxn3dzOPYPR2leDtKsFWDo4Kw/8eN82e7t1aSoivBBel4dqorjJ8XCVEx1vv1GnbaypnD6/i3OFV5KYnsnfNRxTlpdGqq8GW+zfOZesfJluej9nEtj9m02PEbHyCWlNSmEVJocmWANHbf+LK+QMUZKeQm5HI8d0LiTu6noj2w63SUebogKp1OKrWhqnoDo39ULUOx87fMFW86QczaL3QFDF95efl2Af6EvHZKyjDg/F7+H78p95P0hcLjDKXv/sd9/5dCZ75OI5Ngwme+TjufTtz+Vvrdjlr23sqZw+t4uwhQ5ncc8OO18vk/g1z2bLY3I5bF8+m50jLdpTbKHD3DTM7FPYqbBWOuFtZJgGOnNcTGSyhdWMJbiro10aCswMcTzD0X3q1kjCso3lElZfacNjKDdEyXmpwv2mzxYupetqFSGgWIMHZERp7Qc+WEi6m6q2e0bV2SyYThnnRtZ0zQX52zJwWQEWlnl2H8owyLz8RyCPjfIz/r9uWRbsWKsYN8cTfR8G4IZ60ae7E2q2mpQSeneJH3y4uzJl3hbJyLS7Oclyc5djaWBdFdq/o+V9Er9PftaOiooLCwkKzo/ral2DYyCUmJoYBAwaYnR8wYAAHDx6s1+/U6XQUFRXh6tqwqYQiAkZQbxo3bmx0HLz00kukpaXh4eFBu3btmDdvXr3T8fX15cCBA8yePZuBAwdSUVFBYGAggwYNQnp9G40333wTuVzOW2+9RWpqKj4+Pjz55JMW03vhhRfQ6XQMHjyYLVu20KVLzXDZhqJWq/n444+ZMWMGWq2Wli1bsnHjRtzcDB/ICxcu5IMPPuCll17i2rVruLm50blzZwYPHnzLtENDQ4mKiuLo0aM1PKnV6dWrFytXruT999/n448/RqVS0aNHD+P129Gjvhw6WYqTQy7391fjopKRklbJnF8zyM4zdDRdVHLcbwq3zMrVMOfXDKaMcGVgVxV5BRoWrsvlyBnLkR53gqPnKlDaFzO8pyPOSinXMjV8taSAnOtTXJyVUlydTZ3h7HwdXy7NZ8JAJX2i7Mkv0rH07yJi4sxf0F6uMsICbfl8cR63y+FTpTg5SBndzxm1SkZKehWfLMgyTstQq2S4q006ZuVp+XRBFg8Nc2FAFyfyCrX8tiGP6LO3uS/pLYg5X4XSvowhXe1QOUpJzdby3cpicgtvsqXK5LvPKdDx3apixvaxp2cbBQXFOlbsKOXETREVNnIJI7rb466WUlGp52xSFQv/KqHMil1SAPbHFOHkKOOBIe64qmRcSavkve+vknV9ypWLsxx3V9PXX2ZOFe99f5VHx3gyuKea3AINv/6ZwaETpogZV2c5X70eZPx/VH9XRvV35cyFUt74svZolVuxfH0aClspLzwWhJOjnLiEYl7+8Dxl5aaPKk93hVnUyrkLxbz3VQKPjvfjkQf8SE2v4L2vEohLsH4aXG0cO1+Jo72EIV3tcTbmd1Gd+f3tyiLG9XWgZ1tnQ35vL+VEvHl+D+/hgMf1/D6TVMWCTcVW53eT1oMpL83n+M7vKS3MwtU7lPum/mScilNalEVxvmlEMu7ICvQ6DQfWvceBde8Zz4e1G0mvcR8D4B3Ulr4T5nJ029cc2/YNKld/+k36As+A1lhDcKvBVJTmc3L3D5QWZeHiFcqAyT+ivEnHkgLziLX13482/p2Teo6kU5tQqn0Z9/JOALSaCo5v/4aivBTktg74hfWg59hPUNibb0XfEE4maHC0g4FRtqgcJaTl6Ph5Uxl5RYa8UTlIcHEyH5t7ebzJ4ervKaNdUxtyC3W8/7vhnd61pQ1ymYSp95lH7G2JrmRrdMNHdsPbDaasJI9Df/9ASWEm7j5hjH76Z5zdDLYsKciiMM9ky1P7V6DTadi54j12rjDld/OOo7hv8scNfn59OHtZh4MCekfKcLKXkZGnZ/EODfnXq6iTA6irTe17ZrjpndTIHVo3kZFXrGfuKkPdsbOVMLKLDKU9lFdCWq6eX//WcC3beud/07aDKS/J4/DWHygtyMTNJ4wRT/yMyvW6LQvNbXnmoMGWu1e9x+5VJltGdBjFwEkGW2oqS9m98l2KCtKR29jh6hnMwIc+o2lb6/odzu1a0HnnYuP/zT5/DYCU39dw+tFXUfh4YO9v+sAtu3yVo8Om0WzuqwQ+NYmK1EzOvfgh6Wu3GWXyDp3gxKQZNH33BZq++xyliSmcmPgi+dHmkYP15YYdj2z9gZLrdhz5pLkdi2624wGDHXetfI9dK012bNZhFAMf/HfKJEBcimHB3G4tJCjtJGQVwPJ/dBRe734p7bk+ZdhUph4bZOp3+LhKaBEE+SV6vt9oaAP2n9OD3uB0cbKXUFphcMrsOW19ufzzr0wUtlKeedgfJwcZ55NKePXTBPN20c3GbF232IslfPT9ZR4e48OUMT6kZVTy4feXOJ9o6lsO62eYmjb39VCz53328xW278ulodwregrMmTNnjtnmJWAY0H7nnXfMzmVnZ6PVamvssuvl5UV6ev02t5g7dy4lJSVmO/nWB4m+rlULBQLB/wzjXrp8t1Wokz/nBvHIu5YXTf6vsOBtTybMSr7batySZZ8G8OQnt+9U+jf5cbYLI56Kv9tq1Mn6eU3pPe7/cOFJK9n9Z0ee+Pi/3an76RVX5q77b3dHXhop4ZNV/97C4XeK2WOkvPid5el4/xW+fEbJLzvuthZ183g/eGPRf39qwAcP2zJvy93Wom6eGgR/2TS922rUyZCqeH5s+Fqa/+c8ORA+XP7f3q749fEyBjzU8Ole/5f8P/bOOj6K4///z5Pk4hcXooQEQrAEd3cpLoUipVChLTVKhU+L1N1poQKUCu4Ud5cQLIEQEiLE3e1y9/vj4I5LLiEJpSG/7zwfj3tAdt8z+9rZ3ZnZ97xndu/q4EdeI2h1NkQ+3Vh/beVLw8uMfu214vILiYmJuLu7c/LkSYOZHB988AGrV6/m+vXr1R7n77//ZtasWWzdupX+/fvXSqOIgBEIBAKBQCAQCAQCgUDQoKnpWpeOjo7IZLJK0S6pqamVomIqsnbtWp566inWr19fa+cLiDVgBAKBQCAQCAQCgUAgEPwfwdTUlHbt2rFv3z6D7fv27at2OYu///6bGTNm8Ndff1X7IZXqEBEwAoFAIBAIBAKBQCAQCB6YhrLAyauvvsrUqVNp3749Xbp0Yfny5cTFxenWHX3rrbdISEjg999/B7TOl2nTpvHNN9/QuXNnXfSMubk5SqWyyuNURDhgBAKBQCAQCAQCgUAgEPyfYeLEiWRkZLBkyRKSkpJo2bIl//zzD97e3gAkJSURF6df23HZsmWoVCqef/55nn/+ed326dOns3LlyhofVzhgBAKBQCAQCAQCgUAgEDwwanUDCYEB5syZw5w5c4zuq+hUOXz48L9yTLEGjEAgEAgEAoFAIBAIBALBQ0ZEwAgEAoFAIBAIBAKBQCB4YBrKGjD1hYiAEQgEAoFAIBAIBAKBQCB4yAgHjEAgEAgEAoFAIBAIBALBQ0ZMQRIIBAKBQCAQCAQCgUDwwIgpSNUjImAEAoFAIBAIBAKBQCAQCB4yIgJGIBAIBAKBQCAQCAQCwQOjFiEw1SLRaEQJCQQCgUAgEAgEAoFAIHgw3vtbVW/HfufxRz++5NFXKBAI/hN6jj5e3xKq5ejm7kx7J6m+ZVTL7++58dI3efUt475885I1T72XVt8yquXXd5yY8FpMfcuolnVf+DB8dnh9y7gvO34ObBBl2RDuyZmLU+tbxn35baEzITcy61tGtbRrak/WpSP1LaNa7Nr04mhYQX3LuC89W1hSdHB1fcuoFvO+U/lpT32rqJ5nB8FOk2b1LeO+DCuL4JmPH+3ne9mb9vQYeay+ZVTLsa096D7i0a6DAI5v71XfEgQPAeGAEQgEAoFAIBAIBAKBQPDAaNT1reDRRizCKxAIBAKBQCAQCAQCgUDwkBERMAKBQCAQCAQCgUAgEAgeGLHEbPWICBiBQCAQCAQCgUAgEAgEgoeMiIARCAQCgUAgEAgEAoFA8MCoxRow1SIiYAQCgUAgEAgEAoFAIBAIHjLCASMQCAQCgUAgEAgEAoFA8JARU5AEAoFAIBAIBAKBQCAQPDBiEd7qEREwAoFAIBAIBAKBQCAQCAQPGeGAEdQbycnJDBgwAEtLS2xtbQGQSCRs2bIFgJiYGCQSCRcvXqxxnitXrtTl1RCpyzkLBAKBQCAQCAQCwaOAWlN/v4aAmIIk+FeYMWMG2dnZOudJTfjqq69ISkri4sWLKJXKSvs9PT1JSkrC0dHxX1RaN63/FQ/rnP8NnpzoxYiBLlhbygmPzOer5VHExBdWm6ZXZweemuxNI1czEpOL+fnPWI6dyTDI88lJXgZpMrJKGT3zbK319etowdDuliitZCSkqvhzVw43YsuqtG/mY8rkwTa4O8vJzitn5/ECDp0zPB8LMwnj+lvTPtAMCzMp6dnl/LUrl8uRJbXWB9C9tQl925piYykhOUPNpqMlRCeWG7W1sZAwqqcCD2cZTrYSjl4sY/NRw+O62ksZ2sUUD2cZDjZSNh0p5sjFqs+5pvRpZ8agLhbYWktJSFOxZk8BkfFV59vUy4SJAy1xd5KTnadm18lCjlwo1u1/faqSAB/TSukuR5bwzZrcOmkc2NWax3rbYGsj53ZyKSu3ZnL9VtXXpbmvgumP2ePhakpWropth3LZdyrPqG3XIEtenurEuauFfLYitU76AIb2tmPMIAfslXLiEkv4eW0KYZFVPzMtm1owa4ILXo0UZGar2Lgng11Hsgy1tbXmiZHOuDmZkJRWxuotqZwKNX4eNeXfLsuOrSwY3U+Jq6MJMikkp6vYfiSHYyEFddbYEO7JPu3NGdz1jsZUFX/vyScyrhqN3iZMGmh1pw5Ss+tEAYdD9BrnT7c1qvHSjRK++TunThoB9u3cyI5Nf5KdlYG7V2OmzX6ZgBZB900XEX6J9956Hk9vXz769neDfWdPHGL9n8tJSUrAxc2dCVOfoUOX3nXWuGHPYf7ctoeM7BwaezTilRkTCWrub9Q2JCyC5xd/UWn7mq8W4+PuBsCOwyd5f+nKSjZH/vgBhalJnTQe2rWOPVt/JycrnUaevkycOY+mgW2N2kZeC2Xj79+SnBBDaWkxDk5u9Bw4hgEjntDZfPbObG6EhVRK26ptd+b+79s6aQRYe+Q8q/adIj0nnyZuTrw+fiBt/b2qtC8tU7Hsn2P8c/YK6bkFuNhaM2tId0Z1DQLgQOh1ft19gri0TFTlaryc7ZnWvxPDO7Wus8ZLx/7k/IFfKchNw8HVn15j38ajSXujtpGX9nL5+N+k3b5GuaoUBzd/Og95AZ/mPYzaR4Ts5J9Vr9KkVT8em720Tvrsu7fH97WnULZtiVkjZ86PnUPKtgPVp+nRgcDP38Qq0J+SxFSivviFuOVrDGxcRw+k6aKXsGjiRWFUHBHvfkXK1v110niXXsEKBnYyQ2klJTG9nHX7C7l5W1Wlvb+nnPH9LGjkKCM7X83e08Ucvaiv/6VSGNLFjC4tFdhaS0nOLGfzoSLCbj1YX+PJSV48NshV26e8kceXy2rQp+ziwKwpPro+5fI/Yjh2+p4+5SQvZj7ubZAmI6uUUTPO1FnnzMe9eWyQG9ZWd3T+FMmtuPvo7OrIrCk+uLuZk5BUxM+rb3H0Hp0AjvamPDfDl87t7FEopMQnFPHxtxFEROXXWaug4SAcMIJ6Iyoqinbt2uHvb7xTJZPJcHV1/Y9VPTzKysowMam+o/eonvPk0e5MeKwRH30XSXxiEdPGefLlohZMef4CRcXGHQgtmlmzcF4Av/6ldbr06OTA4nnNeP7ty1yL1Dcw0XEFvLrwqu7v8jq4rzu1NGPKEBtW7cghMq6MPu0tmDfVnre+SyMjp/K38BxtZcybasfh80Us25iNv5cJ04cryStQcz5c+wIkk8H86fbkFqj5bk0WmTlqHJRSikrr5l4P9pczuqeC9YdKuJVYTtdWJjw70pyP/iggK69ynnIZ5Bdq2He2hN7BlV/CAExNID1HQ2hkCaN7KuqkqyIdAhVMGmTFH//kc/N2Gb3amvHyZCXv/JhJZq6xspTy8uNKjoYW8cuWPPw8THhiqBX5hWpCrpcCsHR9LjKZPo2VhZRFT9txPrxujqwuQRbMGGnPL5syiLhVQv8u1rw924VXPk0gI7vy/ehkL+etWS4cOJPPd3+l06yxglljHMjNL+fMFcOOlKOdjKkj7AiPKq6UT23o0d6G2RNd+fHPJMJvFjKklx2L5noxZ+FN0jIrd4ZdHE1YNNeLPcey+PyXBAL9LHhuihs5eSpOXtA6NwJ8zXnjaQ/+2Kp1unQJtuaNpz2Y/2kMN24V1UnnwyjL/EI1m/bnkJhahqpcQ9tAc+ZMdCQ3v5xLEbUv14ZwT3ZooeDxwVas3pnHzfgyercz55UpSv73Q9UaX5lsy9ELRfy8ORc/TxOmDrMmr1BDyDWthh/W5iCTSe7RKGHxs/Z11ghw6th+fv/la2Y++zpNA1tzYPdmPln0Kp/98BeOzlW3PYUF+fz41Xu0aNOe3OxMg303rl/h20/fYfwTs2nfuRfnTx/h20/+x8JPluHXrEWtNe47eY6vV67l9VmTad3Mjy37j/LKh9/y91eLcHV0qDLduq/fw9LCTPe3rY21wX5LczPWffOewba6Ol/OHd/D2hWfM2X2W/g1b8ORPRv59v0XWfzNBhyc3CrZKxTm9Bk6EQ9vfxRm5ty8Fsrqnz5AoTCn58CxAMyZ/zkqlf6lNj8vhyWvTqJd1/510giw53wYn63fy9uThhDUxJMNxy7w/A9/s+ndZ3GzrzzwBTD/l01k5Baw8InheDrbk5lXQHm5/h62sTRj1pBu+Lg4YiKXcvTKTRb+vh17a0u6BjaptcaIC/9weNNH9B2/kEa+bblyYg1bfpzNtLd3YmPfqJJ9ws1zeDXrSrfhr6AwtyHszCa2Ln+Ox19dh7NnoIFtbmYCR7d8gnsVzpyaIrO0IPdyBLdXbaLd+u/va2/u40GH7cuJ/3U9F6e/jl3XtrT8biGlaZkkb94LgG3nIIL/+oobC78heet+XEf2p+3fX3Oq92Syz16uk872AaZM6G/BX3sKiUooo2eQGS9OsGbRLzlkGamHHJRSXhxvzfFLJfy2PZ8m7iZMHmRBXpGa0AjtvTiqpzkdWyj4Y1cByRnlBPqa8OwYKz79I5f4FOP9v/sxeYwHE0e68+E3N4hPLGL6BC++WtKSyXNCKCqquk+56PXm/PpnDEdPZ9CzswNLXg/g+bcuE35DPwAQHVvAK+9e0f39IJ9DnjLWk4mjPPjg6wjiEwqZPtGbr5a05vHnzlWj04bF8wP55Y9bHD2dTs/Ojix5I5A5b1zU6bS2lPPjp8FcuJLNvEVXyMopxd3VnLyCqh1lgv+/EFOQBA+F3r17M3fuXObPn4+9vT2urq4sWrRIt9/Hx4eNGzfy+++/I5FImDFjRqU8jE3H2bZtG/7+/pibm9OnTx9WrVqFRCIhOzvbIO2ePXto3rw5VlZWDB48mKSkJAAWLVrEqlWr2Lp1KxKJBIlEwuHDh42ew4YNG2jVqhXm5uY4ODjQv39/Cgr0I7grVqygefPmmJmZERAQwNKl+pGVu9rXrVtH7969MTMzY+nSpZibm7N7926D42zatAlLS0vy8/ONnnNYWBjDhg3DxsYGa2trevToQVRUVI10/FuMH+7O6g3xHD2dwa24Qj789gYKhYwBPZ2qSdOI85ey+HPTbeISivhz021CLucwfoS7gV15uYbM7DLdLye39g3Q4K6WHLlQyJGQIhLTVPy5K5fMXDV9O1oate/b0YKMHDV/7solMU3FkZAijl4oZGg3vX3PthZYWkj55q8sIuPKyMgp50ZcGfHJdWsge7c15XRYGafDykjJUrP5aAlZ+Wq6tTL+ApCZp2HT0RLOXVdV6fSJS1Gz7XgJoTdUqOrWD6rEwM7mHAst5tjFYpLSy1mzt4DM3HJ6tzc3fl7tzMnI1dolpZdz7GIxxy8WM6iLhc6moFhDboH+F9jYlNIyDeeu1e1FcnhPJQfP5nHwTD4JqWWs2ppJeraKgV2tjdoP7GJNeraKVVszSUgt4+CZfA6dzWdEbxsDO4kE5k5xYt2ebFKNOElqw6gBDuw7nsXe49ncTi7l57UppGeVMbSXvVH7Ib3sSMss4+e1KdxOLmXv8Wz2n8hizED9C+dj/e0JDS9g/a4MbieXsn5XBpeuFzCyv/E8a8LDKMvwqGLOXS0kIbWMlAwVu47lEZtUSkBjM6N53o+GcE8O6mzBsdAijoVqNf69J5/MHDV9OlShsb05GTlau6T0cu35hRrTqNb9Wvje0Rhed+fgP1v+pveAEfQZ9Bjunj5Mm/0KDo7O7N+1qdp0v/zwCV17DcA/oGWlfbu3rqVVUAdGjp+Ou6cPI8dPp0Wb9uzatrZOGv/esY8Rfbszsl8PGnu48cqMiTg72rFp75Fq09kprXGwVep+MqlhF1cikRjsd7A17oCoCfu2/0n3fqPoMWA0bh6+THrqdewcXDiyZ4NRey/fADr1GIy7VxMcnRvRudcwWgR1IfJaqM7G0lqJ0s5R97t26TSmCjPadx1QZ52rD5xhdNcgxnQPxtfNkfkTBuJqZ8P6o5UjbQBOhEVxPjKW71+YROfmvrg72NLKx52gJp46mw5NfegbFICvmyOeTvZM6dsRf3cXQm/G10njhUMraNl5LK26jsfBtQm9xy7A2s6Vy8f/Nmrfe+wCOvSfjat3a+ycfeg+4lVsnbyJvnrQwE6tLmfX7/PoMvRFlA6eRvOqKWl7jnJj4dckb9lXI3vvpydRHJdE+Gsfkn89mvjfNhC/chO+r87U2TR+cTrp+08S9elyCiKiifp0OekHT+Pz4vQ66+zf0YwTl0o4cbmE5Aw16w4UkpWrplew8QGaXsEKMnO1dskZak5c1qYd2FFfb3VqoWD3qSKuRpeRnqPmaGgJ4bfKGNChbvU5wIQR7vy+Xt+n/ODrCBSm9+lTPubO+YtZ/LFR26f8Y+NtQi5nM36EoZOuYp8yO7fukTrjH3Pn93VxHD2VrtX51XUUChkDezlXfW4j7+jcEE/c7SL+2BBPyKVsJjzmobOZMs6T1PQSPvomgmuReSSnlhByOZvE5Acb+HmU0Kg19fZrCAgHjOChsWrVKiwtLTlz5gyffvopS5YsYd8+beN17tw5Bg8ezIQJE0hKSuKbb765b34xMTGMGzeOUaNGcfHiRZ555hkWLFhQya6wsJDPP/+c1atXc/ToUeLi4pg3bx4A8+bNY8KECTqnTFJSEl27dq2UR1JSEo8//jgzZ87k2rVrHD58mDFjxuhW9f75559ZsGABH3zwAdeuXePDDz/knXfeYdWqVQb5vPHGG8ydO5dr164xfvx4hg0bxp9//mlg89dffzFy5EisrKwq6UhISKBnz56YmZlx8OBBQkJCmDlzJiqVqlY6HgQ3FwUO9qacu5it21am0nApLIeWAcZf0kA7WnFvGoCzF7No2cwwjYebOZt+7cDan9qz8NVmuLnULpJDJgOfRiZcvWn44nTlZgn+nsadG36eJlwxYu/jrp0yAdA2QMHN+DKmDVfy3RvOfPiCIyN6WiKRGMnwfhql4OksJSLO0EsSEVtOYzdZFan+e2RS8HaTExZdarA9PKoUPw/jAZNN3OWERxnaX40qxdtNrivLivQINuNsWAmldegXyWTg62FaKZLickQxzXyMdwj9vRVcrmB/MaIIX0+FgcZxA23JzS/n0NkHCwGWy8DP24zQcMMpN6Fh+QQ0Mf5CHuBrTmiY4XEvhBXg522ui9QI8LUgNLyiTT7Nq8jzfjzMsryXlv5mNHIyITy69p3LBnFPSsG7kZywCscMiy7Fz8N4HdTEw6TSOYVFleDTqDqN5py9WjeNAKqyMm7djKB1cEeD7a2CO3Hj2pUqUsHh/TtITUpg7ONPGd0fef0qrSrk2Tq4E5HV5FkVZSoVEdFxdGpjGMnQqXUgVyKiqkilZdr89xj29DxeWPIlIVevV9pfVFzCqDlvMuLZ+bz28XdE3IqrtT7QlmNs1DUC23Q22N4iqAtR1y/VKI+46OtERVymaWC7Km2OH9hKh+4DUZjV7fkuU5VzLS6JLoG+Bts7N/flUvRto2kOX75BCy83Vu49xYA3v+GxhUv5cuN+iqu46TQaDWeu3yImJaPaaU1VUa4qJSU+DO+A7gbbvQK6kXgrtIpUFTSo1ZSVFGBmaWuw/fTuHzC3sqdll/G11vWg2HYOIm3/CYNtaXuPoWzXEolcW2/ZdQ4iff9xA5v0fcew6xJcp2PKpODlKiM8xvBahceU0cTdeF3p6y6vbH+rDG9XGXf9l3K5ts93L6UqDU086zaJws3FTNunDNVPry1TabgYlkPLAJsq07VsZs25i4ZTcs+GZlVK49HInM0rOrJ2eQcWzQvAzaVujqJGLmY42is4W1Hn1ezqdQbYcDbUMErwTGgmLZvr03Tr6MD1m3m890Yg21d34bev2zJi4KMX/S54eIgpSIKHRuvWrVm4cCEA/v7+fP/99xw4cIABAwbg5OSEQqHA3Ny8xlNufvrpJ5o1a8Znn30GQLNmzbh69SoffPCBgV1ZWRk//fQTTZpoQ2FfeOEFlixZAoCVlRXm5uaUlJRUe9ykpCRUKhVjxozB21s7n7RVq1a6/e+99x5ffPEFY8aMAaBx48aEh4ezbNkypk/Xj168/PLLOhuAKVOmMG3aNAoLC7GwsCA3N5edO3eyceNGozp++OEHlEola9as0U1fatq0aa113EtJSQklJYbOB4WiaqeHg612+ktmtmEjnZldhqtT1ensbU3JqpAmK7sMezv9dJrwyDxdCKqdrQnTxnux9KM2TH/pArl5NYtAsLaQIpNJyMk3jDPNzS9HaW1cn62VjCv5hmWQk69GLpNgZSElJ1+Nk52c5o1lnLpcxBerM3FxkDN9uBKpVMLWw7V7Qbc0lyCTSsgtNNSYV6TB2vLR8YNbW0i1OgsMdeYUaGhpZVynjZWUnALDzllugWFZ3kvjRnI8nOWs3F63dUtsLGV3rrehMysnvxxba+POLFsbGTkRle3lMgnWljKy88pp5qOgb0cr5n+ZWCddBhqt5MhkErIqRHNl5ZXTVmm82bVTysnKM9SYlatCLpdgYyUnK0eFnVJOdoU8s3NV2NnUrSl/WGUJYG4mYdm7nsjlEtRq+HVTBldu1N4B0xDuybsaK9dBapRNjGtUWknJrWBfsQ6qpNFFzoptdVufBiAvNxu1uhylrWHElNLWjpwK04rukpQYz5pVS1n48U/IZMbvs+zsDCN52pOdlWHUvjqyc/MpV6uxVxq+4NgrbcjINn7ujnZK3nx6KgG+XpSpVOw6epoX3vuKpQtfIzhQ2176NHLlf3Nm4OflTkFRMWv/OcDT73zC6s/excvNpVYa8/O05WhjazgdylppT0529ef8+qzB5OdmUa4u57EJz9BjwGijdrcir5IQd5Ppz79bK233kpVfSLlag721YSSog7Ul6TnG27CE9CxCo+IxNZHz5bPjyM4v4sO/d5FTUMTiaSN0dnlFxQx86xvKysqRSiW8/fgQujT3NZpndRQVZKFRl2NhbViWltaOxOal1SiPkEO/UVZSRNPgIfrziA4h7NQGnnhjS601/RsoXBwpSUk32FaamoHUxARTRztKktNQuDpSkmJ4v5SkZKBwrToKpDqsLO70MyrUfXkFamwsjTuCbSyl5BUY9tNyCzTIZBKszLV5hUeX0b+DGZHxKtKy1AT4yAnyN63TYBSAg51WS2ZOxf5hKa7OVTtL7G1NjfZDDfqUN/K004USi7CzNWX6eE9+/KQN014MqXGfUnc8u7t9X0NHeVZ2KS730Xm/vm8jV3NGDTFn7Zbb/L4+jsCm1rz8tB9lZRp2H0qplc5HFfEV6uoRDhjBQ6N1a8MF2dzc3EhNrfuClhEREXTo0MFgW8eOHSvZWVhY6JwvdT1umzZt6NevH61atWLQoEEMHDiQcePGYWdnR1paGvHx8Tz11FPMnj1bl0alUlVaTLh9e8N5x8OGDUMul7Nt2zYmTZrExo0bsba2ZuDAgUZ1XLx4kR49ehhdO6Y2Ou7lo48+YvHixQbbtI4y7TzzAT2deO1ZP92+Nz4Iu/M/w9pUIrl/BavRVJ/mzIV7RjPiICwijL9/bM/gPs6s2/aAL8ISSbX6Ku6q2JmQSrQdl9+25qDRQEyiCjtrGUO7W9baAVPlQeHRbKUqSLr/ta5wne9uNZKoe5AZt1NV3Ep8sCk+xvRUJ7GivU4jYKaQ8OJkR5atzyCv4AEmjN9HkMSIjupEGitHY/ftg95B/2ZZ3qW4RMPrXyRippDSyt+MaY/Zk5KhqvvaOg3gnqzI/a5N5WupVWnsvHq0Ned2yr+ksWJlV4VIdXk5P3y2kHGTZ+HmXn10g6RCnhoj2x5MoqbKFz7vRq54N9IPqLRq2oSU9Cz+3L5X54Bp2dSXlk31DoLWzZow/Y33Wb/rEK/NnPSvaATNfc95/ge/UlJcSPSNK2xa/R1Obp506jG4kt3x/Vtw9/KjsX/lKV+111nza6PWaM/hw5mjsDbXvmTOGzeAeT9v4K1JgzG7s2aOpULB2rdnU1hSytmIGD7fsA93R1s6NPWpq0hDjRoN+qe2aq6H7ODUru95bPZSnROntDif3b+/Tv/H38Pcqu7TMx+YShWlpPJ2YzYP2ieoZfKq6vO7rN1fyNQhliyerUQDpGWpOXm5hK6taxatPKCXE/Oe06/1+MZ7YUYPrD316sXfr7gM+pSxhYRdz2XNsg4M6ePC2m0J99HpzOvP6wc45y+5E8FXh0bX2Hncu0kqges381i++hYAkdH5+HhZMGpoo/9vHDCC6hEOGMFDo6LTQCKRoH6A1bA0msqdG2OVnLHj3q9Sr4hMJmPfvn2cPHmSvXv38t1337FgwQLOnDmDhYV2jv7PP/9Mp06dKqW7F0tLw5EnU1NTxo0bx19//cWkSZP466+/mDhxInK58UfR3Lzq0OO7ZVkTHffy1ltv8eqrrxpsUygUHJx0DoDjZzMJv6EP/TUx0Y7g2tuakpGl9+rbKU3IyjEcGbiXzOxSA48/gK3ShKzsqtMUl6iJji3Aw63mIdd5hWrKyzUoK4yG21hKyc03vjBKdn45SitZJXtVuYb8O1Eq2XnllKsNG83ENBW21jJkMiivxZorBUUaytUabCylgP4ZsDaXkFf46Dhg8grVWp0Vy9KicgTCXXLz1SgrRPFY3ynLgiLDczOVQ8cWCrYeqf4LAtWRW1BOebmmUoSG0kpGTl4V1zu3ckSHjZVMe70LyvFwNcXZwYQ3Zurndd+tav7+1JuXP0kgJaPmL765+SrKyzXYVYh2sbWWVYpguUtWTuVIFlsbOSqVhryC8iptlNaVo2JqrPMhlOVdNBp0ZRabWIq7iwmj+ilr7YBpCPfkXY0V6yBry8pRLnfJyVcbqbMkdzQaprmrccvhun9FCsDaxhapVEZOhciUnJysShEsAEVFhUTfvEZM9A1W/vQlABqNGo1GwxMju/PWkq9p0aY9trYOlaJdcrMzjeZ5P2xtrJBJpZWiXbJy8ipFxVRHy6aN2X2s6i+fSKVSmjfxIT659i87VtbGyzEvJwsbZfXn7OSiXQPNw9uf3OxMtq9dVskBU1JSxLkTe3ls0rO11nYvdlYWyKQSMnINBwwy8wpwsDG+PpqjjRXOttY65wtAY1dH7fOcnYe3s/b8pFIJXnf+H+Dpyq2kdH7bfbLWDhhzSzskUhmFuYbRIoX5GVhYV/81yIgL/7DvrwUMm/kN3s30U8mz0+PJzUxg6/LndNs0Gu0z9fXLgcxYsBtbp9pPl6oNJSnplSJZTJ3sUZeVUZqRrbVJTkfhaniOCmf7SpEzNSW/8E4/w8qwn2xtKa26rixQV6pbrS0llJdryL9TV+YXafhxUz5yGViZS8jO1zCmtznpRhZpN8bxs5mER1zQ/V1Vn9JWWTnC5V4ys0t10TN3satpn7LR/fuUx89mEH7jvO5v07s67UzJyNIfw05pUikqpqLOin1fO1tDnRlZpZW++BQbX0jvrnWLfnoUUTeQtVjqi0cn9l0guA8BAQGcO3fOYNv58+ersK4aU1NTymvw9iyRSOjWrRuLFy8mNDQUU1NTNm/ejIuLC+7u7kRHR+Pn52fwa9y48X3znTJlCrt37yYsLIxDhw4xZcqUKm1bt27NsWPHKCur3CjVVYdCocDGxsbgd+8UpKLichKSi3W/mPhCMjJLad/GVmcjl0to00LJ1etVh+yHReTR4Z40AB2CbLkaUXUaE7kEbw8Lg8bufpSXQ0xiGS2bGI7GtGxiWuVnam/Gl9GyiWED2dJPQUxCGXc/9nAjrgxne5nBwJyrg4ys3PJaOV8AytUQn6qmmZfhi2szLxm3kv6l1XP/BcrVEJukooWvYdkE+ppW+RnLqAQVgRXsW/iaEpukorxCn69DoAITuYRTV+q+0Fx5OUTfLqV1U8MQ4NZNzYiIMZ5vZGxJJfs2zcyIji+hXA2JqWW89lkC879M1P1CwosIiypm/peJpGfXzsGhKoebscUENTd8yQkKtOJ6lPGvFV2PLiIo0HAdqOBAS27GFunut+vRhQQHWlawseJaFXnej4dRllUhAUxktY+IaBD3pBpiE40f8+Zt43VQ1O2ySufUookpMYlGNLYw02q8/GALNMpNTGjs14wroYbt6NWLZ2navFUle3MLSz75/g8++naV7tdv8Gjc3L346NtVNLnzhSP/gJZcuWiY55XQs/gbyfN+mMjlNPP14uzlcIPtZy9fo1Wzmn9h58ateByrWWRXo9EQGVu9TVXITUzwbtKca5cMHTzhl07TJKBNzTPSaFCVVW7rzp/YR1lZKZ17Da21tnsxkcto7uXGqWu3DLafuXaLNr4eRtMENfEkLTuPwmK9rtjUDKQSCS62Va/5pkFDqar2jmCZ3BQXzxbERhiulxJ3/SSNGle9Fsr1kB3s+fNNhkz/At8WvQ322bv4MvXN7Twxf4vu16RlXzz9O/HE/C1Y2z38tTayT1/EsZ/h+oJOA7qTE3IVzZ1yyjp9Ecd+3QxsHPt3J+tUzda+qUi5GuKSy2nuY+ikaO5jQlSC8WsTnaCqZB/oY0JscnmlrwepyiE7X4NUCsHNTLkUWbPFqIqKjPcpOwTZ6WzkcglBLZRcvV71FMurEXm0b2NnsK1DkF21aWrTpywqKichqVj3uxVXSHpmSWWdLW2r13k91yANQMdge65e06e5ci0HL3cLAxtPdwuSU///WYRXUD3CASNoMDzzzDNcv36dN954gxs3brBu3TpWrlwJ1C7U2cfHh8uXLxMREUF6erpR58aZM2f48MMPOX/+PHFxcWzatIm0tDSaN28OaL+m9NFHH/HNN99w48YNrly5wooVK/jyyy/ve/xevXrh4uLClClT8PHxoXPnzlXavvDCC+Tm5jJp0iTOnz9PZGQkq1evJiIi4oF11Ib1OxJ4YpwnPTo50NjLgrde9KekpJx9R/VztN+e25Snn/DW/b1hRyLtg+yYPNodL3dzJo92p31rW9Zv14eBzpnuQ5sWNrg5K2jub8WS+c2xtJCx+1DtpoztPllAr3YW9GxrTiMnOZOHWOOglHHwrHaEYfwAa54eq+9oHzxbiKOtjMmDrWnkJKdnW3N6tbXgnxMF99gUYGUh5YmhNrg6yGjTVMGIXlbsP1u3kfLDF0rp3MKEToFyXOykjO6pwM5ayokr2vtveFdTpgw0fLF1d5Ti7ihFYaKdj+3uKMXFXl9ty6R6G7lUu66Eu6MUR2XdQ//3ni6iR7AZ3duY4eYoY+IAS+yVMo6EaF/yx/S15KmR+o744ZAiHJRaOzdHGd3bmNEj2Iw9pyqXU/dgc0IjSipFIdSWHUdz6NfJmj4drXB3NmH6Y3Y42snZd0rr3Ht8qC3PP64fWdx7Kg9HOznTHrPD3dmEPh2t6NvRmu2HtR2iMpWG+OQyg19BkZriEu322jrcALbsy2BgDzsGdLPFw9WUWRNccLI34Z8j2hDp6aOdeXWm/usNu45k4exgwqwJLni4mjKgmy0Dutuxaa9+lH3bgUyCA60YO9gBD1dTxg52IKi5JVv3G1+/oyb822UJMKqvklZNzXC2l9PI2YRhPW3o2d6KYxfqNnWvIdyTe04X0rOtOd2DtBonDbLCXinl8HmtxrH9LJk16h6N5+9oHGil1RhkRo9gc6MaewSbceH6g2sEGDrqcQ7t28bhfdtJiI9h9c9fk56WQr8h2rVI1qxaytIvtVNUpVIpnt5NDH42tnaYmirw9G6C2Z3FYQc/NoEroWfZtmE1CfExbNuwmquXzjHksYl10vj48AFsO3Cc7QePc+t2El+vXEtKeiajB/QCYOlfm1j8/W86+zU793PkbChxSSlExyey9K9NHDpzgXGD++hsflm/ndMXw0hISeNGTDwf/LiKGzHxjB7Yq04aB4yYwrEDmzl+YAtJt6NZ+9vnZKYn0+vOJ6U3/fEdv37zjs7+0K61XDp3hJTEOFIS4zhxYCt7t62mkxEny/EDWwju2Bsra9s6abuXqf06sflEKFtOXiQ6KZ3P1u8lKSuHcT3aAvDtloP8b+VWnf3QDi1RWpnz7urtRCWlERIZy1ebDjCyaxvd9KNfd5/g1LVobqdlcSs5ndX7T7Pj9BWGday9ww2gbZ8nuXpqA1dPbSAjOYrDmz4kLyuJ1t21U8OOb/uC3avn6+yvh+xgz+o36DXqDdx82lCQm0ZBbholRdo6S26iwLFRU4OfwtwGU4Uljo2aIpObGtVRHTJLC2zaBGDTJgAAi8Ye2LQJwMxT+8nxZu+/SpsVn+jsY5evwdy7Ec0/exOrAF88ZozF88mxRH+pv29jvv8dxwHd8J03G8tmvvjOm41jvy7EfFf3jyjsP1tM9zYKurY2xdVByvh+FtjbSDkaql3zblQvc2YM1zvxj4SW4GAjZXxfC1wdpHRtbUq3Ngr2ntU79X3cZAQ3NcFRKcXPQ85LE6yRSGDPmbo7C9Ztv9On7KztU749tyklpYZ9ygUvN+WZqT66vzdsT6BDsB2Tx3ho+5RjPGjfxpb12/XT1efMaExQCyVuzgoCm1rz3hvaPuWug3Wb1rN+WwJTx3vR847OBS83o6SknL1H9H3U/73SjGemNTZI0yHYniljPfHyMGfKWE/at7Fl3Tb9wtdrtybQopk1U8d74e5mxoBezjw2yI1NOx98DTpBw0BMQRI0GBo3bsyGDRt47bXX+Oabb+jSpQsLFizgueeeq3YR2YrMnj2bw4cP0759e/Lz8zl06BC9e/c2sLGxseHo0aN8/fXX5Obm4u3tzRdffMGQIdpF3mbNmoWFhQWfffYZ8+fPx9LSklatWvHyyy/f9/gSiYTHH3+czz77jHffrX6BPQcHBw4ePMjrr79Or169kMlkBAUF0a1btwfWURv+2pyAwlTGq083wcpKzrXIPF5bHEZRsf7N1MVJYTDV62pEHou/uM6syd489bg3iSnFLPoigmuR+pcwJwcFC19thtLahOzcMsJv5PHsG5dISavdp2DPXC3GyiKXkb2tsLWWcTtFxRers8jI0eqztZLioNRHn6Rnl/P56iymDLGhXydLsvPKWf1PLufv+bxrZq6az1ZlMnmIDe8/70RWXjl7TxWw41jdpgGERqqwNC9hUCcFSgsJSRlqlm0tIitPW2Y2llLsrA0dJ/On6DtKXi4y2geYkJGrZskKrQalpcTApl87U/q1MyXytorvN9YtKuJceAlW5hJG9LRAaSUlIU3FN3/nkJGjHQ6ztZJib6N3AqVnq/n67xwmDbSkT3tzsvPU/LU7n5DrhiNOLvYymnqZ8MUfDzaNAuDUxUKsLTIZO8AWOxsZ8UmlfPRLCulZ2uttZyPH0VbfvKVlqvjolxSmj7RnUDcbsnJUrNiSyZkrdZ92cj+Onc/F2krGpOGO2CvlxCaWsOjbONIytQ43O1s5Tvb6kceU9DIWfRvHrAkuDOttR0aOiuVrkjl5QR8xdj2qiE+X3+aJUc48MdKZ5LRSPll+mxu36nat4eGUpcJUwqwxDjjYyigt05CQWsZ3f6Vx6mLdyrsh3JPnwkqwMs/nsV6WWo2pKr7+U69RaSXF3qAOUvPVX9k8PsiKvh3uaNyVR0iFz2C72Mto6m3K56sNv/5RV7r06E9+bg6b1vxGdmYGHt6+zF/4BU7O2hfJ7MwMMtJq97LStHlrXpy/hHWrl7H+z+W4uLrz4vz38bsTIVNbBnTtQE5eAb9u3ElGVg6+no348q0XcXPSrvGRnpVDcrre6VimUvHd6g2kZWajMDWhsWcjvnzzRbq21TsE8gsK+Xj5ajKyc7GyMKdpY09+Wvw6LfzuH7VqjA7dB5Gfl8OOdT+Tk5VOI68mzF3wLQ7OWqdqdlY6menJOnu1WsOmP74nPTUBmUyOk4sHY554kZ53HDZ3SU6M5ea1i7zy7tI66arIoPYtyC4oYtnOY6Tn5uPn5sT3z0+ikYMtAGk5+SRl5ujsLcxM+WnuFD5eu4cpH/2K0sqcgW0Def6x3jqbopJSPvx7F6nZeShM5Pi4OvLBkyMZ1L5u17tZ26EUF2RxZs9SCnJScXBryqhnl2Njr52uVZCbRl5Wks7+yom1qNUqDq5fwsH1S3TbAzuOZtATH9dJw/1QtmtJlwOr9cf6/G0A4n/fxOWn3kLh5oT5HWcMQFHMbc6NeJrAL97C+7kplCSmEvbKByRv3quzyToVSuiUV2m2+GWaLZ5LYVQ8oZNfIfvs5TrrPH+9FEtzCcO6maO0lJKYXs736/PIzL2nHrqnrszIUfPd+jwm9LOgV1slOflq1u4rJDRCPzBpIpfwWE8LnGyllJRquBJdxm878ikqqbtD+K9Nt1GYSnntGT9tn/JGHq8uvEpR0T19SkcFmnuicK5ez2Px59eZNcWbWZO9SUguZuFn1wm/oW8jnR0VLJyn71OGReTx7Pza9ynv8ufGeBSmUl59zh9rKxPCb+TyyruXDXU6mXHvbJur13NZ9Gk4s6c2ZtYUHxKSi3j302sGOq9H5vH2h2E8M60xMyZ5k5RSxLc/32Tfkbqvk/moUdulH/6vIdGIEhI0YD744AN++ukn4uPj61tKg6fn6OP3N6pHjm7uzrR3ku5vWI/8/p4bL31Tty+p/Jd885I1T71Xsy9M1Be/vuPEhNdi6ltGtaz7wofhs8Pvb1jP7Pg5sEGUZUO4J2cufvQ7yL8tdCbkRt2jov4L2jW1J+vSkfqWUS12bXpxNOzBnXMPm54tLCk6uPr+hvWIed+p/LSnvlVUz7ODYKdJs/qWcV+GlUXwzMeP9vO97E17eow8Vt8yquXY1h50H/Fo10EAx7fXLUqvvnljed0Hhh6UT56u+TqS9YWIgBE0KJYuXUqHDh1wcHDgxIkTfPbZZ7zwwgv1LUsgEAgEAoFAIBAI/s+jqWZNOIFwwAgaGJGRkbz//vtkZmbi5eXFa6+9xltvvVXfsgQCgUAgEAgEAoFAIKgW4YARNCi++uorvvrqq/qWIRAIBAKBQCAQCAQCQa0QDhiBQCAQCAQCgUAgEAgED4xaLDFbLeIz1AKBQCAQCAQCgUAgEAgEDxkRASMQCAQCgUAgEAgEAoHggREfWa4eEQEjEAgEAoFAIBAIBAKBQPCQEQ4YgUAgEAgEAoFAIBAIBIKHjJiCJBAIBAKBQCAQCAQCgeCBUavFFKTqEBEwAoFAIBAIBAKBQCAQCAQPGREBIxAIBAKBQCAQCAQCgeCBEWvwVo9EI5YpFggEAoFAIBAIBAKBQPCAvPxdfr0d++sXrert2DVFRMAIBAIAnliQWN8SquWPDxrx7CdZ9S2jWn56w475PxXVt4z78umz5oyac6O+ZVTLlqVNGf1CZH3LqJbN3/szbNbV+pZxX3b+0pLinT/Vt4xqMRv2LLtCy+pbRrUMCTaheNM39S3jvpiNeYnidZ/Xt4xqMZswj9eWFtS3jGr5Yo4lz32WXd8y7suPr9s+8jp/fN2WD9aU17eMalkwScYzH2fWt4z7suxNe3aaNKtvGdUyrCyCQdMv1reMatmzKuiR1whanQ0RjVgDplrEGjACgUAgEAgEAoFAIBAIBA8Z4YARCAQCgUAgEAgEAoFAIHjIiClIAoFAIBAIBAKBQCAQCB4YtVhitlpEBIxAIBAIBAKBQCAQCAQCwUNGRMAIBAKBQCAQCAQCgUAgeGDEIrzVIyJgBAKBQCAQCAQCgUAgEAgeMsIBIxAIBAKBQCAQCAQCgUDwkBFTkAQCgUAgEAgEAoFAIBA8MGIKUvWICBiBQCAQCAQCgUAgEAgEgoeMcMAI/r9CIpGwZcuW//SYhw8fRiKRkJ2dDcDKlSuxtbX9TzUIBAKBQCAQCAQCQX2j1tTfryEgpiAJGhTJycl88MEH7Ny5k4SEBJydnQkKCuLll1+mX79+9S0PgIkTJzJ06ND6lvGv0r+TBUO7W2FrLSMhtYw/duYSEVtapX2AjylThtrg7mxCdl45O47lc/BsoW5/j2BznhlnVyndkwsTKVPVTWOvYAUDOipQWklJTC9n/YEibt6uOjN/Tznj+prTyFFGdr6avWeKOXZRf05SKQzubEaXlqbYWktJySxn0+Eiwm/VUSDQpYWMXm3kWFtISMnSsO1EGTHJaqO21hYwvIsJHk5SHJQSTlwpZ/vJMgOblo2l9A02wUEpQSaF9BwNRy+puBBZXmeNAEN6KhnV3x47pYz4pFJ+XZ9GeFRRlfYt/M2ZOdYJTzdTMnNUbN6XxZ5jObr9nm6mTB7uQBMvM5wdTPh1fSrbD2U/kMbBPZSM6men17gxjWtRxVVr9DPnyTGOdzSWs2V/FnuO6zUO6GpD7442eDUyBSAqroQ/t6cTGVvyQDoBJj/mzOCedlhZyIi4VcSPfyYSl1h9vl3b2jB1lDNuTqYkpZXy++YUToXmGdgM623PmEGO2NvKiUssYfmaJMIiC6vIsWrWnrjEykPnSc8toImrA/NH9aKtr0eV9qUqFcv2nmFnyDXScwtxsbViVv+OjO7UUmeTW1TM9/+c5MDlSHKLSnC3V/LaYz3pEdi41voAju9dw8HtK8jNTsPVw4/R096gSfN2Rm2jr19g+19fkpJ4i7KSYuycGtG133h6D5ums7l0dh/7t/xMWnI86nIVjq5e9Bk2nQ49H6uTPoC1p66y8lgo6XmFNHG2Z/7wbrRt3KhK+1JVOcsOnGPnxRuk5xXiorRiVp92jG7fXGfzx/FLrDsTRnJ2HraWZgxo2YS5gzqjMKl7923tmXBWHr9Een4RTZztmD+kM2193KrXeegCOy/dJD2/EBcbS2b1CmZ0u2YAlJWr+fXoRbaH3iA1rxAfByUvD+pIN3/POmvs2kJO72ATbCwkJGeq2XqilFtJVdWVEh7raoqHkxRHWwnHL6vYesKwferUXE77ZnJc7bXjjrfT1PxzppT4VON51oSeQaYM6KBtc5LSy1l/sIibCcbrXhtLCeN6m+PlKsPJTsrhkFLWH6pcpwY3NWFENzMcbaWkZ6vZeryYS5FlRnL8/0tnOz8JnQMkWJlDWg7sC1UTn2bc1soM+gVLcLOTYG8N525o2Bda+a2rQ1MJ7fwk2FhAUSlci9dw6JKG8jpe8l7BCgZ2MtP1MdbtL7xvH2N8Pwt9H+N0MUcv6ut9qRSGdDGjS0sFttZSkjPL2XyoiLBbdStH++7t8X3tKZRtW2LWyJnzY+eQsu1A9Wl6dCDw8zexCvSnJDGVqC9+IW75GgMb19EDabroJSyaeFEYFUfEu1+RsnV/nTTeyxOjXBna2wErSxnXowr5YfVtYhOqbsMBurdXMm2MG27OpiSllrJyYxInQ/TteMtmlowf4oy/jwUOdiYs+uYWpy7kVJNj/eicONyZbu1s8XRTUFqmJjyykF/XJXI7+cH7G4KGgXDACBoMMTExdOvWDVtbWz799FNat25NWVkZe/bs4fnnn+f69ev1LREAc3NzzM3N61vGv0anVmY8MVTJyu053IgtpW8HC16fbs8b36SRkVO5E+dkJ2PedHsOnyvkx/XZNPU2ZcYIJXkFas6F6RutwmI1r3+VapC2rs6XdgEmjO9nzt97C4lKUNEjSMEL461Y/EsOWXmVO2YOSikvjLPi+OUSVuwooIm7nMcHWpBfqCH0hrbzM7KHOZ1amPLH7gKSM9QENpbz7GgrPvsjj/jU2js42jSRMaKrCVuOaZ0unQLlPDXMlC/WlpCdX1mjXCahoBgOXFDRo7XxqrqwBA5cKCMtW4NKDc29pYzvY0J+kYYbt+vWy+zWzoqZ45xZtiaF69HFDOqu5J3n3XnxvRjSsypfIGcHOe/McWffiRy+WplMgK8Zz0xyITevnFMX8wFQmEpITi/jxIV8Zo5zqpMuA41trZg51onla1O5Hl3EwO5K3pnjztz3Y6vU+L/nGrHvZA5fr0omwNecpyc6k5Nfzuk7Glv4m3MsJI/r64soU2kY3d+Ohc+7M/eDWDKN3Oc1ZdxgR0YPcOCrFQkkJJcwcbgT77/qwzMLIikqMX6NAnzNefMZT1ZvSeFUaC5dgm148xkv5n8STcQt7ctQjw42zJ7kytI/k7h2s5DBPe1Y/JI3z717k7TMmnfgd4dG8OmWwywY25egxo3YcPIKc5ZvYfMb03CzszGa5vVVO8nIK2TRxAF4OtqSmVdEuVp/LmWqcp79aRP2VhZ8PmM4LkprkrPzsFSY1qLk9Fw4uYvNqz5m3FP/o3GzYE7uX8+yj5/lrS+2YedY2XFgqjCn+6DJNPJqiqnCnFsRF1j3yxJMFeZ07T8eAAtLJQNGPY2ze2PkMhPCLhzh75/ewUrpQPM23WqtcfflSD7deZwFI3sS5O3KhjPhzFm5g82vPI6brbXRNK//tYeM/CIWje2Dp4OSzHzDctwZeoNv9pxm8dg+tPF2JTYtm3c3HNSmHd691hoBdl+J4tNdp1gwvBtBXi5sOH+dOat3s/nF8bjZWhnXufaAVufonnja25BZUET5PcOM3+8/x85LN1k4qgeNHW05efM2r/y1j1WzH6N5I8daawzykzGyuymbjpZyK7mcLoEmzB5uxqd/F1VRV0J+sYb9F8roVUVd6ecuIzRSRUyyGlW5hj7BJjwzwoxP1xSRW1D7IdN2zUwY39ecNfuKtG1OGwXPj7NiyW+5RtscuUxCXpGGXaeL6ddOYTTPxo1kPDXCgu3Hi7kYWUaQvwmzR1jw+d/5xCTVrQ5qCDqbe0oYECxhd4iG+HQNbZtImNRTyrJdanKN+JNlMigshhPhGjo2kxjNs4W3hL5tJOw4q+F2ugZ7axjRSet822/EWXM/2geYMqG/BX/tKSQqoYyeQWa8OMGaRb/kkJVbuR53UEp5cbw1xy+V8Nv2fJq4mzB5kAV5RWpCI7T186ie5nRsoeCPXQUkZ5QT6GvCs2Os+PSPXOJTal+OMksLci9HcHvVJtqt//6+9uY+HnTYvpz4X9dzcfrr2HVtS8vvFlKalkny5r0A2HYOIvivr7ix8BuSt+7HdWR/2v79Nad6Tyb77OVaa7zLhKHOjBnsxBc/x3E7uYTJj7nw0etNeOrNaxQVG28Xmzex4O05PqzapHVmdG2nZMEcH179IJKIaO2NYqaQEh1fxN5jmbw7t27O/v9CZ+tmVmw/kM6NW4XIpDBjnBsfvt6E2W9dp6S07k7hRwmxBkz1iClIggbDnDlzkEgknD17lnHjxtG0aVNatGjBq6++yunTp42mSUhIYOLEidjZ2eHg4MDIkSOJiYnR7T937hwDBgzA0dERpVJJr169uHDhgkEeEomEX375hdGjR2NhYYG/vz/btm2rUmfFKUiLFi0iKCiI1atX4+Pjg1KpZNKkSeTl6UezNRoNn376Kb6+vpibm9OmTRs2bNig25+VlcWUKVNwcnLC3Nwcf39/VqxYAUBpaSkvvPACbm5umJmZ4ePjw0cffVSboq2WId2sOBxSyOHzhSSmqfjjn1wycsrp18nCqH3fjhZkZJfzxz+5JKapOHy+kCMXChna3bBzr9FATr7a4FdX+ncw48TlUk5cLiU5Q836A0Vk5anpFWy8A9kzSEFmntYuOUPNiculnLxcyoCOZjqbTi1M2XWqmKvRKtJz1By9WEr4rTL6dzSe5/3o0VrOuevlnL1eTmq2hu0ny8jO19A5UGbUPitPGyFz4UY5xaXGG7LoRDVhMWpSszVk5mo4caWc5AwNPm51r9pH9rVj/8kc9p/M5XZyKb9uSCM9u4zBPW2N2g/uYUtaVhm/bkjjdnIp+0/mcuBUDiP76yOcbsaWsGpzOsdD8lCpHrxRfqyvHQdO5bD/VC63U8r4bWM6GVkqBvdQGrUf1F1JepaK3zamczuljP2ncjl4OpdR/fTn9PWqFHYfyyEmoZSElDKW/pWKRAKtmxm/z2vKyP4OrN2ZxskLucQmlvDlbwkoTKX06mRcK8DIAY6Ehuezflc6t5NLWb8rnUvX8xnZ30FnM3qAI3uPZ7H3WBbxSSX8vDaZ9Kwyhva2r5W+1UcuMLpTS8Z0boWviwPzR/fG1daadSeMd65PXIshJCqBH2aPpnNTb9ztlbTydiXonkiPzWevklNYzFczRxDc2J1G9ja09XWnmXvdnG+Hd/5Opz5j6NJ3HK7uTRgz/U1sHVw5vm+NUXuPxs1p120obp5+ODi7077HCAJadyX6eojOxr9FR1p37I+rexMcXb3oNXQqjbyacuv6BaN53o/Vxy4xun1zxnQIxNfZnvkjuuOqtGLd6atG7U9ExBFyK5EfZgyjs58n7nY2tPJ0Ichb71C6FJdMkLcrQ4Oa4m5nQ9emXgxu409YQhWhATXRefIKo9s2Y0z7AHyd7Zg/tAuuNlasOxtuXGdkPCExSfwwdRCdm7jjbmdNKw9ngrxcdDY7L91kVq8gejT1wsPehgkdA+nq58HvJ67USWPPNiacvabizDUVqVkatp4oJTtfQ9eWxp0rWXkath4vJSRCRVEVgZl/7i/hZJiKxAxtfbnucCkSCfh7GK9/70e/9gpOXinlxJVSkjPVrD+kbXN6BhlvHzJz1aw/WMSZsDKKqhjk7ttOwfUYFXvOlJCSqWbPmRKux6noW4Uj5P8XnZ0CJFyM1nAxWkNGLuwL1ZBbCG39jDtXcgq0NldiNJRU4Wv2cID4dAiL1ZBTALeStf93szee5/3o39GME5dKOHG5hOQMNesOFJKVW3Ufo1ewgsxcrZ22j6FNO7CjfnCuUwsFu08VcTW6TNvHCC0h/FYZAzqYGc3zfqTtOcqNhV+TvGVfjey9n55EcVwS4a99SP71aOJ/20D8yk34vjpTZ9P4xemk7z9J1KfLKYiIJurT5aQfPI3Pi9PrpPEuowY5sWZbCidCcohNKObzn+NQmErp07lyZPRdRg9y4kJYHmt3pBKfVMLaHalcDM9j9CB9u3L+ch6rNiZzIuTBol4ets4FX0Sz73gmsQnFRMcX88Uvcbg4muLf+P+fwVtB9QgHjKBBkJmZye7du3n++eextLSstN/YmiuFhYX06dMHKysrjh49yvHjx7GysmLw4MGUlmp7aXl5eUyfPp1jx45x+vRp/P39GTp0qIFzBGDx4sVMmDCBy5cvM3ToUKZMmUJmZmaN9UdFRbFlyxZ27NjBjh07OHLkCB9//LFu///+9z9WrFjBjz/+SFhYGK+88gpPPPEER44cAeCdd94hPDycXbt2ce3aNX788UccHbUji99++y3btm1j3bp1RERE8Mcff+Dj41NjbdUhk0HjRiZcvWnYE7t6swR/L+Oj2f6eppXsr0SW0NjdBNk9NY6ZqYSv5znz7XwXXptqj7db3QLyZFLwcpVxrULY7rVbZfi6G8/T172yffitMrxdZUjvaJTLoazc0FlQpgI/j9rrlEnB3UnCjXjDUa3I22p8XP+9atjPXYqTraTKUP37IZdBEy8zLl4zHHa8eK2QAF/jncJmjSvbh4YX4udtZnC9/y3kMmjiqTCisYCAxlVpNOfitYIKGgto4lW1RlNTCTKZhPzCujsGXR1NsLc14UJYvm6bSqXhakQBzf2qduwE+JoTGp5vsO1CWL4ujVwmwc/bnNAwIzZNau4wKlOVc+12Cl2aehts79LMi0sxiUbTHA6LItDTmRWHztF/0XJGfLSCL7YdpbhUH3l05Go0rb3d+GjjQfq8u4wxn/7OL/vPGkR31BSVqozbt8IJaN3VYHtA667E3LhUozxu37rGrRsXaRLY3uh+jUbDjSunSU2KqXJaU3WUqcq5lphGlwpTbrr4e3IpLsVomsPXbhHo7syKo6H0/2gVIz7/ky/+OUHxPWGAwT5uXEtI40q8No/bmTkcj4ilRzNvo3nWTGc6XfzcDXX6uXMpvgqd12MJbOTIiuOX6f/pn4z4ei1f7D5toLNUVY6p3NCRoTCRczEuudYaZVLwcJISUaGujIgvx8elbs4SY5jKtccqLK69Q/humxMeYxhtdy1GVWWbUxN8G8kr5Rl+S4VvowdrGx9lnVIpuNnBrWTD6xCdrMHDsW7OEtA6X9zsoNEdf7StJfi5SbiZ+CDXu0KfIaaMJlX2MeSV7Y31MSoMSJSqNDTx/G8mJ9h2DiJt/wmDbWl7j6Fs1xKJXKvBrnMQ6fuPG9ik7zuGXZfgOh/X1ckUB1sTQq7q+9llKg1XIvIJ9K/cv79Lcz9LgzQA56/mEehXdZoH4b/UaWmurdvy8h9s+rig4SCmIAkaBDdv3kSj0RAQEFDjNGvWrEEqlfLLL78gkWgb8hUrVmBra8vhw4cZOHAgffv2NUizbNky7OzsOHLkCMOHD9dtnzFjBo8//jgAH374Id999x1nz55l8ODBNdKiVqtZuXIl1tbaUPSpU6dy4MABPvjgAwoKCvjyyy85ePAgXbp0AcDX15fjx4+zbNkyevXqRVxcHMHBwbRvr32BuNfBEhcXh7+/P927d0cikeDtXX3nvKSkhJISQweJQmF8FMfaQopMJiGnQqOQk6/G1sp4Z1hpLSMnsqSCfTlymQRrSynZeWoS01Us35hNfEoZ5gopg7pa8u7Tjrz9fRopGbVrgKwsJMikEnIrvCjnFmiwsTT+dm1jKSW3wLADmVuoRiaTYGUuIbdAQ/gtFf07mHEzXkValpoAHzlt/E2Q1KFPaGkGMqmE/ApT6fMKNVh7PpiXwswUFkw1Qy7VLj62+VgZkXWcfmRtJUMmk5CdZ1g2Obnl2NkYby5sbeTkVIgTz85TIZdJsLGSkZX773Yo9BoN883OK8e2Co12NjJCjdhXp3HaSEcyc1Rcul77NVV0x1Vq9WTnGpZndq4KJweTatNl5RimycpR6a6Bzd0yqJRvue6YNSHrzlQSB2tDp42DtSXpebFG09zOyCH0ViKmJnK+evIxsguK+HDjQXIKi1kyaaDWJjOHxJvxDG0bwA+zRxGbns1HGw+iKlfz7KDONdYHUJCbhVpdjrXSwWC7tdKB3Oz0atMunNOP/NxM1OXlDB43hy59xxnsLyrMY+FzfVGpypBKpYyb+T+aVXD01ISswmJtOVoZjl46WFmQnhdvNM3tzFxCY5Mwlcv46onBZBcU8+HWo+QUlrBknLZdGtLGn6yCImYs2wwaUKnVTOjUgqd6t621RkOdFa63lTnpecbXeLqdmUdoXIpW5+QBZBcW8+H2E+QUlbBkdC8Auvp5sPrEFdr5uOFpZ8OZ6AQOX48xmKZUUyzNJHfqSsO0+YUarD3r/kJekWGdTckp0BB5u/b1k5W5VmNegWE9m1egRmlZ9261jaWEvArtWF6hGhvLup13Q9BpYQpSqYT8CktqFJRo13qpK+FxGiwUMK2fFCTa9jckUs2pa7W/J3V9jApT1fIK1NhYGq/HbSyl5BUYOmByCzSGfYzoMvp3MCPynj5GkL9pnfoYdUHh4khJimEdWpqagdTEBFNHO0qS01C4OlKSkmFgU5KSgcK17lOJ7e+0UVm5huWTlVuGs0PV01TtlHKycwzTZOeU1arNqw3/pc6nJ7tzNSL/vmvLNCQ0GjEFqTqEA0bQILj7IEtq0TKFhIRw8+ZNndPjLsXFxURFRQGQmprKu+++y8GDB0lJSaG8vJzCwkLi4uIM0rRu3Vr3f0tLS6ytrUlNNVy/pDp8fHwMdLi5uenSh4eHU1xczIABAwzSlJaWEhysHWV47rnnGDt2LBcuXGDgwIGMGjWKrl21LwozZsxgwIABNGvWjMGDBzN8+HAGDhxYpZaPPvqIxYsXG2xbuHAh8HSVaSrVoxLQUHXlWrnelRhsj4ovIype30DdiCvl/eedGNjZktU7c6vMtzoqHvN+t4qRUzJg3f5CnhhswaJZNmiAtCw1J6+U0LVV3cPBKx1TYqysakdJKXy9vgRTE/B3164zk5mnITrxAeYRG7ve1eiseC9IdNv/O+5XlsbKHoynGdXfju7trHnnm9uVRiiro3cnJS9M1U/FWfRtrNFjV7rZaoBEUjkfY/d8Xe6nis+KRqOp8vlRazRIgI+mDMHaXPssvKbqybxVO3h7TF/MTOWoNRrsrSx4d0J/ZFIpgZ4upOXks+rQ+Vo7YKoSqUFz3/Zg7qJVlBQXEht5me1/f4WjqxftuukXSFeYWfL6JxspKS4k8upptqz+DAdnD/xbdKybRIxpNG6rK8dJ/bE2u1uOXZn31x7eHtkTMxM556IT+OVQCAtG9qSVpwtxGTl8uv04jgfO80w/49E8NdNpiEZTdX2p0zm+L9Zm2peO1waXM2/tft4e3g0zEznzh3VhyZZjjPpmPRIJeNjZMDK4GVtDI+qs0Vib82/RJ8iEYH85S7cWoXoA/7Cx5/pB6/OH8c7SUHTei4QHaz+8nKFboHZdmYQMDfZWMKCtlO7FcDysjjnXMlml+rnC/rX7C5k6xJLFs5X6PsblErq2rnsfo9ZU1XG6d/sDNjR9utjx0gz9ou7vfBl9J98K2WKkkasot+IGYw1jHakvnc9PdaexhzmvfRBZK72Cho1wwAgaBP7+/kgkEq5du8aoUaNqlEatVtOuXTv+/PPPSvucnLTe+xkzZpCWlsbXX3+Nt7c3CoWCLl266KYo3cXExHCUQyKRoK5FOH116e/+u3PnTtzdDUPD70amDBkyhNjYWHbu3Mn+/fvp168fzz//PJ9//jlt27bl1q1b7Nq1i/379zNhwgT69+9vsIbMvbz11lu8+uqrlY7z1JKMSrZ5hWrKyzXYWssAvcNEaSmtcs2WnLxybK0NozqUVlJU5Zoqp3NoNBB9uxRXx9pXSfmFGsrVGpSWUkDfm7a2kJBbYPx4uQVqlBVG66wtpJSXa3Qjr/lFGn7aXIBcph1JzM7XMLqXOek5tXdsFBRDuVqDdYXpvVbmlUd6a4sGyMjV5pGUocLZTkKfYDnRiVV/paoq8vLLtde7QiSJ0lpWKSrmLtm5KiP2clTlmocSTqvTaG0YgaW0kpFThcas3HLsjNiryjXkFRhqHNnPlnED7Vj4fQKxtSzDMxfziLgVpfvbRK69x+xsDCNabK3lZOVWveJ0Vo6q0miZrY1cF/GSe6cMKtoorWWVomKqw87SHJlUQnqFCKbM/MJKURJ3cbKxxFlppXO+APi62KPRQEpOHt5OdjhZWyKXSZFJpQY26XmFlKnKMZHXfCqJpY0dUqmMvArRLvk5mZWiYiri4KztTDfyakpeTga7Nyw1cMBIpVKcXL0A8PAJICUhmv1bf6m1A8bOwkxbjvkVy7Go6nK0tsTZxlLnfAHwdba7U475eDva8sO+swwPbsaYDoEA+Ls6UFRaxnubjzC7Tzuk0tp5JarUWVBUKXpHr9Pijk79iK+vk61WZ24B3g5K7C3N+XrKQErKVGQXleBsbcHXe8/SqIrFh6ujoFhbn1tbGJ6blbmEvMIHf9PqHSSnXzsTftpWTFJG3fLLL9JqtKnU5kjJfQCNxqI2rS2kdVokuKHoLCwFtVpTKdrFQqFtN+tKr1ZSrsRo15UB7ZeVTOQahnaQ1NoBc7ePYWNVoc9gKa22j2FjVaGMLCWV+hg/bso36GOM6W1OevZ/Mw2lJCW9UiSLqZM96rIySjOytTbJ6ShcDRfSVjjbV4qcqY7ToTlEROmnAJuYaMvFTmlC5r3tok1N2kXDvvT90tSG+tA55wl3ugQree3Dm6RnPdjXzh411GIR3moRa8AIGgT29vYMGjSIH374gYKCgkr7s7OzK21r27YtkZGRODs74+fnZ/BTKrULYB47doy5c+cydOhQWrRogUKhID295g3Lv0FgYCAKhYK4uLhKOj099WsKODk5MWPGDP744w++/vprli9frttnY2PDxIkT+fnnn1m7di0bN26sco0ahUKBjY2Nwa+qKUjl5XArsYyWfob7W/opiIwz/nIaGV9q1P5WQlm1n3/0djMhO6/2zo1yNcQll9Pcx/BltLmPCdEJxhvJ6IRymvsYNpDNG5sQm1xORb+aqhyy8zVIpRDczIRLkbV3bJSrISFNg7+n4Yunv7u0ys9QPwi1eL81QFUOUXHFBDU3fGkMCrDgerTx3nDErWKCAirYN7fgZmxxnT/3eV+N8SW0qXDMNgEWXL9VlcaiSvZBzS2IijPUOKqfLeMH27NkaSJRcbX/HGRRiZqk1FLdLy6xhMzsMoJb6BeglssktGxmybWbVU9tuh5dRFCg4aLVwYFWujSqcg03Y4sINmYTVfMpUyZyGc09XDh9w3C60ekbcbTxMf755KDGjUjLLaCwRP8cxKZlI5VIcFFa62zi03MMOmCxaVk42VjWyvkCIJeb4NE4kIgrpwy2R1w5hU/TNjXOR6PRoCqr/tmtiY0xTOQymjdy4nSk4XSj0zdv0+aexWrvJcjHlbS8QgrvWUU0Nj3nTjlqr2txqapSlI9MIkWj0VQbgVi9TkdORyUY6oxKoI1nFTq9XEjLKzDUmXFHp43hmgYKEzkuNpao1BoOhMfQp7lPrTWWq7WfiG5aoa5s6iEjpg5fhrmX3kEm9G9nyvIdxdxOq3vlpGtzvCu0Od7yKtucmhCdqKrUjgX6yIlOrFueDUGnWg1JWdDY1fA+b+wq4XZ63V/gTGSVAw7uVke1neKj72NU6DP4mBBVZR9DVck+0KcmfQzTB/7seE3JPn0Rx36GUy6dBnQnJ+QqGpX2vLJOX8Sxn+FX4Rz7dyfrVGiNj1NUrCYxtVT3i00oJiO7jLYt9Q5auUxCq2ZWhEdW7t/f5drNAtq2MHTqtmtpTfjNqtPUhv9a5/NT3enWXsn8T26Skl77dkfQsBEOGEGDYenSpZSXl9OxY0c2btxIZGQk165d49tvv9WtnXIvU6ZMwdHRkZEjR3Ls2DFu3brFkSNHeOmll7h9+zYAfn5+rF69mmvXrnHmzBmmTJnyn39C2tramnnz5vHKK6+watUqoqKiCA0N5YcffmDVqlUAvPvuu2zdupWbN28SFhbGjh07aN68OQBfffUVa9as4fr169y4cYP169fj6upqdGHiurDrRD6921nQs505jZzkTBlqg4NSxoGz2he9CQOteWac/lgHzxbiYCtjyhAbGjnJ6dnOnN7tLPjnuH7B0NF9rWjlp8DJToaXm5zZY2zxcjPhwNm6NaT7zxXTrY2Crq1McXWQMr6vOXY2Uo5e1DZqo3qaMWOY/gX86MUS7G2kjOtrjquDlK6tTOnW2pR9Z/Uv8D5uMoKamuColOLnIWfueCskEth7pvYv5gDHLqvoGCCjfTMZzrYSRnQ1wdZawulw7UvF4I5yJvYx7LC5OUhwc5CgkEuwMtf+7Wyn7z32CZbj7yHF3lqCk62EHq3ltGsqI/RG3V9Uth7Mon9XJf262ODhasrMsU442pmw51g2AE+MdOSl6a46+93HsnGyN+HJsU54uJrSr4sN/bsq2bo/S2cjl0FjDwWNPRTIZRLsbeU09lDg6lT1OijVse2uxs42eLiY8OQYRxztTdhzTPvlgycec2DuVP0L5Z7jOVqNYxzxcDGhX2cb+nVRsuVAts5mVH87Jg934Ps/U0nNKMPWWoattQwz0web+7B1fwYThjrRJdga70YKXpnpTkmpmiNn9F9peHWmO9PH6PVu259O20Arxg12xMPVlHGDHQlqbsXW/footc370hnYw44B3WzxdFMwe6IrTvYm/HO45ouDA0zt1ZZNZ66y+cxVolMy+GzLYZKy8hjfVTvt8psdx1nw126d/dC2ASgtzXh3zV6ikjMIibrNl9uPMqpjC8xMtS9lE7q2IbuwiE+2HCYmNYuj4dH8sv8cE7vV3GFyL72HTeP0wY2cPrSJ5IQoNq/6hKz0JLr1nwjA9r+/4o8f3tLZH9vzN1dDDpOWFEtaUixnDm/m0I6VtO+hX9dr35afibh8kvSUeFISojm0cxXnjm03sKkNU3u0YdP5a2w+f43o1Ew+23GcpOw8xndqCcA3u0+xYN1+nf3QNk1RWih4d8NBolIyCbmVyJf/nGRU+wDMTLTl2Ku5N+vPXGXXpUhuZ+ZyKjKeH/adoVdzH4Poolrp7NqKTSERbA6JIDo1i8/+OUVSTj7jO2rbk2/2nmXBhkN6na39UJqb8e7mI0SlZhESk8SXe84wqm1Tnc7L8ansD7vF7cxcLsQkMef3Xag1GmZ0b21Uw/04eqmMTs3ldAyQ42wn4bFupthZSzh1VftSOLSzCY/3M1yDoZGDlEYOUhQm2miCRg5SXO6tK4NMGNLJhLWHSsjK1WBtLsHaXIJpHePAD5wvoVtrU7q0NMXVXsq4PmbY2Ug5dknbPozsYcb0oYZOXw9nGR7OMhSm2nVFPJxluDror+OhkBKa+8gZ2FGBi72UgR0VBHjLORhStzanoeg8c11DkK+ENo0lONhA/2AJSgu4cFPrMendWsKITob1sIut9mcq10bLuNiCo41+f2SihnZ+EgK9JCgtobEL9GolITJRU6fpU/vPFtO9jYKure/0MfpZYG8j5Wio9pxH9TJnxnC9Q/JIaAkONlLG97XQ9jFam9KtjYK9Z/VrLfm4yQi+p4/x0gRrJBLYc6ZuoT8ySwts2gRg00a7VqJFYw9s2gRg5qn9slqz91+lzYpPdPaxy9dg7t2I5p+9iVWALx4zxuL55Fiiv/xNZxPz/e84DuiG77zZWDbzxXfebBz7dSHmu1V10niXLXvSmDTcha7tlHi7mzFvthclpWoOndb3G15/2osnx+u/CrdlbxrtWlozYagznm4KJgx1JjjQms179F+FM1NI8fUyx9dL2493dTLF18scJ/u69TUels4XpnnQt4s9H/8YS1GxGjulHDulHFOT/2gBIEG9I6YgCRoMjRs35sKFC3zwwQe89tprJCUl4eTkRLt27fjxxx8r2VtYWHD06FHeeOMNxowZQ15eHu7u7vTr1w8bG21L/dtvv/H0008THByMl5cXH374IfPmzfuvT4333nsPZ2dnPvroI6Kjo7G1taVt27a8/fbbAJiamvLWW28RExODubk5PXr0YM0a7SdYrays+OSTT4iMjEQmk9GhQwf++ecfpHXsoFfkzJVirC1yGN3HGltrGbdTyvjs90wy7oTJ2lrLcFTqRyvTssr5fFUmTwyzoX9nS7Jyy/l9Zw7nwvSdCgszKU+NUqK0llFYrCY2qYz3f04n+nbdRn5CrpdhZV7EsG5m2FhKSUwv5/v1+WTmaoealFZS7G305ZGRo+b7DfmM72tOr2AFOflq1u4vJPSG/vgmcgkje5jjaCulpFTD1egyVuwsoKikbqNyl6LKsTCD/u3l2FhISM7U8Ns/2s+rgnZhQ1trw8b3lfH6uGwPZynB/nIy89R8/Ke202cqh9E9TFBaSihTQWq2mjUHy7gUVXcHzImQfGwsU5k41AE7GxlxSaW8tzSBtEzty4+9jQwnO33TkZqh4r2lCcwc68TQnkoyc8r5ZX0qpy7qHW72Sjlfva1fHHr0AHtGD7Dn6o1C/vf17dprvJCPtWUaE4bY6zS+vzSBtCytRjsbOU72hhrf/zGRJ8c6MqSHVuOvG9I4fY/GIT2UmJhIeWOWm8Gx1vyTwdp/aufUuJcNu9MxNZUyZ0ojrCxlREQX8c6XMRSV6IdBnRxMDV4KrkUV8cnyeKaOcuGJUc4kp5XyyfJ4Im7pO+/HzuViY5nM4yOcsVfKiU0sYeE3saRl1u4ZGhzcjJzCYpbvPUNabgF+bg78MHsUjey1dWR6XgHJWfovOlgoTFn2zFg+3nyIyV/9hdLSjIFtmvLCEP0oqaudNT89M4bPthxh/OercVZaMaVnME/2rdu6JW27DqEwP4c9G38iNzsNN09/nnnzR+ydtFE6uVnpZKUn6ew1GjU7/v6azLQEpFIZji6eDH/8Zbr2n6CzKS0pYv1v75OTkYKJqQLnRo154vmPaNt1SJ00Dm7tT05BCcsPnCctrwA/Fwd+mDGcRnbakdD0vEKSs/X3m4XChGUzH+Pj7ceY/MMGlBYKBrby44WBnXQ2s/u0R4KEH/aeITW3ADtLc3o19zGwqbXOVk3IKSxh+eELpOUV4udizw9TB+umC6XnF5Kco3eEWyhMWDZjKB/vPMnknzajNDdjYEtfXuivv5alqnJ+OHCe21l5WJjK6e7vyQdje2NjXre1LC7eLMdCUcqA9ibYWJqSlKHmlx3FZN2tKy0k2FaY3vHaRP3AiacztG0qJzNXzQd/aJ+Zri3lyGUSZgw2nOuy51wpe8/Vvt0JiSjD0ryIYV3NsLGUkJRezg8b88m8Mx1UaSXFvsJU3AXT9aPi3q7QMdCUjBw1/1uuXfcsOrGcX7cX8lh3M0Z0NyMtW80v2wuJSap7fd4QdF6L1y6Y272lBCszCWk5sOaomrszI63MuTNlWF9Jzhqs73O42Uto6QPZBRp+2K6tV4+HaUCjdbpYm0soLNE6ZQ5frlv7ff56KZbmEoZ1M0ep62PkVdvH+G59HhP6WdCrrVLbx9hXSGiEYR/jsZ4WON3pY1yJLuO3Hfl17mMo27Wky4HVur8DP9f2H+N/38Tlp95C4eaEuae+fSuKuc25EU8T+MVbeD83hZLEVMJe+YDkzXt1NlmnQgmd8irNFr9Ms8VzKYyKJ3TyK2SfvVwnjXdZ908qpqZSXpjmgbWFjOvRhbz1WRRFxfe0i/amBtFC4TcL+XBpDDPGujFtrCtJqaV8uDSGiGh91GfTxhZ89paf7u9nJ2un9e89lskXvxiu7VifOkf0007r+vxtf4Pjff5zHPuO172/8SghFuGtHolGlJBAIACeWGD8s7OPCn980IhnP8m6v2E98tMbdsz/yfjXRB4lPn3WnFFzbtS3jGrZsrQpo194tBel2/y9P8NmXa1vGfdl5y8tKd75U33LqBazYc+yK/TRngM/JNiE4k3f1LeM+2I25iWK131e3zKqxWzCPF5b+u9MHXhYfDHHkuc+y65vGfflx9dtH3mdP75uywdrHu1P7C6YJOOZjx/9l99lb9qz06RZfcuolmFlEQyafrG+ZVTLnlVBj7xG0OpsiMz64L9dzuFeflngeH+jekZEwAgEAoFAIBAIBAKBQCB4YDRiEd5qEWvACAQCgUAgEAgEAoFAIBA8ZEQEjEAgEAgEAoFAIBAIBIIHRkTAVI+IgBEIBAKBQCAQCAQCgUAgeMgIB4xAIBAIBAKBQCAQCAQCwUNGTEESCAQCgUAgEAgEAoFA8MCoxUeWq0VEwAgEAoFAIBAIBAKBQCAQPGREBIxAIBAIBAKBQCAQCASCB0Yswls9IgJGIBAIBAKBQCAQCAQCgeAhIxwwAoFAIBAIBAKBQCAQCAQPGTEFSSAQCAQCgUAgEAgEAsEDoxGL8FaLRCNKSCAQCAQCgUAgEAgEAsEDMu2dpHo79u/vudXbsWuKiIARCAQADJlxub4lVMuula0ZPju8vmVUy46fAxk0/WJ9y7gve1YFNYiyHDrzSn3LqJZ/fmvFiGeu1beM+7J9WXP6P36+vmVUy/6/2zNwamh9y6iWvauDH/lyBG1ZPuo69//dnn6Tzta3jGo5sKYjo+bcqG8Z92XL0qYNoq5sCM93j5HH6lvGfTm2tccj38/YsyqInSbN6ltGtQwri+BI86D6lnFfel27WN8S6oRaLMJbLWINGIFAIBAIBAKBQCAQCASCh4yIgBEIBAKBQCAQCAQCgUDwwIjPUFePiIARCAQCgUAgEAgEAoFAIHjICAeMQCAQCAQCgUAgEAgEAsFDRkxBEggEAoFAIBAIBAKBQPDAiI8sV4+IgBEIBAKBQCAQCAQCgUAgeMiICBiBQCAQCAQCgUAgEAgED4xGra5vCY80IgJGIBAIBAKBQCAQCAQCgeAhIxwwAoFAIBAIBAKBQCAQCAQPGeGAETxUVq5cia2t7UM9xuHDh5FIJGRnZz/U49T3MQUCgUAgEAgEAoHgUUat1tTtzdiOAAD9aElEQVTbryHwf2YNmBkzZrBq1SoA5HI59vb2tG7dmscff5wZM2YglT4avqjDhw/Tp08fsrKyHrrjoioWLVrE4sWLAZDJZNja2hIYGMiYMWN47rnnUCgU9aKrKrp27UpSUhJKpbLOecTExNC4cWNkMhmxsbG4u7vr9iUlJeHp6Ul5eTm3bt3Cx8fnXzmmMXx8fHj55Zd5+eWX/9V8/w2mjHJhSC97rCxlREQX8sPvCcQlllSbplt7G6aNdsXN2ZSk1FJWbUzm5IVc3f6WTS0ZN9QJP29zHOxMWPJtDKfu2V8bhva2Y8wgB+yVcuISS/h5bQphkYVV2rdsasGsCS54NVKQma1i454Mdh3JMrDp2taaJ0Y64+ZkQlJaGau3pHIqNK9O+u7liVGuDO3tgJWljOtRhfyw+jaxCcXVpuneXsm0MW66sly5MYmTITm6/ROHO9OtnS2ebgpKy9SERxby67pEbidXf42M0VDKcspIZwb3ssfKQntPLv0j8f73ZDsbpo52wc3JlKS0UlZtSjG451o2tWDsYCf8fMxxsDXhve9iORVax3uylx1jBtpjd7cc16UQfrOoSvuW/hY8Nd5ZX457M9h9NFu338vNlCmPOdHEywwXR1N+XpfMtgNZVeZXG6aNbcTQfo5YW8q5frOAb1fEEnu7+nuyR0dbZox3x81FQVJKCb+tTeDEeb3eEf2dGDHACRdHbZsRe7uI1ZsSOXepbuU5dbQrQ/s43nluCvh+Vc2em+nj3HBzVpCUWsLK9UmcuOe5mTTChW7tlXi6md15bgr4ZU3dnpu7NISybBAax7kzrK8T1lZyrt3M59vfYom9XfXzo9Vox5MTPHQaf117mxPn9M/IiAHOPNbfGRenezUmcPZiTlVZVsmQnkpG9bfHTikjPqmUX9enER5Vtb4W/ubMHOuEp5spmTkqNu/LYs8x/XE93UyZPNyBJl5mODuY8Ov6VLYfyq61LmM86nUlNJzn+8lJXjw2yBVrSznhN/L4clkUMfFVt48Avbo4MGuKD41czUhMLmb5HzEcO51hkOfMx70N0mRklTJqxpk6aXwYfYyWzSwZP8QZfx8LHOxMWPTNLU5dqP1zY9+9Pb6vPYWybUvMGjlzfuwcUrYdqD5Njw4Efv4mVoH+lCSmEvXFL8QtX2Ng4zp6IE0XvYRFEy8Ko+KIePcrUrbur7W+uzR6fAIeM6ejcHKk4GYUUR99Rk5IaNX2kyfSaPJEzNwbUZKUTNyyX0jZukO3v82qX7Dt2L5Suowjx7j67It11ilomDwaXof/iMGDB5OUlERMTAy7du2iT58+vPTSSwwfPhyVSlXf8igrK3tk8mvRogVJSUnExcVx6NAhxo8fz0cffUTXrl3Jy3vwF9B/E1NTU1xdXZFIJA+cV6NGjfj9998Ntq1atcrAIfNvH7MhMH6oE2MGObL0jwReWhxJVo6KD1/3xdys6iokoIkFbz3nzYGTWcx5N5IDJ7N4a443zXzNdTZmCinRcUUs/SPhgfT1aG/D7ImurNuZztwl0YRFFrJorhdO9sZ9zC6OJiya60VYZCFzl0Sz7p90np7kSte21nr9vua88bQHh05n8+KSaA6dzuaNpz1o2tjcaJ41ZcJQZ8YMduKH1bd5cdENsnLK+Oj1JtWWZfMmFrw9x4cDJzOZ804EB05msmCOD818LXQ2rZtZsf1AOi+/F8lbn0Yhk8GHrzdBYVq7ar6hlOW4IY6MHujIj38k8vJ7N8nKUfHBvMb3vSfffNaLgyezeX7hTQ6ezOatZ70q3ZO34ov58Y/EOmsD6N7emlkTXFj3TwYvvX+LsJtFLHrRCye7KsrRwYSFL3oSdrOIl96/xfpdGTw90ZWuwfpyVJhKSU4vY9XmNDJz/r02a+IIV8YOdeH7FXE8vyCczOwyPnm7afX3pL8l/5vbhP3HM3jmzXD2H8/gnZd8CWhiqbNJyyzll78TmLMgnDkLwgkNy2PJPD+8PcxqrXHCMGfGDHHm+9/jeXFhBFk5Kj5+w696jX4WLHihMQdOZPHcguscOJHFghcaE9BE/9y0CrBi2/50Xlp8gzc/iUIqlfDRG36YKerWPWoIZdkQNE56zI1xQ135bkUsc94OIyu7jE/fblatxkB/K955yY99x9J5+o2r7DuWzrsvNSHAT68xPaOUn/+OZ86CMOYsCCM0LJcl8/zx9qhdXdStnRUzxzmzfncGr34UR/jNIt553h3HKp5vZwc578xxJ/xmEa9+FMeG3ZnMGu9MlyArnY3CVEJyehm/b0n/V5/vR72uhIbzfE8e48HEke58tSyK2fMukpldxldLWmJuLqsyTYtm1ix6vTl7DqXw5EsX2HMohSWvBxDY1NrALjq2gJHTT+t+M+ZeqJPGh9XHMFNIiY4v4ofVt+uk6y4ySwtyL0cQ9tKSGtmb+3jQYftyMo+HcLzDKG5+8hMtvlqA6+iBOhvbzkEE//UVCX9u5Vi7kST8uZW2f3+NbcfWddLoNGQgTd58nbhlvxAyZhI5IaG0WvYDCjdXo/Zuk8bT+JUXif3hJ86PGEvM9z/i985bOPTuqbMJm/sqJ3v00/3OjRiLRqUibfe+Oml81NFoNPX2awj8n3LAKBQKXF1dcXd3p23btrz99tts3bqVXbt2sXLlSp1dTk4OTz/9NM7OztjY2NC3b18uXbqk279o0SKCgoJYtmwZnp6eWFhYMH78eIPpKOfOnWPAgAE4OjqiVCrp1asXFy4YVqYSiYSffvqJkSNHYmlpyaxZs+jTpw8AdnZ2SCQSZsyYAWgjI77++muD9EFBQSxatKjK/N5//30Atm/fTrt27TAzM8PX15fFixff1+Ekl8txdXWlUaNGtGrVihdffJEjR45w9epVPvnkE51daWkp8+fPx93dHUtLSzp16sThw4erzDcqKoqRI0fi4uKClZUVHTp0YP9+vYd6yZIltGrVqlK6du3a8e677xrNs+J0oLvTnvbs2UPz5s2xsrLSOd/ux/Tp01mxYoXBtpUrVzJ9+vQHPmbv3r0rRbaMGjVKd4179+5NbGwsr7zyChKJxMC5c/LkSXr27Im5uTmenp7MnTuXgoIC3f6lS5fi7++PmZkZLi4ujBs37r7nWhtGDXRkzfZUTobkEptQwhc/x6NQSOnd2bbaNBfC8li3M43bSSWs25nGxWv5jBropLM5fyWP3zelcDKk7qNmAKMGOLDveBZ7j2dzO7mUn9emkJ5VxtBe9kbth/SyIy2zjJ/XpnA7uZS9x7PZfyKLMQMddDaP9bcnNLyA9bsyuJ1cyvpdGVy6XsDI/sbzrLHWQU6s2ZbCiZAcYhOK+fznOBSmUvp0tqsyzehBTlwIy2PtjlTik0pYuyOVi+F5jB6kL8sFX0Sz73gmsQnFRMcX88Uvcbg4muJfSydHQynLUQMcWbMjlZMX7tyTv95GYSqldyfbas8tNDyfdf+kcTu5hHX/aO/JkQMcdTbnr+Tz++YUg0itOunr78C+E9nsPaEtx1/WactxSC/j13lwL1vSMsv4Zd2dcjyRzf4T2YweqC+jyNhiVmxM5dj5XMrK/r0vDIwZ4sxfW5I4fi6bmNvFfPrjLcxMpfTtVvX1GTvEhZArufy9NZn4xGL+3ppMaFgeY4Y662xOX8jh7MUcEpJLSEguYcW6BIqK1TT3s6oy36oYPdiZv7cmc+J8DjG3i/lsWSwKUwl9u1T33Dhz4Woea7anEJ9UwprtKYSG5zF6kF7jgs+i2HfsznMTV8QXP995bnzq5hxsCGXZMDS68NeWRI6fyyLmdhGfLI3GTCGlXzeHqtMMdSHkSg5/b026ozGJC1dzGTtE/9J06kI2Zy/mcDupmNtJxfy29jZFxWoC/S2rzNcYI/vasf9kDvtP5nI7uZRfN6SRnl3G4J62Ru0H97AlLauMXzekcTu5lP0nczlwKoeR/fX3783YElZtTud4SB4q1b/3EvGo15XQcJ7vCSPc+X19PEdPZ3ArrpAPvo5AYSpjQE+nKtOMf8yd8xez+GPjbeISivhj421CLmczfkQjA7vycg2Z2WW6X3Zu3QZRH1Yf4/zlPFZtTDaIMKoLaXuOcmPh1yRvqZnjwfvpSRTHJRH+2ofkX48m/rcNxK/chO+rM3U2jV+cTvr+k0R9upyCiGiiPl1O+sHT+Lw4vZqcq8Zj+lSSN20mecNmCqNvEfXRZxQnJ9No0nij9i6PDSdp7UbSdu2l+HYCaf/sIXnjFjxnPamzUeXkUpaeofvZde1MeXExaXv21kmjoGHzf8oBY4y+ffvSpk0bNm3aBGg9dsOGDSM5OZl//vmHkJAQ2rZtS79+/cjMzNSlu3nzJuvWrWP79u3s3r2bixcv8vzzz+v25+XlMX36dI4dO8bp06fx9/dn6NChlaJHFi5cyMiRI7ly5QpLlixh48aNAERERJCUlMQ333xTq/O5N7+ZM2eyZ88ennjiCebOnUt4eDjLli1j5cqVfPDBB7Uuq4CAAIYMGaIrK4Ann3ySEydOsGbNGi5fvsz48eMZPHgwkZGRRvPIz89n6NCh7N+/n9DQUAYNGsSIESOIi4sDYObMmYSHh3Pu3DldmsuXLxMaGqpzVNSEwsJCPv/8c1avXs3Ro0eJi4tj3rx590332GOPkZWVxfHjxwE4fvw4mZmZjBgx4qEd8y6bNm3Cw8ODJUuWkJSUpHPeXLlyhUGDBjFmzBguX77M2rVrOX78OC+88AIA58+fZ+7cuSxZsoSIiAh2795Nz549qztUrXB1MsXe1oQLV/X3bplKw5Xr+QT6WVSZrrmfBReu5htsC7mSR/Nq0tQFuQz8vM0IDS8w2B4alk9AE+OdrABfc0LDDLVdCCvAz9scmeyujQWh4RVt8mleRZ41wdXJFAdbE0IqlmVEfrUvAM39LA3SAJy/mkegX9VpLO+MyOXll9dYX0MpS1cnE+09ec9xVSoNVyIKqr2/AppYGNzHABeu5hHY5CHck15GyjG8oMpz1paRof2F8Dvl+BBbajdnUxzsTAm5ou9Ul6k0XL6WR4umVb84B/pbEnLZ8MXr/KVcWvgbTyOVQO8udpgppIRH5hu1qYqqnpvL16t/bgL9LAm5aqgx5EputWkszbWFnVdQ8+fmLg2hLBuGRgUOdqacv2yo8dK1PFpUiBow1GhlkAbg/OWcKs9LKoE+Xey1Gm/UXKNcBk28zLh4zXDaycVrhQT4Go/2ada4sn1oeCF+3mYP9fl+1OtKrcYG8ny7mOFgb8q5UP2UtjKVhothObQMsKkyXctm1py7aDhV9GxoVqU0Ho3M2byiI2uXd2DRvADcXGofOfZf9jH+K2w7B5G2/4TBtrS9x1C2a4lEro04s+scRPr+4wY26fuOYdcluNbHk5jIsW7RnMwTpwy2Z504jU1wG6NppKYmqEsNp7Wpi4uxbqXXWBHXsaNI/WcP6qLqp4Y1VDRqTb39GgL/Z9aAqY6AgAAuX74MwKFDh7hy5Qqpqam6tU4+//xztmzZwoYNG3j66acBKC4uZtWqVXh4eADw3XffMWzYML744gtcXV3p27evwTGWLVuGnZ0dR44cYfjw4brtkydPZuZMvRf31q1bADg7O9dpDZiK+U2dOpU333xTF8Hh6+vLe++9x/z581m4cGGt8w8ICGDvXq23Nioqir///pvbt2/TqJHWkz9v3jx2797NihUr+PDDDyulb9OmDW3a6Cuw999/n82bN7Nt2zZeeOEFPDw8GDRoECtWrKBDhw4ArFixgl69euHr61tjnWVlZfz00080adIEgBdeeIElS+4f7mhiYsITTzzBb7/9Rvfu3fntt9944oknMDExeWjHvIu9vT0ymQxra2tcXfUjdp999hmTJ0/WRc/4+/vz7bff0qtXL3788Ufi4uKwtLRk+PDhWFtb4+3tTXBw1Y1OSUkJJSWGDUV16/rYKbXVRFauYdRUdq4KZwfTatNlG0ljr/x3qx0bKzkymaSSvqy8ctpWcSw7pZysPMMOWFauCrlcgo2VnKwcVZX67Wzqrt9eV5aGI1tZuWX3L8scwzTZOWW6a2OMpye7czUi/77zvu+loZSlnY2JLo+KeTo7VP2sVqnjId2TlY6Vp8LWxniH1s5GRnZeZW1y2Z1yzH0402TtlNryyqow5SErR4WLYzX3pK0JWRXuyaycMuxsDcu/sac53y4JwNRESlFxOYu+jCKuFvckgL3tXY0VnoH71UG2cqPnVd31fmaKB1ci8om5z3ooRo/XAMqyQWis4npn5ZTp1pcxhr2tifHrbUTjd+8F6jQu/CKyVvWktZVM+3xXeF5zcsurrNNsbeTk5Bo6YLLz7j7fMrJya+8QqAmPel0JDef5drDT6syseF9ml+LqXLWzxN7WlMxswzSZ2WXY2+nPLfxGHh98HUF8YhF2tqZMH+/Jj5+0YdqLIeTm1bzu/y/7GP8VChdHSlLSDbaVpmYgNTHB1NGOkuQ0FK6OlKRkGNiUpGSgcK06MqkqTGztkMjllKVnGmwvy8jA1NHRaJqs46dwHTea9P2HyA+/hlWLQFzHjEJqaoKJnS2laYb6rVu1xKqpPzf+t7jW+gT/f1D/T9YjgEaj0U33CAkJIT8/HwcHwzDXoqIioqKidH97eXnpnC8AXbp0Qa1WExERgaurK6mpqbz77rscPHiQlJQUysvLKSws1EV63KV9+8oLMj0IFfMLCQnh3LlzBhEv5eXlFBcXU1hYiIVF7UYz7i2rCxcuoNFoaNq0qYFNSUlJpfK7S0FBAYsXL2bHjh0kJiaiUqkoKioyKJfZs2czc+ZMvvzyS2QyGX/++SdffPFFrXRaWFjoHCEAbm5upKam1ijtU089RZcuXfjwww9Zv349p06dqtEaQQ9yzOoICQnh5s2b/Pnnn7ptGo0GtVrNrVu3GDBgAN7e3vj6+jJ48GAGDx7M6NGjq7y2H330kW6R5btonXFjAOjTxZYXp+vXvFn4VcydY1bISAL38zNXTCOpQZo6U/FYRo5vaG+4U6LbrN9e6ZRrqb9PFztemqGvJ975MroKrffPuNLuasQ8P9Wdxh7mvPaB8Ui0+/KIlWXvzra8OE0frr3w61hjh72/TiM6kEge2j1p5JGp3t7I86LN599T2LebPa/M0i/2uODTyCqPfd/nu+IGSeWN8YnFPPNmOFaWMnp0tGP+cz68uiSi2pfyvl3teOlJT93f//vC+HNTxSbD/cbKtIpEL0z3oLGnGa++V7PnpkGUZQPQ2K+bA6/M9tH9/fYnN4xrhPvO76+4X2JEeHxiMU+/cRUrSzk9OtrxxhxfXl18rVZOGIzki6T6+qfic6yrJ2t31GppCHVlQ3m+B/RyYt5z/rq/33gvzOhBJZKa3JeVdd677cyFeyJkYgsJu57LmmUdGNLHhbXbql4jr776GP85VTaOmuptHmg9kJrnF/vjckwcHQhe8zsSiYTSjEySt2zDa9aTaMorO1ddx44i/0YkeVeuPoA+QUNGOGCAa9eu0bhxYwDUajVubm5G1zGpLiLlrlPi7r8zZswgLS2Nr7/+Gm9vbxQKBV26dKG0tNQgnaVlzcL7pFJppQre2CK7FfNTq9UsXryYMWPGVLI1M6t9eGPFspLJZISEhCCTGS5AZmVlPOT39ddfZ8+ePXz++ef4+flhbm7OuHHjDMplxIgRKBQKNm/ejEKhoKSkhLFjx9ZKZ8WIFYlEUuOFmVq2bElAQACPP/44zZs3p2XLlly8ePGBj1nTa1gRtVrNM888w9y5cyvt8/LywtTUlAsXLnD48GH27t3Lu+++y6JFizh37pzRe/att97i1VdfNdimUCgY9UwEAKdDc7kepR+pM5Fr72l7peFok6115RGTezE2EqW0rjxi9aDk5qsoL9dUOpattazSCJ6BtgojlbY2clQqjS402ZiN0rryqGB1nA7NISJKP63ExEQb/mynNDFYZNHWpvoIB21ZGt5fVaWZ84Q7XYKVvPbhTdKzajeH/FEtyzMXc4mIrnxP2lW4J5U21edpVKu1jOyHdU/W4pyzjIyeK63lqMo1tZpGdj9OhWRz/ea99+Sd59tWbjBKa2sjrzQibaA3uwz7CveknU3lKAlVuYbEFG3E3Y3oQpr5WjJmsAtf/xpbtcYLORU03nlubCs/N9XWQdkq7G0r35tGn5upHtrn5oPIGj83DaIsG4DGkyFZXLupnyJz93rb25oYalSaVPusZmaX6aIp9Gkqn5deYwk3ogto1sSSMUNc+eqXmCrzvpe8/HLKyzXYVnpeK0ex3SU7V2XE/t9/vhtCXdlQnu/jZzMJj9Cv3ai/L03JyLr3vqwc4XIvmdmluuiZu9gpTcjKLq0iBRSXqImOLcCjUfXTdOujj/FfU5KSXimSxdTJHnVZGaUZ2Vqb5HQUrobRKQpn+0qRMzWhLDsLjUqFiaPhQLKJvT2lGRlG06hLSrjxv0VELnofEwd7StPScZswFlV+PmVZ2Qa2UjMznIcOIua7H2utrSHRUKYC1Rf/59eAOXjwIFeuXNG94Ldt25bk5GTkcjl+fn4GP8d7Qs/i4uJITNSv/H7q1CmkUqkuGuTYsWPMnTuXoUOH0qJFCxQKBenp968ITE21IYLlFTymTk5OBgu65ubm6qYrVUfbtm2JiIiodC5+fn61/vT29evX2b17t66sgoODKS8vJzU1tVLe906huZdjx44xY8YMRo8eTatWrXB1dSUmJsbARi6X6xbDXbFiBZMmTap1pM6DMnPmTA4fPmwwnetBqXgNy8vLuXrV0Pttampa6dq3bduWsLAwo9fw7v0il8vp378/n376KZcvXyYmJoaDBw8a1aFQKLCxsTH43TsFqahYTVJqqe4Xl1hCZnYZwS30c+/lMgmtAqwIv1n1pxev3SykbQtDR1zbllZcqyZNXVCVw83YYoKaGzofgwKtuF7FJ0GvRxcRFGioLTjQkpuxRdwt/uvRhQQHWlawseJaNZ8ZrUhRsZrE1FLdLzahmIzsMtq2rFCWzawIjyyoMp9rNwto28Jw7YN2La0Jv2mY5vmp7nRrr2T+JzdJSa+6c1cVj2pZVnVPtr3nuNpytKz2/roeVWhwHwO0bWlNeNRDuCfjigmuWI7NLas85+vRhZXKXVeO/956u9p7MqVE94u9XUxGViltWyl1NnKZhNbNrQmrZl2M8MgC2rYyXMOgXWsbwu633odE7wSoVmMNnpvWAdU/N+E3CwzSALRraVMpzfPTPOjeXsnrH90kOa3mz02DKcsGp7GIjKxS2t1zPLlMQpvm1oTdqPorjOGR+bS757wA2rdWVnteoB3Yvp/Ge1GVQ1RcMUHNDfslQQEWXI82HkUTcauYoIAK9s0tuBlb/K8/3496Xdlgnu+ichKSi3W/mPhCMjJL6RCkX8xWLpcQ1ELJ1etVL0R8NSKP9m0MF8DtEGRXbRoTuQRvDwsysqrX+1/3MeqD7NMXcezX1WCb04Du5IRcRXMnOj3r9EUc+3UzsHHs352sU1V/NroqNGUq8sKuYde1i8F2u66dyA29VEWqO2lVKkpTUkGtxnnoIDIOH6sUNeM0eCBSU1NStu+stTbB/z/8n3LAlJSUkJycTEJCAhcuXODDDz9k5MiRDB8+nGnTpgHQv39/unTpwqhRo9izZw8xMTGcPHmS//3vf5w/f16Xl5mZGdOnT+fSpUs6Z8uECRN0jgc/Pz9Wr17NtWvXOHPmDFOmTMHc/P4LTnp7eyORSNixYwdpaWnk52s7Dn379mX16tUcO3aMq1evMn369EpRJ8Z49913+f3331m0aBFhYWFcu3aNtWvX8r///a/adCqViuTkZBITE7ly5QrfffcdvXr1IigoiNdffx2Apk2bMmXKFKZNm8amTZu4desW586d45NPPuGff/4xmq+fnx+bNm3i4sWLXLp0icmTJ6NWV+59zJo1i4MHD7Jr165/1QlSU2bPnk1aWhqzZs361/Ls27cvO3fuZOfOnVy/fp05c+YYfDkLtF+7Onr0KAkJCTqH3RtvvMGpU6d4/vnnuXjxIpGRkWzbto0XX3wRgB07dvDtt99y8eJFYmNj+f3331Gr1TRr1uxf075lbzoTRzjTta0N3u4KXp3lQUmJmsOn9fpfm+3JjHF6x9vWfem0bWnN+KFOeLgpGD/UieBAa7bsTdPZmCmk+HqZ4euljcZycTTF18sMJ/v7r7ljoG9fBgN72DGgmy0erqbMmuCCk70J/xzRhvVOH+3MqzP1Ydm7jmTh7GDCrAkueLiaMqCbLQO627Fpr350Y9uBTIIDrRg72AEPV1PGDnYgqLklW/dnVjp+rbTuSWPScBe6tlPi7W7GvNlelJSqOXRaH4L8+tNePDneTZ9mbxrtWlozYagznm4KJgx1JjjQms179GX5wjQP+nax5+MfYykqVmOnlGOnlGNaixcLaDhluWVfOhOGO9Pl7j35lAclpWoOn8nW2bw2y4MZY110f2/dl0HbFlaMG+KIh6uCcUMcCWpuxdZ9eue4mUKKr6cZvp5370kTfD3rcE/uz2BAd1v6d1Vqy3G8M072Juw6qi3HaaOceGWG/hrvPpKNs4MJT413xsPVlP5dlQzoZsvmvfoyksugsYeCxh4K5HIJDrYmNPZQ4OZUO20V2bQrlckjXenW3hYfDzPmP+dDcamagyf0x37jOR+emuR+T5oU2re2YeIIVzwbmTFxhCttW1qz6R/9tMuZE91p2cwKF0dTGnua8+QEd9oEWnPgRO2v++bdqTw+woVu7ZT4eJgx72kvSko1HDx1z3PzjDczJ1R8bmyYMOzOczPMmeAW1mzeo9f44nQP+nW146MfYykqLq/zc6Mvl0e/LBuGxhQmj2pEtw52+HiYM3+OL8Ulag6c0Ncrb8zx5alJHgZp2rdWMukxNzwbmTHpMTfatrRh465knc1TkzxoFWCFi5NW48yJHrQJtOHAceMj21Wx9WAW/bsq6dfFBg9XU2aOdcLRzoQ9x7IBeGKkIy9N17eHu49l42RvwpNjnfBwNaVfFxv6d1Wydb/+/jV4vmUS7G3lNPZQ4PqAz/ejXldCw3m+121P4IlxnvTo7EBjLwventuUktJy9h3Vt8ULXm7KM1N9dH9v2J5Ah2A7Jo/xwMvdnMljPGjfxpb12/WDuHNmNCaohRI3ZwWBTa15743mWFrI2HUwpdYaH1YfQ9tfM8fXS/su4+pkiq+Xea2vt8zSAps2Adi0CQDAorEHNm0CMPPU6mn2/qu0WaH/2mrs8jWYezei+WdvYhXgi8eMsXg+OZboL3/T2cR8/zuOA7rhO282ls188Z03G8d+XYj5blWttN3l9qrVuI0djeuYkVj4NqbJm/Mwc3Mjce0GABq/8iLNPn5PZ2/u44XziKGYe3th3aolzb/4GEt/P2599V2lvN3GjiL9wCFU2Q/2NalHHbVGXW+/hsD/qSlIu3fvxs3NDblcjp2dHW3atOHbb79l+vTpumgQiUTCP//8w4IFC5g5cyZpaWm4urrSs2dPXFz0jZOfnx9jxoxh6NChZGZmMnToUJYuXarb/9tvv/H0008THByMl5cXH374YY2+iOPu7s7ixYt58803efLJJ5k2bRorV67krbfeIjo6muHDh6NUKnnvvfdqFAEzaNAgduzYwZIlS/j0008xMTEhICDgvo6FsLAw3NzckMlkKJVKAgMDeeutt3juuecMoiVWrFjB+++/z2uvvUZCQgIODg506dKFoUOHGs33q6++YubMmXTt2hVHR0feeOMNcnMrjwL4+/vTtWtXMjIy6NSp033P899GLpcbRDz9G8ycOZNLly4xbdo05HI5r7zyiu6z43dZsmQJzzzzDE2aNKGkpASNRkPr1q05cuQICxYsoEePHmg0Gpo0acLEiRMB7dS4TZs2sWjRIoqLi/H39+fvv/+mRYsW/5r29f+kYWoq5flp7lhZyoiIKmTB59EUFesrOmcHE4MpVtduFvLxj3FMG+vC1DEuJKWW8tGPsURE6yMA/Bub8+mb+nVznpmsfbHfdzyTL3+5XWN9x87nYm0lY9JwR+yVcmITS1j0bRxpmdqwYDtbuUEnISW9jEXfxjFrggvDetuRkaNi+f9j7z6jmsgaMAC/offei1RFo6ioa4HProiyCgtWQER01bWAYte117Wi7tpWUbCAvTcUFQWxgqD0XhSkCCK9zfcjSyAmFOtMdu9zTs6BySR5czMzmdy5JSAHj8Ibrq7GJZdjy8EsuNhrwMVOAzl5VfjjYBYSUlvfAkaQ09dzISEhgtmuepCXEUVcShmWbk3mKUt1FQk0rpeMSSrDxr1pcHPUhqujFrJzq7BxbxpPU/ORgznb67ZlDX3WAWDb3xm4HdL6H0DCUpZnb+RDUkIEs1x0ONtkShl+3576STmK85RjbHIZNu/PgKuDJib+wtkmN+/P4N0mDaXxx+KGAb+nTajfJgux06f122TI849QkH2H8bYN5bjmzwzkvedcsVNR/KQcC6qxZk8mpxz7K+P9hxocPJWDRxEN5aiiJI7dKxqyOVirwsFaFa/iS7FsB+/4Yp/j1JUcSEqIwMO9DeRlxRCbXIolGxN49281STRuURyTWIr1u1MweawO3Mbq4O27SqzfnYK4Rs3hlRXFsGSWEVSUxFFaVovUjHIs3ZyI8FefP23t6Wu5kJQQwWw3/X/2m1Is3ZLU7DEoJrEUG/9Kg9tobUwarY3sd1XY8FcqTxfLkUM4Tdu3L+fdb7YeTMfth59fcSAMZSkMGQMuZ0NCQgSe7gacjEklWLwx/pOMEryfd0IJ1u9OwuSxenAbq4u37yqxblcyT3cXZUVxLJllws2YklGGpZvi8eIzM4a+KIGCbC7GjVCFsoIoMrKrsG7vm4b9W0EU6soNp9i5BTVYt/cN3B3VMaKfIt5/qMWhM7kIe9nQOkdFUQw7lzWM1/PLUBX8MlQFrxPK8Lt36489n2L6sRIQnv375HnOFN7zp5tCTk4MsQkf4bXqNcrLG1oua6pJovFvwNdxH7FmWxymOhtgqpMB3uRUYNXWOMQ0as2loSaJVQvMoCgvjqLiakTHf8SMRZF4l8c7YUJrfK9zjHZGMti61JT7/wwnTgVt4MP32H6o9d8/it07oU/QMe7/7G3LAACZfucRNWUpJLXVIa3fUDlUnpaFZyOngb19KQx+c0bl21xEz9uAnAsN0zcXhkUgwtkLZmvmwmyNB8qSMxHhNA9FT6NanauxvBuBEFdSgsHM6ZBQV0NpYhJezZiNyrecVuwS6uqQ0m7IyBIRhZ6bK2SMDEDV1KDoyXNETJiEykY9JQBORY1ij26ImjLji3IR/x4sqrUDYxBcq1evxsWLF1s1LgjxZSiKQvv27TF9+nS+8UqI72O425d9Uf0oN452xs+/xtAdo1lX/2Zj2KSXdMdo0S3frkJRliPcX9Edo1nXfcwxcnos3TFadOVABwyZ8LzlFWl0x78HrCd+fnPxHynwmAXjyxHglCXTc97x74HB45/SHaNZQQE9YT8zge4YLbq4t51QHCuFYf/ua/eQ7hgtenipL+PPM275dsU18W/XCvt7sK2OR3CHrnTHaFH/2Jd0R/giDh5JtL32+d2mLa9Es/9UCxhCOOTm5uLYsWN48+YNJk+eTHccgiAIgiAIgiAIohXIILzNIxUwBONoampCTU0NBw8ehLKycssPIAiCIAiCIAiCIAiGIxUwX2D16tVYvXo13TH+tUivOIIgCIIgCIIgCOFDWsA07z81CxJBEARBEARBEARBEAQdSAsYgiAIgiAIgiAIgiC+GunN0DzSAoYgCIIgCIIgCIIgCOI7IxUwBEEQBEEQBEEQBEEQ3xmpgCEIgiAIgiAIgiAI4qvV1dXRdvtce/fuhZGREaSkpNC9e3c8fPiw2fWDg4PRvXt3SElJwdjYGPv37//s1yQVMARBEARBEARBEARB/GecOnUKc+fOxfLlyxEREYG+ffti+PDhyMjIELh+amoqRowYgb59+yIiIgLLli2Dh4cHzp0791mvSypgCIIgCIIgCIIgCIL4alQdRdvtc+zYsQNTpkzB1KlT0aFDB3h7e0NfXx/79u0TuP7+/fvRpk0beHt7o0OHDpg6dSrc3d2xbdu2z3pdUgFDEARBEARBEARBEIRQq6ysRHFxMc+tsrKSb72qqiq8ePEC1tbWPMutra3x6NEjgc8dFhbGt/6wYcPw/PlzVFdXtzojiyLzRBEEQRAEQRAEQRAE8ZV+/jWGttfuoXsaa9as4Vm2atUqrF69mmfZ27dvoauri9DQUFhaWnKXb9y4Eb6+voiPj+d77nbt2sHNzQ3Lli3jLnv06BGsrKzw9u1baGtrtyqj2Ge8H4Ig/sWGu0XRHaFZN452hu3U13THaNa1Q51gPTGC7hgtCjxmQeuXY2tc/ZuNEe6v6I7RrOs+5hg5PZbuGC26cqADBo9/SneMZgUF9GT8vhN4zAJDJjynO0aL7vj3EIrPe+DYJ3THaNa9071gPzOB7hgturi3nVAcK4Vh//7fyGC6Y7Qo5Ep/DJv0ku4Yzbrl2xXBHbrSHaNZ/WNf4pq4Gd0xWmRbzV8JIAwo6vMHw/1Wli5dCi8vL55lkpKSTa7PYrF4/qcoim9ZS+sLWt4cUgFDEARBEARBEARBEIRQk5SUbLbCpZ6amhpERUWRk5PDszw3NxeampoCH6OlpSVwfTExMaiqqrY6IxkDhiAIgiAIgiAIgiCIryYMg/BKSEige/fuuH37Ns/y27dv83RJaqxPnz586wcGBqJHjx4QFxdv9WuTChiCIAiCIAiCIAiCIP4zvLy8cOjQIfj4+CA2Nhbz5s1DRkYGZsyYAYDTncnV1ZW7/owZM5Ceng4vLy/ExsbCx8cHhw8fxoIFCz7rdUkXJIIgCIIgCIIgCIIg/jPGjRuHgoICrF27FtnZ2ejUqROuX78OAwMDAEB2djYyMjK46xsZGeH69euYN28e/vrrL+jo6GD37t1wdHT8rNclFTAEQRAEQRAEQRAEQXy1z+kKRLeZM2di5syZAu87evQo37L+/fsjPDz8q16TdEEiCIIgCIIgCIIgCIL4zkgLGIIgCIIgCIIgCIIgvlodjdNQCwPSAoYgCIIgCIIgCIIgCOI7Iy1gCIIgCIIgCIIgCIL4asI0BgwdSAsYhmOxWLh48eI3e7779++DxWKhqKjomz1ncwYMGIC5c+d+19dwc3ODvb39d30NJrwmQRAEQRAEQRAEIbxIC5jv4NGjR+jbty+GDh2KmzdvftVzZWdnQ1lZ+Rslax1DQ0Okp6cDAKSkpKCpqYmePXtixowZGDRo0A/N0hq7du0CRX1dTevq1auxZs0aDBs2jO8z27JlCxYvXoz+/fvj/v373+w1P3X//n0MHDgQhYWFUFJS+qbP/S0422tieH8VyMmKIj6lDH/5vUHG28pmH2PVQwGuv2hBW0MC2blV8D2Xg0fhxdz7O7WTxegR6jA1kIaqsjjW7k5DWKP7P5fTKA3Y9FOGnIwo4lPLse/E2xYzWnZTwER7DWirSyA7rwp+F94hLOIjzzq2A1TgMEwNKkpiyHhbiYMB2YhOLPvinBN/0cKIgWqQkxVFXHIp/vTNQvqbimYf878eipg0WhvaGpLIzq3E0TPZCH3xgXv/+JGasOqhCH1tKVRV1yEmsRSHAt4iK6f5998Up5HqGNZPCXIyokhILce+kzmtKEt5uNhpQFtdHNl51Th2MZevLEcMUIbDMFWoKHLK8u9T7764LJ3tNGDTX4XzeaeUYe/xlj9vq+4KmPiLJvfz9j3/jmeb69ROBo426jA1lIaqkjjW7UlHWMSXbZMj+ivDwVoFyvXv9fQ7xCSVN7l+p7YymDJGA210JPG+qAbnAgtw80ER9/422hJwHqUOkzZS0FSTwN+nc3A5qPCLsn3KdbQubAepQ15ODLFJJdjtk470rKazAkDfnsqYPFYP2pqSyH5XicOnshD6rCHPyKEaGDVEA5rqkgCA9KxyHDv/Bk9ffmjqKZslDPsNALg66mDEYDXIy4ohLqkUu4+kIz2r+Zx9eyrBbYwutyx9Tr1B6PMi7v0jh6hj5FB1aKo1Lsu3eBb5ZdumMHzek8bo4ufBGpyMiSXYdTgNaS1k7NdLGZPH6UNHUxJv31XisH8mQp4J3kec7HXwq5M+zl7Lxl++GQLXac7wfoqwH6ICZUVRZGZX4fCZPMQkN52vY1tpuDuqQ19bAu8/1ODC7ULcethQNvraEnD6WRUmbaSgoSqOw2dyceVe0WfnEoTpx0pAePZv9wkGGDVMG/JyYohJ+Igd+xORmtH8d1h/SzVMdTaErrY03mSX4+9jqXjwuIBnHTUVCfzmZoze3VUgKSmCzDfl2Lw7HvHJJZ+d0cVeCyMGqP5TlmX461jrytLVQZt7vnb0XDYeNSrLcT9rwKq7EvS1Jf8pyzIcPv1lZakzYSz03CdBUl0NpUnJSN60FR9eRDS9vtM46DiNg5SuDiqzc5Bx4BDeXbrKvb+L7yEo9ezB97iC4Id4PWPOZ+dT+V8PGM+fAsVunSClo4HnjjPx7nJQ84/p+xPY25ZAjt0WlW9zkbz9EDIOBvCso/WLNdqt9oSMSRuUJWcgfuVOvLt057PzEcKPtID5Dnx8fDBnzhyEhITwzB0uCEVRqKmp4VteVVUFANDS0oKkpOR3ydmc+vnQ4+Pj4efnByUlJQwZMgQbNmz44Vlaoqio+E0qLLS1tXHv3j1kZWXxLD9y5AjatGnzXV5TWIwZoQ6HYWrYe/wNPNckovBDDTYuNIa0VNOHkPYmMlj6mwGCHhVi5spEBD0qxNKZBjAzluauIyUpgpSMcuw9/uarM462UcMvQ1Wx/2Q25q1PRuGHaqz3MoS0ZDMZjaWxZLo+7oYVYfaaJNwNK8KS6W1gZtSQse9PCvh1vBZOXc+Dx9pkvE4oxRpPA6iriH9RzrG2GnAYroE//TIxZ1U8Cj/UYPNi02bLsoOpDJbPNkJQaCF+Wx6HoNBCLJ9thPYmMtx1zNvL4fKdfHiuScCSP5IhIsLCpsWmkGrm/TfF0UYV9kNVsP9kDrw2pKLwQw3WzWvTYlkunqaHe4+LMGdtCu49LsLiaXpo17gseyjg13FaOH0tHx5rUxCdWIbVHm2grvL51wJGD1fDL9Zq2Hf8LeauS0LhhxpsWGDU4ja5ZEYb3H1UhFmrknD3URGWzmjDt02mZlZg3/G3n52psf/1kMfUsZo4fb0AnutTEZ1UjtVz2kBdWfB71VQVx6o5+ohOKofn+lScuVGAaeO0YGkhz11HUkIEOfnV8L2Qh/cf+L83vtT4UdoYPUILe46kY+ayaBQWVWPLMrNmy5LdVg4rPE1x+2E+pi1+jdsP87HS0wTtTWW56+QXVOFv/0zMXB6NmcujERFdjLUL2sJAT7rJ522KMOw3ADBupBYcR2jizyMZmLU8Bu+LqvHHsnbN52wri989THAnpADTl8TgTkgBVngao71JQ1nmva/CIf83mLk8BjOXxyAi+iPWLjCFgZ7UZ2cUhs97vJ02xthqY7dPGmYsfY33RdXY+nv7FjOunNsWtx/kY+rCV7j9IB+r5pmiQ6OM9cxMZPHzEHUkp5V+djYAsOouB/fRGjhzswBemzIQk1SOFbN0odbE/q2hKoYVM3URk1QOr00ZOHvzPaaO0UCfrnLcdSQlWMjJr4bfxfxvun8z/VgJCM/+7eyoj3H2ethxIAlTvcJRUFiFnWs7Q1patMnHdDRTwJpFbNy69w5uHs9x6947rF3MBrtdw7FdXlYM+7ZYoKaWwoLVr+Ay8xn+PJyMj6Wfvx2MHaEBBxt1/HUsC3NWJ6DwQzU2LTRpvixNZLBspiGCHr3HzBXxCHr0HstnGsLMuKEsO5vJ4UpQPuauS8TSLckQFQU2LjSBpMTnlaX6cGuYLFmIjAOH8MJhPD68iID5gb8gqa0lcH3t8WNgNG8O0v/aj+cjHZH25z6YrlgK1QH9uOtEe3jhUd/B3NuzkY6gamqQd/P2Z2WrJyorg+KoeER7rm3V+tKGevjpykG8D3mBkJ/skfTHfnTcuRxav1hz11Hq3RUWJ3fizYlLeNjdDm9OXEI3f28o9ez8RRmZjqqro+0mDEgFzDdWWlqK06dP47fffsPPP//MN394fRegW7duoUePHpCUlMTDhw8xYMAAzJ49G15eXlBTU8PQoUMB8HZB6tOnD5YsWcLzfHl5eRAXF8e9e/cAAMePH0ePHj0gLy8PLS0tODk5ITc397PfR/3j27Rpg379+uHgwYNYsWIFVq5cifj4eO56MTExGDFiBOTk5KCpqYmJEyciPz+/yedtLh9FUTA1NcW2bdt4HvP69WuIiIggOTlZ4HN+2h1owIAB8PDwwKJFi6CiogItLS2sXr26xfesoaEBa2tr+Pr6cpc9evQI+fn5sLW1/arXTEtLA4vFwsuXL7nLioqKwGKxcP/+faSlpWHgwIEAAGVlZbBYLLi5uXHLZcuWLTA2Noa0tDS6dOmCs2fPcp+nsLAQzs7OUFdXh7S0NNq2bYsjR460+H4/h721GgKu5OLRi2Kkv6nE9r8zISkpggG9lZp9THj0R5y+loes7EqcvpaHl7ElsLdW567z/NVH+J1/h0cvvvyqWT27Iao4dS0Pj8KLkf62Ejt83kBSQgT9eyk2/ZihaoiIKcGZG/nIyqnCmRv5iIwrgd0QVe46vwxVQ2BIIQIfFiIzuxJ/n8pBfmE1RgxQ+aKcv9howP9SDkKff0BaVgW2HkiHpAQLg/o03dLtl2EaCH/9EQFX3iEzuxIBV94hIuYjfhmmwV1n+dZk3H74HulvKpCSUY7tf2dAU00CbQ0//8eP3WAVnLqej7CIj5yyPPL2n7JUaPIxo4aoICKmFGduFPxTlgWIjCuF3ZCGcrIfqorbIYUIDClCVk4V/j71jlOW/T+/LO2HqiHgai7n835Tie2HsyApIYIBvZSaeYwqImJKcPp6HrJyKnH6OmebtBuqxl3n+asS+F14x9NS60vYD1HF7dAiBIZy3uuh05z3Ory/4M/Zpr8S8t5X49Dpd8jKqUJgaBHuhBbhF+uGsklMr8CRc7l4+LwY1dXf7iTDYbgmTl58i5BnhUjLKscfe1MgJSmCwVaqTT9mhCZevPoA/0vZyHxbAf9L2Qh/XQzH4Q0n0WHhRXj68gOysiuQlV0Bn1NZKK+oA7st/w/ilgjDfgMADsM1cPJiNkKeFSEtqwJb9qVCSkIEg6ya3sYdh2vixati+F/K+acscxAR/REOIxpyPg7/gKcvP+BNTiXe5FTiyOk3KK+oQwdTuSaft+mMzP+8R4/QwvELb/DwaSHSMsux+a9kSEmKYMj/1Jp+jK0Wnkd9wMmLb5H5tgInL77lZLTl/WEnJSmC5XNMsO1AKj6W1n52NgCwG6SMO48+4M6jYmTlVOHw2TzkF1XDpp+SwPVt+iohr7Aah8/mISunCnceFSMo7APshjRsv0nplfC9kI+QFx9RU/PtWtgy/VgJCM/+PWaULvxOZ+BBWD5SM8qwYWccJCVFYd1fo8nHjLXTxfOXhTh+NhMZWeU4fjYTLyKLMHaUHncd59H6yM2vxKZd8YhN/Iic3Eq8iCrC25zmW60IYj9MHQGX3yH0xQekv6nAtr8zICkhgoG9mytLdYRHf8Spq7nIzK7Eqau5eBnzEb8MazhfW749BbdD/inLzApsP/RPWRp9XlnqTZqInPMXkHP2AspSUpG8aSsqcnKgM36MwPU1R/2M7FPnkHcjEBVZb5B3/RZyzl2E/tTJ3HVqPhSjOr+Ae1O27I3aigrk3Qr8rGz18m49QMIqb+RcbF0FjsG08ajIyEbM/I0oiUtBps9ZZB49D2Mvd+46RnMmIf/OIyRvOYjS+BQkbzmI/LuPYThn0hdlJIQbqYD5xk6dOgUzMzOYmZnBxcUFR44cEdhVZdGiRdi0aRNiY2PRuTOn9tPX1xdiYmIIDQ3FgQMH+B7j7OwMf39/nuc7deoUNDU10b9/fwCcljPr1q1DZGQkLl68iNTUVO4P+a/l6ekJiqJw6dIlAJzuUf3790fXrl3x/Plz3Lx5E+/evcPYsWObfI7m8rFYLLi7u/NVHvj4+KBv374wMTFpdVZfX1/IysriyZMn2LJlC9auXYvbt1s+kLq7u/NUmvn4+MDZ2RkSEhLf7TUBQF9fH+fOnQMAxMfHIzs7G7t27QIA/P777zhy5Aj27duH6OhozJs3Dy4uLggODgYArFixAjExMbhx4wZiY2Oxb98+qKk1fZL6ubTUJaCiJI7w1w1dSaprKLyKKwHbVKbJx3UwlUH4a96msy9efUSHZh7zxRnVxDkZoxter6aGwuv40mZfr72xNCJieDOGR5dwHyMmyoKpgTQiogWsY/L570NLXQKqSuJ48UlZRsWVNPsjhW0qixeveU9yX7wqbvYxstKcw/vn/sDQ/KcsI6IbrgzX1FB4nVDW7HtubywjuCxNOCdnYqKAqYEUImJ4rzhHRJegvcnnncBpqQv+vF+19HmbyPBsxwAQ/voj2F/wWTZHTBQwbSPgvcaUcsuDL5uxDN/64TGlMDWQhuh3/KbW1pCEqrIEnkc1NDWvrqEQGfsRHRtdof0Uu60cz2MA4HnUB3RsJ7hCQIQFDOyjAilJEcQkfF6TemHYbwBAW0MCqsoSePGKtyyjYj82WS4AwG4rixdRvDmfRxajY9umy3JAH2VOWSZ+XlkKw+fNzRj5ScaYj+ho1kw5tuPP+CzyA9/7mjvVEI8jihD+6ssqDsREAZM2UngZy9vt5GVsGdobC26RZGbEv35ETBlMDaS+6/7N9GMlJ6Nw7N86mlJQU5HE04iGLm3VNRRevi5Cp/ZNX5zo1F4BTyPe8yx7EvEenTo0PMaqpyrikj5i3WI2rhzrAx/vbhhpLbhFSHOaKstX8c2XZQdTWZ7HAMDz1x/BFtB6rJ7sP61+Ppa0vixZ4mKQ79gB70PDeJYXhj6GgkUXgY8RkRBHXRVvN6e6igrIm3cCS0xwizMtR3vkXr+FuvLPr8D6Ekq9uyLvTijPsrzAh1Ds3pBRuXdX5N8J4Vkn//ZDKPex+CEZfzSqjqLtJgzIGDDf2OHDh+Hi4gIAsLGxQUlJCYKCgjBkyBCe9dauXctt5VLP1NQUW7ZsafK5x40bh3nz5iEkJAR9+/YFAJw8eRJOTk4QEeF8qbi7N9S2GhsbY/fu3ejZsydKSkogJ/f5V8oaU1FRgYaGBtLS0gAA+/btQ7du3bBx40buOj4+PtDX10dCQgLatWvH9xwt5Zs8eTJWrlyJp0+fomfPnqiursbx48exdevWz8rauXNnrFq1CgDQtm1b/PnnnwgKCuIr80/9/PPPmDFjBh48eIDu3bvj9OnTCAkJgY+Pz3d7TQAQFRWFigrnCqmGhga3e1NpaSl27NiBu3fvok+fPgA45RYSEoIDBw6gf//+yMjIgIWFBXr04PR/NTQ0bPa1KisrUVnJ+2XWXDc3ZUXOYaKwmLcpbFFxDTRUm66YUlYUQ5GAx6gofvvDTn1GQa+nrtp0VyFlRTEUftLUu/BDDZQVOM+nICcKUVGWgOet5b7m51BREv/nNar5cjZblkpN5Gwmw3RnPbyKL0FaC2NP8L1WM2Wp0UJZCnpMQ1mKQVSUxbcdFX6sRbfPLEtlBfFvm/Ebb5P175XvtT7WQElB8AmtsoIoij7yZxMTZUFBToyv3L4V5Sa2ycIP1dzxRgRRURIXvE0q8Za/kb409qxjQ0JcBOUVtVi1PbHFsQgEvZagjEzabwBAWbE+J/9raqo1l1NcYPkLKsvda9tzy3L1jmRkfGZZCvPnzcnYdDmqKImjsOiTxxRVc58PAAZaqqCtkSxmLH39WZkak6//Xvhkf/1QXMs93n1KSUEMH4p5K2CKPtbv36IoLP6yljgtYfqxEhCe/VtFmZPlfVEV72sWVUFTo+mugCpKEoK3S+WG96ajJQ374dI4dTELfmcywG4nj7nTTFFdTeHmvXetz8g9X/vk9YqrWz5f+7T8P1Q3W5bTnHTxOr7ks/ZvcSVlsMTEUJ3PWyFVXVAAiSYuHBaGhEFr9C/Iv3MPJTGxkOvIhpaDPUQkxCGurISqPN5W9/LmnSDXri0Sfl/T6lxfS1JTDZXveHNU5RZARFwcEmrKqMzJg6SWGirf8Y77U/muAJJa6iD+e0gFzDcUHx+Pp0+f4vz58wAAMTExjBs3Dj4+PnwVMPU/llta1pi6ujqGDh2KEydOoG/fvkhNTUVYWBj27dvHXSciIgKrV6/Gy5cv8f79e9T90xcuIyMDbDb7a98iKIoCi8UCALx48QL37t0TWLGTnJwssAKmpXza2tqwtbWFj48PevbsiatXr6KiogJjxghumtiU+lZF9bS1tVvVFUtcXJzbciklJQXt2rXje65v/ZrNiYmJQUVFBV8lTlVVFSwsOLXmv/32GxwdHREeHg5ra2vY29vD0tKyyefctGkT1qzh/WLiVBw5AAAG9lHCnEm6DfftTAMA8DXkYgEt1TN/+hhWKx7TGgN6KWL2RB3u/6t3cwaN5ntu1uc/t6CMAt9HK97IIEtleE7W5/7/+/aUf56Qf90vKcumHjR7kh6M9KXgtS6xxYwDeilglktDWa7ZkyEwD0tABr6Mnz5G0Of96ftoxfMO6K2EOa4NGVd5//N5f8Fz8W8jrG+yTbbmtVraHAV+xgCob5hwsJUq5v1qyP1/2R8Jgl8baHGg8U/vZwF8bzrzbQWmLX4NOVkx9O2pjMUzjeG1JrbZk3Zh2G8AYJCVCuZNNeD+v3xLYpOv2WLOTxcIyJn5tgLTl8RATlYUfXsqY9FvhvBaG99sJYwwfN5D/qcKr2lG3P+XbooXmLFV3zmfPqRROaqrSmC2myEWbYhDdfU32KcE5WvmaT/dj1nc5d+OMBwrhWX/HtpfAwtnNZzHLlr7SnCoVuzggvatxotEWEBc0kccPJYKAEhMKYFhGxnYj9BptgJmYB9leLo1dGVasUNwWbJasfMI+rybesysibow0pPG/A2tK8sWX62Zk6r0fQchrqYKiwA/sFgsVBW8R87Fy2gzdTKoWv6KSy1He5QkJOLjqy+vZP0iTX6BU82v840n9CCEA6mA+YYOHz6Mmpoa6Oo2/HilKAri4uIoLCzkmc1IVpb/KqigZZ9ydnaGp6cn9uzZg5MnT6Jjx47o0oXTbK+0tBTW1tawtrbG8ePHoa6ujoyMDAwbNow7qO/XKCgoQF5eHoyMOCdKdXV1GDlyJP744w++dbW1tfmWtTbf1KlTMXHiROzcuRNHjhzBuHHjICPzec1excV5r+ywWCxuZU9L3N3d0atXL7x+/Zqnxc7XvGZ9C6XGX8LV1bxXGwSpf/y1a9d4tiugodXK8OHDkZ6ejmvXruHOnTsYPHgwZs2axTeWTr2lS5fCy8uL77nsp3NOeh9HFCMuueFKnbgY50tE5ZPWIkry/FdMGhN0JUpRnv+K1Zd48vIj4lMbxgSqz6iswJ+xuZYDgjIqKTRc+SsuqUVtLSXgfYjyXR0UJCz8A+KSGrqViItztgNlJXGeQRaVFFooy6IaqCjx5xT03mZO1EMfC0XM35CI/MKWt7EnL0sQn9KoLOszflKWigr8V0R5MjZqOcR9jHzjsqwRWJZKrSjLJy+LEZ/Cv01+2oLpSzIqyYui6BsOeAk0eq/NlAdfNgFXzxXlxVBTS31WE++WPHpRiNikhu4I9Z+3ipI43je6SqukKN5subz/pGUB5zFifFexa2opvH1XCaASCSmlMDORhcNwLew8lNbkcwvDfgMAYS+KPsn5z7FSSYy3LBX4y4U3ZzVUFHnLUlmBv1VMQ1kCCSllMDOWhYONJrwPpzf53MLweYc+L+TpSiXRREZBZdJyRnG8/+cx7YxloaIkjgObO3HvFxVloXMHefxiowVrp6doTev1j/98Lyjx7a/8rdjqFRXXCFj/2+/fwnCsFJb9O+RpAWISnnP/526XyhIoKGw4Z1VWFOdrFdPY+6IqntYuwD+t3ho9pqCwCmmZvC2k0jPLMMCy+dYRjyM+ID5ZQFkq8pdly+dCn+w7TZWliy6nLDcmtbos61UXFYKqqYG4Gu94U+IqKqgqKBD4mLrKSiT8vhqJq9dDXFUFVXn50B7riJqSElQXFvGsKyIlBY0Rw5C2Z5/A5/peKt/l87VkkVBXQV11NaoKijjr5ORDUou3lY+khgpfy5l/C4oSjsFw6ULGgPlGampq4Ofnh+3bt+Ply5fcW2RkJAwMDHDixIlv8jr29vaoqKjAzZs3cfLkSW53JwCIi4tDfn4+Nm/ejL59+6J9+/Zf3QKjsV27dkFERIQ7+Gy3bt0QHR0NQ0NDmJqa8twEVSa1Nt+IESMgKyuLffv24caNG59VCfItdOzYER07dsTr16/h5OT0TZ5TXZ1zYM7OzuYuazwgLwDuODO1jWr02Ww2JCUlkZGRwVfG+voNV5DU1dXh5uaG48ePw9vbGwcPHmwyi6SkJBQUFHhujbsglVfUITu3invLeFuJ90XVsOjY0I9eTJQF8/ZyiElqeurF2KQydOvI2zqqWyc5xDbzmNYqr2wqY8PriYmy0MlMttnXi0spR1c2b0YLdkPGmloKSenlsBC0TnLL76O8og5vc6u4t/Q3FSgoqka3Trxl2bm9HGISm56NIyaplOcxANC9kwLfY2a56uF/PRSxcFMScvJaV+laXlmH7Lxq7o1bluyGfVhMlDPlaHPvOS6ljOcxQH05caZlrakFktIr0LUD7zpd2XKIa2bqVqDpbbIbm/fzNm/p804u49mOAaBbJ3nEtOKz/Bw1tUBSRgUsPn2vHWS55cGXLaWMr2ws2LJISi9H7Tc8jymvqMPbd5XcW3pWOQoKq9DdvGE8AjFRFrp0kEd0wscmnycmsQTdzXkHuO7RWRHRLYz3wWI1VFQ0m5Hh+w03J09ZVqCgsArdGpWL2D8/8Jsrl5jEUnQz5x1DontnBUS3NL5La8tSGD7vRhnT/snYozNvOXZhyyM6vplyTGgqI+d9hb/6gMnzozB10SvuLS6pBHdCCjB10atWVb4AnP07OaMCXTvwXhjq2l4GcSmCW/rEp1aga/tP1u8gg6T0im++fzP9WCk0+3d5Ld5kV3BvqRllyH9fiZ+6NlxMFRNjoWsnJbyOa3o8oddxxTyPAYCeFip4HdvwmFexH9BGl3f70NeVQU5u8917WluW5mbNl2VsUim6dfy0LOURk/RJWU7UhVUPRSz6Iwnv8j//wi5VXYOP0bFQtuzDs1zZsheKIyKbf2xNDare5QJ1ddAYMQwF9x/ytR5Rt7GGiIQE3l259tnZvkbR45dQG8zb8lx96P/w4cVrUP/MdFv4+CXUBlvxrKM25H8oDGt6+m3i34tUwHwjV69eRWFhIaZMmYJOnTrx3EaPHo3Dhw9/k9eRlZWFnZ0dVqxYgdjYWJ4KgjZt2kBCQgJ79uxBSkoKLl++jHXr1n3R63z8+BE5OTnIzMzEgwcPMG3aNKxfvx4bNmyAqakpAGDWrFl4//49JkyYgKdPnyIlJQWBgYFwd3fnqUT43HyioqJwc3PD0qVLYWpqyh375Ee6e/cusrOzv9lU09LS0ujduzc2b96MmJgYPHjwAL///jvPOgYGBmCxWLh69Sry8vJQUlICeXl5LFiwAPPmzYOvry+Sk5MRERGBv/76iztb08qVK3Hp0iUkJSUhOjoaV69eRYcOHb5J7noXA/MxbqQGLLspwEBXEl5T9VBZWYf7j4u468z/VR9uoxsGjbt0Ox/dOsljzAh16GlLYswIdViw5XExMI+7jpSkCIzbSMG4Daf/tKaaBIzbSH3RFM+X7hRg7Ah19LGQh4GOJOa566Kyqg7BTxoGZfRy18UkB03u/5fv5KMbWw6jbdSgpyWB0TZq6NpBDpfuNFyJuXA7H9Z9lTHUSgn62pL4dZwW1FXEcf0+bx/m1rpwMxcTRmrCqrsiDPWksGBaG1RWUbgb1jCw38LpBnAf29CK7GJgHrp3UsBYWw3oa0tirK0GLDrK48KthgrMOZP0MNhSGZv2paO8gjNGjbKiGCRa+PEjyKWg9xgzQo1blnMn15dlwwmjl7sOJv3SMPPD5aD3sGDLwdFGFXpaEnC0UUXXDrK4dKehnC7eLuCWpZ6WBKaO1eSUZXAhPtfF2/kY+7MG+tRvk1P0UFlVh/tPirjrzJ+qBzfHhs/70u0CdOsoh9HD1aCnJYnRw//5vG83XIGSkhSBsb4UjPXrt0lxGOt//jZ58U4Bhv5PCUMsFTnvdYwG1FXEceMB57262qtjnlvDZ3wzuAgaquKYMkYDeloSGGKpiKFWSrgQ2FB+YqKAkZ4kjPQkISbGgqqSOIz0JKGt/mVTotc7f+MdnOx1YPWTMgz1pLFopjEqKusQFNqwHyyeaYwp4/V4HtOjsyLGj9KGvo4Uxo/SRrdOCjh3I4e7zpTxejBvLwdNdQkY6UvDfZweurAVEBQi+Epnc4Rhv+GUSy6c7LRg1UMJhnpSWPSbISqq6nA3tOFzXPybIaaM1230mHfo0VkB40ZqQV9HCuNGaqFbJ3mcv96Q032cLjqZyUFTjVOWk8fqogtbHkGhn38cEobP++z1HDj/ooP//aQMQ31pLJnFyXgnpGFfXTrLGFMnNFyIOHc9Bz91UcR4u38y2mmju7kCzl3jZCyvqENaZjnPraKyDsUfq5GW2Xwl8Kcu3S3EEEtFDO6jAD0tCbg7qkNNWRy3HhYBAFzs1OA5qeH78ObDIqiriGOyozr0tCQwuI8Chlgq4tKdhu2XZ/8WZUFFSQxGepLQ+sr9m+nHSkB49u8zl99g4pg26NdbFUZtZLB8rhkqK2sRGNzwmr/PM8N0VyOex/xkoQJnR3200ZOGs6M+enRRwunLWdx1Tl16g45m8pg4pg10taUwtL8GRg3Txvlrnz/F98VbeRj/syYsuyvCQFcKC35tg8qqOtx73Kgsp7XB5DGflqU8xo74pyxHaMCCLY8LtxrO12a76mFQHxVs3peO8oq6Ly7LLN9j0Hb8BVoOdpAxNoLJkgWQ0tbG21Oc2T2N5s2B2eaG3wbShm2gMXIEpA3aQN68Ezps3wzZtqZI3bmH77m1He2RH3QPNUUf+O77HKKyMlDo0h4KXdoDAGSM9KDQpT2k9DllZrbeC12ONLT+Tz8YAGkDHXTYugRy7Y2h5+YI/cmOSNnRMH5k2p9+UBtqBeMFv0LWzBjGC36F2uA+SNvji3+jujqKtpswIF2QvpHDhw9jyJAhUFTkn/LW0dERGzduRHh4+Dd5LWdnZ9ja2qJfv35o06YNd7m6ujqOHj2KZcuWYffu3ejWrRu2bduGUaNGffZrrFy5EitXroSEhAS0tLTQu3dvBAUFcadKBgAdHR2EhoZi8eLFGDZsGCorK2FgYAAbGxtul5vGPifflClTsHHjxh/e+qVea7qDfS4fHx+4u7ujR48eMDMzw5YtW2Btbc29X1dXF2vWrMGSJUswefJkuLq64ujRo1i3bh00NDSwadMmpKSkQElJCd26dcOyZcsAcFrOLF26FGlpaZCWlkbfvn0REBDwTbOfuZ4HCQkRzHLVhZysKOKTy7B8WwrKKxou3WmoivN0sYpNKsPmfRlwddTERAdNZOdWYdO+dMSnNJzotjWSxpYlDbNbTXfi9F2/HfIeOw41nJy0xtmb+ZCQEMFMZx1OxpRyrNiRhvLKhozqqhI8F0xik8vxx8FMTLTXhIu9BnLyqvDHwUzEpzZkfPisGAqyOZgwUgMqimJIf1uJVbvSkff+85re1jt9LReSEiKY7aYPeRlRxKWUYumWpGbLMiaxFBv/SoPbaG1MGq2N7HdV2PBXKk9XsZFDOK2sti9vy/N6Ww+m4/bDz/uRdu5mASTFRfCbkxa3LFfuzOAtSxVxnivGccnl2HIwCy72GnCxqy/LLCQ0LsvnxZCXE8X4n9W4Zbl6d8YXleXZG/mQlBDBLJf6z7sMv29P5SlHdRVxNO55GJtchs37M+DqoImJv3C2yc37M3i3SUNp/LHYmPv/tAn122Qhdvq0fpsMef4RCrLvMN624b2u+TMDee85V8NUFMV4fqi8K6jGmj2ZmDpWE7b9lfH+Qw0OnsrBo4iGVgkqSuLYvaIhm4O1KhysVfEqvhTLdmS0OtunAi5nQ0JCBJ7uBpCXFUNsUgkWb4zn3SbVJHi3yYQSrN+dhMlj9eA2Vhdv31Vi3a5knq4FyoriWDLLBCpK4igtq0VKRhmWborHiy+YfUYY9hsAOHUlB5ISIvBwb8Mpy+RSLNmY8ElZSvLsOzGJpVi/OwWTx+rAbawO3r6rxPrdKYhLblyWYlgyy4hblqkZ5Vi6OfGLZvIRhs874FI2JCVEMHeqITfjwg1xzZZjdEIJ1nonYcp4PbiP08PbnEqs9U5CbFLTV/6/VOiLEijI5mLcCFUoK4giI7sK6/a+adi/FUShrtxwip1bUIN1e9/A3VEdI/op4v2HWhw6k4uwlw0telQUxbBzWcOYQr8MVcEvQ1XwOqEMv3t/3vdhY0w/VgLCs3+fOJcJSQkReP3WFvJy4ohJKMa8lVEoL2+46KipLsWzXb6OK8bqLTH4daIRpjob4k1OOVZuiUVMoxZncYkfsWxjNKa7GsFtvAGy35Vj999JuB38+a3YT1/PhYSECGa76v1TlmVYujX5k89bgufzjkkqw8a9aXBz1Iaroxayc6uwcW8aT3e2kYM53We2LeMty21/Z+B2SOvLMu9GIMSVlGAwczok1NVQmpiEVzNmo/Itp4W4hLo6pBoNY8ASEYWemytkjAxA1dSg6MlzREyYhMq3vJVT0oZtoNijG6KmzGh1lqYodu+EPkHHuP+zt3HOtzP9ziNqylJIaqtDWr8hY3laFp6NnAb29qUw+M0ZlW9zET1vA3IuNEyDXRgWgQhnL5itmQuzNR4oS85EhNM8FD2N+uq8hPBhUS2NukYQNAgNDcWAAQOQlZUFTU3Nlh9AfLXhbsz+ErhxtDNsp/7gQdU+07VDnWA9kfnNSQOPWeDnX2PojtGsq3+zMcL9Fd0xmnXdxxwjp8fSHaNFVw50wODxT+mO0ayggJ6M33cCj1lgyITnLa9Iszv+PYTi8x449gndMZp173Qv2M9MoDtGiy7ubScUx0ph2L//NzKY7hgtCrnSH8MmvaQ7RrNu+XZFcIeudMdoVv/Yl7gmbkZ3jBbZVsfTHeGLDBgd1vJK38n9sz++58TnIi1gCEaprKxEZmYmVqxYgbFjx5LKF4IgCIIgCIIgCOJfgYwBQzCKv78/zMzM8OHDB2zZsoXuOARBEARBEARBEATxTZAWMASjuLm5wc3Nje4YBEEQBEEQBEEQxGeihGQwXLqQFjAEQRAEQRAEQRAEQRDfGWkBQxAEQRAEQRAEQRDEV6OoupZX+g8jLWAIgiAIgiAIgiAIgiC+M1IBQxAEQRAEQRAEQRAE8Z2RLkgEQRAEQRAEQRAEQXw1Mghv80gLGIIgCIIgCIIgCIIgiO+MtIAhCIIgCIIgCIIgCOKrUXVkEN7mkBYwBEEQBEEQBEEQBEEQ3xtFEATxDVVUVFCrVq2iKioq6I7SLGHISTJ+O8KQk2T8doQhJ8n47QhDTpLx2xGGnCTjtyMMOYUhI8EcLIqiyCg5BEF8M8XFxVBUVMSHDx+goKBAd5wmCUNOkvHbEYacJOO3Iww5ScZvRxhykozfjjDkJBm/HWHIKQwZCeYgXZAIgiAIgiAIgiAIgiC+M1IBQxAEQRAEQRAEQRAE8Z2RChiCIAiCIAiCIAiCIIjvjFTAEATxTUlKSmLVqlWQlJSkO0qzhCEnyfjtCENOkvHbEYacJOO3Iww5ScZvRxhykozfjjDkFIaMBHOQQXgJgiAIgiAIgiAIgiC+M9IChiAIgiAIgiAIgiAI4jsjFTAEQRAEQRAEQRAEQRDfGamAIQiCIAiCIAiCIAiC+M5IBQxBEARBEARBEARBEMR3RipgCIIgCIIgCIIgCIIgvjNSAUMQxH9KUlISbt26hfLycgAA0yaCq6mpwZ07d3DgwAF8/PgRAPD27VuUlJTQnIxj7dq1KCsr41teXl6OtWvX0pCI+J4yMzObvO/x48c/MInwGzRoEIqKiviWFxcXY9CgQT8+kADu7u7c405jpaWlcHd3pyFR86qqqhAfH4+amhq6owhUVFSEQ4cOYenSpXj//j0AIDw8HG/evKE5mfBJTk7G77//jgkTJiA3NxcAcPPmTURHR9OcjPjeiouLcfHiRcTGxtIdhSC+CTINNUEQ30RVVRVSU1NhYmICMTExuuPwKSgowLhx43D37l2wWCwkJibC2NgYU6ZMgZKSErZv3053RKSnp8PGxgYZGRmorKxEQkICjI2NMXfuXFRUVGD//v10R4SoqCiys7OhoaHBs7ygoAAaGhqora2lKRmv3bt3C1zOYrEgJSUFU1NT9OvXD6Kioj84WYPS0lJs3rwZQUFByM3NRV1dHc/9KSkpNCVr0L59e4SGhkJVVZVneWhoKGxtbQVWKNDBy8tL4PLGn7ednR1UVFR+cLIGIiIiyMnJ4dt3cnNzoauri+rqapqSNWhq/87Pz4eWlhZjKjrKysowZ84c+Pr6AgD3WOnh4QEdHR0sWbKE5oRAVFQUhgwZAkVFRaSlpSE+Ph7GxsZYsWIF0tPT4efnR3dEoThOAkBwcDCGDx8OKysrPHjwALGxsTA2NsaWLVvw9OlTnD17ltZ89Y4dO4b9+/cjNTUVYWFhMDAwgLe3N4yMjGBnZ0d3vCYVFRVBSUmJ7hhcY8eORb9+/TB79myUl5ejS5cuSEtLA0VRCAgIgKOjI90R4evrCzU1Ndja2gIAFi1ahIMHD4LNZsPf3x8GBgY0JyQYjSIIgvgKpaWllLu7OyUqKkqJiopSycnJFEVR1Jw5c6hNmzbRnK7BxIkTqWHDhlGZmZmUnJwcN+etW7coNptNczoOOzs7ysXFhaqsrOTJeP/+fcrU1JTmdBwsFovKzc3lWx4UFESpqanRkEgwQ0NDSlZWlmKxWJSKigqlrKxMsVgsSlZWltLU1KRYLBZlYmJCZWRk0JZx/PjxlLa2NrVo0SJq586dlLe3N8+NCaZOnUp169aNKi4u5i4LDg6mFBQUqB07dtCYjNeAAQMoBQUFSlZWlurWrRtlYWFBycnJUYqKilSvXr0oJSUlSllZmYqOjv7h2SIjI6nIyEiKxWJR9+7d4/4fGRlJhYeHUxs3bqQMDAx+eK7GPnz4QBUVFVEsFotKSkqiPnz4wL29f/+e8vX1pbS1tWnN2JiHhwfVvXt36uHDh5SsrCz3WHnp0iWqa9euNKfjGDx4MLVw4UKKoiie43loaCjtn3c9YThOUhRF9e7dm9q+fTtFUbxl+fTpU0pHR4fOaFx79+6l1NTUqPXr11PS0tLcjEeOHKEGDBhAc7oGmzdvpgICArj/jxkzhhIREaF0dHSoly9f0pisgaamJjfLiRMnKFNTU6q0tJTau3cvY/bvdu3aUUFBQRRFUdSjR48oaWlp6sCBA9TIkSOpX375heZ0BNORChiCIL6KMJwIUxTvF3rjE7iUlBRKVlaWzmhcqqqqVFxcHEVRvBlTU1MpaWlpOqNxf8CKiIhw/66/KSgoUCIiItTMmTNpzdjYyZMnqQEDBlBJSUncZYmJidSgQYOogIAAKjMzk7KysqIcHR1py6ioqEiFhITQ9vqtUVdXRzk6OlJ9+/alysvLqbt371JycnKMqSCqt3PnTsrBwYH68OEDd9mHDx+o0aNHU97e3lRpaSllZ2dHWVtb//BsLBaLEhERoURERCgWi8V3k5GRoQ4fPvzDczWVUdBNVFSUWr9+Pa0ZG2vTpg0VFhZGURTvsTIxMZGSl5enMxqXgoIC9/jTOGNaWholKSlJZzQuYThOUhRFycrKUikpKRRF8X83MqUsO3ToQF24cIGiKN6Mr169olRVVWlMxsvIyIgKDQ2lKIqiAgMDKSUlJerWrVvUlClTqKFDh9KcjkNKSopb6Tdx4kRq8eLFFEVRVHp6OmPO16Slpan09HSKoihq0aJF1MSJEymKoqjXr18z6mIUwUzM6ydAEIRQuXjxIk6dOoXevXuDxWJxl7PZbCQnJ9OYjFdpaSlkZGT4lufn50NSUpKGRPzq6uoEduHJysqCvLw8DYkaeHt7g6IouLu7Y82aNVBUVOTeJyEhAUNDQ/Tp04fGhLx+//13nDt3DiYmJtxlpqam2LZtGxwdHZGSkoItW7bQ2pRZWVmZ1i4xrcFiseDv7w9bW1sMHjwYUVFR2LRpE2bPnk13NB5bt27F7du3oaCgwF2moKCA1atXw9raGp6enli5ciWsra1/eLbU1FRQFAVjY2M8ffoU6urq3PskJCSgoaFBexePe/fugaIoDBo0COfOnePZLiUkJGBgYAAdHR0aE/LKy8vj6yYFcI7zjb+H6CQlJYXi4mK+5fHx8TzbAJ2E4TgJAEpKSsjOzoaRkRHP8oiICOjq6tKUildqaiosLCz4lktKSqK0tJSGRIJlZ2dDX18fAHD16lWMHTsW1tbWMDQ0RK9evWhOx6Gvr4+wsDCoqKjg5s2bCAgIAAAUFhZCSkqK5nQccnJyKCgoQJs2bRAYGIh58+YB4Oz39WMMEkRTSAUMQRBfRRhOhAGgX79+8PPzw7p16wBwfljW1dVh69atGDhwIM3pOIYOHQpvb28cPHgQACdjSUkJVq1ahREjRtCabdKkSQAAIyMjWFpaQlxcnNY8LcnOzhY4XkVNTQ1ycnIAADo6OgIHHP1R1q1bh5UrV8LX11dg5SBdoqKi+JatWrUKEyZMgIuLC/r168ddp3Pnzj86nkAfPnxAbm4u2Gw2z/K8vDzuj2AlJSVUVVX98GwGBgaorq6Gq6srVFRUGDk2QP/+/QFwfkTq6+tDRITZczT89NNPuHbtGubMmQMA3O+av//+mzEVwXZ2dli7di1Onz4NgJMxIyMDS5Ysob1Co54wHCcBwMnJCYsXL8aZM2e4392hoaFYsGABXF1dac1Wz8jICC9fvuTbv2/cuMF3XKKTsrIyMjMzoa+vj5s3b2L9+vUAOBMSMGUMt7lz58LZ2RlycnJo06YNBgwYAAB48OABzM3N6Q33j6FDh2Lq1KmwsLBAQkICdyyY6OhoGBoa0huOYD56G+AQBCHs+vXrR+3evZuiKE6z2/pmwrNmzaKGDRtGZzQe0dHRlLq6OmVjY0NJSEhQo0ePpjp06EBpamryNL+m05s3b6h27dpRHTp0oMTExKjevXtTqqqqlJmZGfXu3Tu643HV1tZS8fHx1MOHD6ng4GCeG1OMGDGC6tatGxUeHs5dFh4eTnXv3p2ytbWlKIqiLl++THXq1ImuiFTXrl0peXl5Sk5OjurUqRNlYWHBc6NLfXeUxt1kGv9f/7eIiAhtGT/l5OREGRkZUefPn6cyMzOprKws6vz585SxsTHl4uJCURRF+fv7U927d6cto5KSErdbApMVFhZSt27doo4dO0b5+vry3JgiNDSUkpeXp2bMmEFJSUlRnp6e1JAhQyhZWVnq+fPndMejKIrTBc7KyopSUlKiREVFKX19fUpcXJzq168fVVJSQnc8iqKE4zhJURRVVVVFOTk5cY894uLilIiICOXi4kLV1NTQmq2ej48PpaurSwUEBFCysrKUv78/tX79eu7fTDFr1izKwMCAGjJkCKWqqkp9/PiRoiiKCggIoPV751PPnj2jzp8/z81HURR19epVxnTbLSwspGbNmkWNGjWKunHjBnf5ypUrGdVdk2AmMgsSQRBf5dGjR7CxsYGzszOOHj2K6dOnIzo6GmFhYQgODkb37t3pjsiVk5ODffv24cWLF6irq0O3bt0wa9YsaGtr0x2Nq7y8HAEBATwZnZ2dIS0tTXc0AJyph52cnJCens43hTeLxWLMFbScnBxMnDgRQUFB3NY6NTU1GDx4MI4dOwZNTU3cu3cP1dXVtHRLAYA1a9Y0e/+qVat+UBJe6enprV6XKa05SkpKMG/ePPj5+XGv6IuJiWHSpEnYuXMnZGVl8fLlSwBA165dack4efJkmJubNzljExNcuXIFzs7OKC0thby8PE8rRhaLxZ1KmQlevXqFbdu28RwrFy9ezJgr5PXu3r2L8PBwbsYhQ4bQHYlLGI6TjaWkpHDL0sLCAm3btqU7Eo+///4b69evR2ZmJgBAV1cXq1evxpQpU2hO1qC6uhq7du1CZmYm3NzcuN2mvL29IScnh6lTp9KcsAHTZ9ckiC9FKmAIgvhqwnIiTHy9rl27ol27dlizZg20tbX5upk1HhuGCeLi4pCQkACKotC+fXuYmZnRHYn4jkpKSpCSkgKKomBiYgI5OTm6I3Ft2LAB27Ztw+DBg9G9e3fIysry3O/h4UFTsgbt2rXDiBEjsHHjRkZ1iyO+L3Kc/Lby8/NRV1cnsHs20TJhmGYeAB4+fIgDBw4gJSUFZ86cga6uLo4dOwYjIyP873//ozsewWCkAoYgiP+EI0eOQE5ODmPGjOFZfubMGZSVlXHHOKHTpk2boKmpCXd3d57lPj4+yMvLw+LFi2lK1kBWVhaRkZEwNTWlO8q/xosXLxAbGwsWiwU2my1wIEc6JSQk4P79+8jNzUVdXR3PfStXrqQplfD5dADRxlgsFlJSUn5gGsFkZWXx6tUrGBsb0x2lWdevX4eoqCiGDRvGs/zWrVuoq6vD8OHDaUrWwMPDA6ampnwVa3/++SeSkpLg7e1NTzAhNHr0aPTo0YPvh/fWrVvx9OlTnDlzhqZkDVJTU1FTU8PXKicxMRHi4uKMGRfE19cXampq3DFLFi1ahIMHD4LNZsPf358RrRo9PT0RGhoKb29v2NjYICoqCsbGxrh8+TJWrVqFiIgIuiPi3LlzmDhxIpydnXHs2DHExMTA2NgYe/fuxdWrV3H9+nW6IxIMRipgCIL4KoJmeQA4PygkJSUhISHxgxMJZmZmhv379/MNuBscHIxp06YhPj6epmQNDA0NcfLkSVhaWvIsf/LkCcaPH4/U1FSakjUYNGgQFi1aBBsbG7qjNKu2thZHjx5FUFCQwIqDu3fv0pSsQW5uLsaPH4/79+9DSUkJFEXhw4cPGDhwIAICAhgxU8rff/+N3377DWpqatDS0uLrkhIeHk5jugalpaXYvHlzk583Eyo3hIGDgwPGjx+PsWPH0h2lWZ07d8bmzZv5Bie/efMmFi9ejMjISJqSNdDV1cXly5f5uuGGh4dj1KhRyMrKoilZA2E4TgKAuro67t69y9eq9tWrVxgyZAjevXtHU7IG/fv3h7u7O9/FnOPHj+PQoUO4f/8+PcE+YWZmhn379mHQoEEICwvD4MGD4e3tjatXr0JMTAznz5+nOyIMDAy4s2vKy8sjMjISxsbGSEpKQrdu3Zo87/yRLCwsMG/ePLi6uvJkfPnyJWxsbLiDWBOEIKRDHUEQX0VJSanZ2Y709PTg5uaGVatW0TqzRnp6usAr0AYGBsjIyKAhEb+cnByB49Goq6sjOzubhkT85syZg/nz5yMnJwfm5uZ8syExZVYcT09PHD16FLa2tujUqROjZuSqN2fOHBQXFyM6OhodOnQAAMTExGDSpEnw8PCAv78/zQmB9evXY8OGDYxofdWcqVOnIjg4GBMnThTYNY5p6q99MS2nra0tFi5ciJiYGIH796hRo2hKxisxMVHgzDLt27dHUlISDYn4FRQUCOySqaCggPz8fBoS8ROG4yTA6Voo6GKOuLg4I36MA5wpsa2srPiW9+7dG7Nnz6YhkWCZmZncFqwXL17E6NGjMW3aNFhZWXFnG6KbMMyuGR8fj379+vEtV1BQQFFR0Y8PRAgVUgFDEMRXOXr0KJYvXw43Nzf07NkTFEXh2bNn8PX1xe+//468vDxs27YNkpKSWLZsGW05NTQ0EBUVxdcMODIyEqqqqvSE+oS+vj5CQ0P5KopCQ0Oho6NDUype9dOnNu4mxWKxQFEUowbhDQgIwOnTp2mfvrs5N2/exJ07d7iVLwDAZrPx119/MWLASwAoLCzk67bHRDdu3MC1a9cE/gBiEj8/P2zduhWJiYkAOGOuLFy4EBMnTqQ5Gcevv/4KAFi7di3ffUzavxUVFZGSksJ3PE9KSuIbW4cupqamuHnzJt+P7xs3bjCmi5cwHCcBoFOnTjh16hRfl8eAgADGTPHMYrEETtf94cMHxuw3ACAnJ4eCggK0adMGgYGBmDdvHgBASkoK5eXlNKfjEIZp5rW1tZGUlMR3DAoJCWHM/k0wF6mAIQjiq/j6+mL79u08TdZHjRoFc3NzHDhwAEFBQWjTpg02bNhAawXM+PHj4eHhAXl5ee5Vi+DgYHh6emL8+PG05Wps6tSpmDt3LqqrqzFo0CAAQFBQEBYtWoT58+fTnI6DCd2gWkNCQoLx49TU1dXxtTAAOFd1P+0KQJcxY8YgMDAQM2bMoDtKs5SVlaGiokJ3jGbt2LEDK1aswOzZs2FlZQWKohAaGooZM2YgPz+f+0OITkzZ7loyatQozJ07FxcuXICJiQkATuXL/PnzGdNKx8vLC7Nnz0ZeXh7P8Xz79u2MGf9FGI6TALBixQo4OjoiOTmZpyz9/f0ZMf4LAPTt2xebNm2Cv78/REVFAXC6eG3atIlRA7IOHToUU6dOhYWFBRISErhjwURHRzNmnJpNmzbBxsYGMTExqKmpwa5du3hm12SC6dOnw9PTEz4+PmCxWHj79i3CwsKwYMECMjYa0bIfPvE1QRD/KtLS0lRCQgLf8oSEBEpaWpqiKIpKSUnh/k2XyspKauzYsRSLxaLExcUpcXFxSlRUlJo8eTJVWVlJa7Z6dXV11KJFiygpKSlKRESEEhERoWRkZKg1a9bQHU3obNu2jZo5cyZVV1dHd5QmjRo1iurXrx/15s0b7rKsrCyqf//+lL29PY3JGmzcuJFSU1OjJk2aRG3bto3atWsXz40pjh07Ro0ePZoqLS2lO0qTDA0NKV9fX77lR48epQwNDWlI1Lzy8nK6IzSpqKiI6t27NyUmJkYZGhpShoaGlJiYGDVw4ECqsLCQ7nhce/fupXR1dSkWi0WxWCzKyMhI4DZAF2E4Tta7evUqZWlpScnIyFCqqqrUwIEDqfv379Mdiys6OppSVVWlTExMKDc3N8rNzY0yMTGh1NXVqVevXtEdj6uwsJCaNWsWNWrUKOrGjRvc5StXrqTWr19PYzJeUVFRlKurK9WxY0eqQ4cOlLOzMxUVFUV3LB7Lli2jpKWlufu3lJQU9fvvv9MdixACZBBegiC+Srt27eDg4IDNmzfzLF+yZAkuXLiA+Ph4PH/+HHZ2dnjz5g1NKRskJCQgMjIS0tLSMDc3Z8SI/58qKSlBbGwspKWl0bZtW0hKStIdicexY8ewf/9+pKamIiwsDAYGBvD29oaRkRHs7OzojgcA+OWXX3Dv3j2oqKigY8eOfC1NmDDQYGZmJuzs7PD69Wvo6+uDxWIhIyMD5ubmuHTpEvT09OiOKBQz9wCcARGTk5NBURQMDQ35Pm8mDBYsJSWF169f87U4SExMhLm5OSoqKmhK1qC2thYbN27E/v378e7dO+70rytWrIChoSGmTJlCd0QuiqJw+/Zt7vG8c+fOAsdkYIK8vDxIS0szalp0QDiOk8Lk7du3+PPPP3m2ydmzZzO+dR7x5crKyhATE4O6ujqw2WzG7eMEM5EuSARBfJVt27ZhzJgxuHHjBn766SewWCw8e/YMsbGxOHfuHADg2bNnGDduHM1JOdq1a4d27drRHaNZcnJy+Omnn+iOIdC+ffuwcuVKzJ07Fxs2bOD2bVdSUoK3tzdjKmCUlJTwyy+/0B2jWfr6+ggPD8ft27cRFxcHiqLAZrMxZMgQuqNxCUuXM3t7e7ojtMjU1BSnT5/m64p56tQpvqlr6bJhwwb4+vpiy5Yt3PFgAMDc3Bw7d+5kVAUMi8WCtbU1Y8ZLag4TZjQTRBiOk8JER0cHGzdupDtGix4+fIgDBw4gJSUFZ86cga6uLo4dOwYjIyNGdJcSFRVFdnY230C8BQUF0NDQYMSYOu7u7ti1axfk5eXRo0cP7vLS0lLMmTMHPj4+NKYjmI60gCEI4qulp6dj3759SEhIAEVRaN++PaZPn46ioiJ07dqV7ngAmDvdpoODA44ePQoFBQU4ODg0uy4Trkay2Wxs3LgR9vb2PFMvvn79GgMGDGDM7B4EwTTnzp3DuHHjMGTIEFhZWYHFYiEkJARBQUE4ffo0I34Im5qa4sCBAxg8eDDP/h0XF4c+ffqgsLCQtmy7d+/GtGnTICUlhd27dze7roeHxw9Kxatbt24ICgqCsrIyLCwsmp2xhQmtsphMRUUFCQkJUFNTg7KycrNl+f79+x+YrEFUVBQ6deoEERERREVFNbsuU2YIPHfuHCZOnAhnZ2ccO3YMMTExMDY2xt69e3H16lVcv36d7ogQERFBTk4OXwXM27dvYWJiwojBgpuqJMrPz4eWlhZqampoSkYIA9IChiCIr2ZgYMDtglRUVIQTJ07A0dERL1++ZMSVCoC5020qKipyswiaspRpUlNTYWFhwbdcUlISpaWlNCQSLsLwI9LLywvr1q2DrKwsvLy8ml13x44dPyiV8HN0dMSTJ0+wc+dOXLx4kdvi6enTpwL3KTq8efNG4KCsdXV1qK6upiFRg507d8LZ2RlSUlLYuXNnk+uxWCza9h07Oztul1E7OzvGfM8Io507d0JeXp77NxPLsmvXrtyKgq5du3JnBPwUk2YQW79+Pfbv3w9XV1cEBARwl1taWgqc/exHqv9OZLFYOHToEE93ntraWjx48ADt27enKx4AoLi4GBRFgaIofPz4EVJSUtz7amtrcf36dYFTaBNEY6QFDEEQ38Tdu3fh4+OD8+fPw8DAAI6OjnB0dGTMDws1NTX4+fkxfrpNpmOz2di0aRPs7Ox4rpDv3r0bvr6+ePHiBW3ZhOHqs5GREZ4/fw5VVVXGjq8ycOBAXLhwAUpKShgwYECT5chisWhrOQYIxxXyxpVZDx48gKWlJcTEmHvtq0ePHpg7dy5cXFx49u81a9bgzp07ePjwId0Ria8kDMdJYZGeno42bdqAxWIhPT292XWZMt6cjIwMYmJiYGhoyLOPp6SkgM1m0zoWVf13Ynp6OvT09LizSQGcGbsMDQ2xdu1a9OrVi66IEBERaXafYbFYWLNmDZYvX/4DUxHChrlnAQRBMF5WVhaOHj0KHx8flJaWYuzYsaiursa5c+fAZrPpjsdDGKbbXLNmDVxcXLjTqjLRwoULMWvWLFRUVICiKDx9+hT+/v7YtGkTDh06RGs2Ybj63HhMFaaOr3Lv3j3u3/fv36cvSAsaXyFnyrS+n9qzZw8WL14MWVlZDBw4UGCTdSZZtWoVJk6ciDdv3qCurg7nz59HfHw8/Pz8cPXqVbrjcQUHB6N///50x2jW5MmT4eLigkGDBjHqWNT4OCkMYycBnEphFxcXjB49mlEtRRtXqqirq0NGRobGNK2jra2NpKQkvimnQ0JCYGxsTE+of9R/Jw4cOBDnz5+HsrIyrXkEuXfvHiiKwqBBg3Du3DmeAZYlJCRgYGAAHR0dGhMSQuHHT7xEEMS/wfDhwyl5eXlqwoQJ1NWrV6mamhqKoihKTEyMio6OpjkdP2GYbtPc3JwSERGhevXqRe3Zs4fKzc2lO5JABw8epNq0acOdelFPT486dOgQ3bFajSnbwJo1awROm1xWVsaIqcerq6spUVFRRk2hKmxMTU2pZcuWUffv36dYLBZ18eJFKjg4WOCNKW7evEn169ePkpWVpaSlpSkrKyvq1q1bdMfiIS4uTunr61OLFy9m3NS09UaOHElJSkpSOjo6lJeXFxUREUF3JKE1Z84cSktLi5KSkqIcHByoCxcuUJWVlXTH4iErK0s5OztTN2/epGpra+mO06Q//viDYrPZ1OPHjyl5eXnq4cOH1PHjxyl1dXVqz549dMcTGmlpaYw5lyCED+mCRBDEFxETE4OHhwd+++03nhk8xMXFERkZybgWMMIy3WZ0dDROnDiBgIAAZGVlYciQIXBxcYG9vT3jrq7l5+ejrq6OkVf0N23ahKVLl/Itr62thYuLC/z9/WlIxUsYZnowMTHB+fPn0aVLF7qj8CkuLm71ugoKCt8xSdMuXryIGTNmIDc3t8nxIQBmjREhDPLz8xEQEAB/f3+EhYWhU6dOcHFxgZOTEyOmb69XVFSE06dP4+TJk3j48CHMzMy4OT9tgUA0r66uDnfu3MHJkydx4cIFiIqKYvTo0XB2dmZEa6jz58/D398f165dg4KCAsaNGwcXFxdGzmi4fPly7Ny5k9vdSFJSEgsWLMC6detoTsbh7u7e7P1MmGHowYMHzd7fr1+/H5SEEEakAoYgiC8SFhYGHx8fnD59Gu3bt8fEiRMxbtw46OjoMLICZvLkyc3ef+TIkR+UpPVCQ0Nx8uRJnDlzBhUVFZ/1g/O/TlNTE+vWrcO0adO4y2prazF+/Hi8fv0asbGxNKbjEBERwbt37/imqL179y7GjRuHvLw8mpI1OHLkCM6cOYPjx4/zNLVmgpb64jdGd+VGSUkJFBQUEB8f32SFJZO6VgCczJ/OFkdXRVZzUlNTcfLkSfj7+yMuLg79+vWjdWyipmRlZcHf3x8+Pj5ITEykbZaUlsZLaoyusZNaUlFRgStXrmDDhg149eoV7ft3Yx8/fsTZs2fh7++Pe/fuwcjICC4uLli5ciXd0XiUlZUhJiYGdXV1YLPZPAPe0u3TGeGqq6vx+vVrFBUVYdCgQYy4YCYiIsK3rPF+xaRtkmAeUgFDEMRXKSsrQ0BAAHx8fPD06VPU1tZix44dcHd3547PQHyZly9f4vjx4wgICEBBQQFtUy8K46CNL168wJAhQ3DgwAHu2ETjxo1DXFwc7t69Cy0tLdqy1f8A+vDhAxQUFPhO2kpKSjBjxgz89ddftGWsZ2FhgaSkJFRXV8PAwACysrI899P5eQcHB3P/TktLw5IlS+Dm5oY+ffoA4FQS+/r6YtOmTZg0aRJdMbmCg4NhZWXF6EF4U1NTMXv2bNy/f59nME6KohjdSqe2thY3btzAihUrEBUVxbic1dXVuHbtGo4fP45r165BRUUFb968oSWLr69vq9dlwn7zqZycHAQEBOD48eMIDw/HTz/9hCdPntAdS6CYmBg4OzszcpsUNnV1dZg5cyaMjY2xaNEiuuPgw4cPPP9XV1cjIiICK1aswIYNGzB48GCakhHCgFTAEATxzcTHx+Pw4cM4duwYioqKMHToUFy+fJnuWEKl/mruiRMnkJCQgH79+sHJyQljxoyh7Qr5mjVrsHDhQsjIyGDNmjXNrrtq1aoflKpl9+/fh52dHfz8/HD48GEkJyfj7t270NTUpDWXr68vKIqCu7s7vL29eT7X+pke6isR6CYsn/fgwYMxdepUTJgwgWf5yZMncfDgQUYNJpybm4vc3Fy+1iWdO3emKVEDS0tLAICnpyc0NTX5KluZ0NWjsdDQUJw4cQJnz55FRUUFRo0aBWdnZwwfPpzuaAA4A3aePHkS586dQ21tLRwcHODs7IxBgwYJvIJOCFZcXIxz587h5MmTuH//PoyNjeHk5ARnZ2fGDa5fUVGBy5cv4+TJk7h58yY0NDQwYcIE/PHHH3RHAwCUlpZi8+bNCAoKEngcomv2vdaIj4/HgAEDkJ2dTXeUJj148ADz5s2jdUZIgvlIBQxBEN9cbW0trly5Ah8fH0ZVwJw9exanT59GRkYGqqqqeO5jQsuNPn364OnTpzA3N4ezszOcnJygq6tLdyyhdvnyZTg6OqJDhw64e/cu1NTU6I7EFRwcDEtLS77xiIjPJyMjg8jISJ7xqAAgISEBXbt2RVlZGU3JGoSHh8PV1RWxsbF8Y8EwpXWJnJwcXrx4ATMzM7qjNGvp0qUICAjA27dvMWTIEDg7OzNunCw9PT0UFBRg2LBhcHZ2xsiRIyElJUV3LKEYO+lT0tLSUFZWxtixY+Hs7MzIcVUCAwNx4sQJXLx4kXHj0zQ2YcIEBAcHY+LEidDW1uarZPX09KQpWcuuX7+OSZMmMaJ7blNiY2Px008/oaSkhO4oBIMxtx0sQRBCS1RUFPb29oya4nL37t1Yvnw5Jk2ahEuXLmHy5MlITk7Gs2fPMGvWLLrjAeBMvXjo0CF07NiR7igtqqqqEnj1rE2bNjQlAhwcHAQuV1dXh5KSEs94MEzoQ974xLy8vBzV1dU89zPlx48w0NfXx/79+7F9+3ae5QcOHIC+vj5NqXi5ubmhXbt2OHz4sMDWJUzw008/ITMzk/EVMMHBwViwYAHGjRvHqErVxlauXInRo0czbuwkJSUloRk7CeB0f9u1axdcXFwYVcH2KXt7e/z888/w9fWFra0tYyvWb9y4gWvXrsHKyoruKE3y8vLi+Z+iKGRnZ+PatWuM6RYXFRXF8399xs2bNzNy0HqCWUgFDEEQ/wl79+7FwYMHMWHCBPj6+mLRokUwNjbGypUrGTHQYHV1NQICAuDi4kJ3lGYlJCRgypQpePToEc9yJowR0VQXrWHDhv3gJK1TVlaGRYsW4fTp0ygoKOC7n66yFMZBOnfu3AlHR0fcunULvXv3BgA8fvwYycnJOHfuHM3pOFJTU3H+/HnGdZlo7NChQ5gxYwbevHmDTp068f2IZEI3qerqapiZmWH48OGMrXypqanBzJkzYWlpybgKmHv37nH/bmnsJCagKAqzZ8/GwIED+Vq4MUVNTQ02b96MMWPGQFtbm+44zVJWVmbcNvmpiIgInv9FRESgrq6O7du3tzhD0o/StWtXgTPb9e7dmxGzNBHMRrogEQTxnyAjI4PY2FgYGBhAQ0MDt2/fRpcuXZCYmIjevXsL/AH8o+nq6uLOnTvo0KED3VGaVD+I6JIlSwQ2XyZXflpv1qxZuHfvHtauXQtXV1f89ddfePPmDQ4cOIDNmzfD2dmZllyNB+ksKCjA+vXrMWzYMJ4faLdu3cKKFSswb948WjIKkpWVhX379nG7+LDZbMyYMYMxLWDs7e0xceJEODo60h2lSY8fP4aTkxPS0tK4y+p/ZNBdwdqYkpISwsPDYWxsTHeUJjF5Cvd6wjJ2UseOHXH48GFu5SoTNT7HYLLjx4/j0qVL8PX1ZXSLIqZLT0/n+b++kogJ3QwJ5iMVMARB/CcYGxvj7Nmz6NatG3766SdMnToV06dPR2BgIMaPH8+IK/mbN29GXFwcDh06xNiZUmRlZfHixQu0b9+e7iitkpeXh/j4eLBYLLRr145vymc6tWnTBn5+fhgwYAAUFBQQHh4OU1NTHDt2DP7+/rh+/TrdEeHo6IiBAwdi9uzZPMv//PNP3LlzBxcvXqQnWCPV1dWwtrbGgQMH0K5dO7rjNCk/Px+TJk1Cz549BbYuGTVqFE3JGrDZbHTo0AGLFi0S2E2KKT8uJ0+eDHNzc76uCkzC5Cnc6wnD2EkAcO3aNWzevBn79u1Dp06d6I4j0MCBA+Hp6cmorteCWFhYIDk5GRRFwdDQkO84xITx8Aji346ZZ/gEQRDf2KBBg3DlyhV069YNU6ZMwbx583D27Fk8f/68ybFDfrQnT54gKCgIgYGBMDc355vylwnjlrDZbOTn59Mdo0WlpaWYM2cO/Pz8uOPUiIqKwtXVFXv27GHElb/379/DyMgIAGe8l/pKwP/973/47bff6IzGdevWLYGzdwwbNgxLliyhIRE/cXFxvH79mpFjqjT26NEjhISE4MaNG3z3MaV1SXp6Oi5fvszoblIAYGpqinXr1uHRo0fo3r0737HSw8ODpmQNdu/ejaSkJOjo6DBuCvd6wjB2EgC4uLigrKwMXbp0gYSEBKSlpXnuZ8IFlJkzZ2L+/PnIysoSuE0yofseAMZXEAHAu3fvsGDBAu5MTZ+2FWDCsRIAgoKCmpxNinRDIppDKmAIgvhPOHjwIPcLcsaMGVBRUUFISAhGjhyJGTNm0JyOQ0lJidHdEwDgjz/+wKJFi7Bx40aYm5vzXT1jysCxXl5eCA4OxpUrV7iDDYaEhMDDwwPz58/Hvn37aE7IaZWVlpYGAwMDsNlsnD59Gj179sSVK1egpKREdzwAgKqqKi5cuICFCxfyLL948SJUVVVpSsXP1dUVhw8fxubNm+mO0iQPDw9MnDgRK1asoH0q9KYMGjQIkZGRjK+AOXToEJSUlPDixQu+6V5ZLBYjKmCE4YeuMIydBADe3t50R2jRuHHjAPBW/jGx+96qVavojtAiNzc3ZGRkYMWKFQK7OjPBmjVrsHbtWvTo0YOxGQnmIl2QCIL4T8jIyIC+vj7flyRFUcjMzKR19h5hIiIiAgACy5FJJ5lqamo4e/YsBgwYwLP83r17GDt2LCOmsdy5cydERUXh4eGBe/fuwdbWFrW1taipqcGOHTsYMR3o0aNHMWXKFNjY2HDHgHn8+DFu3ryJQ4cOwc3Njd6A/6hv7WRqaooePXrwXX3esWMHTckayMvL4+XLlzAxMaE7SpMOHjyI9evXw93dXWAFKxO6SRHfVlZWFvbu3Yu4uDhGjp0kLD4dE+RTTOm+Jwzk5eXx8OFDdO3ale4oTdLW1saWLVswceJEuqMQQohUwBAE8Z8gKiqK7OxsaGho8CwvKCiAhoYGYyoOampqcP/+fSQnJ8PJyQny8vJ4+/YtFBQUICcnR3c8BAcHN3t/46mV6SQjI4MXL17wDWgcHR2Nnj17orS0lKZkTcvIyMDz589hYmLCqIE7nzx5gt27d/MMbuvh4YFevXrRHY1r4MCBTd7HYrFw9+7dH5hGsEmTJqFv376YOnUq3VGaVF/BKgiTKljrVVVVITU1FSYmJowcN6uoqAhnz55FcnIyFi5cCBUVFYSHh0NTUxO6urp0xxMqycnJOHLkCJKTk7Fr1y5oaGjg5s2b0NfXR8eOHemOx2gqKipISEiAmppai7PcMaE7F5vNxokTJ2BhYUF3lCapqqri6dOnjK5QJ5iLVMAQBPGfICIignfv3vENwpqeng42m82IH+Tp6emwsbFBRkYGKisrkZCQAGNjY8ydOxcVFRXYv38/3RGFxuDBg6Gqqgo/Pz/urATl5eWYNGkS3r9/jzt37tCckPiv2bBhA7y9vWFrayuwdQkTus0Ii7KyMsyZM4c7Y1f9sdLDwwM6OjqMGJ8oKioKQ4YMgaKiItLS0hAfHw9jY2OsWLEC6enp8PPzozsiAE4l0dOnTwWOY+Hq6kpTKl7BwcEYPnw4rKys8ODBA8TGxsLY2BhbtmzB06dPcfbsWbojAgCOHTuG/fv3IzU1FWFhYTAwMIC3tzeMjIxgZ2dHWy5fX1+MHz8ekpKSPLPcCTJp0qQflKppgYGB2L59Ow4cOABDQ0O64wi0ePFiyMnJYcWKFXRHIYQQqYAhCOJfrX6WjF27duHXX3/lGXy1trYWT548gaioKEJDQ+mKyGVvbw95eXkcPnwYqqqqiIyMhLGxMYKDgzF16lQkJibSHREA8PDhQxw4cAApKSk4c+YMdHV1cezYMRgZGeF///sf3fEAAK9fv4aNjQ0qKirQpUsXsFgsvHz5ElJSUrh16xYjrph6eHjA1NSU74f3n3/+iaSkJKEY94BovfoBlwVhsVhISUn5gWmEm6enJ0JDQ+Ht7Q0bGxtERUXB2NgYly9fxqpVqxAREUF3RAwZMgTdunXDli1bIC8vzz2eP3r0iG+qb7pcuXIFzs7OKC0thby8PE/LCBaLxYjWEADQp08fjBkzBl5eXjxl+ezZM9jb2+PNmzd0R8S+ffuwcuVKzJ07Fxs2bMDr169hbGyMo0ePwtfXF/fu3aM7otBQVlZGWVkZampqICMjw1dZzYTt0tPTE35+fujcuTM6d+7Ml5EJ3V4J5mJee02CIIhvqP5EnKIovHr1ChISEtz7JCQk0KVLFyxYsICueDxCQkIQGhrKkxHg9B1nwgkmAJw7dw4TJ06Es7MzwsPDUVlZCQD4+PEjNm7cyIipkwGgU6dOSExMxPHjx7ljG4wfPx7Ozs58M2jQ5dy5c7h8+TLfcktLS2zevJlUwHymZ8+e4cyZM8jIyEBVVRXPfUyYQSw1NZXuCK0iDDN7XLx4EadOnULv3r15Kg3YbDaSk5NpTNbg2bNnOHDgAN9yXV1d5OTk0JCI3/z58+Hu7o6NGzcyYma4prx69QonT57kW66uro6CggIaEvHbs2cP/v77b9jb2/MMBt6jRw/azzGKi4tbvS4TBtIXhu++qKgo7hg1r1+/5rmPDMhLtIRUwBAE8a9Wf9Vp8uTJ2LVrFyNOLppSV1cncIyFrKwsyMvL05CI3/r167F//364uroiICCAu9zS0hJr166lMRk/aWlp/Prrr3THaFJBQQEUFRX5lisoKAjFVN9MEhAQAFdXV1hbW+P27duwtrZGYmIicnJy8Msvv9Adj09942OmnagLy8weeXl5fON5AZzp55mSWUpKSuAP3/j4eL6usHR58+YNPDw8GF35AnBmCMzOzuZrRRYREcGYsXRSU1MFjlkiKSlJexdnJSWlFvcLJg2kz4RuUC0hLZqIr0EqYAiC+E84cuQIz//FxcW4e/cu2rdvj/bt29OUitfQoUPh7e2NgwcPAuD8OCspKcGqVaswYsQImtNxxMfHo1+/fnzLFRQUUFRU9OMDNSM5ORne3t6IjY0Fi8VChw4d4OnpyZhB80xNTXHz5k3Mnj2bZ/mNGzdgbGxMUyrhtHHjRuzcuROzZs2CvLw8du3aBSMjI0yfPh3a2tp0x+Py8/PD1q1bud0J27Vrh4ULFzJmJo39+/fj6NGjjMnTlJ9++gnXrl3DnDlzADRUZP3999/c2broZmdnh7Vr1+L06dMAOBkzMjKwZMkSODo60pyOY9iwYXj+/DnjjzdOTk5YvHgxzpw5AxaLhbq6OoSGhmLBggWMGafGyMgIL1++5Jvt6MaNG2Cz2TSl4hCGyoLi4mLuBbKWWuww+UIaQbQGqYAhCOI/YezYsejXrx9mz56N8vJy9OjRA2lpaaAoCgEBAYw4Id65cycGDhwINpuNiooKODk5ITExEWpqavD396c7HgDO1ItJSUl8A+OFhIQw6iT+1q1bGDVqFLp27QorKytQFIVHjx6hY8eOuHLlCoYOHUp3RHh5eWH27NnIy8vDoEGDAHC6f2zfvl0ommAzSXJyMmxtbQE0XHFmsViYN28eBg0ahDVr1tCckDMmwIoVKzB79mzuNhkaGooZM2YgPz8f8+bNozsiqqqqYGlpSXeMFm3atAk2NjaIiYlBTU0Ndu3ahejoaISFhbU4U9uPsm3bNowYMQIaGhooLy9H//79kZOTgz59+mDDhg10xwMA2NraYuHChYiJiWH0tOMbNmyAm5sbdHV1uTOx1dbWwsnJCb///jvd8QAACxcuxKxZs1BRUQGKovD06VP4+/tj06ZNOHToEK3ZmDI7YXOUlZW5M1U21WKH7lY6Dg4OOHr0KBQUFODg4NDsukzo9kowFxmElyCI/wQtLS3cunULXbp0wcmTJ7Fq1SpERkbC19cXBw8eZMSgjQBnpp6AgAC8ePECdXV16NatG6PGLdmyZQt8fX3h4+ODoUOH4vr160hPT8e8efOwcuVKvtYcdLGwsMCwYcN4+uIDwJIlSxAYGIjw8HCakvHat28fNmzYgLdv3wIADA0NsXr1alqv6rZ0YtkYU04y9fX1cf36dZibm6NLly5YsmQJJkyYgLCwMNjY2ODDhw90R4SRkRHWrFnD99n6+vpi9erVjBgjRphm9nj16hW2bdvGc6xcvHgxzM3N6Y7G4+7duwgPD+dmHDJkCN2RuIRt2vGUlBRuWVpYWKBt27Z0R+Lx999/Y/369cjMzATAGe9n9erVmDJlCs3JeDFx5qvg4GBYWVlBTEysxUpUuiqUJk+ejN27d0NeXh6TJ09udt1PW10TRGOkAoYgiP8EaWlpJCQkQF9fH66urtDR0cHmzZuRkZEBNpuNkpISuiMKjeXLl2Pnzp2oqKgAwGlxsGDBAqxbt47mZA2kpKTw6tUrvhP0hIQEdO7cmZudKfLy8iAtLQ05OTm6o/CcWFIUhQsXLkBRURE9evQAALx48QJFRUVwcHBgzEmmk5MTevToAS8vL2zYsAG7du2CnZ0dbt++jW7dujGiokhKSgqvX7+Gqakpz/LExESYm5szYpskM3t8X0VFRVBSUqI7htCrra3Fq1evYGBgAGVlZbrj8MnPz0ddXZ3AcYroJiwzXxHEvxnpgkQQxH+Cvr4+wsLCoKKigps3b3IHkC0sLISUlBTN6Th8fX2hpqbG7UqxaNEiHDx4EGw2G/7+/nx9y+myYcMGLF++HDExMairqwObzWZExUFj6urqePnyJV8FzMuXLxl3UpyXl4f4+HiwWCyYmZlBTU2N1jyNK1UWL16MsWPHYv/+/RAVFQXA+fEzc+ZMRvXD//PPP7kVGEuXLoW4uDhCQkLg4ODAmNYcpqamOH36NJYtW8az/NSpU4y5ki8sM3uEh4dDXFyc29rl0qVLOHLkCNhsNlavXs03kxwd/vjjDxgaGmLcuHEAON1gz507By0tLVy/fh1dunShOaHwmDt3LszNzTFlyhTU1taif//+ePToEWRkZHD16lUMGDCA7ogoLy8HRVGQkZGBmpoa0tPT4e3tDTabDWtra7rjcTF55quMjIxWrdemTZvvnIQgvi/SAoYgiP+EvXv3wtPTE3JycjAwMEB4eDhERESwZ88enD9/nhGD1JmZmWHfvn0YNGgQwsLCMHjwYHh7e+Pq1asQExNjxFV8X19fjB49GrKysnRHadbatWuxc+dOLFmyBJaWlmCxWAgJCcEff/yB+fPnM2LcgNLSUsyZMwd+fn7cZuCioqJwdXXFnj17GHFyrK6ujpCQEJiZmfEsj4+Ph6WlJWOmgBUG586dw7hx4zBkyBBYWVlxt8mgoCCcPn2akbM1MdVPP/3EHcw2JSUFbDYbDg4OePbsGWxtbRkxhpKxsTGOHz8OS0tL3L59G2PHjsWpU6dw+vRpZGRkIDAwkO6IADjHoeDgYIHTt3t4eNCUipeenh4uXryIHj164OLFi5g5cybu378PPz8/3Lt3D6GhoXRHhLW1NRwcHDBjxgwUFRXBzMwMEhISyM/Px44dO/Dbb7/RHREAICsri1evXjFqzLZ69ZX8gOCZ4ugeAwYAd7y2lty9e/c7JyGEGamAIQjiP+P58+fIzMzE0KFDuS02rl27BiUlJVhZWdGcDpCRkUFcXBzatGmDxYsXIzs7G35+foiOjsaAAQOQl5dHd0Soq6ujrKwMI0eOhIuLC2xsbCAmxrzGlBRFwdvbG9u3b+eOr6Kjo4OFCxfCw8ODEVfzp0+fjjt37uDPP//kbn8hISHw8PDA0KFDsW/fPpoTcgZGPHLkCOzt7XmWX7x4EZMnT0ZhYSE9wQSora3FxYsXubNesdlsjBo1iueknm4vXrzAzp07ERsbyx1MdP78+QKnryWapqioiPDwcJiYmOCPP/7A3bt3cevWLYSGhmL8+PHcMTjo1Ljbq6enJyoqKnDgwAEkJCSgV69ejNh3IiIiMGLECJSVlaG0tBQqKirIz8+HjIwMNDQ0kJKSQndEAJzue0lJSdDT08O0adMgIyMDb29vpKamokuXLi3OmvMjqKmpITg4GB07dsShQ4ewZ88eRERE4Ny5c1i5ciViY2PpjgiAM8bX+PHjMXbsWLqj8BETE4Oenh7c3NwwcuTIJs8t6Gw9JiIiAgMDA9ja2vJ10Wxs586dPzAVIWyYd9ZMEATxnfTo0YM7jkW9+u4+TCAnJ4eCggK0adMGgYGB3FlRpKSkUF5eTnM6juzsbNy8eRP+/v4YP348pKWlMWbMGLi4uDBq9pT6GXDmzZuHjx8/AgDk5eVpTsXr3LlzOHv2LE/z+REjRkBaWhpjx45lRAXM5MmT4e7ujqSkJPTu3RsA8PjxY2zevLnFQQh/pKSkJNja2iIrKwtmZmagKIr74/fatWuMmXq8e/fuOH78ON0xeAjjzB4URXFbjd25cwc///wzAE5X0/z8fDqjcSkrKyMzMxP6+vq4efMm1q9fD4CTnSmD286bNw8jR47Evn37oKSkhMePH0NcXBwuLi7w9PSkOx6XpqYmYmJioK2tjZs3b2Lv3r0AgLKyMsZUsJaVlXG/YwIDA+Hg4AARERH07t0b6enpNKdrwOSZr7KysuDr64ujR49i//79cHFxwZQpU9ChQwfaMn1q8+bNOHr0KM6cOQNnZ2e4u7ujU6dOdMcihAypgCEI4l/Ly8sL69atg6ysLLy8vJpdlwmDSw4dOhRTp06FhYUFEhISuJVD0dHRfNM+00VMTAw///wzfv75Z5SVleHChQs4efIkBg4cCD09PSQnJ9MdkUdubi7P+Crq6up0R+IqKyuDpqYm33INDQ2UlZXRkIjftm3boKWlhZ07dyI7OxsAZyryRYsWYf78+TSna+Dh4QFjY2PuOE8AUFBQABcXF3h4eODatWs0JwSuX78OUVFRDBs2jGf5rVu3UFdXh+HDh9OSS1FRkdsiTFFRkZYMn6tHjx5Yv349hgwZguDgYG5lZWpqqsB9ig4ODg5wcnJC27ZtUVBQwP18X758yTcQM11evnyJAwcOQFRUFKKioqisrISxsTG2bNmCSZMmfdaMaN/T5MmTMXbsWGhra4PFYmHo0KEAgCdPnqB9+/Y0p+MwNTXFxYsX8csvv+DWrVvcCyi5ubmMGi/r119/BcDppvspurv3aGlpYfHixVi8eDFCQkJw5MgR9OrVC2w2G1OmTMGUKVOanbnrR1i0aBEWLVqEsLAw+Pj4wMrKCmZmZnB3d4eTkxOjPmuCuUgXJIIg/rUGDhyICxcuQElJCQMHDmxyPRaLxYj+ukVFRfj999+RmZmJ3377DTY2NgCAVatWQUJCAsuXL6c5Ib/8/HwEBARg//79iI2NZcyV3eLiYsyaNQv+/v4846uMGzcOf/31FyN+aA4ePBiqqqrw8/PjDgRdXl6OSZMm4f3797hz5w7NCXnVN/Nn4gmmrKwsHj9+zDcFcWRkJKysrBgxy1nnzp2xefNmjBgxgmf5zZs3sXjxYkRGRtKUTPhERUXB2dkZGRkZ8PLywqpVqwAAc+bMQUFBAU6ePElzQqC6uhq7du1CZmYm3NzcuN3MvL29IScnh6lTp9KckNOlNDQ0FO3atYOZmRl2796NYcOGIS4uDt26dWNMRTAAnD17FpmZmRgzZgz09PQAcMYkU1JSgp2dHc3pOPmcnJxQW1uLwYMHc8f42bRpEx48eIAbN27QnFA4vXv3DhMmTEBwcDDy8vK4FexMUVZWhjNnzuCvv/5CTEwM3r59y8jvSIJZSAUMQRAE8VnqW76cOHECd+7cgb6+PiZMmABnZ2fGNBUeO3YsXr58iT179qBPnz5gsVh49OgRPD090blzZ5w+fZruiHj9+jVsbGxQUVGBLl26gMVi4eXLl5CSksKtW7fQsWNHuiMKDRUVFVy9epWvG1xoaChGjhzJiKlVpaWlERsby9eaLS0tDR07dkRpaSk9wf5FKioqICoq2uzYDEQDa2truLm5wcnJCTNmzEBERAQ8PDxw7NgxFBYW4smTJ3RHFCo5OTnIzs5Gly5duC01nj59CgUFBca01BEWjx49go+PD86cOcNtYTJt2jTaW8B8KiQkhJuzY8eOuHfvHqSlpemORTAcqYAhCOI/g6IoFBQUgMViQVVVle44QmnChAm4cuUKZGRkMGbMGDg7OzNq7Jd6srKyuHXrFv73v//xLH/48CFsbGwY82O3vLwcx48fR1xcHHdQVmdnZ8acwL179w4LFixAUFAQcnNz8ekpA1NaPLm6uiI8PByHDx9Gz549AXC6J/z666/o3r07jh49Sm9AcJrXnzx5km8WjTt37sDJyQm5ubk0JeN19uxZ7kw9n86KEx4eTlMq4nt4/vw5Pn78iIEDByIvLw+TJk1CSEgITE1NceTIETJV9r8UU2e+qp944MiRIygsLISzszOmTJnCuIsRb9++xdGjR3H06FEUFxfDxcUF7u7uYLPZdEcjhAQZA4YgiH+9nJwcLFq0CJcvX+YOyKqgoIBffvkFmzZtYsyYAcKAxWLh1KlTGDZsGCNnP6qnqqoqsJuRoqIilJWVaUgkmLS0NLdPPhO5ubkhIyMDK1as4I6/wES7d+/GpEmT0KdPH27rh5qaGowaNQq7du2iOR3HqFGjMHfuXFy4cIE7KHBSUhLmz59P68CXje3evRvLly/HpEmTcOnSJUyePBnJycl49uwZZs2aRXc84htrPCi9uro6rl+/TmMa4kdoaeYrOitgDAwMoKOjg0mTJmHUqFEQFxdHbW0toqKieNbr3LkzTQk5A+Xfu3cP1tbW2Lp1K2xtbRl9LkQwE2kBQxDEv1pxcTG6du2KkpISODs7o3379qAoCjExMfD394eysjLCw8O501IT/w4HDx7EmTNn4OfnB21tbQCcirj6gSWnT59OS67Lly+3el0m/CiXl5fHw4cP0bVrV7qjtEpiYiJ3ulc2m82YwU4B4MOHD7CxscHz58+5Y1hkZWWhb9++OH/+PJSUlOgNCKB9+/ZYtWoVJkyYAHl5eURGRsLY2BgrV67E+/fv8eeff9IdkSCIrzBgwAC0a9eOO/NVZGQkz8xXdA683Lh7UX1l/6c/U+keKFhERATa2trQ0NBo9oIEaS1INIdUwBAE8a+2bt06+Pn54dGjR3wz4OTm5sLKygqTJ0/GsmXLaEoofIKCgrhdUuoHuK3n4+NDUyrAwsKC54QoMTERlZWVaNOmDQAgIyMDkpKSaNu2LW0nR63tv073SWY9NpuNEydOcAcQFQb1pzVMbK1DURRu376NyMhISEtLo3PnzujXrx/dsbhkZGQQGxsLAwMDaGho4Pbt2+jSpQsSExPRu3dvFBQU0B2R+IaEpYsh8e0oKSnhyZMnMDMzg5KSEsLCwtChQwc8efIEkyZNQlxcHG3ZWjtdt4GBwXdO0rQ1a9a0ar36gcEJQhDSZoogiH+1a9euYdmyZQKnH9bQ0MDSpUvx999/kwqYVlqzZg3Wrl2LHj16MK5Lir29Pd0RWvRphRXTeXt7Y8mSJThw4ABjpkJvyuHDh7Fz504kJiYCANq2bYu5c+cyYraZeiwWC9bW1rC2tqY7ikBaWlooKCiAgYEBDAwM8PjxY3Tp0gWpqal8P86J1ispKeHb95kwU4qwdDEEOMfOpKQkgRX/TKjEfPDgASwtLfm6o9TU1ODRo0eMyAgA4uLi3M9ZU1MTGRkZ6NChAxQVFZGRkUFrNjorVlqLVKwQ3wJpAUMQxL+aiooKwsLCYGZmJvD+uLg4WFpa0jZLSrdu3RAUFARlZWW+FhyfYkKTVm1tbWzZsgUTJ06kOwrxAygrK6OsrAw1NTWQkZHhm12GCbMLAcCKFSuwc+dOzJkzB3369AEAhIWF4c8//4SnpyfWr19Pc0LhMHXqVOjr62PVqlXYv38/vLy8YGVlhefPn8PBwQGHDx+mLZuXl1er192xY8d3TNI6qampmD17Nu7fv4+KigrucoqiGNPCTVi6GD5+/BhOTk5IT09nXJeUeqKiosjOzoaGhgbP8oKCAmhoaDAiI0BmviIIJiAtYAiC+FcrLi5udmwFJSUlFBcX/7hAn7Czs4OkpCQA4WjBUVVVxchZj4jvw9vbm+4IrbJv3z78/fffmDBhAnfZqFGj0LlzZ8yZM4dUwLTSwYMHua0LZsyYARUVFYSEhGDkyJGYMWMGrdkiIiJ4/n/x4gVqa2u5lesJCQkQFRVF9+7d6YjHx9nZGQCnW6ampiYjW5fo6+sLRcumGTNmoEePHrh27RpjW+rUV6x9qqCgALKysjQkEmzjxo3cyQjWrVuHSZMm4bfffuPOfEUQxPdHWsAQBPGvJioqipycHIFdkABOH3gdHR3ark7t3r0b06ZNg5SUFDIyMqCnp9fqcULosHjxYsjJyWHFihV0RyEILmVlZTx9+hRt27blWZ6QkICePXuiqKiInmBCJiMjA/r6+nw/JCmKQmZmJnc8Jbrt2LED9+/fh6+vL3dWs8LCQkyePBl9+/bF/PnzaU4IyMnJ4cWLF022vmSCwMBAbN++nfFdDGVlZREZGcmoQbXr1Q9ae+nSJdjY2HAvqADgzuBjZmaGmzdv0hWRIAiGIS1gCIL4V6MoCu3atWvyihndddBeXl4YP348pKSkYGRkJLAJM5NUVFTg4MGDuHPnDjp37szXJYUJTf+J76O8vBzV1dU8y5gwjgUAuLi4YN++fXzb38GDB7ktEYiWNXUMev/+PYyMjBjTjWL79u0IDAzkmVJeWVkZ69evh7W1NSMqYH766SdkZmYyrgJGWVmZ5/uwtLQUJiYmjO5i2KtXLyQlJTGyAkZRUREA51xCXl4e0tLS3PskJCTQu3dv/Prrr3TFE6impgb3799HcnIynJycIC8vj7dv30JBQYHMCEkQPwCpgCEI4l+N6U1qdXR0cO7cOYwYMQIURSErK4tnvIDGmHD1OSoqijtewOvXr3nuY2KzcOLrlJaWYvHixTh9+rTAGXDo/EHeeEwQFouFQ4cOITAwEL179wbAGTciMzMTrq6udEXkIQxjRDTVjaKkpARSUlI0JBKsuLgY7969Q8eOHXmW5+bmcrtX0O3QoUOYMWMG3rx5g06dOvFVbnTu3JmWXMLSrbCxOXPmYP78+cjJyYG5uTljyhJoOMcwNDTEggULGNXdSJD09HTY2NggIyMDlZWVGDp0KOTl5bFlyxZUVFRg//79dEckiH890gWJIAiCRgcPHsScOXNQU1PT5DpMGrRR2FRVVSE1NRUmJiZ8s1MwQXJyMo4cOYLk5GTs2rULGhoauHnzJvT19fl+XNJh1qxZuHfvHtauXQtXV1f89ddfePPmDQ4cOIDNmzfT2rpk4MCBrVqPxWLh7t273zlNy0RERJCTk8NXAfP27VuYmJigvLycpmQNlVm7du3Cr7/+ChkZGe59tbW1ePLkCURFRREaGkpXRB6urq4IDg7G9u3beSrcFi5ciH79+sHX15fmhA0Dx6alpXGXsVgscjz/AoK65ZKy/DL29vaQl5fH4cOHoaqqisjISBgbGyM4OBhTp07lziJHJ2GZHj0oKIib8dOZuXx8fGhKRQgD5p2NEgRB/IdMmzYNEyZMQHp6Ojp37ow7d+5AVVWV7litkpWVBRaLBV1dXbqj8CkrK8OcOXO4P8QSEhJgbGwMDw8P6OjoYMmSJTQnBIKDgzF8+HBYWVnhwYMH2LBhAzQ0NBAVFYVDhw7h7NmzdEfElStX4OfnhwEDBsDd3R19+/aFqakpDAwMcOLECVorYO7du0fba3+O3bt3A2hopdO4iX9tbS0ePHiA9u3b0xUPQMMAtxRF4dWrV5CQkODeJyEhgS5dumDBggV0xeOzf/9+LFiwAC4uLtxucWJiYpgyZQq2bt1KczoOd3d3WFhYwN/fn7GD8AqL1NRUuiO0SFgqDUJCQhAaGsqzjwOcKaDfvHlDUypewjA9+po1a7B27Vr06NGDsRkJ5iItYAiCIBjC19cX48eP5xnEj2nq6uqwfv16bN++HSUlJQA4U5nOnz8fy5cvZ8wAwp6enggNDYW3tzdsbGwQFRUFY2NjXL58GatWreKbUYUOffr0wZgxY+Dl5QV5eXnulchnz57B3t6eESfDcnJyiI6OhoGBAfT09HD+/Hn07NkTqampMDc3524DRNOMjIwAcJr+6+npQVRUlHufhIQEDA0NsXbtWvTq1YuuiFxubm7Ys2cP5OXl6Y7SpNraWoSEhMDc3BySkpJITk4GRVEwNTVlVPcPJg8cS3x7w4cPR0ZGBmbPni3wB7mdnR1NyXjVz2zGZrN5vndCQkLg6OiId+/e0R1RKKZH19bWxpYtWzBx4kS6oxBCiLSAIQiCYIhJkybRHaFFy5cvx+HDh7F582ZYWVmBoiiEhoZi9erVqKiowIYNG+iOCAC4ePEiTp06hd69e/OcCLPZbCQnJ9OYrMGrV69w8uRJvuXq6uoCx1uhg7GxMdLS0mBgYAA2m43Tp0+jZ8+euHLlSrPTuxMN6q/eDxw4EOfPn+cZOJZJampqcPz4cSxYsACdOnWiO06TREVFMWzYMMTGxsLIyIjW8T+aM2jQIFIB8xUuX76M4cOHQ1xcHJcvX2523VGjRv2gVE0LCQlhfKUBAAwdOhTe3t44ePAgAE7LvJKSEqxatQojRoygOR2HMEyPXlVVBUtLS7pjEEKKVMAQBEHQSEVFBQkJCVBTU+ObneJTTJiRwtfXF4cOHeI54e3SpQt0dXUxc+ZMxlTA5OXlCZxNqrS0lDFNhZWUlJCdnc1tIVEvIiKCMd26Jk+ejMjISPTv3x9Lly6Fra0t9uzZg5qaGjLj1WdiepcpMTExGBgYMKarRHPMzc2RkpLCt+8wyciRIzFv3jy8evVK4MCxTKg0YDJ7e3vumEn29vZNrseUMWCEodIAAHbu3ImBAweCzWajoqICTk5OSExMhJqaGvz9/emOB4AzUPSSJUsYPT361KlTcfLkSaxYsYLuKIQQIl2QCIL4T1i7di0WLFjAM7gkwJlad+vWrVi5ciUtuRp3Ozp69GizlQNMaCEjJSWFqKgotGvXjmd5fHw8unbtSutAoo31798fo0ePxpw5cyAvL4+oqCgYGRlh9uzZSEpKws2bN+mOiEWLFiEsLAxnzpxBu3btEB4ejnfv3sHV1RWurq5YtWoV3RH5ZGRk4Pnz5zAxMUGXLl3ojiN0srKycPnyZWRkZKCqqornPiZUaB05cgRnzpzB8ePHoaKiQnecJgUGBmLx4sVYt24dunfvztf1iAnTozfXHZMplQb1kpKSkJycjH79+kFaWrrJ2bCIpgUGBmL79u2MrjSoV15eDn9/f4SHh6Ourg7dunWDs7MzzxTadFJWVkZZWRlqamoYOz26p6cn/Pz80LlzZ3Tu3JkvIxOO5wRzkQoYgiD+E4RhClhh0KtXL/Tq1Ys7sGi9OXPm4NmzZ3j8+DFNyXg9evQINjY2cHZ2xtGjRzF9+nRER0cjLCwMwcHB6N69O90RUV1dDTc3NwQEBICiKIiJiaG2thZOTk44evQoz1ghhPALCgrCqFGjYGRkhPj4eHTq1AlpaWmgKArdunVjxExNFhYWSEpKQnV1NQwMDPgqNsLDw2lKxqtx5UbjigIyK87nKSgowLhx43D37l2wWCwkJibC2NgYU6ZMgZKSErZv3053RABAZmYm9PX1Bd73+PFj7kxYP9qnrVZLS0sZXWkgLFqaxYwJF6Oam4WPKTPvEcxFuiARBPGf0NQVvcjISMZc6XV2dsaAAQPQv39/vhYmTLFlyxbY2trizp076NOnD1gsFh49eoTMzExcv36d7nhclpaWCA0NxbZt22BiYoLAwEB069YNYWFhMDc3pzseAEBcXBwnTpzAunXruFciLSws0LZtW7qjCaVjx45h//79SE1NRVhYGAwMDODt7Q0jIyNGDIC5dOlSzJ8/H2vXroW8vDzOnTsHDQ0NODs7w8bGhu54ANBsVw8mYXp3LmExb948iImJISMjAx06dOAuHzduHObNm8eYCpihQ4ciNDSUb4bA0NBQ2NraoqioiJZc3t7etLzu52ppDJ3GmNA1jgkVLC0hxyDia5AWMARB/KvVX6H68OEDFBQUeCphamtrUVJSghkzZuCvv/6iMSXH9OnTERwcjISEBGhpaaF///7o378/BgwYQPs0tY29efMGe/fuRVxcHCiKApvNxsyZM6Gjo0N3NKHC1G5xwmjfvn1YuXIl5s6diw0bNuD169cwNjbG0aNH4evry4iTZXl5ebx8+RImJiZQVlZGSEgIOnbsiMjISNjZ2SEtLY3uiMQ3FhwcjG3btiE2NhYsFgsdOnTAwoUL0bdvX7qjAQC0tLRw69YtdOnShWdGHKbNcvbrr78iPDwc9+/f587Q9eDBA4wcORKrV6/GvHnzaE7IbK2dnZDO1mPFxcXcroPFxcXNrsuELoYE8TVIBQxBEP9qvr6+oCgK7u7u8Pb2hqKiIve++ilg+/TpQ2NCfjk5Obh//z7u37/PrZDR0NBAdnY23dGESl1dHZKSkpCbm4u6ujqe+/r160dTqgakW9y3w2azsXHjRtjb2/P8kHz9+jUGDBiA/Px8uiNCS0sLd+/eBZvNRseOHbFp0yaMGjUKkZGRsLKyYsyP3aKiIpw9exbJyclYuHAhVFRUEB4eDk1NTcYMDl2vrKxM4Hg6TJgZ6fjx45g8eTIcHBy4M8Y9evQIFy5cwNGjR+Hk5ER3RMjLyyM8PBxt27bl2W+ePXsGGxsbxszGRlEUxowZg9zcXAQGBiIsLAyjRo3C+vXr4enpSXc8AE1XGrBYLEhKSkJCQuIHJxIujb8PRUREBLZYpruLoYODA44ePQoFBQU4ODg0u+758+d/UCpCGJEuSARB/KvVN2U1MjKCpaUlX79sJpKXl4eysjKUlZWhpKQEMTExaGlp0R0LAGeQTjk5OYwZM4Zn+ZkzZ1BWVsaYpsOPHz+Gk5MT0tPT+WamYMoYEcLQLU5YpKamwsLCgm+5pKQkSktLaUjEr3fv3ggNDQWbzYatrS3mz5+PV69e4fz587SNYfGpqKgoDBkyBIqKikhLS8Ovv/4KFRUVXLhwAenp6fDz86M7IgDOLGeTJ0/GjRs3BN7PhP17w4YN2LJlC0/rDE9PT+zYsQPr1q1jRAVMv3794Ofnh3Xr1gHgHBvr6uqwdevWZse4+NFYLBb8/f1ha2uLwYMHIyoqCps2bcLs2bPpjsalpKTU7MDFenp6cHNzw6pVq1rdIuVbunv3LmbPno3Hjx/ztSD58OEDLC0tsX//ftpaZ929e5f7vceEFouCKCoqcj/jxhfzCOJzkRYwBEH8ZzC9RcTixYsRHByMyMhIdOrUCf369UP//v3Rr18/KCkp0R0PAGBmZob9+/fznZwHBwdj2rRpiI+PpykZr65du6Jdu3ZYs2YNtLW1+U6M6Tx5Ynq3uJaafzfGlKbgbDYbmzZtgp2dHc+V/N27d8PX1xcvXrygOyJSUlJQUlKCzp07o6ysDAsWLEBISAhMTU2xc+dOGBgY0B0RQ4YMQbdu3bBlyxaecnz06BGcnJwY003K2dkZaWlp8Pb2xsCBA3HhwgW8e/cO69evx/bt22Fra0t3REhKSiI6OhqmpqY8y5OSktCpUydUVFTQlKxBTEwMBgwYgO7du+Pu3bsYNWoUoqOj8f79e4SGhsLExIS2bFFRUXzLPn78iAkTJsDW1ha//fYbdzkTWjz5+flh+fLlcHNzQ8+ePUFRFJ49ewZfX1/8/vvvyMvLw7Zt27Bw4UIsW7bsh+cbNWoUBg4c2GR3rd27d+PevXu4cOHCD05GEP89pAKGIIj/BGFoESEiIgJ1dXXMmzcPdnZ2PIMiMoWUlBTi4uL4ptlMS0tDhw4dGDMNtaysLCIjI/l+/DAB07vFNdX8WxAm7DcAp2XWihUrsH37dkyZMgWHDh1CcnIyNm3ahEOHDmH8+PF0RxQKioqKCA8Ph4mJCU8FTHp6OszMzBhRaQAA2trauHTpEnr27AkFBQU8f/4c7dq1w+XLl7FlyxaEhITQHRGmpqZYuHAhpk+fzrP8wIED2LZtGxITE2lKxisnJwf79u3DixcvuFMSz5o1C9ra2rTmqj8ONf6+bvx//d9M+f4ePHgwpk+fjrFjx/IsP336NA4cOICgoCAcO3YMGzZsQFxc3A/PZ2BggJs3bzZ5XhEXFwdra2tkZGT84GQE8d9DuiARBPGfMGPGDPTo0QPXrl0T2CKCCSIiIhAcHIz79+9j+/btEBUV5Q7CO2DAAEZUyGhoaCAqKoqvAiYyMpJvhgo69erVC0lJSYysgGF6t7jGzb/T0tKwZMkSuLm5cSuFwsLC4Ovri02bNtEVkc/kyZNRU1ODRYsWoaysDE5OTtDV1cWuXbsYVfnC9PFVpKSkBLaAio+Ph7q6Og2JBCstLeWOnaSiooK8vDy0a9cO5ubmjJkqe/78+fDw8MDLly9haWkJFouFkJAQHD16FLt27aI7HpeWlhbWrFlDdww+qampdEf4LGFhYdi/fz/fcgsLC4SFhQEA/ve//9FWwfHu3btmv2vExMSQl5f3AxMRxH8XqYAhCOI/ITExEWfPnmXkD/J6Xbp0QZcuXeDh4QGAU6nh7e0NDw8P1NXVMeIq3/jx4+Hh4QF5eXlut63g4GB4enoy6ofunDlzMH/+fOTk5MDc/P/t3Xtczvf/P/DHu4MSqYScO8gpoojPjLEciynskDFJZphhyGmWQ8OYQ2NjQhHDGCFmmEqTU3KqpCSlDeWQihxSvX9/9HPN5aq07+j1vnjcbze3j16v9+22x+1Drq7n9Xo9n/YaP3gq4ch6ly5dVL9/+PAhnjx5orYv6nrPs7n8/PywdOlSfPzxx6o1Nzc32NvbY/Xq1Yrp+QMUT0oZMWIEbt++jaKiIo3mxqJpQ38Vd3d3+Pn5Ydu2bQCKTxmkp6dj2rRpeP/99wWn+0fTpk2RlJQEKysrODg4ICAgAFZWVli1apXwkxtPjR49GrVr18aSJUtU/382b94cW7duVcRYdKDkaz5A8Z+7oaEhGjZsCAMDgwpOVUwJV/L+jfr16yMwMBALFixQWw8MDESDBg0AFDdYNzMzExEP9erVQ1xcXKk/A8XGxirme4fodccrSET0RujatSumTJkCFxcX0VHKdPbsWdUEpCNHjiA3NxcODg5wdnbGokWLRMdDfn4+hgwZgl9//RV6esU1/KKiInh6emLVqlWKmfRQUpNDpR1Zf/DgAaZMmYJt27aVOG1ECRmNjIxw/vx5NG7cWG390qVLcHBwwIMHDwQl0z7a0F8lNzcXvXv3xoULF3Dv3j3UrVsXGRkZ6NChA/bt24cqVaqIjggA2LRpE548eQIvLy+cPXsWvXr1wp07d1CpUiWsX78eHh4eoiNqhWevGz57tecpfX19eHh4ICAgAIaGhkIyAsC3334LCwsLeHt7q60HBQXh1q1bmDp1qqBk/wgNDcWHH36IZs2aoV27dpAkCadOnUJiYiK2b9+O9957Dz/99BOSk5OxdOnSCs83duxYHD58GKdOndL4s3z48CHat28PZ2dnLF++vMKzEb1pWIAhotfWs5/upaSk4Ouvv8bkyZMVeyLCzMwM9+/fR+vWrVXXjjp37qyYRqfPSk5Oxrlz51C5cmXY29sr7tPKq1evlrmvhLxjxoxBREQE/Pz84OnpiRUrVuDatWsICAjAggULMHjwYNER0bRpU7z33ntYsmSJ2vqkSZOwd+9exTRdzszMhI+PD8LCwnDz5k2NPk9KKGZpS38VoHgiyZkzZ1Q9Qbp37y46UpkePHiAxMRENGzYEDVq1BAdR83p06dx8eJFSJIEOzu7Eqd1ibJ7925MnToVkydPVmscu2TJEsyaNQsFBQWYNm0aPDw8sHjxYmE5rayssHnzZrz99ttq6ydPnsTAgQMVc10pLS0Nq1atwqVLlyDLMpo1a4aRI0dqXNkVITMzE23atIGuri6++OILNG3aFJIk4eLFi1ixYgUKCwtV1yFFmz17NoYNG6aI1+nSpKamwtraWnQM0lYyEdFrSpIkWUdHR5YkqcRfT/d0dHRER5VlWZb37Nkj5+TkiI5BFaRBgwZyRESELMuybGxsLCcnJ8uyLMsbNmyQXV1dBSb7x2+//SYbGhrKLVq0kIcPHy4PHz5cbtGihWxoaCj/9ttvouOpuLi4yHZ2dvLKlSvlnTt3yrt27VL7pQS1atWSz5w5I8uyLFetWlVOSUmRZVmWDxw4INevX19kNJXg4GD50aNHGuuPHz+Wg4ODBSR6saKiIrmoqEh0DA2ZmZmys7OzLEmSbGZmJpuamsqSJMldu3aVb968KTqeLMuy3K5dO3n//v0a6/v375fbtWsny7Is79y5U7axsanoaGoMDAzkK1euaKynpKTIBgYGAhJpp7S0NNnV1VXt5yIdHR3Z1dVVTk1NFR1PpU2bNrKurq7ctWtXedOmTfLDhw9FR9Kgo6Mjv/vuu/LGjRsVmY+UjSdgiOi19aJTEM9S8ictVD6hoaFwdXWFvr4+QkNDy3zWzc2tglKVrmrVqrhw4QIsLS1Rv359hISEoH379khNTYW9vT3u378vOiIA4O+//8bKlSuRmJgIWZZhZ2eHUaNGqfoaKIGxsTGOHDkCBwcH0VFK9dlnn+HWrVvYtm0bqlevjtjYWOjq6qJfv37o3Lkzvv/+e9ERoaurixs3bmj0z7lz5w5q1aqliJNET23YsAGLFi1STRNq0qQJJk+ejCFDhghOVszDwwMpKSnYuHGjqoF6QkIChg4dCltbW2zZskVwQqBy5co4e/YsmjVrpraemJgIR0dHPHz4EGlpabCzsxN63bBx48aYNWsWPvnkE7X1jRs3YtasWbhy5YqQXLGxsWjZsiV0dHRK7afzlBJO2T519+5dXL58GbIso3HjxsL60pQlNjYW69atw+bNm5Gfn4+BAwfC29sb7dq1Ex0NABAfH4+goCBs2rQJjx8/hoeHB4YPH4727duLjkbaQGz9h4iI6OWQJEnOzMxU/b6sk09KYG9vLx8+fFiWZVnu0aOHPGnSJFmWZXnZsmVyvXr1REbTOs2bN1edLlGqnJwcuWPHjrKpqamsq6srN2jQQNbX15c7d+4s379/X3Q8WZaLv29KOp1x7tw52czMTECiki1ZskQ2MjKSp0yZIu/evVvetWuXPHnyZNnIyEheunSp6HiyLMtytWrV5OjoaI31kydPyiYmJhUfqAQODg7y0KFD5cePH6vW8vPz5aFDh8oODg6yLMtyVFSUbGVlJSqiLMuyvGDBAtnc3FwOCgqS09LS5LS0NDkwMFA2NzeX58+fLyzX8685pZ24VcprjjZ68uSJHBISIvft21fW19eXW7ZsKX///fdydna26GiyLP+Tz83NTdbX15ft7OzkJUuWKOaUGykTT8AQ0RuhtBMRT6c92Nra8j4vVSh/f3/o6upi3LhxiIiIQJ8+fVBYWIiCggIsXboU48ePFx0RQPHo5MDAQLU+Ft7e3jAxMREdTeXgwYNYsmSJahqOkimxv4qjoyMkScL58+fRokULVYNtoLh/TmpqKlxcXFTTfESztrbGnDlz4OnpqbYeHByM2bNnK6InSGmnss6ePYsuXbqUOO67oh07dgxubm7Q0dFBq1atIEkSYmNjUVhYiL179+Ktt97Cxo0bkZGRgcmTJwvLKcsypk2bhuXLlyM/Px9A8cj0qVOnYubMmcJyXb16FQ0bNoQkSVrRd0wb5efnY+fOnQgKCkJ4eDjefvttZGZm4vr161izZo1iGm4/fvwYK1euxPTp05Gfn69qYL1w4UJOlyINLMAQ0Rvh6bSH5//Je3YyTqdOnbBr1y5FHsel1196ejpiYmLQqFEjtG7dWnQcAEBMTAx69eqFypUrq5p0xsTE4OHDhzh48CDatGkjOiKA4gbWDx48QEFBAYyMjDSabGdlZQlKph3mzJmj+t9JkyahatWqqr1KlSrBysoK77//vmKmnBkaGiI+Pl5jpG5ycjLs7e0V0dDY3d0d2dnZ2LJlC+rWrQsAuHbtGgYPHgwzMzPs3LlTcMJi9+/fx88//6zWOHbQoEEwNjYWHU3D/fv3cfHiRVSuXBmNGzcWNiKbXr3Tp09j3bp12LJlCwwMDODp6YlPP/1U9T2/ZMkSfPfdd8jMzBSaMyYmBkFBQfjll19QpUoVDB06FMOHD8f169cxc+ZM3Lt3D9HR0UIzkvKwAENEb4SwsDDMmDED8+bNU93RjY6Oxtdffw1fX1+YmJhg5MiR+N///ofAwEAhGf/880+8/fbbap8+A0BBQQGOHTuGzp07C8n1vCNHjiAgIAApKSnYvn076tWrh40bN8La2hqdOnUSluvfjM8cN27cK0zy+njnnXdga2uLNWvWqP5eFhQU4NNPP8WVK1fw559/Ck5YLDg4uMz9oUOHVlASTSdPnkRWVhZcXV1Vaxs2bMCsWbOQl5eHfv364YcfflDEm8ng4GB4eHgIHTlcHi1btsSgQYPw1Vdfqa3PnTsXW7duRVxcnKBk//jrr7/g7u6O+Ph4NGjQAJIkIT09Hfb29ti9ezfq168vOqLWuXz5MlJSUtC5c2dUrlxZ9eGJKC/qNfYsJfQd0xatWrXCxYsX0bNnT4wYMQJ9+/aFrq6u2jO3bt2ChYUFioqKhGRcunQp1q1bh6SkJPTu3RuffvopevfuDR0dHdUzly9fRrNmzVBQUCAkIykXCzBE9EZo2bIlVq9erTHG8ujRo/jss89w4cIFHDp0CN7e3khPTxeSURsaYO7YsQNDhgzB4MGDsXHjRiQkJMDGxgYrV67E3r17sW/fPmHZynuFTJIkYU0bAeDhw4cICwvDe++9BwCYPn06Hj9+rNrX1dXFN998o4g3waU16UxISICTk5PQxpzawtXVFe+++y6mTp0KAIiLi0ObNm3g5eWF5s2bY9GiRRg5ciRmz54tNugz8vPzcfPmTY03Nw0bNhSUSN2OHTvg4eGB7t27o2PHjpAkCVFRUQgLC8O2bdvQv39/0RFV/vjjD7UG1kq4cva8hIQEpKenq673PKWUosGdO3fw0UcfISIiApIkITk5GTY2Nhg+fDhMTU2xZMkSIbmefbNdFkmSFPH6rS2++eYbeHt7o169eqKjlKpx48bw9vbGsGHDULt27RKfyc/Px5YtW4R+AEDKxAIMEb0RKleujFOnTqFly5Zq63FxcWjfvj0ePnyIq1evonnz5sLeVOro6CAzMxM1a9ZUW7906RKcnJwU0TPA0dEREyZMgKenJ4yNjXH+/HnY2Njg3LlzcHFxQUZGhuiIihcQEIC9e/diz549AIp7RbRo0QKVK1cGUDyBZMqUKZgwYYLImAAACwsLbNy4ET179lRbP3DgADw9PYUe/87NzUW1atVUvy/L0+dEqFOnDvbs2QMnJycAwIwZMxAZGYmoqCgAwK+//opZs2YhISFBWMankpOT4e3tjWPHjqmtPz1poKQ3kadPn4a/vz8uXryoKm5MmjQJjo6OoqOhoKAAhoaGOHfunMZrjpJcuXIF/fv3R1xcnNoV3aenSpTy5+3p6YmbN29i7dq1aN68uep15+DBg5gwYQIuXLggOiIRUbnpvfgRIiLt17ZtW0yePBkbNmxQFThu3bqFKVOmqMYaJicnCzkWPmDAAADFP/R6eXmpXUUoLCxEbGysxskdUZKSkkq8ClWtWjVkZ2dXfCAttGnTJo3iyubNm2FjYwMA+Pnnn7FixQpFFGCejtZcvHgx3n77bdVJg8mTJ+Pjjz8Wms3MzEx1YszU1LTEqwhKKBzcvXsXFhYWqq8jIyPh4uKi+rpdu3b466+/RETT4OXlBT09Pezduxd16tQRer3jRdq2bYuff/5ZdIwS6enpwdLSUjEFjNKMHz8e1tbWOHToEGxsbBAdHY07d+5g0qRJWLx4seh4KgcPHsSBAwc0Xp8bN278wua3r1L16tWRnJwMc3NzeHt7Y9myZYrsnaON/v77b4SGhpZ4Mmvp0qWCUml68OBBiRmVNHaclIcFGCJ6IwQGBsLd3R3169dXu49vY2OD3bt3Ayhu8Ofr61vh2Z5Ok5FlGcbGxqqTEEBxA8y33noLI0aMqPBcJalTpw4uX76sMWkmKipKVUBQgsLCQqxfvx5hYWElXqUIDw8XlKz4RFOTJk1UXxsaGqodZW/fvj3GjBkjIpqGxYsXQ5IkeHp6qu6x6+vrY/To0ViwYIHQbOHh4ahevToAICIiQmiWslhYWCA1NRUNGjRAfn4+zpw5o2p6CwD37t3TaBosyrlz53D69GmNK2dKVFhYiJ07d6qmczVv3hzu7u4aPbRE+frrrzF9+nT8/PPPqr+nSnP8+HGEh4ejZs2a0NHRgY6ODjp16oRvv/0W48aNw9mzZ0VHBADk5eXByMhIY/327dtCeyfl5+cjJycH5ubmCA4OxsKFC1mAeQnCwsLg5uYGa2trJCUloWXLlkhLS4Msy4pp/H7r1i14eXlh//79Je4rvfhKYinjVYqI6BVr2rQpLl68iAMHDqhNe+jRo4fqzW+/fv2EZFu3bh0AwMrKCj4+PqhSpYqQHOUxcuRIjB8/HkFBQZAkCdevX8fx48fh4+MjdBzo88aPH4/169ejT58+aNmypaI+yc/JyVF7k3jr1i21/aKiIrWeMCJVqlQJy5Ytw7fffouUlBTIsgxbW9sS3wxVtC5dupT4e6VxcXHBtGnTsHDhQuzatQtGRkZ45513VPuxsbFo1KiRwIT/sLOzw+3bt0XHeKH4+Hi4u7sjIyMDTZs2BVBc2KxZsyZCQ0Nhb28vOGFxU/DLly+jbt26sLS01Ph3/cyZM4KS/aOwsFA18apGjRq4fv06mjZtCktLSyQlJQlO94/OnTtjw4YN+OabbwAUnxYtKirCokWL4OzsLCxXhw4d0K9fP7Rt2xayLGPcuHFqH6A8KygoqILTaa/p06dj0qRJ8PPzg7GxMXbs2IFatWph8ODBaqcHRfryyy+RnZ2NEydOwNnZGTt37kRmZibmzp0rrCcRaQ8WYIjojSFJElxcXBTzAv68WbNmiY7wQlOmTEFOTg6cnZ3x6NEjdO7cGQYGBvDx8cEXX3whOp7KL7/8gm3btqF3796io2ioX78+4uPjVW8cnxcbG6u4CSlGRkYwMzODJEmKKL4Axf8/lZfI4+Bz587FgAED0KVLF1StWhXBwcFq45yDgoI0euyIsnDhQkyZMgXz58+Hvb29xskckb10nvXpp5+iRYsWiImJgZmZGYDiq15eXl747LPPcPz4ccEJxRX0/42WLVsiNjYWNjY2+N///ofvvvsOlSpVwurVqxV1onHRokV49913ERMTg/z8fEyZMgUXLlxAVlYWjh49KizXzz//DH9/f6SkpECSJOTk5ChiBLq2u3jxIrZs2QKg+Drfw4cPUbVqVfj5+cHd3R2jR48WnLD4BObu3bvRrl076OjowNLSEj169EC1atXw7bffok+fPqIjkoKxCS8RvbaWL1+Ozz77DIaGhi8cUayEscSZmZnw8fFRXZt5/p9nJR1pffDgARISElBUVAQ7OzvVp6hKUbduXRw+fFjtqo9SjB8/HocOHcLp06c1Jh09fPgQTk5O6N69O5YtWyYo4T+KiopUn+jdv38fQHHT4EmTJmHGjBnlngLyKujo6Kg1Di2N6B4wT+Xk5KBq1aoa41SzsrJQtWpVtaKMKE//PJ8/MaaEXjrPqly5MmJiYtCiRQu19fj4eLRr1w4PHz4UlEy7HDhwAHl5eRgwYACuXLmC9957D4mJiTA3N8fWrVvRtWtX0RFVMjIy8NNPP+H06dMoKipCmzZtMGbMGNSpU0d0NADFU/hiYmJgbm4uOorWq127NsLDw2FnZ4cWLVrg22+/hZubG86fP4+OHTuqXotEqlatGmJjY2FlZQUrKyts2rQJHTt2RGpqKlq0aMEJgVQmFmCI6LX17A9EZY0oFj2W+ClXV1ekp6fjiy++KLEBpru7u6Bk2mfJkiW4cuUKfvzxR0VdPwKKC20ODg6oVKkSvvjiCzRp0gSSJCExMRE//vgjCgoKcPbsWbXGraJMnz4dgYGBmDNnDjp27AhZlnH06FHMnj0bI0aMwLx584Rl+zfNNy0tLV9hktdHZGRkmftKuerl4OCApUuXahQIwsPDMX78eMTFxQlKpv2ysrJUp92IROjXrx/69OmDESNGYMqUKdi5cye8vLwQEhICMzMzHDp0SHREtGvXDnPnzkWvXr3Qr18/1cmX5cuXY/v27UhJSREdkRSMBRgiIoUwNjbGkSNH4ODgIDpKqR49eoQffvgBERERJTa3VUJfAwDo378/IiIiUL16dbRo0ULjKkVISIigZMVSU1MxevRo/PHHH2qjX3v06IGVK1cq5vh/3bp1sWrVKri5uamt7969G59//jmuXbsmKBm9aZ4dNR4VFYUpU6Zg9uzZeOuttwAAJ06cgJ+fHxYsWKDIq4f032RnZyM6OrrE1x1PT09BqdSFhYWV2vidPWDK78qVK7h//z5atWqFBw8ewMfHB1FRUbC1tYW/v78iCuqbNm3CkydP4OXlhbNnz6JXr164c+cOKlWqhPXr18PDw0N0RFIwFmCIiBTCzs4OmzZtgqOjo+gopRo0aBD++OMPfPDBB7CwsND4lFQpfWyGDRtW5v7TxseiZWVl4fLlywAAW1tbxU1LMTQ0RGxsrMZVrqSkJDg4OCjqqselS5dw+PDhEt/8KKlBtNIdOXIEAQEBuHLlCn799VfUq1cPGzduhLW1NTp16iQs19MrZ089W7h8/mulXJVSuv79+5d40kWSJBgaGsLW1haDBg0qtV9VRdmzZw8GDx6MvLw8GBsbq2WWJAlZWVkC0xWbM2cO/Pz84OTkVOIJ1p07dwpKRhXhwYMHSExMRMOGDVGjRg3RcUjhWIAhotfWxIkTy/3s0qVLX2GS8jl48CCWLFmCgIAAjTHPSmFiYoJ9+/ahY8eOoqNQBfjf//6H//3vfxo9lMaOHYtTp07hxIkTgpKpW7NmDUaPHo0aNWqgdu3aGm/QlHIyS+l27NiBIUOGYPDgwdi4cSMSEhJgY2ODlStXYu/evdi3b5+wbC+6HvUspVyVUjovLy/s2rULpqamqkk+Z8+eRXZ2Nnr27Inz588jLS0NYWFhQv/Nb9KkCXr37o358+crpgn48+rUqYPvvvsOQ4YMER2FiBSOBRgiem2VdzylJEkIDw9/xWlK9vxd+7y8PBQUFMDIyEjj2owSPuWzs7PDL7/8InSqTHnFxsbi0qVLkCQJTZo0UcRoWm0TGRmJPn36oGHDhujQoQMkScKxY8fw119/Yd++fWrjlEWytLTE559/jqlTp4qOotUcHR0xYcIEeHp6wtjYGOfPn4eNjQ3OnTsHFxcXZGRkiI5IL9G0adOQm5uLH3/8UdWAuaioCOPHj4exsTHmzZuHUaNG4cKFC4iKihKWs0qVKoiLi1PM1cySmJubIzo6WjEj5bXNv+k7JOpnIW37UI+UiwUYIiKBgoODy/3s0KFDX2GS8vn999+xfPlyrFq1ShH3sEsSHR2N4cOHIyEhQe1aQosWLRAYGIh27doJTqhdrl+/jhUrViAxMRGyLMPOzg6ff/456tatKzqaSrVq1XDu3DlFv0HTBkZGRkhISICVlZVaAebKlSuws7NT5Ihde3t77Nu3Dw0aNBAdRU1pb9aevd7j7u4u9NphzZo1cfToUY0rhpcuXcLbb7+N27dvIy4uDu+88w6ys7PFhAQwYMAADBw4EB999JGwDC8ydepUVK1aFb6+vqKjaCVt+FlIGz7UI+2gJzoAEdGrdOXKFVhbWyt2ooMSiir/hpOTEx49egQbGxtFntJJSEhAt27d0Lx5c/z8889o3rw5ZFnGxYsX4e/vj27duuHEiROws7MTmlPpnv2+qVu3rtBpR+Xx4Ycf4uDBgxg1apToKFqtTp06uHz5ssYVyKioKMUWt9LS0vDkyRPRMTScPXsWZ86cQWFhIZo2bQpZlpGcnAxdXV00a9YMK1euxKRJkxAVFSXs36OCggIkJiZqFGASExNVfXQMDQ2FvH6Ghoaqft+nTx9MnjwZCQkJsLe313jdeb5JuAiPHj3C6tWrcejQIbRq1UojI09ElE0bfhaKiIgQHYFeEyzAENFrrXHjxrhx4wZq1aoFAPDw8MDy5csVMeL3ec9O+XiWJEkwMDBApUqVKjiRpo8//hjXrl3D/PnzS2zCK9qsWbPQo0cP7NixQy2bo6MjPv74YwwYMACzZ8/Gtm3bBKZUPm36vgGKGxj7+vrixIkTJb5BGzdunKBk2mXkyJEYP348goKCIEkSrl+/juPHj8PHx4eNjP+lp6db1q1bh2rVqgEo/jd++PDh6NSpE0aMGIFBgwZhwoQJOHDggJCMQ4YMwfDhw/HVV1+hXbt2kCQJ0dHRmD9/vmqyUGRkJFq0aFHh2fr166ex5ufnp7GmlKbLsbGxqgmG8fHxantKe53UBikpKVi3bh1SUlKwbNky1KpVC/v370eDBg2E/H0szeXLl5GSkoLOnTujcuXKkGWZf970QryCRESvNR0dHWRkZKjeSD57rF5pnp/y8bz69evDy8sLs2bNUt3Xr2hGRkY4fvw4WrduLeS//yI1a9bE77//DicnpxL3T506hd69e+PWrVsVnEy7aNP3DQBYW1uXuidJEq5cuVKBabTbjBkz4O/vr7puZGBgAB8fH3zzzTeCk5Wsd+/eCAwMRJ06dURHUVOvXj388ccfGqdbLly4gJ49e+LatWs4c+YMevbsidu3bwvJWFhYiAULFuDHH39EZmYmAMDCwgJjx47F1KlToauri/T0dOjo6KB+/fpCMtKbJzIyEq6urujYsSP+/PNPXLx4ETY2Nvjuu+8QHR2N7du3i46IO3fu4KOPPkJERAQkSUJycjJsbGwwfPhwmJqaYsmSJaIjkoLxBAwRkUKsX78eM2bMgJeXF9q3bw9ZlnHq1CkEBwfj66+/xq1bt7B48WIYGBjgq6++EpKxWbNmiho9/Lx79+6VeUqjdu3auHfvXgUmooqQmpoqOsJrY968eZgxYwYSEhJQVFQEOzs7VK1aVXSsUomczFSWnJwc3Lx5U6MAc+vWLdVpR1NTU+Tn54uIBwDQ1dXFjBkzMGPGDFWmp6d1nmrYsKGIaPQGmzZtGubOnYuJEyfC2NhYte7s7Ixly5YJTPaPCRMmQF9fH+np6WjevLlq3cPDAxMmTGABhsrEAgwRvdYkSdI4VaLU46HBwcFYsmSJWqNBNzc32NvbIyAgAGFhYWjYsCHmzZsnrACzYMECTJo0CfPmzSvxqsfzP7xXNCsrK0RHR5fakPPkyZOKbR6sJNr0ffOs27dvQ5IkmJubi46i1YyMjEo9RaYUly5dwuHDh3Hz5k0UFRWp7SnhupS7uzu8vb2xZMkStes9Pj4+qus10dHRGv1XRBH9b3dJwsPD8cUXX+DEiRMa+XJycvD222/jp59+QufOnQUlLG4QXB4hISGvOMnrIy4uDps3b9ZYr1mzJu7cuSMgkaaDBw/iwIEDGifDGjdujKtXrwpKRdqCBRgieq3JsgwvLy8YGBgAKG6UN2rUKFSpUkXtOSX8cHT8+HGsWrVKY93R0RHHjx8HAHTq1Anp6ekVHU3FxcUFANCtWze19af3nkXfxffw8MDEiRPRtGlTtGzZUm0vLi4OPj4+WtHsTzRt+r7Jzs7GjBkzsHXrVty9exdA8UjTgQMHYu7cuTA1NRUbkF66NWvWYPTo0ahRowZq166tVhyUJEkRBZiAgABMmDABAwcOREFBAQBAT08PQ4cOhb+/P4DiE4Vr164VltHR0bHEwuqzk5q8vLzKPf3lZfv+++8xYsSIEotDJiYmGDlyJPz9/YUWYExMTIT9t19XpqamuHHjhsbV0rNnz6JevXqCUqnLy8uDkZGRxvrt27dVr5tEpWEPGCJ6rQ0bNqxcz61bt+4VJ3mxJk2aYMCAAViwYIHa+rRp07Bz504kJSUhJiYG7u7uuHbtmpCMkZGRZe536dKlgpKU7NGjR+jWrRtOnjyJHj16qI4GJyQk4NChQ2jfvj3Cw8NhaGgoNKfSacv3TVZWFjp06IBr165h8ODBalOvNm/ejAYNGuDYsWMwMzMTmpNeLktLS3z++eeYOnWq6CgvdP/+fVy5cgWyLKNRo0aKus41ffp0/PTTT7C3t1dde42JiUFsbCy8vLyQkJCAsLAwhISEwN3dvcLzWVpaYv/+/WpXPJ6VmJiInj17Cv1Qgl6+KVOm4Pjx4/j111/RpEkTnDlzBpmZmfD09ISnpydmzZolOiL69OmDNm3a4JtvvoGxsTFiY2NhaWmJgQMHoqioSBF9aki5WIAhIlKI0NBQfPjhh2jWrJnqyPqpU6eQmJiI7du347333sNPP/2E5ORkjrQsQ35+Pvz9/bFlyxZcunQJQHFxa+DAgZgwYQI/nXqNfPnllwgLC8OhQ4c0ev9kZGSgZ8+e6Natm+rEAb0eqlWrhnPnzim2KfSzlDwlZcSIEWjYsCF8fX3V1ufOnYurV69izZo1mDVrFn777TfExMRUeD5DQ0PEx8fD1ta2xP3Lly/D3t5e0X3J6N978uQJvLy88Msvv0CWZejp6aGwsBCDBg3C+vXroaurKzoiEhIS8O6776Jt27YIDw+Hm5sbLly4gKysLBw9ehSNGjUSHZEUjAUYIiIFSUtLw6pVq3Dp0iXIsoxmzZph5MiRsLKyEpYpNjYWLVu2hI6ODmJjY8t8tlWrVhWUiqi4509AQAB69epV4v7+/fsxatQopKWlVWwwLfXnn3/i7bffhp6e+g31goICHDt2TOhVj2cNHz4c7dq1w6hRo0RHKZU2TEkxMTHB6dOnNQocly9fRtu2bZGTk4PExES0a9dOSPPyRo0aYfHixejfv3+J+yEhIfDx8eGUs9dUSkoKzp49i6KiIjg6OqJx48aiI6nJyMjAypUrcebMGRQVFaFNmzYYM2aM4iaykfKwAENERGV6diTx01HZJb10KKEHDL1ZDAwMkJKSUuqI3L///hu2traqkcpUNl1dXdy4cUM1fvypO3fuoFatWor5/v7222+xdOlS9OnTp8Rm4OPGjROU7B+enp64efMm1q5di+bNm6vGuB88eBATJkzAhQsXREeEhYUFFi1aBE9PT7X1DRs2YPLkycjMzERCQgI6d+4sZFT22LFjcfjwYZw6dUrj2ujDhw/Rvn17ODs7Y/ny5RWejYjo/4pNeImIBNKG0yWpqamoWbOm6vdESlGjRg2kpaWVWoBJTU3lRKR/obTrMXfu3NFowCzS6tWrUbVqVURGRmr0pZIkSREFGG2YkjJ27FiMGjUKp0+fVpvUtHbtWtWkvQMHDsDR0VFIvq+//hohISFo0qQJvvjiCzRt2hSSJOHixYtYsWIFCgsLMWPGDCHZ6NXIy8vDwoULERISgrS0NEiSBGtra3zwwQfw8fEpsfGtCMnJydi9e7cqo42NDfr166fROJioJDwBQ0QkkLadLtGWKwr0Zhg+fDguX76MP/74A5UqVVLbe/z4MXr16oVGjRohMDBQUELt8HSU7u7du+Hi4qLWJ6mwsBCxsbFo2rQp9u/fLyqi1jE2NsaZM2fQuHFjGBsbq07AnDp1Ci4uLooZp7tp0yb8+OOPSEpKAgA0bdoUY8eOxaBBgwAUnzR5OhVJhKtXr2L06NE4cOCA6rVRkiT06tULK1euFHo9l16u/Px8vP3224iPj4erqyuaNWumaqq+f/9+tGnTBn/++afGibeK9u2332LmzJkoKipCrVq1IMsybt26BV1dXcyfPx8+Pj5C85HysQBDRCTQ1atX0bBhQ0iS9MJPRS0tLSsoVemUfEUhNze3xHGl9Pr6+++/4eTkBAMDA4wZMwbNmjUDUNwgceXKlXj8+DFiYmLQoEEDwUmV7enUq+DgYHz00UeoXLmyaq9SpUqwsrLCiBEjUKNGDVERS3T79m1IkqTIU06ckvJy3b17F5cvX4Ysy2jcuDEnm72Gli1bhm+//RaRkZFo2rSp2l5iYiLeffddzJgxA2PHjhWUEIiIiED37t3h6+uL8ePHq/4eZmVl4fvvv8f8+fMRHh7OD6OoTCzAEBFRueno6CAzM1N1JempS5cuwcnJCbm5uYKSqReHunbtipCQEJiamgrLQxUjNTUVn3/+OQ4ePKj2CXmPHj3w448/ljpBhTTNmTMHPj4+irpu9Lzs7GzMmDEDW7duxd27dwEAZmZmGDhwIObOnauY73lOSSH6d7p06YKPPvoIY8aMKXH/hx9+wPbt2zWuHVYkDw8PmJqaIiAgoMT9zz77DPfu3cOWLVsqOBlpExZgiIgECg0NLfezbm5urzBJ2bThioKJiQlOnDiB5s2bl1oootfX3bt3kZycDACwtbVF9erVBSeily0rKwsdOnTAtWvXMHjwYDRv3lx1RWHz5s1o0KABjh07ppjTERkZGfjpp59w+vRpRU5JKSwshL+/P7Zt24b09HTk5+er7WdlZQlKRm+imjVr4vDhw2jRokWJ+/Hx8XB2dsatW7cqONk/rK2tsXHjRnTq1KnE/SNHjsDT05P98qhMbMJLRCRQv379yvWc6B4wJiYmAIqbdBobG2tcUXjrrbcwYsQIUfEAAN27d4ezszOaN28OAOjfv79GX5CnwsPDKzIaVQAzMzO0b99edAytlpmZCR8fH4SFheHmzZsa/ahE96Hy8/NDpUqVkJKSAgsLC429nj17ws/PD/7+/oISqqtduzbmzJmjtvbXX3/B29sbQUFBglL9Y86cOVi7di0mTpwIX19fzJgxA2lpadi1axdmzpwpOh69YbKzs8u8Tmhubo6cnJwKTKQpMzOzzL5D1tbWyMjIqLhApJV4AoaIiMpNyVcUHj58iODgYKSkpGDJkiUYMWJEqRMTlPIGjUhJXF1dkZ6eji+++AJ16tTRmIjk7u4uKFkxKysrBAQEoFevXiXu79+/H6NGjUJaWlrFBvsXzp8/jzZt2ggvZgFAo0aNsHz5cvTp0wfGxsY4d+6cau3EiRPYvHmz6Ij0BtHV1UVGRkapJ1czMzNRt25dod87zw5OKIkSMpLy8QQMEZFA1atXR3JyMszNzeHt7Y1ly5bB2NhYdKxSzZo1S3SEUlWuXBmjRo0CAMTExGDhwoWK6QdBpA2ioqJw5MgRODg4iI5Sohs3bpR6PQEAWrZsyU+f/4WMjAzY29sDAKpWrao6XfDee+/B19dXZDR6A8myjG7dumlMWXyqoKCgghOVbO3atahatWqJe/fu3avgNKSNWIAhIhIoPz8fOTk5MDc3R3BwMBYuXKjoAoy2iIiIUP3+2casRFS6Bg0aaFw7UpIaNWogLS0N9evXL3E/NTVVkRORlKp+/fq4ceMGGjZsCFtbWxw8eBBt2rTBqVOn1Pp8EVWE8nzA8/7771dAktI1bNgQa9aseeEzRGXhFSQiIoF69OiBzMxMtG3bFsHBwfDw8FDrr/IsJfQM0CYbNmzAokWLVI1ZmzRpgsmTJ2PIkCGCkxEp08GDB7FkyRIEBASU2edAlOHDh+Py5cv4448/NPo7PX78GL169UKjRo0QGBgoKOGLKekK0rRp01CtWjV89dVX2L59Oz7++GNYWVkhPT0dEyZMwIIFC0RHJCJ67bAAQ0QkUGZmJvz9/ZGSkoKQkBD06tWr1E8ed+7cWcHptNfSpUvh6+uLL774Ah07doQsyzh69ChWrFiBuXPnYsKECaIjEimCmZmZ2umwvLw8FBQUwMjICPr6+mrPip6K8/fff8PJyQkGBgYYM2YMmjVrBqB45PPKlSvx+PFjxMTEoEGDBsIyPp0YV5rs7GxERkYqogDzvBMnTuDYsWOwtbUVOnWPiOh1xgIMEZFCWFtbIyYmhkfoXwJra2vMmTMHnp6eauvBwcGYPXs2R0QS/X/BwcHlfnbo0KGvMEn5pKam4vPPP8fBgwfVrhf26NEDP/74I2xtbYXmGzZsWLmeW7du3StOQkRESsQCDBERlWn58uXlfnbcuHGvMEn5GRoaIj4+XuPNWHJyMuzt7fHo0SNByYjoZbh7967qeqGtrS2qV68uOJH2uXPnjqrg/9dff2HNmjV4+PAh3Nzc8M477whOR0T0emIBhohIQcLCwhAWFoabN2+iqKhIbU9UDxhra+tyPSdJEq5cufKK05RPy5YtMWjQIHz11Vdq63PnzsXWrVsRFxcnKBmRcuXm5pa4LkkSDAwMNPqukHaKi4tD37598ddff6Fx48b45Zdf4OLigry8POjo6CAvLw/bt29Hv379REclInrtsABDRKQQc+bMgZ+fH5ycnFCnTh2NqT3sAVN+O3bsgIeHB7p3746OHTtCkiRERUUhLCwM27ZtQ//+/UVHJFIcHR2dMqeF1a9fH15eXpg1axZ0dHQqMBm9TK6urtDT08PUqVPx888/Y+/evejZsyfWrl0LABg7dixOnz6NEydOCE5Kb7pHjx7B0NBQdAyil4oFGCIihahTpw6+++47Tul5SU6fPg1/f39cvHgRsizDzs4OkyZNgqOjo+hoRIq0YcMGzJgxA15eXmjfvj1kWcapU6cQHByMr7/+Grdu3cLixYsxefJkjdNlpD1q1KiB8PBwtGrVCvfv30e1atUQHR0NJycnAEBiYiLeeustZGdniw1Kb6SioiLMmzcPq1atQmZmJi5dugQbGxv4+vrCysoKw4cPF5KrtBOCJalWrdorTELajgUYIiKFMDc3R3R0NBo1aiQ6Spn+/vtvhIaGIj09Hfn5+Wp7S5cuFZSKiP6rbt26YeTIkfjoo4/U1rdt24aAgACEhYVh48aNmDdvHhITEwWlpP9KR0cHGRkZqFWrFgDA2NgY58+fh42NDYDi6Xx169ZV5KQmev35+fkhODgYfn5+GDFiBOLj42FjY4Nt27bB398fx48fF5LrRScEAUCWZUiSxO8dKpOe6ABERFTs008/xebNm+Hr6ys6SqnCwsLg5uYGa2trJCUloWXLlkhLS4Msy2jTpo3oeET0Hxw/fhyrVq3SWHd0dFS96enUqRPS09MrOhq9ZM+/kXzRG0uiirJhwwasXr0a3bp1w6hRo1TrrVq1Elr4jYiIEPbfptcLCzBERArx6NEjrF69GocOHUKrVq2gr6+vtq+E0yXTp0/HpEmT4OfnB2NjY+zYsQO1atXC4MGD4eLiIjoeEf0H9evXR2BgIBYsWKC2HhgYiAYNGgAonpxjZmYmIh69RF5eXjAwMABQ/NozatQoVKlSBQDw+PFjkdHoDXft2rUSx8kXFRXhyZMnAhIV69Kli7D/Nr1eWIAhIlKI2NhYODg4AADi4+PV9pTy6eTFixexZcsWAICenh4ePnyIqlWrws/PD+7u7hg9erTghET0f7V48WJ8+OGH+P3339GuXTtIkoRTp04hMTER27dvBwCcOnUKHh4egpPSfzF06FC1rz/55BONZzw9PSsqDpGaFi1a4MiRI7C0tFRb//XXXxXXw+3BgwclXsdu1aqVoESkDViAISJSCG043lqlShXVp6N169ZFSkoKWrRoAQC4ffu2yGhE9B+5ubkhKSkJq1atwqVLlyDLMlxdXbFr1y5YWVkBAIusr4F169aJjkBUqlmzZmHIkCG4du0aioqKEBISgqSkJGzYsAF79+4VHQ8AcOvWLQwbNgy///57ifvsAUNlYQGGiIjK7a233sLRo0dhZ2eHPn36YNKkSYiLi0NISAjeeust0fE0XL58GSkpKejcuTMqV66sapBHRCWzsrLSuIJERFRR+vbti61bt2L+/PmQJAkzZ85EmzZtsGfPHvTo0UN0PADAl19+ibt37+LEiRNwdnbGzp07kZmZiblz52LJkiWi45HCcQoSEZFgAwYMKNdzISEhrzjJi125cgX3799Hq1at8ODBA/j4+CAqKgq2trbw9/fXODIsyp07d+Dh4YHw8HBIkoTk5GTY2Nhg+PDhMDU15Q9IRP9fbGwsWrZsCR0dHcTGxpb5LI/VE9GrVFBQgHnz5sHb21vVd0qJ6tSpg927d6N9+/aoVq0aYmJi0KRJE4SGhuK7775DVFSU6IikYDwBQ0QkmImJiegI5fZ0TCkAGBkZYeXKlQLTlG7ChAnQ09NDeno6mjdvrlr38PDAhAkTWIAh+v8cHBxUI4kdHBwgSRJK+myOo1WJ6FXT09PDokWLNPoUKU1eXp5qjHv16tVx69YtNGnSBPb29jhz5ozgdKR0LMAQEQmmTffxhw0bhk8++QRdu3ZV9FWegwcP4sCBA6hfv77aeuPGjXH16lVBqYiUJzU1FTVr1lT9nohIpO7du+Pw4cPw8vISHaVUTZs2RVJSEqysrODg4ICAgABYWVlh1apVqFOnjuh4pHAswBARUbnduXMHffr0gbm5OQYOHIghQ4aoJjcpSV5eHoyMjDTWb9++rRq9SkRQuzaolCuERPTmcnV1xfTp0xEfH4+2bduqxqM/5ebmJijZP7788kvcuHEDQHHT4F69emHTpk2oVKkS1q9fLzYcKR57wBAR0b+SnZ2Nbdu2YfPmzThy5AiaNm2KTz75BIMGDVJNShGtT58+aNOmDb755hsYGxsjNjYWlpaWGDhwIIqKilQjdYnedKGhoeV+VglvfIjo9aajo1PqnlKvQj548ACJiYlo2LAhatSoIToOKRwLMERE9H/2999/Y8uWLQgKCkJycjIKCgpERwIAJCQk4N1330Xbtm0RHh4ONzc3XLhwAVlZWTh69CgaNWokOiKRIpT1ZudZSn3jQ0RU0SIjI9GlSxfRMUhLle9Vl4iI6DlPnjxBTEwMTp48ibS0NFhYWIiOpGJnZ4fY2Fi0b98ePXr0QF5eHgYMGICzZ8+y+EL0jKKionL9YvGFiKhYjx490LBhQ0ybNg3x8fGi45CW4QkYIiL6VyIiIrB582bs2LEDhYWFGDBgAAYPHoyuXbuW+9N0IlKG6tWrIzk5Gebm5vD29sayZctgbGwsOhYRvaH8/PzK3J85c2YFJSnd7du38csvv2DLli04fvw4WrZsqbqK/Xzzf6LnsQBDRETlVr9+fdy5cwe9evXC4MGD0bdvXxgaGoqOpWH//v2oWrUqOnXqBABYsWIF1qxZAzs7O6xYsQJmZmaCExIpQ9WqVREbGwsbGxvo6uoiIyNDNRWJiKiiOTo6qn395MkTpKamQk9PD40aNVLcmOfU1FRs3rwZW7ZsQWJiIjp37ozw8HDRsUjBWIAhIqJyW716NT788EPFFzDs7e2xcOFC9O7dG3FxcXBycsKkSZMQHh6O5s2ba9Xob6JXqUePHsjMzETbtm0RHBwMDw8PVK5cucRng4KCKjgdERGQm5sLLy8v9O/fH0OGDBEdR0NhYSF+//13+Pr6IjY2llc2qUwswBAR0WunatWqiI+Ph5WVFWbPno34+Hhs374dZ86cQe/evZGRkSE6IpEiZGZmwt/fHykpKQgJCUGvXr1KHdW+c+fOCk5HRFQsPj4e7733HtLS0kRHUTl69Cg2bdqE7du349GjR3Bzc8PgwYPh6uoqOhopmJ7oAEREpGwDBgzA+vXrUa1aNQwYMKDMZ0NCQiooVdkqVaqEBw8eAAAOHToET09PAMX9LnJzc0VGI1IUCwsLLFiwAABgbW2NjRs3wtzcXHAqIiJ12dnZyMnJER0DAPDVV19hy5YtuH79Orp3747vv/8e/fr1g5GRkehopAVYgCEiojKZmJhAkiTV77VBp06dMHHiRHTs2BHR0dHYunUrAODSpUtskEdUitTUVNERiOgNt3z5crWvZVnGjRs3sHHjRri4uAhKpe7w4cPw8fGBh4cHatSoIToOaRleQSIionKRZRnp6emoWbOm4j/lSU9Px+eff46//voL48aNw/DhwwEAEyZMQGFhocYPeERULCwsDGFhYbh58yaKiorU9tgDhoheNWtra7WvdXR0ULNmTXTt2hXTp0/nlDbSeizAEBFRuRQVFcHQ0BAXLlxA48aNRcchopdszpw58PPzg5OTE+rUqaM6+fYUe8AQ0ZsqNDQUrq6u0NfXR2hoaJnPurm5VVAq0kYswBARUbm1aNECgYGBeOutt0RHKbeHDx/iyZMnamvVqlUTlIZIuerUqYPvvvtOkVNGiOjN4O3tjWXLlmmcdMnLy8PYsWOFncTT0dFBRkYGatWqBR0dnVKfkySJU5CoTCzAEBFRuf32229YsGABfvrpJ7Rs2VJ0nFLl5eVh6tSp2LZtG+7cuaOxzx+OiDSZm5sjOjoajRo1Eh2FiN5Qurq6uHHjBmrVqqW2fvv2bdSuXRsFBQWCkhG9HKWX74iIiJ7zySefIDo6Gq1bt0blypVRvXp1tV9KMWXKFISHh2PlypUwMDDA2rVrMWfOHNStWxcbNmwQHY9IkT799FNs3rxZdAwiegPl5uYiJycHsizj3r17yM3NVf26e/cu9u3bp1GUEeHJkydwdnbGpUuXREchLcUpSEREVG7ff/+96AjlsmfPHmzYsAHvvvsuvL298c4778DW1haWlpbYtGkTBg8eLDoikeI8evQIq1evxqFDh9CqVSvo6+ur7S9dulRQMiJ63ZmamkKSJEiShCZNmmjsS5KEOXPmCEimTl9fH/Hx8Ro9sojKiwUYIiIqlydPnuDw4cPw9fWFjY2N6DhlysrKUk1SqFatGrKysgAUj6cePXq0yGhEihUbGwsHBwcAQHx8vNoe32wQ0asUEREBWZbRtWtX7NixQ+1UbaVKlWBpaYm6desKTPgPT09PBAYGYsGCBaKjkBZiAYaIiMpFX18fO3fuhK+vr+goL2RjY4O0tDRYWlrCzs4O27ZtQ/v27bFnzx6YmpqKjkekSBEREaIjENEbqkuXLigoKICnpyecnJzQoEED0ZFKlZ+fj7Vr1+KPP/6Ak5MTqlSporbP04JUFjbhJSKichs2bBjs7e0xceJE0VHK5O/vD11dXYwbNw4RERHo06cPCgsLUVBQgKVLl2L8+PGiIxIREdFzjI2NERcXBysrK9FRSuXs7FzqniRJCA8Pr8A0pG1YgCEionKbN28eFi9ejG7duqFt27Yan/qMGzdOULKypaenIyYmBo0aNULr1q1FxyFSlAEDBpTruZCQkFechIjedP369UO/fv3g5eUlOkqJCgsLERUVBXt7e0UNHyDtwQIMERGV29O+KiWRJAlXrlypwDRE9DIMGzasXM+tW7fuFSchojddQEAAZs+ejcGDB5f4QY+bm5ugZP8wNDTExYsXy/yZiKg0LMAQEdFro3fv3tiyZQtMTEwAFJ/YGTNmjKrvy507d/DOO+8gISFBYEoiIiIqiY6OTql7kiShsLCwAtOUrF27dliwYAG6desmOgppodL/hhMREZVTXFwcvvzyS9ExcODAATx+/Fj19cKFC1UTkACgoKAASUlJIqIRERHRCxQVFZX6SwnFF6D4wx0fHx/s3bsXN27cQG5urtovorJwChIREf2f5ObmYsuWLQgMDERMTAxatWolOhKeP9TJQ55ERET0Mrm4uAAovg4lSZJqXZZlxZzSIeViAYaIiP6VyMhIBAYGYseOHXj06BEmT56MzZs3w9bWVnQ0IiIi0nJ5eXmIjIxEeno68vPz1faU0Ow/IiJCdATSYizAEBHRC924cQPr1q1DUFAQ8vLy8PHHHyMyMhIdOnSAp6enYoovkiSpfRr1dI2IiIiU7+zZs+jduzcePHiAvLw8VK9eHbdv34aRkRFq1aqliAJMly5dSt07d+5cxQUhrcQCDBERvZC1tTU+/PBDrFixAj169CizSZ5IsizDy8sLBgYGAIBHjx5h1KhRqikKz/aHISIiImWZMGEC+vbti59++gmmpqY4ceIE9PX18cknn2D8+PGi45UoJycHmzZtwtq1a3H+/HleQaIysQBDREQvZGlpiaioKDRs2BCWlpZo1qyZ6EglGjp0qNrXn3zyicYznp6eFRWHiIiI/oVz584hICAAurq60NXVxePHj2FjY4PvvvsOQ4cOxYABA0RHVAkPD0dQUBBCQkJgaWmJ999/H4GBgaJjkcKxAENERC+UlJSEo0ePIjAwEO3atUOTJk1UxQ0lXfFZt26d6AhERET0f6Svr6/6ucLCwgLp6elo3rw5TExMkJ6eLjgd8Pfff2P9+vWqK9kfffQRnjx5gh07dsDOzk50PNICyjxDTkREitOxY0cEBQXhxo0bGDVqFLZt24bCwkJ8/vnnWLNmDW7duiU6IhEREWkxR0dHxMTEAACcnZ0xc+ZMbNq0CV9++SXs7e2FZuvduzfs7OyQkJCAH374AdevX8cPP/wgNBNpH0nmjE4iIvo/unjxIgIDA7Fx40ZkZWXhyZMnoiMRERGRloqJicG9e/fg7OyMW7duYejQoYiKioKtrS3WrVuH1q1bC8ump6eHcePGYfTo0WjcuLFqXV9fH+fPn+cJGCoXFmCIiOiFDh48CGdnZ+jr65e4X1BQgNDQUEXdzSYiIiJ6WY4fP46goCBs27YNzZo1w5AhQ+Dh4YG6deuyAEPlxgIMERG9kI2NDbKystCrVy+4u7ujd+/eMDU1FR2LiIiIXkM3b95EUlISJElC06ZNUbNmTdGRVB48eIBffvkFQUFBiI6ORmFhIZYuXQpvb28YGxuLjkcKxwIMERGVS2xsLEJDQxEaGorY2Fh07NgR7u7ucHNzg5WVleh4REREpOVyc3MxZswY/PLLL6pxzrq6uvDw8MCKFStgYmIiOKG6pKQk1VXs7Oxs9OjRA6GhoaJjkYKxAENERP/a9evXVcWYiIgINGnSRFWMcXJyEh2PiIiItNBHH32Ec+fO4YcffkCHDh0gSRKOHTuG8ePHo1WrVti2bZvoiCUqLCzEnj17EBQUxAIMlYkFGCIi+k/y8vLw+++/IzQ0FPv27cPEiRPx1VdfiY5FREREWqZKlSo4cOAAOnXqpLZ+5MgRuLi4IC8vT1AyopdDT3QAIiLSTo8ePYKhoSGqVKmCDz74AB988AGKiopw584d0dGIiIhIC5mbm5d4zcjExARmZmYCEhG9XDqiAxARkfYoKirCN998g3r16qFq1aq4cuUKAMDX1xeBgYHQ0dFRVKM8IiIi0h5ff/01Jk6ciBs3bqjWMjIyMHnyZPj6+gpMRvRy8AoSERGVm5+fH4KDg+Hn54cRI0YgPj4eNjY22LZtG/z9/XH8+HHREYmIiEhLOTo64vLly3j8+DEaNmwIAEhPT4eBgQEaN26s9uyZM2dERCT6T3gFiYiIym3Dhg1YvXo1unXrhlGjRqnWW7VqhcTERIHJiIiISNv169dPdASiV4oFGCIiKrdr167B1tZWY72oqAhPnjwRkIiIiIheF7NmzRIdgeiVYg8YIiIqtxYtWuDIkSMa67/++iscHR0FJCIiIqLXSXZ2NtauXYvp06cjKysLQPF1o2vXrglORvTf8QQMERGV26xZszBkyBBcu3YNRUVFCAkJQVJSEjZs2IC9e/eKjkdERERaLDY2Ft27d4eJiQnS0tIwYsQIVK9eHTt37sTVq1exYcMG0RGJ/hOegCEionLr27cvtm7din379kGSJMycORMXL17Enj170KNHD9HxiIiISItNnDgRXl5eSE5OhqGhoWrd1dUVf/75p8BkRC8HT8AQEVG5FBQUYN68efD29kZkZKToOERERPSaOXXqFAICAjTW69Wrh4yMDAGJiF4unoAhIqJy0dPTw6JFi1BYWCg6ChEREb2GDA0NkZubq7GelJSEmjVrCkhE9HKxAENEROXWvXt3HD58WHQMIiIieg25u7vDz89PNVlRkiSkp6dj2rRpeP/99wWnI/rvJFmWZdEhiIhIOwQEBGD27NkYPHgw2rZtiypVqqjtu7m5CUpGRERE2i43Nxe9e/fGhQsXcO/ePdStWxcZGRno0KED9u3bp/FzB5G2YQGGiIjKTUen9IOTkiTxehIRERH9Z+Hh4Thz5gyKiorQpk0bdO/eXXQkopeCBRgiIiIiIiIioleMU5CIiIiIiIhIqKKiIqxfvx4hISFIS0uDJEmwtrbGBx98gCFDhkCSJNERif4znoAhIqJy8/PzK3N/5syZFZSEiIiIXheyLKNv377Yt28fWrdujWbNmkGWZVy8eBFxcXFwc3PDrl27RMck+s9YgCEionJzdHRU+/rJkydITU2Fnp4eGjVqhDNnzghKRkRERNpq3bp1GD9+PHbv3g1nZ2e1vfDwcPTr1w8//vgjPD09BSUkejlYgCEiov8kNzcXXl5e6N+/P4YMGSI6DhEREWmZnj17omvXrpg2bVqJ+/Pnz0dkZCQOHDhQwcmIXi4WYIiI6D+Lj4/He++9h7S0NNFRiIiISMvUrl0b+/fvh4ODQ4n7Z8+ehaurKzIyMio2GNFLVvo8USIionLKzs5GTk6O6BhERESkhbKysmBhYVHqvoWFBe7evVuBiYheDU5BIiKiclu+fLna17Is48aNG9i4cSNcXFwEpSIiIiJtVlhYCD290t+a6urqoqCgoAITEb0avIJERETlZm1trfa1jo4Oatasia5du2L69OkwNjYWlIyIiIi0lY6ODlxdXWFgYFDi/uPHj7F//34UFhZWcDKil4sFGCIiIiIiIhJm2LBh5Xpu3bp1rzgJ0avFAgwREZWbt7c3li1bpnHSJS8vD2PHjkVQUJCgZEREREREysYCDBERlZuuri5u3LiBWrVqqa3fvn0btWvX5v1sIiIiIqJSsAkvERG9UG5uLmRZhizLuHfvHgwNDVV7hYWF2Ldvn0ZRhoiIiIiI/sECDBERvZCpqSkkSYIkSWjSpInGviRJmDNnjoBkRERERETagVeQiIjohSIjIyHLMrp27YodO3agevXqqr1KlSrB0tISdevWFZiQiIiIiEjZeAKGiIheqEuXLigoKICnpyecnJzQoEED0ZGIiIiIiLSKjugARESkHfT09LBjxw4UFhaKjkJEREREpHVYgCEionLr1q0bDh8+LDoGEREREZHW4RUkIiIqN1dXV0yfPh3x8fFo27YtqlSporbv5uYmKBkRERERkbKxCS8REZWbjk7pByclSeL1JCIiIiKiUrAAQ0RERERERET0irEHDBERERERERHRK8YeMERE9K/k5eUhMjIS6enpyM/PV9sbN26coFRERERERMrGK0hERFRuZ8+eRe/evfHgwQPk5eWhevXquH37NoyMjFCrVi1cuXJFdEQiIiIiIkXiFSQiIiq3CRMmoG/fvsjKykLlypVx4sQJXL16FW3btsXixYtFxyMiIiIiUiyegCEionIzNTXFyZMn0bRpU5iamuL48eNo3rw5Tp48iaFDhyIxMVF0RCIiIiIiReIJGCIiKjd9fX1IkgQAsLCwQHp6OgDAxMRE9XsiIiIiItLEJrxERFRujo6OiImJQZMmTeDs7IyZM2fi9u3b2LhxI+zt7UXHIyIiIiJSLF5BIiKicouJicG9e/fg7OyMW7duYejQoYiKioKtrS3WrVuH1q1bi45IRERERKRILMAQEREREREREb1ivIJERET/2s2bN5GUlARJktC0aVPUrFlTdCQiIiIiIkVjE14iIiq33NxcDBkyBPXq1UOXLl3QuXNn1K1bF5988glycnJExyMiIiIiUiwWYIiIqNw+/fRTnDx5Env37kV2djZycnKwd+9exMTEYMSIEaLjEREREREpFnvAEBFRuVWpUgUHDhxAp06d1NaPHDkCFxcX5OXlCUpGRERERKRsPAFDRETlZm5uDhMTE411ExMTmJmZCUhERERERKQdWIAhIqJy+/rrrzFx4kTcuHFDtZaRkYHJkyfD19dXYDIiIiIiImXjFSQiIio3R0dHXL58GY8fP0bDhg0BAOnp6TAwMEDjxo3Vnj1z5oyIiEREREREisQx1EREVG79+vUTHYGIiIiISCvxBAwRERERERER0SvGHjBERPSvZGdnY+3atZg+fTqysrIAFF83unbtmuBkRERERETKxRMwRERUbrGxsejevTtMTEyQlpaGpKQk2NjYwNfXF1evXsWGDRtERyQiIiIiUiSegCEionKbOHEivLy8kJycDENDQ9W6q6sr/vzzT4HJiIiIiIiUjQUYIiIqt1OnTmHkyJEa6/Xq1UNGRoaARERERERE2oEFGCIiKjdDQ0Pk5uZqrCclJaFmzZoCEhERERERaQcWYIiIqNzc3d3h5+eHJ0+eAAAkSUJ6ejqmTZuG999/X3A6IiIiIiLlYhNeIiIqt9zcXPTu3RsXLlzAvXv3ULduXWRkZKBDhw7Yt28fqlSpIjoiEREREZEisQBDRET/Wnh4OM6cOYOioiK0adMG3bt3Fx2JiIiIiEjRWIAhIiIiIiIiInrF9EQHICIi7VBUVIT169cjJCQEaWlpkCQJ1tbW+OCDDzBkyBBIkiQ6IhERERGRYvEEDBERvZAsy+jbty/27duH1q1bo1mzZpBlGRcvXkRcXBzc3Nywa9cu0TGJiIiIiBSLJ2CIiOiF1q9fjz///BNhYWFwdnZW2wsPD0e/fv2wYcMGeHp6CkpIRERERKRsPAFDREQv1LNnT3Tt2hXTpk0rcX/+/PmIjIzEgQMHKjgZEREREZF20BEdgIiIlC82NhYuLi6l7ru6uuL8+fMVmIiIiIiISLuwAENERC+UlZUFCwuLUvctLCxw9+7dCkxERERERKRdWIAhIqIXKiwshJ5e6W3DdHV1UVBQUIGJiIiIiIi0C5vwEhHRC8myDC8vLxgYGJS4//jx4wpORERERESkXViAISKiFxo6dOgLn+EEJCIiIiKi0nEKEhERERERERHRK8YeMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMERERERERERErxgLMEREREREREREr9j/A6u0XXyA/F+LAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -586,7 +586,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAJUCAYAAABpIY/9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYvklEQVR4nO3deXhMZ/8/8Pdkm+wji2zEHiESWxARbRRJRCKltYaQx1ZrSqlWtT+0RWvXalFFKpa0j63WCLUFiSWktYRaQoKEYEwWkfX+/eGb85iT2FJM6Pt1XXM9z9znM+fc54y8e59zn5lRCCEEiIhIoqfrDhARVTYMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMxpdEoVA802Pfvn267qqWs2fPYsqUKbhy5cpTa7t16wYTExPcu3fvsTV9+/aFoaEhbt68+Y/7duXKFSgUCkRGRj73a/ft2weFQoF169Y9tXbKlClQKBQV6OGTt136MDIyQtWqVeHj44NJkybh6tWrZV4TGRkJhULxTO/Do6ZPn45NmzY912vK21a7du3g7u7+XOt5mu3bt2PKlCnlLqtVqxbCw8Nf6Pb+CQbjSxIfH6/16Ny5M0xMTMq0N2/eXNdd1XL27FlMnTr1mf4gBw0ahAcPHmDNmjXlLtdoNNi4cSOCg4Nhb2//j/vm6OiI+Ph4BAUF/eN16cL06dMRHx+PvXv3YtmyZWjXrh2WL1+Ohg0bYvXq1Vq1QUFBiI+Ph6Oj43Nv43mDsaLbel7bt2/H1KlTy122ceNGfPHFFy91+8/DQNcdeFO1bt1a63nVqlWhp6dXpr2i7t+/D1NT0xeyrooKDAyEk5MTli9fjhEjRpRZvnbtWuTl5WHQoEH/aDvFxcUoKiqCUql8YcdPF1xcXLT6HxISgnHjxqFjx44IDw9H48aN4eHhAeDhv5eqVau+1P7k5eXB2Nj4lWzraZo1a6bT7ctxxKhDP/zwA95++23Y2dnBzMwMHh4emDlzJgoLC7XqSk9rDhw4gDZt2sDU1BQDBw4EAFy7dg3du3eHhYUFqlSpgr59++LYsWPlnnIeP34cISEhsLa2hrGxMZo1a4bffvtNWh4ZGYkePXoAAN555x3p1O9xp676+voYMGAAEhMTcerUqTLLV6xYAUdHRwQGBiIzMxMjRoyAm5sbzM3NYWdnh/bt2yMuLk7rNaWnyzNnzsTXX3+N2rVrQ6lUYu/eveWeSl+8eBH/+c9/4OLiAlNTU1SrVg1dunQptz8A8ODBA3z00UdwcHCAiYkJfH19cfLkyXJr5X799Vd4e3vDzMwM5ubmCAgIeObXPo61tTWWLFmCoqIizJs3T2ov7/T25MmTCA4Ohp2dHZRKJZycnBAUFIRr164BeHj5Jjc3F7/88ov03rVr105rfbGxsRg4cCCqVq0KU1NT5OfnP/G0PS4uDq1bt4aJiQmqVauGL774AsXFxdLy0ssE8ktC8vcqPDwcP/zwg9TP0kfpNss7lU5NTUW/fv2k/W3YsCHmzJmDkpKSMtuZPXs25s6di9q1a8Pc3Bze3t5ISEh4jndCG4NRhy5duoTQ0FBERUVh69atGDRoEGbNmoUPPvigTG16ejr69euH0NBQbN++HSNGjEBubi7eeecd7N27F99++y1+++032Nvbo1evXmVev3fvXvj4+ODevXtYvHgxfv/9dzRt2hS9evWS/vEGBQVh+vTpAB6Gdunp/pNOXQcOHAiFQoHly5drtZ89exZHjx7FgAEDoK+vj7t37wIAJk+ejG3btmHFihWoU6cO2rVrV+511u+++w579uzB7NmzsWPHDjRo0KDc7d+4cQM2Njb45ptvEBMTgx9++AEGBgbw8vLC+fPny9R/9tlnuHz5Mn7++Wf8/PPPuHHjBtq1a4fLly8/dh+Bh6eoffr0gZubG3777TdERUUhOzsbb731Fs6ePfvE1z5Ny5Yt4ejoiAMHDjy2Jjc3F35+frh58yZ++OEH7Nq1C/Pnz0eNGjWQnZ0N4OHlGxMTE3Tu3Fl673788Uet9QwcOBCGhoaIiorCunXrYGho+NhtZmRkoHfv3ujbty9+//13dO/eHV9//TU+/PDD597HL774At27d5f6Wfp43Ol7ZmYm2rRpg9jYWHz11VfYvHkzOnbsiPHjx2PUqFFl6h89JqtXr0Zubi46d+4MjUbz3H0FAAh6JQYMGCDMzMweu7y4uFgUFhaKlStXCn19fXH37l1pma+vrwAg/vjjD63X/PDDDwKA2LFjh1b7Bx98IACIFStWSG0NGjQQzZo1E4WFhVq1wcHBwtHRURQXFwshhPjvf/8rAIi9e/c+8775+voKW1tbUVBQILWNGzdOABB///13ua8pKioShYWFokOHDqJbt25Se0pKigAg6tatq7W+R5c9ul/lrbegoEC4uLiIsWPHSu179+4VAETz5s1FSUmJ1H7lyhVhaGgoBg8eLLVNnjxZPPqnkZqaKgwMDMTo0aO1tpWdnS0cHBxEz549H9ufR7f93//+97E1Xl5ewsTERHq+YsUKAUCkpKQIIYQ4fvy4ACA2bdr0xG2ZmZmJAQMGlGkvXV///v0fu6x0W0L879/c77//rlU7ZMgQoaenJ65evaq1b/J/L+W9VyNHjhSPi5yaNWtq9fvTTz8VAMSRI0e06oYPHy4UCoU4f/681nY8PDxEUVGRVHf06FEBQKxdu7bc7T0NR4w6dPLkSYSEhMDGxgb6+vowNDRE//79UVxcjL///lur1srKCu3bt9dq279/PywsLNCpUyet9j59+mg9v3jxIs6dO4e+ffsCAIqKiqRH586dkZ6eXu7o6lkNGjQIt2/fxubNm6X1r1q1Cm+99RZcXFykusWLF6N58+YwNjaGgYEBDA0N8ccffyA5ObnMOkNCQp44milVVFSE6dOnw83NDUZGRjAwMICRkREuXLhQ7npDQ0O1Zpxr1qyJNm3aYO/evY/dxs6dO1FUVIT+/ftrHTtjY2P4+vq+kDsLxFO+FrVevXqwsrLCJ598gsWLF1d4lPr+++8/c62FhQVCQkK02kJDQ1FSUvLE0e2LsGfPHri5uaFVq1Za7eHh4RBCYM+ePVrtQUFB0NfXl543btwYAMqd8X8WDEYdSU1NxVtvvYXr169jwYIFiIuLw7Fjx6TrMHl5eVr15Z1y3Llzp9zZXnlb6a0y48ePh6GhodajdNLk9u3bFd6X7t27Q6VSYcWKFQAezj7evHlTa9Jl7ty5GD58OLy8vLB+/XokJCTg2LFj6NSpU5l9fdz+luejjz7CF198ga5du2LLli04cuQIjh07hiZNmpS7XgcHh3Lb7ty589htlB6/li1bljl+v/766z86dqVSU1Ph5OT02OUqlQr79+9H06ZN8dlnn6FRo0ZwcnLC5MmTy1yTfpLnmXku799W6fF70vF6Ee7cuVNuX0uPkXz7NjY2Ws+VSiWAsn9Hz4qz0jqyadMm5ObmYsOGDahZs6bUnpSUVG59effV2djY4OjRo2XaMzIytJ7b2toCACZOnIj33nuv3PW7uro+a9fLMDExQZ8+fbB06VKkp6dj+fLlsLCwkCZyAGDVqlVo164dFi1apPXa0utjcs96H+GqVavQv39/6dpoqdu3b6NKlSpl6uXHprRN/of1qNLjt27dOq336kU5evQoMjIynjp77+HhgejoaAgh8NdffyEyMhJffvklTExM8Omnnz7Ttp7n/szy7j0tPX6lx8vY2BgAkJ+fr1X3T/9jYWNjg/T09DLtN27cAPC/9+Rl4YhRR0r/gZb+lw14eDq1dOnSZ16Hr68vsrOzsWPHDq326Ohoreeurq5wcXHBn3/+iRYtWpT7sLCw0OrP8/6XdtCgQSguLsasWbOwfft29O7dW+t2IoVCobWvAPDXX38hPj7+ubYjV956t23bhuvXr5dbv3btWq3T1qtXr+Lw4cPS7G15AgICYGBggEuXLj32+FXU3bt3MWzYMBgaGmLs2LHP9BqFQoEmTZpg3rx5qFKlCk6cOCEtUyqVFR4lyWVnZ0uXR0qtWbMGenp6ePvttwE8nE0GHr6Xj5K/rrRvwLP92+rQoQPOnj2rtW8AsHLlSigUCrzzzjvPvB8VwRGjjvj5+cHIyAh9+vTBhAkT8ODBAyxatAhqtfqZ1zFgwADMmzcP/fr1w9dff4169ephx44d2LlzJwBAT+9//91bsmQJAgMDERAQgPDwcFSrVg13795FcnIyTpw4gf/+978AIH3a4aeffoKFhQWMjY1Ru3btJ46oAKBFixZo3Lgx5s+fDyFEmdFPcHAwvvrqK0yePBm+vr44f/48vvzyS9SuXRtFRUXPvM9ywcHBiIyMRIMGDdC4cWMkJiZi1qxZqF69ern1t27dQrdu3TBkyBBoNBpMnjwZxsbGmDhx4mO3UatWLXz55ZeYNGkSLl++jE6dOsHKygo3b97E0aNHYWZm9tgblx914cIFJCQkoKSkBHfu3MGRI0ewbNkyZGVlYeXKlWjUqNFjX7t161b8+OOP6Nq1K+rUqQMhBDZs2IB79+7Bz89PqvPw8MC+ffuwZcsWODo6wsLCosJnAzY2Nhg+fDhSU1NRv359bN++HUuXLsXw4cNRo0YNAA9PrTt27IgZM2bAysoKNWvWxB9//IENGzaUWV/pPZrffvstAgMDoa+vj8aNG8PIyKhM7dixY7Fy5UoEBQXhyy+/RM2aNbFt2zb8+OOPGD58OOrXr1+hfXpmFZqyoedW3qz0li1bRJMmTYSxsbGoVq2a+Pjjj8WOHTvKzPL5+vqKRo0albve1NRU8d577wlzc3NhYWEh3n//fbF9+/ZyZxT//PNP0bNnT2FnZycMDQ2Fg4ODaN++vVi8eLFW3fz580Xt2rWFvr7+U2eBH7VgwQIBQLi5uZVZlp+fL8aPHy+qVasmjI2NRfPmzcWmTZvEgAEDRM2aNaW60lnGWbNmlVlHeTOdarVaDBo0SNjZ2QlTU1PRtm1bERcXJ3x9fYWvr69UVzp7GhUVJSIiIkTVqlWFUqkUb731ljh+/LjWduSz0qU2bdok3nnnHWFpaSmUSqWoWbOm6N69u9i9e/cTj0vptksfBgYGwsbGRnh7e4vPPvtMXLlypcxr5DPF586dE3369BF169YVJiYmQqVSiVatWonIyEit1yUlJQkfHx9hamoqAEjHoHR9x44de+q2hPjfv7l9+/aJFi1aCKVSKRwdHcVnn31W5s6G9PR00b17d2FtbS1UKpXo16+fNIv+6HuVn58vBg8eLKpWrSoUCoXWNuWz0kIIcfXqVREaGipsbGyEoaGhcHV1FbNmzZLuoBDiyf9eAIjJkyeXaX8Wiv9bAb1Bpk+fjs8//xypqamPHTkR0ePxVPo1t3DhQgBAgwYNUFhYiD179uC7775Dv379GIpEFcRgfM2Zmppi3rx5uHLlCvLz81GjRg188skn+Pzzz3XdNaLXFk+liYhkeLsOEZEMg5GISIbBSEQkw8mXF6ikpAQ3btyAhYXFC/1qfCL654QQyM7OhpOTk9aHH8rDYHyBbty4AWdnZ113g4ieIC0t7am3sjEYX6DSzxunpaXB0tJSx70hokdlZWXB2dlZ+jt9EgbjC1R6+mxpaclgJKqknuUyFydfiIhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQko/NgvH79Ovr16wcbGxuYmpqiadOmSExMlJYLITBlyhQ4OTnBxMQE7dq1w5kzZ7TWkZ+fj9GjR8PW1hZmZmYICQnBtWvXtGrUajXCwsKgUqmgUqkQFhaGe/fuadWkpqaiS5cuMDMzg62tLSIiIlBQUPDS9p2IKiedBqNarYaPjw8MDQ2xY8cOnD17FnPmzNH6dbeZM2di7ty5WLhwIY4dOwYHBwf4+flp/brcmDFjsHHjRkRHR+PgwYPIyclBcHAwiouLpZrQ0FAkJSUhJiYGMTExSEpKQlhYmLS8uLgYQUFByM3NxcGDBxEdHY3169dj3Lhxr+RYEFElUqEfRHhBPvnkE9G2bdvHLi8pKREODg7im2++kdoePHggVCqV9Dsl9+7dE4aGhiI6OlqquX79utDT0xMxMTFCCCHOnj0rAIiEhASpJj4+XgAQ586dE0IIsX37dqGnpyeuX78u1axdu1YolUqh0WieaX80Go0A8Mz1RPTqPM/fp05HjJs3b0aLFi3Qo0cP2NnZoVmzZlo/H5qSkoKMjAz4+/tLbUqlEr6+vjh8+DAAIDExEYWFhVo1Tk5OcHd3l2ri4+OhUqng5eUl1bRu3RoqlUqrxt3dXetHzwMCApCfn691ak9Ebz6dBuPly5exaNEiuLi4YOfOnRg2bBgiIiKwcuVKAP/7cW97e3ut19nb20vLMjIyYGRkBCsrqyfW2NnZldm+nZ2dVo18O1ZWVjAyMir3R9qBh9c2s7KytB5E9PrT6WelS0pK0KJFC0yfPh0A0KxZM5w5cwaLFi1C//79pTr5ZxuFEE/9vKO8prz6itQ8asaMGc/0e8JE9HrR6YjR0dERbm5uWm0NGzZEamoqgIc/5g2gzIjt1q1b0ujOwcEBBQUFZX6oXl5z8+bNMtvPzMzUqpFvR61Wo7CwsMxIstTEiROh0WikR1pa2jPtNxFVbjoNRh8fH5w/f16r7e+//0bNmjUBALVr14aDgwN27dolLS8oKMD+/fvRpk0bAICnpycMDQ21atLT03H69GmpxtvbGxqNBkePHpVqjhw5Ao1Go1Vz+vRppKenSzWxsbFQKpXw9PQst/9KpVL6Jh1+ow7RG+QlTwQ90dGjR4WBgYGYNm2auHDhgli9erUwNTUVq1atkmq++eYboVKpxIYNG8SpU6dEnz59hKOjo8jKypJqhg0bJqpXry52794tTpw4Idq3by+aNGkiioqKpJpOnTqJxo0bi/j4eBEfHy88PDxEcHCwtLyoqEi4u7uLDh06iBMnTojdu3eL6tWri1GjRj3z/nBWmqjyep6/T50GoxBCbNmyRbi7uwulUikaNGggfvrpJ63lJSUlYvLkycLBwUEolUrx9ttvi1OnTmnV5OXliVGjRglra2thYmIigoODRWpqqlbNnTt3RN++fYWFhYWwsLAQffv2FWq1Wqvm6tWrIigoSJiYmAhra2sxatQo8eDBg2feFwYjUeX1PH+f/F3pFygrKwsqlQoajYan1USVzPP8fer8I4FERJUNg5GISIa/+aJDnh+v1HUX/nUSZ/V/ehH963HESEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDI6DcYpU6ZAoVBoPRwcHKTlQghMmTIFTk5OMDExQbt27XDmzBmtdeTn52P06NGwtbWFmZkZQkJCcO3aNa0atVqNsLAwqFQqqFQqhIWF4d69e1o1qamp6NKlC8zMzGBra4uIiAgUFBS8tH0nospL5yPGRo0aIT09XXqcOnVKWjZz5kzMnTsXCxcuxLFjx+Dg4AA/Pz9kZ2dLNWPGjMHGjRsRHR2NgwcPIicnB8HBwSguLpZqQkNDkZSUhJiYGMTExCApKQlhYWHS8uLiYgQFBSE3NxcHDx5EdHQ01q9fj3Hjxr2ag0BElYqBzjtgYKA1SiwlhMD8+fMxadIkvPfeewCAX375Bfb29lizZg0++OADaDQaLFu2DFFRUejYsSMAYNWqVXB2dsbu3bsREBCA5ORkxMTEICEhAV5eXgCApUuXwtvbG+fPn4erqytiY2Nx9uxZpKWlwcnJCQAwZ84chIeHY9q0abC0tHxFR4OIKgOdjxgvXLgAJycn1K5dG71798bly5cBACkpKcjIyIC/v79Uq1Qq4evri8OHDwMAEhMTUVhYqFXj5OQEd3d3qSY+Ph4qlUoKRQBo3bo1VCqVVo27u7sUigAQEBCA/Px8JCYmPrbv+fn5yMrK0noQ0etPp8Ho5eWFlStXYufOnVi6dCkyMjLQpk0b3LlzBxkZGQAAe3t7rdfY29tLyzIyMmBkZAQrK6sn1tjZ2ZXZtp2dnVaNfDtWVlYwMjKSasozY8YM6bqlSqWCs7Pzcx4BIqqMdBqMgYGBeP/99+Hh4YGOHTti27ZtAB6eMpdSKBRarxFClGmTk9eUV1+RGrmJEydCo9FIj7S0tCf2i4heDzo/lX6UmZkZPDw8cOHCBem6o3zEduvWLWl05+DggIKCAqjV6ifW3Lx5s8y2MjMztWrk21Gr1SgsLCwzknyUUqmEpaWl1oOIXn+VKhjz8/ORnJwMR0dH1K5dGw4ODti1a5e0vKCgAPv370ebNm0AAJ6enjA0NNSqSU9Px+nTp6Uab29vaDQaHD16VKo5cuQINBqNVs3p06eRnp4u1cTGxkKpVMLT0/Ol7jMRVT46nZUeP348unTpgho1auDWrVv4+uuvkZWVhQEDBkChUGDMmDGYPn06XFxc4OLigunTp8PU1BShoaEAAJVKhUGDBmHcuHGwsbGBtbU1xo8fL52aA0DDhg3RqVMnDBkyBEuWLAEADB06FMHBwXB1dQUA+Pv7w83NDWFhYZg1axbu3r2L8ePHY8iQIRwFEv0L6TQYr127hj59+uD27duoWrUqWrdujYSEBNSsWRMAMGHCBOTl5WHEiBFQq9Xw8vJCbGwsLCwspHXMmzcPBgYG6NmzJ/Ly8tChQwdERkZCX19fqlm9ejUiIiKk2euQkBAsXLhQWq6vr49t27ZhxIgR8PHxgYmJCUJDQzF79uxXdCSIqDJRCCGErjvxpsjKyoJKpYJGo3mmkabnxytfQa/oUYmz+uu6C6Qjz/P3WamuMRIRVQYMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpIx0HUHiN4knh+v1HUX/nUSZ/V/4evkiJGISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISKbSBOOMGTOgUCgwZswYqU0IgSlTpsDJyQkmJiZo164dzpw5o/W6/Px8jB49Gra2tjAzM0NISAiuXbumVaNWqxEWFgaVSgWVSoWwsDDcu3dPqyY1NRVdunSBmZkZbG1tERERgYKCgpe1u0RUiVWKYDx27Bh++uknNG7cWKt95syZmDt3LhYuXIhjx47BwcEBfn5+yM7OlmrGjBmDjRs3Ijo6GgcPHkROTg6Cg4NRXFws1YSGhiIpKQkxMTGIiYlBUlISwsLCpOXFxcUICgpCbm4uDh48iOjoaKxfvx7jxo17+TtPRJWOzoMxJycHffv2xdKlS2FlZSW1CyEwf/58TJo0Ce+99x7c3d3xyy+/4P79+1izZg0AQKPRYNmyZZgzZw46duyIZs2aYdWqVTh16hR2794NAEhOTkZMTAx+/vlneHt7w9vbG0uXLsXWrVtx/vx5AEBsbCzOnj2LVatWoVmzZujYsSPmzJmDpUuXIisr69UfFCLSKZ0H48iRIxEUFISOHTtqtaekpCAjIwP+/v5Sm1KphK+vLw4fPgwASExMRGFhoVaNk5MT3N3dpZr4+HioVCp4eXlJNa1bt4ZKpdKqcXd3h5OTk1QTEBCA/Px8JCYmPrbv+fn5yMrK0noQ0evPQJcbj46OxokTJ3Ds2LEyyzIyMgAA9vb2Wu329va4evWqVGNkZKQ10iytKX19RkYG7Ozsyqzfzs5Oq0a+HSsrKxgZGUk15ZkxYwamTp36tN0koteMzkaMaWlp+PDDD7Fq1SoYGxs/tk6hUGg9F0KUaZOT15RXX5EauYkTJ0Kj0UiPtLS0J/aLiF4POgvGxMRE3Lp1C56enjAwMICBgQH279+P7777DgYGBtIITj5iu3XrlrTMwcEBBQUFUKvVT6y5efNmme1nZmZq1ci3o1arUVhYWGYk+SilUglLS0utBxG9/nQWjB06dMCpU6eQlJQkPVq0aIG+ffsiKSkJderUgYODA3bt2iW9pqCgAPv370ebNm0AAJ6enjA0NNSqSU9Px+nTp6Uab29vaDQaHD16VKo5cuQINBqNVs3p06eRnp4u1cTGxkKpVMLT0/OlHgciqnx0do3RwsIC7u7uWm1mZmawsbGR2seMGYPp06fDxcUFLi4umD59OkxNTREaGgoAUKlUGDRoEMaNGwcbGxtYW1tj/Pjx8PDwkCZzGjZsiE6dOmHIkCFYsmQJAGDo0KEIDg6Gq6srAMDf3x9ubm4ICwvDrFmzcPfuXYwfPx5DhgzhKJDoX0inky9PM2HCBOTl5WHEiBFQq9Xw8vJCbGwsLCwspJp58+bBwMAAPXv2RF5eHjp06IDIyEjo6+tLNatXr0ZERIQ0ex0SEoKFCxdKy/X19bFt2zaMGDECPj4+MDExQWhoKGbPnv3qdpaIKg2FEELouhNviqysLKhUKmg0mmcaaXp+vPIV9IoelTir/0tdP9/TV+9Z39Pn+fvU+X2MRESVDYORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSqVAwtm/fHvfu3SvTnpWVhfbt2//TPhER6VSFgnHfvn0oKCgo0/7gwQPExcX9404REemSwfMU//XXX9L/P3v2LDIyMqTnxcXFiImJQbVq1V5c74iIdOC5grFp06ZQKBRQKBTlnjKbmJjg+++/f2GdIyLShecKxpSUFAghUKdOHRw9ehRVq1aVlhkZGcHOzg76+vovvJNERK/ScwVjzZo1AQAlJSUvpTNERJXBcwXjo/7++2/s27cPt27dKhOU/+///b9/3DEiIl2pUDAuXboUw4cPh62tLRwcHKBQKKRlCoWCwUhEr7UKBePXX3+NadOm4ZNPPnnR/SEi0rkK3ceoVqvRo0ePF90XIqJKoULB2KNHD8TGxr7ovhARVQoVOpWuV68evvjiCyQkJMDDwwOGhoZayyMiIl5I54iIdKFCwfjTTz/B3Nwc+/fvx/79+7WWKRQKBiMRvdYqFIwpKSkvuh9ERJUGv3aMiEimQiPGgQMHPnH58uXLK9QZIqLKoELBqFartZ4XFhbi9OnTuHfvHr+PkYheexUKxo0bN5ZpKykpwYgRI1CnTp1/3CkiIl16YdcY9fT0MHbsWMybN+9FrZKISCde6OTLpUuXUFRU9CJXSUT0ylUoGD/66COtx9ixY9G7d2/06tULvXr1eub1LFq0CI0bN4alpSUsLS3h7e2NHTt2SMuFEJgyZQqcnJxgYmKCdu3a4cyZM1rryM/Px+jRo2FrawszMzOEhITg2rVrWjVqtRphYWFQqVRQqVQICwsr85s1qamp6NKlC8zMzGBra4uIiIhyf76BiN58FQrGkydPaj1Kf/Jgzpw5mD9//jOvp3r16vjmm29w/PhxHD9+HO3bt8e7774rhd/MmTMxd+5cLFy4EMeOHYODgwP8/PyQnZ0trWPMmDHYuHEjoqOjcfDgQeTk5CA4OBjFxcVSTWhoKJKSkhATE4OYmBgkJSUhLCxMWl5cXIygoCDk5ubi4MGDiI6Oxvr16zFu3LiKHB4ies0phBBC1514lLW1NWbNmoWBAwfCyckJY8aMkb7FJz8/H/b29vj222/xwQcfQKPRoGrVqoiKipJGqjdu3ICzszO2b9+OgIAAJCcnw83NDQkJCfDy8gIAJCQkwNvbG+fOnYOrqyt27NiB4OBgpKWlwcnJCQAQHR2N8PBw3Lp1C5aWls/U96ysLKhUKmg0mmd6jefHKytyiOgfSJzV/6Wun+/pq/es7+nz/H3+o2uMmZmZOHjwIA4dOoTMzMx/sioUFxcjOjoaubm58Pb2RkpKCjIyMuDv7y/VKJVK+Pr64vDhwwCAxMREFBYWatU4OTnB3d1dqomPj4dKpZJCEQBat24NlUqlVePu7i6FIgAEBAQgPz8fiYmJj+1zfn4+srKytB5E9PqrUDDm5uZi4MCBcHR0xNtvv4233noLTk5OGDRoEO7fv/9c6zp16hTMzc2hVCoxbNgwbNy4EW5ubtIvENrb22vV29vbS8syMjJgZGQEKyurJ9bY2dmV2a6dnZ1WjXw7VlZWMDIy0volRLkZM2ZI1y1VKhWcnZ2fa9+JqHKq8OTL/v37sWXLFty7dw/37t3D77//jv379z/3dTlXV1ckJSUhISEBw4cPx4ABA3D27Flp+aPfDg48nJCRt8nJa8qrr0iN3MSJE6HRaKRHWlraE/tFRK+HCgXj+vXrsWzZMgQGBkozyp07d8bSpUuxbt2651qXkZER6tWrhxYtWmDGjBlo0qQJFixYAAcHBwAoM2K7deuWNLpzcHBAQUFBmU/iyGtu3rxZZruZmZlaNfLtqNVqFBYWlhlJPkqpVEr7X/ogotdfhYLx/v375QaGnZ3dc59KywkhkJ+fj9q1a8PBwQG7du2SlhUUFGD//v1o06YNAMDT0xOGhoZaNenp6Th9+rRU4+3tDY1Gg6NHj0o1R44cgUaj0ao5ffo00tPTpZrY2FgolUp4enr+o/0hotdPhT4S6O3tjcmTJ2PlypUwNjYGAOTl5WHq1Knw9vZ+5vV89tlnCAwMhLOzM7KzsxEdHY19+/YhJiYGCoUCY8aMwfTp0+Hi4gIXFxdMnz4dpqamCA0NBQCoVCoMGjQI48aNg42NDaytrTF+/Hh4eHigY8eOAICGDRuiU6dOGDJkCJYsWQIAGDp0KIKDg+Hq6goA8Pf3h5ubG8LCwjBr1izcvXsX48ePx5AhQzgKJPoXqlAwzp8/H4GBgahevTqaNGkChUKBpKQkKJXK5/rJg5s3byIsLAzp6elQqVRo3LgxYmJi4OfnBwCYMGEC8vLyMGLECKjVanh5eSE2NhYWFhbSOubNmwcDAwP07NkTeXl56NChAyIjI6Gvry/VrF69GhEREdLsdUhICBYuXCgt19fXx7Zt2zBixAj4+PjAxMQEoaGhmD17dkUODxG95ip8H2NeXh5WrVqFc+fOQQgBNzc39O3bFyYmJi+6j68N3sdY+fE+xjfPy7iPsUIjxhkzZsDe3h5DhgzRal++fDkyMzP5s6pE9Fqr0OTLkiVL0KBBgzLtjRo1wuLFi/9xp4iIdKlCwZiRkQFHR8cy7VWrVtWa2SUieh1VKBidnZ1x6NChMu2HDh3S+lgdEdHrqELXGAcPHowxY8agsLBQ+imDP/74AxMmTOA30hDRa69CwThhwgTcvXsXI0aMkL6z0NjYGJ988gkmTpz4QjtIRPSqVSgYFQoFvv32W3zxxRdITk6GiYkJXFxcoFQqX3T/iIheuQoFYylzc3O0bNnyRfWFiKhSeKG/+UJE9CZgMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISEanwThjxgy0bNkSFhYWsLOzQ9euXXH+/HmtGiEEpkyZAicnJ5iYmKBdu3Y4c+aMVk1+fj5Gjx4NW1tbmJmZISQkBNeuXdOqUavVCAsLg0qlgkqlQlhYGO7du6dVk5qaii5dusDMzAy2traIiIhAQUHBS9l3Iqq8dBqM+/fvx8iRI5GQkIBdu3ahqKgI/v7+yM3NlWpmzpyJuXPnYuHChTh27BgcHBzg5+eH7OxsqWbMmDHYuHEjoqOjcfDgQeTk5CA4OBjFxcVSTWhoKJKSkhATE4OYmBgkJSUhLCxMWl5cXIygoCDk5ubi4MGDiI6Oxvr16zFu3LhXczCIqNJQCCGErjtRKjMzE3Z2dti/fz/efvttCCHg5OSEMWPG4JNPPgHwcHRob2+Pb7/9Fh988AE0Gg2qVq2KqKgo9OrVCwBw48YNODs7Y/v27QgICEBycjLc3NyQkJAALy8vAEBCQgK8vb1x7tw5uLq6YseOHQgODkZaWhqcnJwAANHR0QgPD8etW7dgaWn51P5nZWVBpVJBo9E8U73nxysreqioghJn9X+p6+d7+uo963v6PH+fleoao0ajAQBYW1sDAFJSUpCRkQF/f3+pRqlUwtfXF4cPHwYAJCYmorCwUKvGyckJ7u7uUk18fDxUKpUUigDQunVrqFQqrRp3d3cpFAEgICAA+fn5SExMLLe/+fn5yMrK0noQ0euv0gSjEAIfffQR2rZtC3d3dwBARkYGAMDe3l6r1t7eXlqWkZEBIyMjWFlZPbHGzs6uzDbt7Oy0auTbsbKygpGRkVQjN2PGDOmapUqlgrOz8/PuNhFVQpUmGEeNGoW//voLa9euLbNMoVBoPRdClGmTk9eUV1+RmkdNnDgRGo1GeqSlpT2xT0T0eqgUwTh69Ghs3rwZe/fuRfXq1aV2BwcHACgzYrt165Y0unNwcEBBQQHUavUTa27evFlmu5mZmVo18u2o1WoUFhaWGUmWUiqVsLS01HoQ0etPp8EohMCoUaOwYcMG7NmzB7Vr19ZaXrt2bTg4OGDXrl1SW0FBAfbv3482bdoAADw9PWFoaKhVk56ejtOnT0s13t7e0Gg0OHr0qFRz5MgRaDQarZrTp08jPT1dqomNjYVSqYSnp+eL33kiqrQMdLnxkSNHYs2aNfj9999hYWEhjdhUKhVMTEygUCgwZswYTJ8+HS4uLnBxccH06dNhamqK0NBQqXbQoEEYN24cbGxsYG1tjfHjx8PDwwMdO3YEADRs2BCdOnXCkCFDsGTJEgDA0KFDERwcDFdXVwCAv78/3NzcEBYWhlmzZuHu3bsYP348hgwZwpEg0b+MToNx0aJFAIB27dppta9YsQLh4eEAgAkTJiAvLw8jRoyAWq2Gl5cXYmNjYWFhIdXPmzcPBgYG6NmzJ/Ly8tChQwdERkZCX19fqlm9ejUiIiKk2euQkBAsXLhQWq6vr49t27ZhxIgR8PHxgYmJCUJDQzF79uyXtPdEVFlVqvsYX3e8j7Hy432Mb543/j5GIqLKgMFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkYxOg/HAgQPo0qULnJycoFAosGnTJq3lQghMmTIFTk5OMDExQbt27XDmzBmtmvz8fIwePRq2trYwMzNDSEgIrl27plWjVqsRFhYGlUoFlUqFsLAw3Lt3T6smNTUVXbp0gZmZGWxtbREREYGCgoKXsdtEVMnpNBhzc3PRpEkTLFy4sNzlM2fOxNy5c7Fw4UIcO3YMDg4O8PPzQ3Z2tlQzZswYbNy4EdHR0Th48CBycnIQHByM4uJiqSY0NBRJSUmIiYlBTEwMkpKSEBYWJi0vLi5GUFAQcnNzcfDgQURHR2P9+vUYN27cy9t5Iqq0DHS58cDAQAQGBpa7TAiB+fPnY9KkSXjvvfcAAL/88gvs7e2xZs0afPDBB9BoNFi2bBmioqLQsWNHAMCqVavg7OyM3bt3IyAgAMnJyYiJiUFCQgK8vLwAAEuXLoW3tzfOnz8PV1dXxMbG4uzZs0hLS4OTkxMAYM6cOQgPD8e0adNgaWn5Co4GEVUWlfYaY0pKCjIyMuDv7y+1KZVK+Pr64vDhwwCAxMREFBYWatU4OTnB3d1dqomPj4dKpZJCEQBat24NlUqlVePu7i6FIgAEBAQgPz8fiYmJj+1jfn4+srKytB5E9PqrtMGYkZEBALC3t9dqt7e3l5ZlZGTAyMgIVlZWT6yxs7Mrs347OzutGvl2rKysYGRkJNWUZ8aMGdJ1S5VKBWdn5+fcSyKqjCptMJZSKBRaz4UQZdrk5DXl1VekRm7ixInQaDTSIy0t7Yn9IqLXQ6UNRgcHBwAoM2K7deuWNLpzcHBAQUEB1Gr1E2tu3rxZZv2ZmZlaNfLtqNVqFBYWlhlJPkqpVMLS0lLrQUSvv0objLVr14aDgwN27doltRUUFGD//v1o06YNAMDT0xOGhoZaNenp6Th9+rRU4+3tDY1Gg6NHj0o1R44cgUaj0ao5ffo00tPTpZrY2FgolUp4enq+1P0kospHp7PSOTk5uHjxovQ8JSUFSUlJsLa2Ro0aNTBmzBhMnz4dLi4ucHFxwfTp02FqaorQ0FAAgEqlwqBBgzBu3DjY2NjA2toa48ePh4eHhzRL3bBhQ3Tq1AlDhgzBkiVLAABDhw5FcHAwXF1dAQD+/v5wc3NDWFgYZs2ahbt372L8+PEYMmQIR4FE/0I6Dcbjx4/jnXfekZ5/9NFHAIABAwYgMjISEyZMQF5eHkaMGAG1Wg0vLy/ExsbCwsJCes28efNgYGCAnj17Ii8vDx06dEBkZCT09fWlmtWrVyMiIkKavQ4JCdG6d1JfXx/btm3DiBEj4OPjAxMTE4SGhmL27Nkv+xAQUSWkEEIIXXfiTZGVlQWVSgWNRvNMI03Pj1e+gl7RoxJn9X+p6+d7+uo963v6PH+flfYaIxGRrjAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMMr8+OOPqF27NoyNjeHp6Ym4uDhdd4mIXjEG4yN+/fVXjBkzBpMmTcLJkyfx1ltvITAwEKmpqbruGhG9QgzGR8ydOxeDBg3C4MGD0bBhQ8yfPx/Ozs5YtGiRrrtGRK+Qga47UFkUFBQgMTERn376qVa7v78/Dh8+XO5r8vPzkZ+fLz3XaDQAgKysrGfaZnF+XgV7SxX1rO9NRfE9ffWe9T0trRNCPLWWwfh/bt++jeLiYtjb22u129vbIyMjo9zXzJgxA1OnTi3T7uzs/FL6SP+c6vthuu4CvWDP+55mZ2dDpVI9sYbBKKNQKLSeCyHKtJWaOHEiPvroI+l5SUkJ7t69Cxsbm8e+5k2QlZUFZ2dnpKWlwdLSUtfdoX/o3/J+CiGQnZ0NJyenp9YyGP+Pra0t9PX1y4wOb926VWYUWUqpVEKpVGq1ValS5WV1sdKxtLR8o/+Q/m3+De/n00aKpTj58n+MjIzg6emJXbt2abXv2rULbdq00VGviEgXOGJ8xEcffYSwsDC0aNEC3t7e+Omnn5Camophw3hdiujfhMH4iF69euHOnTv48ssvkZ6eDnd3d2zfvh01a9bUddcqFaVSicmTJ5e5jECvJ76fZSnEs8xdExH9i/AaIxGRDIORiEiGwUhEJMNgJKqgnJwcrF+/XtfdqNTu37+PnTt36robz43BSFRBK1aswODBg3HixAldd6XS2rJlCwIDA3H16lVdd+W5MBiJnlNhYSEAwMvLC40bN8amTZt026FKqKSkBMXFxejcuTNsbW0RGxur6y49FwYj0XMyNDQEADRu3BgtW7Z8LU8VXzY9PT3o6+vDwsICXbp0wS+//IKioiJdd+uZ8QZvoud0/vx5zJ07F0IIGBkZ4caNG4iLi8Nbb72l665VGikpKZg/fz4KCgpQu3ZtrF27FufPn0ejRo103bVnwhEjkUzpaWB5/vrrL3Tv3h1Xr15F8+bNkZqaiuvXr2Pjxo2vuJe6JT9Gj35OJC0tDUFBQTh16hSaNm2K/fv348GDB9i6dasuuloxguhfKjY2Vmzbtu2xy4uLi0VGRoZW24wZM4Szs7PIzs4WQghRWFgounXrJjw8PKS2N0liYqJYtWqVEOLh8SiP/BhNmjRJ1K9fX2q/efOm6N+/v2jUqJHIzc19uR1+QThipH+V06dPo2fPnrh+/Tp+/vlnZGRkSCMf8X+jnpMnT6Jr166oVq0a+vTpI32JSElJCU6fPo0OHTrA3NwcAGBgYIA+ffqgqKjo9RoRPcH58+fx+eefY82aNfj111+RkpIC4OF1w9JjdPbsWfTs2RNOTk4IDQ3F559/Ls08Z2Zmonr16rC3t4cQAnZ2doiIiEBycvJrM4PPYKR/jbVr1yIgIAC3b99GUVERfv31VwwcOBD6+voAHn5JcXZ2Nj7++GOoVCqsX78en332Gfbs2YNx48ZBT08PSqUSN2/exK1bt6T1NmvWDEIIbNu2TVe79sLExMSgffv2OHz4MFq1aoVvv/0Wn3/+ubRcoVAgMzMTEydOhKGhIdasWYOhQ4fi+PHj0s+CWFtbIz8/H/fu3ZO+sLl+/fqoXbs21q1bp5P9el4MRnrjCSFQVFSEhIQE1K9fH3v27JG+Mennn3/GypUrpRnTmTNnQk9PD7/88gvatGkDLy8vWFtbY82aNTh16hR69eqFY8eO4dSpU9L6TU1NoVarcejQIVy7dk0n+/iiREVFoWXLltizZw/q1auHkpISbNmyBbNmzQIA6fnly5exevVqtGvXDm3btoVSqcSvv/6KK1euoGnTpigoKMDu3bul9V6/fh3Z2dnYu3ev1n9UKisGI72xhBDST1MYGBjA0dER+fn5WLBgAbp06YKcnBxs2rQJkZGR0k/kXr9+Hebm5li9ejVcXV1Ro0YN2Nra4ueff0bDhg3h7+8PFxcXzJgxA7GxscjNzUVUVBSaN28OU1NT7NmzR8d7/XxKj1FJSQkAoGXLlkhOTkZUVBS6deuGzMxMbN++HYsXL8b9+/ehp6eHbdu2ISAgAIsWLUKTJk3g5uaGoqIiREVFoVatWvDy8kK9evXw2WefITExEXl5edizZw/8/f1x6tQprf+oVFo6u7pJ9ILIJz2KiopESUmJ9LykpERcv35dNG/eXCgUClG1alUxd+5cIYQQv//+u6hbt67Yvn27EEKIL7/8UigUCtGqVSvx448/iuvXr0vrycvLE0II8ddff4ng4GBRu3ZtYW5uLpo3by52794t7ty587J3tcJycnKEEP+bQCkqKiozmXLjxg3x9ttvC4VCIRwdHcVHH30khBBiw4YNonHjxmLNmjVCCCEmTpwoFAqFaNmypZgzZ464evWqtI6ioiIhhBB3794Vnp6eom7dusLa2lrUqFFDnDp1SqSlpb30fX0RGIz02iouLhatW7cWX331lSgsLCyz/NSpU2LmzJni2LFj4uzZs2LYsGGiXbt2YsCAAVp19evXF5MmTRIlJSVi3bp1wtnZWWzcuFGr5vjx42LGjBkiPT1dCPEwJHfu3CkOHDjwsnbvhbh7964IDw8X4eHh5S6/ePGimD17tvjzzz/F0aNHxcSJE4WLi4sYNWqUVs27774revfuLYQQIiEhQSgUCrFr1y6tdZ07d058/fXXIjk5WQghRFZWlti1a1eZutcBg5FeS6Ujk7i4OCkUS0eJu3fvFu7u7sLc3FwEBwdLo0MhHo4IW7RoIS5evCi1jRw5UrRt21akpKSI7OxsERYWJpydncX3338vzpw5IxYvXizatm0r+vTpIzIzM1/hXj6fR0fJj7YdPXpU3L9/X6s9Li5OeHp6CktLS+Ht7S1Wrlwp1Xz//ffCzs5OGmUKIcS0adNEw4YNxbVr14QQQrRr1060aNFCfPPNN+LcuXMiMjJS+Pr6igEDBmiNIF9XDEZ6rVy6dEkIIbRGiCUlJdIpWkFBgQgMDBRjx44VWVlZQoiHo6ZS27dvF15eXuK7776T2hISEkS1atXEr7/+KoQQ4v79+2LIkCGidevWolatWqJu3bpi1qxZ0voqu+vXr4v8/Pwy7aWBdefOHdGnTx/xn//8R9y9e1cUFxdrHaOLFy8KpVIptmzZIrXFxsaKZs2aiQULFgghhLhw4YKYMGGCaNWqlahZs6ZwdnYWX375ZaW+nPA8GIz0Wrh//774+OOPhaOjo9RWGpKtW7cW//nPf0RWVpa4dOmSqF69unQ97PLly6KgoEB6zY0bN0SfPn1ESEiI1vpbtWolhg8fLm7fvq1Vm5qa+jJ364UbMGCA8PLykp5fvnxZCCFEWFiYaNOmjRBCCLVarXUqXPofldJrjiUlJSIgIEB069ZNWk96eroYMGCA6Nixo9b20tPTpffhTcJZaaq0xCMfMzMxMUFAQAByc3PRo0cPGBoa4uOPPwYAdOjQAWfPnsWNGzdQpUoVBAYGYsSIEWjatCk+/vhjtG7dGu+88w7S0tLg6OiIFi1a4MaNG0hMTJTW365dO5w8eRI5OTlSm6OjI5ydnV/dDldA6TEqvd1o5MiROHXqFHr37o0qVargvffeAwA0bdoUGo0GycnJqFKlCtq3b48RI0bAw8MDY8eOhbe3N7p27Yrk5GQoFAr069cPu3fvxu3btwEADg4OaNCgAW7cuKF1S5KDgwPq1Knzivf6FdB1MhM9qri4WLp++KgHDx6Ifv36CYVCIerXry+OHDkizRInJycLJycnsWLFCiHEwxnYn3/+WaxZs0asWLFCREVFCXd3dzF48GAhhBAHDhwQzZs3F2PHjpXW/7p8VE2Ixx8jIYQIDAyUjtG6deu0rsW2atVKfPXVV0IIIVJSUsSyZcvEypUrxZIlS8SSJUtE8+bNxeDBg0V+fr64ffu2MDQ0FPPnz5fWnZmZWe4k15uI365DlYqe3sOTGCEE9uzZAysrKzRv3hxKpRLjx49HtWrVsHbtWrRq1QrAwxuOGzRogHr16mH//v0ICgpC1apVMWjQIK31rlu3Djdv3gTwcPTUtWtXeHh4SMtNTU1f0R7+c6XHCAD27duHatWqwdnZGcbGxpg3bx4cHBzw119/wc/PT/pUT6NGjdC0aVPExsbi888/R61atTBw4ECt9f72228oKSmBnp4ebGxsMG7cOFStWlVabmtr+2p2sDLQdTLTv1NJSUm5o49Lly6JQYMGCUtLS9GwYUNRr149ERERIU0m7N69W1hbW4sdO3YIIf53b+F3330n3NzcRFxcnBDi4a06hw4dEgcOHBBDhgwRHh4e4vDhw69o716cwsLCMvcbXr16VYwcOVJYW1uL6tWrCw8PDzFo0CBp+enTp8u9nWbZsmXC1dVVHDp0SAghxNmzZ8Xu3btFYmKiiIiIEI0bN37il2r8m/AaI71yJSUl0qdRACA7O1taFh0dLX0hw9mzZ7FgwQLs3LkTP//8MwDAxcUFLVu2lJ6Xfha3T58+uH//Pk6ePAkAOHXqFKZMmYIePXrg5s2b+OGHH+Dt7f0qd/OFMDAwgJ6eHtLS0nD8+HEAwLZt23Djxg2sW7cOFy9exLJlyxAdHY2oqCgUFhaiUaNGqFWrFrZs2YIHDx5I62revDmqV68ufUVaamoqPvnkEwQFBSE5ORlz5sxB586ddbKflY6uk5nefOV9XdXdu3fFtGnTRMuWLcUHH3wg3R+3e/du6f9funRJjB8/XigUCtGiRQshhBD5+fliwYIFwsbGRmu2WQghOnXqJHx8fERGRobIysoSSUlJ5d7b97ooKioSP/30k3BzcxO2traiV69eIjc3Vxw6dEj6RM7FixfF/PnzhUKhED169BDnz58XQjy8X7NOnToiJSVFWt/9+/fFqFGjhLOzsygoKBCFhYUiISGh3Ft7/u0YjPTCyD+G97gL9XFxccLNzU20bt1azJs3T2zZskXrhuvc3FzRr18/4eTkJAIDA8WUKVOEQqEQJ06cEEIIkZSUJOzs7MS4cePEzp07xdixY8WlS5dEXFycWL58+RszQbBu3TrRpEkT8e2334pr166J48ePiwcPHgghhNBoNOKDDz4QDg4OIjAwUHz44YfC3t5ebN68WQjxcKLE2NhYTJw4UezevVsMGjRIpKeni7i4OPHTTz+JBw8evNb/0XjZGIz0j129elVYWFiI48ePl7t83759YvHixeLcuXNCCCE+++wz8dZbbz12fd9++61o06aNOHjwoBDi4cixSpUq4tNPPxVCPByBRkZGiiZNmggbGxsxdOjQSv2JlIry8/OTPoYnt2TJEtGsWTPpmqoQQhgZGYlJkyZJN6LPnj1b+Pj4CGtra/Hee+9JH2ekp+OsNFXI4sWLoVKp0KNHD9SoUQObN2+Gp6entLywsBBLlizBjBkzUFhYiODgYNSsWRMuLi64ffs29PX1sW/fPly7dg1VqlSBhYUFXF1d4eDggNjYWDg4OMDHxwcAcPDgQWg0GixcuBAzZsyAnp4eBgwYAD8/Pzg5OenqELx0Xl5eWL58OSIiIlBSUgKlUom8vDxMnDgRUVFRaNWqlXTMIyMjoaenhz179qBbt27w9PTEhx9+iL59+8LBwUHHe/L6YTDScym9nWPTpk24efMm/P39YWNjg3bt2iErKwtKpRJKpRIpKSn4+eefMXnyZAwePBiFhYUoKCiAnp4ewsPDMXnyZPTq1QutWrXCjRs3cPXqVbRt2xabNm3CW2+9ha+++grr1q2DWq3Gli1b8Msvv+C///0vMjIypD/0NzkUAeCLL75AdnY20tPTUadOHWRmZmL37t0oKSmBqakpDhw4gJUrV8LGxgZ79uzB1KlTcfz4cVhbWwN4OHHDUKwgXQ9Z6fVRUlIi3R6TkJAglEqldOvHrVu3hEKhEOvWrRNCCDFv3jzRuHFj6eL/jRs3tNalVqtFQUGBuHjxosjIyBA7d+4UCoVCZGZmivv374vw8HDh6uoqatasKb777rsyEy3/NqVf6LB27VpRq1YtceDAATFixAjh7OwsnJ2dxTfffPPGXFutDBRCPPK5K6Ln4OjoiMGDB2PSpEkwNjaGr68vHB0dER0djT/++APTpk3D+fPnUb9+fVStWhXnz59Hp06d8O233wJ4+DG20lt2pk6digMHDiAqKgpOTk548OABsrKyYGdnp8td1DkhBC5fvoxq1arhwoULmDFjBkxMTLB06VLo6enh+vXrqFatmq67+cbhqTQ9s3v37mHGjBmIjIzEqFGjYGxsjIMHDyIjIwO1atXC4MGDMXLkSNy8eRMdOnSAnZ0d9u3bhypVquD+/ftwd3fH999/jxYtWsDHxwdRUVG4efMmdu7ciXv37mHOnDnS6bGxsTGMjY11vMe6V/ob1keOHMHFixfh5+eHyZMnSz9MxVB8ORiMJCkuLoaenp5003Qp8X8/D/DLL7/g119/xZIlS2BmZoaDBw9i7969SE5ORq1atRASEoKRI0di+/bt+M9//gMPDw+tj92lpqZizZo1yMrKgpmZGR48eIBr165h3LhxGDBggPTxNfqfunXrolOnTmjfvj3effddmJiYSMvk7xO9ODyV/pcT//ebH49+/rZ0guVRBQUFaNCgAcLCwjB16lQAD2ee3dzc0L59e8ybNw+mpqbo3bs3bt26hV27dgF4OKNsZ2eHlJQULF68GHl5eVi3bh1UKpXWqTRRZcKPBP7LKRQKKQSPHj2Kvn37Sh8ZKyWEQGFhIfLz8+Hi4gLgYVAaGhpiyJAh2Lp1K65fvw4AGDhwIBISEnD58mXo6+tj8+bN6Nu3LwYOHAhHR0fpNh8hBEORKi0G479IcXGx9GtwpYqKijBlyhTExMRIPx3q6uoqfb8f8DA8c3Jy0LJlS+zcuRPA/77hJSAgAOnp6UhMTERJSQnat28PAFi2bBkAYNiwYYiMjERGRgaWLFmCunXrSuskqqwYjP8CpVdL9PX1pYv2pQwMDLBp0yZ07twZderUQVRUFNzd3cuM5mxtbeHj44M9e/ZArVZLy2NiYgAAmzZtktpnz54NX19fAA+/9KFx48avYjeJXhheY/wXWbNmDVavXo0GDRrA398fAQEBUnu/fv2wbds2BAYGPvb1ly9fRrdu3WBubo5x48bBwsICmzZtgpGREQ4fPoytW7dqfX8f0euKI8bX3Lx58zBv3jytr5eSy83NRXh4OD7//HPUrVsXKSkpCAkJwfLlywE8PB02NjZGenr6E7dVOqJ0dnbG6NGj0aNHD9jZ2WHWrFk4cuQIQ5HeGBwxvqZKZ4579eqFtLQ0REZGon79+tKtNY+Ki4vDu+++i99//x1vvfUWAGDs2LGIi4vD/Pnz0bZtW3Tp0gXFxcXYtm3bM13/u3DhgjQRQ/Sm4YjxNffhhx/ixo0b+OuvvwCUP6nxxx9/oFGjRmjUqJHU1q9fP1StWhWbN28GAAwaNAh79+7FlStXnmm7DEV6kzEYXxNCCK2Z4tJZ4TZt2qBKlSo4ePCg1jdhAw9noQHAxsYGqampKCkpkSZeGjdujCpVquD69esoLCxEYGAgqlSpgg0bNryiPSKqvBiMr4HS0+PSmeD79+9L7QAQEhKCw4cP4+LFi1rtpZ8kef/995GWloYjR45II0pDQ0OkpKTA2toahoaGUCqVaN++PXbu3Fnmlh6ifxsGYyVUUlIijfaAh6fHV65cwUcffSR9+mTBggVSyPXt2xfXr1+Xfu/k0dPpkpISODk5ISAgADNnzsTvv/8OADhw4ABycnLQpk0bqXbx4sWIjY0t86kXon8b/gXowONGZKVhqKenB319feTk5CAvLw+HDx9G165d8ffff2PChAlo3rw5vvjiC6xYsQKFhYVwdXVF3bp1ceDAAWRmZgL436ix9H/nzp0LR0dHDB8+HF5eXvD390erVq3QpUsXafsWFhYvc7eJXhucldah7OxsWFhYlPlscm5uLkJDQ3H48GHs3LkTCoUCf/75J8LDw6Watm3bQqlUYtasWWjevDm+//57LF68GEuWLEHbtm3L3V5xcTF27tyJa9euISgoiN/MQvQYHDHqwPnz5+Hn54fVq1cDeDhCLCoqwvnz51GlShXMnDkTLi4u+OOPP9C0aVO4uLggPDwcJ0+eREhICKysrHDt2jWkpaUhPj4ewMOfD83OzpY+micnhIC+vj46d+6MoUOHMhSJnoDB+IqUlJRIgeXq6oqSkhLs27cPw4YNg56eHrZv3w4bGxs0atQI06ZNQ8eOHdG4cWMoFAqYm5vjxo0bGDt2LKpVq4Zdu3bhypUr0NfXR0JCAu7duwdbW1s0b94cW7ZsQWpqapnt87PJRM+OwfiK6OnpQU9PD8XFxUhJScGVK1fw22+/4cyZM/j9998RHBwMKysrdOnSBZaWltKkSGmgrV27FhkZGRg9ejRatGiB3Nxc6Onp4ezZs0hISAAA9O7dG3Z2dlAqlTrbT6I3AYPxJSjvsu2dO3fw8ccfY8mSJXBwcMDw4cPh4eGBnj17okuXLtKEi7+/P3JycnDixAkAkO5dfPDgAVQqFdLS0gAAK1asQLVq1ZCbmyvdlN27d2+sWbMGjo6Or2ZHid5QnHx5iTIzM6XPD9++fRtDhgxBXl6e9I00Xbt2hbGxMebPny/9mltOTg46d+6MGjVqYNWqVSgsLIShoSEuXbqEYcOG4fz58ygsLISFhQWio6Nhb2/P64VELxhHjP+A/H7DUvn5+Rg1ahT69esnXVe0tbVFx44dkZmZiQMHDgAA3nnnHaSkpCAxMRHAw5Gmubk5+vTpg23btqGoqAiGhoYAHn7F/YYNG6TfXPn777/RvHlzhiLRS8Bg/AdKT3+zs7OxdetWZGRkoKioCEqlEnZ2dsjJyZGu/wFAy5YtYWlpia1btwIAgoODIYSQgrH0emLHjh2h0WikWevSQb2FhQX69u0rfV0YEb0cDMZnUPq7KHKpqano06cPHB0d8cknn8DPzw//7//9PwBAUFAQFAqF9I3XAODu7g43NzccPXoUubm5qFu3Lho3boyYmBgcOnQI8fHx2LBhA+rWrYuRI0dKv5LHGWWiV4vB+ASlgahQKLTCqXRCZM2aNcjMzERiYiLOnDmDefPmYe3atfjpp5/QvHlzuLi44Pjx47h37x4AwNTUFDVq1MDFixcRFxcHAAgPD0eNGjXw3nvvwcfHB4cPH4ZCocD333+PXr16vfJ9JiIGY7lKR4elgXj58mWsXLlS+iyygYEBMjIysGjRIvzwww9wdXVFfHw8tm7diqtXryI5ORkKhQI+Pj64ffu2dE0RANLT03H79m1ER0cDAHx8fLBo0SJs374dJSUlmD17NkeIRDrGn2krh0KhQH5+PlJSUrBu3Tp88803qFu3Lq5fv46lS5fi3XffhRACOTk5mDlzJuLi4qBWq+Hn54eYmBjp907at2+PXbt2YezYsXBwcEBycjLUajUGDBgAAwMD5OXlwcTEBFZWVvD09NTxXhNRKd6uU46ioiL4+fkhPz8f9evXx6RJk1CzZk306tULWVlZmDt3Luzs7NC7d29cvHgRixcvRuvWraVbc3JycpCbmwt7e3ucPXsWERERuHDhAoqKirBgwQIEBQVp/XA6EVUuPJUuh4GBAdq3b4+TJ0+idu3acHFxgZGRESZOnIjc3Fzs2rULjo6OaNmyJfT09NClSxcpFHNzczFt2jTs3r0bRUVFcHNzw2+//YYDBw7g+vXr6N69O0ORqJLjqfRjBAUFYdWqVVptLVq0QK1atRAfH4/s7Gx8+OGH2LJlC5o2bYru3bvD0NBQunb49ttvS18sa21tDWtr61e+D0RUMRwxPkbz5s1Rv359XLp0Cbdv3wbw8L7Ftm3bIj09HQcOHICzszPWrVuHHj164NChQ9i8eTMGDRqEhISEJ/4MKRFVbhwxPkH79u3x22+/4cSJE/D39wcA+Pn5YdWqVdi2bRuCgoLg4eEBDw8PaSKFiF5/HDE+QeknU44dOya1ubq6wsvLC02aNJHuZxRCMBSJ3iCclX6Kd999F/fu3cPKlStRs2ZNXXeHiF4Bnko/xfDhw1FUVIQaNWrouitE9IpwxEhEJMNrjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBjpjTRlyhQ0bdr0met/+uknODs7Q09PD/Pnz39p/WrXrh3GjBnz0tZPLwZv8KbXnkKhwMaNG9G1a1epLScnB/n5+bCxsXnq67OysmBra4u5c+fi/fffh0qlgqmp6T/q0759+/DOO+9ArVajSpUqUvvdu3dhaGgICwuLf7R+ern4kUB6I5mbm8Pc3PyZalNTU1FYWIigoCA4Ojq+1H7xezlfDzyVpkph3bp18PDwgImJCWxsbNCxY0fk5ubi2LFj8PPzg62tLVQqFXx9fXHixAnpdbVq1QIAdOvWDQqFQnouP5Xet28fWrVqBTMzM1SpUgU+Pj64evUqIiMj4eHhAQCoU6cOFAoFrly5gkuXLuHdd9+Fvb09zM3N0bJlS+zevVurz/n5+ZgwYQKcnZ2hVCrh4uKCZcuW4cqVK3jnnXcAAFZWVlAoFAgPDwdQ9lRarVajf//+sLKygqmpKQIDA3HhwgVpeWRkJKpUqYKdO3eiYcOGMDc3R6dOnZCenv6CjjyVh8FIOpeeno4+ffpg4MCBSE5Oxr59+/Dee+9BCIHs7GwMGDAAcXFxSEhIgIuLCzp37ozs7GwAkL4SbsWKFUhPT9f6irhSRUVF6Nq1K3x9ffHXX38hPj4eQ4cOhUKhQK9evaTAO3r0KNLT0+Hs7IycnBx07twZu3fvxsmTJxEQEIAuXbogNTVVWm///v0RHR2N7777DsnJyVi8eDHMzc3h7OyM9evXAwDOnz+P9PR0LFiwoNx9Dw8Px/Hjx7F582bEx8dDCIHOnTujsLBQqrl//z5mz56NqKgoHDhwAKmpqRg/fvyLOfhUPkGkY4mJiQKAuHLlylNri4qKhIWFhdiyZYvUBkBs3LhRq27y5MmiSZMmQggh7ty5IwCIffv2lbvOkydPCgAiJSXlidt2c3MT33//vRBCiPPnzwsAYteuXeXW7t27VwAQarVaq93X11d8+OGHQggh/v77bwFAHDp0SFp++/ZtYWJiIn777TchhBArVqwQAMTFixelmh9++EHY29s/sa/0z3DESDrXpEkTdOjQAR4eHujRoweWLl0KtVoNALh16xaGDRuG+vXrQ6VSQaVSIScnR2vk9jTW1tYIDw+XRn0LFix46qlobm4uJkyYADc3N1SpUgXm5uY4d+6ctN2kpCTo6+tLP5VbEcnJyTAwMICXl5fUZmNjA1dXVyQnJ0ttpqamqFu3rvTc0dERt27dqvB26ekYjKRz+vr62LVrF3bs2AE3Nzd8//33cHV1RUpKCsLDw5GYmIj58+fj8OHDSEpKgo2NDQoKCp5rGytWrEB8fDzatGmDX3/9FfXr10dCQsJj6z/++GOsX78e06ZNQ1xcHJKSkuDh4SFt90V8Y7t4zA0hQggoFArpuaGhodZyhULx2NfSi8FgpEpBoVDAx8cHU6dOxcmTJ2FkZISNGzciLi4OERER6Ny5Mxo1agSlUin9OFkpQ0NDFBcXP3UbzZo1w8SJE3H48GG4u7tjzZo1j62Ni4tDeHg4unXrBg8PDzg4OODKlSvScg8PD5SUlGD//v3lvt7IyAgAntgvNzc3FBUV4ciRI1LbnTt38Pfff6Nhw4ZP3R96eRiMpHNHjhzB9OnTcfz4caSmpmLDhg3IzMxEw4YNUa9ePURFRSE5ORlHjhxB3759y4zWatWqhT/++AMZGRnSKfijUlJSMHHiRMTHx+Pq1auIjY19avjUq1cPGzZsQFJSEv7880+EhoaipKREa5sDBgzAwIEDsWnTJqSkpGDfvn347bffAAA1a9aEQqHA1q1bkZmZiZycnDLbcHFxwbvvvoshQ4bg4MGD+PPPP9GvXz9Uq1YN7777bkUPJ70ADEbSOUtLSxw4cACdO3dG/fr18fnnn2POnDkIDAzE8uXLoVar0axZM4SFhSEiIgJ2dnZar58zZw527doFZ2dnNGvWrMz6TU1Nce7cObz//vuoX78+hg4dilGjRuGDDz54bJ/mzZsHKysrtGnTBl26dEFAQACaN2+uVbNo0SJ0794dI0aMQIMGDTBkyBDk5uYCAKpVq4apU6fi008/hb29PUaNGlXudlasWAFPT08EBwfD29sbQghs3769zOkzvVr85AsRkQxHjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhI5v8DMOKrkW6h1NEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAJUCAYAAABpIY/9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYvklEQVR4nO3deXhMZ/8/8Pdkm+wji2zEHiESWxARbRRJRCKltYaQx1ZrSqlWtT+0RWvXalFFKpa0j63WCLUFiSWktYRaQoKEYEwWkfX+/eGb85iT2FJM6Pt1XXM9z9znM+fc54y8e59zn5lRCCEEiIhIoqfrDhARVTYMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMxpdEoVA802Pfvn267qqWs2fPYsqUKbhy5cpTa7t16wYTExPcu3fvsTV9+/aFoaEhbt68+Y/7duXKFSgUCkRGRj73a/ft2weFQoF169Y9tXbKlClQKBQV6OGTt136MDIyQtWqVeHj44NJkybh6tWrZV4TGRkJhULxTO/Do6ZPn45NmzY912vK21a7du3g7u7+XOt5mu3bt2PKlCnlLqtVqxbCw8Nf6Pb+CQbjSxIfH6/16Ny5M0xMTMq0N2/eXNdd1XL27FlMnTr1mf4gBw0ahAcPHmDNmjXlLtdoNNi4cSOCg4Nhb2//j/vm6OiI+Ph4BAUF/eN16cL06dMRHx+PvXv3YtmyZWjXrh2WL1+Ohg0bYvXq1Vq1QUFBiI+Ph6Oj43Nv43mDsaLbel7bt2/H1KlTy122ceNGfPHFFy91+8/DQNcdeFO1bt1a63nVqlWhp6dXpr2i7t+/D1NT0xeyrooKDAyEk5MTli9fjhEjRpRZvnbtWuTl5WHQoEH/aDvFxcUoKiqCUql8YcdPF1xcXLT6HxISgnHjxqFjx44IDw9H48aN4eHhAeDhv5eqVau+1P7k5eXB2Nj4lWzraZo1a6bT7ctxxKhDP/zwA95++23Y2dnBzMwMHh4emDlzJgoLC7XqSk9rDhw4gDZt2sDU1BQDBw4EAFy7dg3du3eHhYUFqlSpgr59++LYsWPlnnIeP34cISEhsLa2hrGxMZo1a4bffvtNWh4ZGYkePXoAAN555x3p1O9xp676+voYMGAAEhMTcerUqTLLV6xYAUdHRwQGBiIzMxMjRoyAm5sbzM3NYWdnh/bt2yMuLk7rNaWnyzNnzsTXX3+N2rVrQ6lUYu/eveWeSl+8eBH/+c9/4OLiAlNTU1SrVg1dunQptz8A8ODBA3z00UdwcHCAiYkJfH19cfLkyXJr5X799Vd4e3vDzMwM5ubmCAgIeObXPo61tTWWLFmCoqIizJs3T2ov7/T25MmTCA4Ohp2dHZRKJZycnBAUFIRr164BeHj5Jjc3F7/88ov03rVr105rfbGxsRg4cCCqVq0KU1NT5OfnP/G0PS4uDq1bt4aJiQmqVauGL774AsXFxdLy0ssE8ktC8vcqPDwcP/zwg9TP0kfpNss7lU5NTUW/fv2k/W3YsCHmzJmDkpKSMtuZPXs25s6di9q1a8Pc3Bze3t5ISEh4jndCG4NRhy5duoTQ0FBERUVh69atGDRoEGbNmoUPPvigTG16ejr69euH0NBQbN++HSNGjEBubi7eeecd7N27F99++y1+++032Nvbo1evXmVev3fvXvj4+ODevXtYvHgxfv/9dzRt2hS9evWS/vEGBQVh+vTpAB6Gdunp/pNOXQcOHAiFQoHly5drtZ89exZHjx7FgAEDoK+vj7t37wIAJk+ejG3btmHFihWoU6cO2rVrV+511u+++w579uzB7NmzsWPHDjRo0KDc7d+4cQM2Njb45ptvEBMTgx9++AEGBgbw8vLC+fPny9R/9tlnuHz5Mn7++Wf8/PPPuHHjBtq1a4fLly8/dh+Bh6eoffr0gZubG3777TdERUUhOzsbb731Fs6ePfvE1z5Ny5Yt4ejoiAMHDjy2Jjc3F35+frh58yZ++OEH7Nq1C/Pnz0eNGjWQnZ0N4OHlGxMTE3Tu3Fl673788Uet9QwcOBCGhoaIiorCunXrYGho+NhtZmRkoHfv3ujbty9+//13dO/eHV9//TU+/PDD597HL774At27d5f6Wfp43Ol7ZmYm2rRpg9jYWHz11VfYvHkzOnbsiPHjx2PUqFFl6h89JqtXr0Zubi46d+4MjUbz3H0FAAh6JQYMGCDMzMweu7y4uFgUFhaKlStXCn19fXH37l1pma+vrwAg/vjjD63X/PDDDwKA2LFjh1b7Bx98IACIFStWSG0NGjQQzZo1E4WFhVq1wcHBwtHRURQXFwshhPjvf/8rAIi9e/c+8775+voKW1tbUVBQILWNGzdOABB///13ua8pKioShYWFokOHDqJbt25Se0pKigAg6tatq7W+R5c9ul/lrbegoEC4uLiIsWPHSu179+4VAETz5s1FSUmJ1H7lyhVhaGgoBg8eLLVNnjxZPPqnkZqaKgwMDMTo0aO1tpWdnS0cHBxEz549H9ufR7f93//+97E1Xl5ewsTERHq+YsUKAUCkpKQIIYQ4fvy4ACA2bdr0xG2ZmZmJAQMGlGkvXV///v0fu6x0W0L879/c77//rlU7ZMgQoaenJ65evaq1b/J/L+W9VyNHjhSPi5yaNWtq9fvTTz8VAMSRI0e06oYPHy4UCoU4f/681nY8PDxEUVGRVHf06FEBQKxdu7bc7T0NR4w6dPLkSYSEhMDGxgb6+vowNDRE//79UVxcjL///lur1srKCu3bt9dq279/PywsLNCpUyet9j59+mg9v3jxIs6dO4e+ffsCAIqKiqRH586dkZ6eXu7o6lkNGjQIt2/fxubNm6X1r1q1Cm+99RZcXFykusWLF6N58+YwNjaGgYEBDA0N8ccffyA5ObnMOkNCQp44milVVFSE6dOnw83NDUZGRjAwMICRkREuXLhQ7npDQ0O1Zpxr1qyJNm3aYO/evY/dxs6dO1FUVIT+/ftrHTtjY2P4+vq+kDsLxFO+FrVevXqwsrLCJ598gsWLF1d4lPr+++8/c62FhQVCQkK02kJDQ1FSUvLE0e2LsGfPHri5uaFVq1Za7eHh4RBCYM+ePVrtQUFB0NfXl543btwYAMqd8X8WDEYdSU1NxVtvvYXr169jwYIFiIuLw7Fjx6TrMHl5eVr15Z1y3Llzp9zZXnlb6a0y48ePh6GhodajdNLk9u3bFd6X7t27Q6VSYcWKFQAezj7evHlTa9Jl7ty5GD58OLy8vLB+/XokJCTg2LFj6NSpU5l9fdz+luejjz7CF198ga5du2LLli04cuQIjh07hiZNmpS7XgcHh3Lb7ty589htlB6/li1bljl+v/766z86dqVSU1Ph5OT02OUqlQr79+9H06ZN8dlnn6FRo0ZwcnLC5MmTy1yTfpLnmXku799W6fF70vF6Ee7cuVNuX0uPkXz7NjY2Ws+VSiWAsn9Hz4qz0jqyadMm5ObmYsOGDahZs6bUnpSUVG59effV2djY4OjRo2XaMzIytJ7b2toCACZOnIj33nuv3PW7uro+a9fLMDExQZ8+fbB06VKkp6dj+fLlsLCwkCZyAGDVqlVo164dFi1apPXa0utjcs96H+GqVavQv39/6dpoqdu3b6NKlSpl6uXHprRN/of1qNLjt27dOq336kU5evQoMjIynjp77+HhgejoaAgh8NdffyEyMhJffvklTExM8Omnnz7Ttp7n/szy7j0tPX6lx8vY2BgAkJ+fr1X3T/9jYWNjg/T09DLtN27cAPC/9+Rl4YhRR0r/gZb+lw14eDq1dOnSZ16Hr68vsrOzsWPHDq326Ohoreeurq5wcXHBn3/+iRYtWpT7sLCw0OrP8/6XdtCgQSguLsasWbOwfft29O7dW+t2IoVCobWvAPDXX38hPj7+ubYjV956t23bhuvXr5dbv3btWq3T1qtXr+Lw4cPS7G15AgICYGBggEuXLj32+FXU3bt3MWzYMBgaGmLs2LHP9BqFQoEmTZpg3rx5qFKlCk6cOCEtUyqVFR4lyWVnZ0uXR0qtWbMGenp6ePvttwE8nE0GHr6Xj5K/rrRvwLP92+rQoQPOnj2rtW8AsHLlSigUCrzzzjvPvB8VwRGjjvj5+cHIyAh9+vTBhAkT8ODBAyxatAhqtfqZ1zFgwADMmzcP/fr1w9dff4169ephx44d2LlzJwBAT+9//91bsmQJAgMDERAQgPDwcFSrVg13795FcnIyTpw4gf/+978AIH3a4aeffoKFhQWMjY1Ru3btJ46oAKBFixZo3Lgx5s+fDyFEmdFPcHAwvvrqK0yePBm+vr44f/48vvzyS9SuXRtFRUXPvM9ywcHBiIyMRIMGDdC4cWMkJiZi1qxZqF69ern1t27dQrdu3TBkyBBoNBpMnjwZxsbGmDhx4mO3UatWLXz55ZeYNGkSLl++jE6dOsHKygo3b97E0aNHYWZm9tgblx914cIFJCQkoKSkBHfu3MGRI0ewbNkyZGVlYeXKlWjUqNFjX7t161b8+OOP6Nq1K+rUqQMhBDZs2IB79+7Bz89PqvPw8MC+ffuwZcsWODo6wsLCosJnAzY2Nhg+fDhSU1NRv359bN++HUuXLsXw4cNRo0YNAA9PrTt27IgZM2bAysoKNWvWxB9//IENGzaUWV/pPZrffvstAgMDoa+vj8aNG8PIyKhM7dixY7Fy5UoEBQXhyy+/RM2aNbFt2zb8+OOPGD58OOrXr1+hfXpmFZqyoedW3qz0li1bRJMmTYSxsbGoVq2a+Pjjj8WOHTvKzPL5+vqKRo0albve1NRU8d577wlzc3NhYWEh3n//fbF9+/ZyZxT//PNP0bNnT2FnZycMDQ2Fg4ODaN++vVi8eLFW3fz580Xt2rWFvr7+U2eBH7VgwQIBQLi5uZVZlp+fL8aPHy+qVasmjI2NRfPmzcWmTZvEgAEDRM2aNaW60lnGWbNmlVlHeTOdarVaDBo0SNjZ2QlTU1PRtm1bERcXJ3x9fYWvr69UVzp7GhUVJSIiIkTVqlWFUqkUb731ljh+/LjWduSz0qU2bdok3nnnHWFpaSmUSqWoWbOm6N69u9i9e/cTj0vptksfBgYGwsbGRnh7e4vPPvtMXLlypcxr5DPF586dE3369BF169YVJiYmQqVSiVatWonIyEit1yUlJQkfHx9hamoqAEjHoHR9x44de+q2hPjfv7l9+/aJFi1aCKVSKRwdHcVnn31W5s6G9PR00b17d2FtbS1UKpXo16+fNIv+6HuVn58vBg8eLKpWrSoUCoXWNuWz0kIIcfXqVREaGipsbGyEoaGhcHV1FbNmzZLuoBDiyf9eAIjJkyeXaX8Wiv9bAb1Bpk+fjs8//xypqamPHTkR0ePxVPo1t3DhQgBAgwYNUFhYiD179uC7775Dv379GIpEFcRgfM2Zmppi3rx5uHLlCvLz81GjRg188skn+Pzzz3XdNaLXFk+liYhkeLsOEZEMg5GISIbBSEQkw8mXF6ikpAQ3btyAhYXFC/1qfCL654QQyM7OhpOTk9aHH8rDYHyBbty4AWdnZ113g4ieIC0t7am3sjEYX6DSzxunpaXB0tJSx70hokdlZWXB2dlZ+jt9EgbjC1R6+mxpaclgJKqknuUyFydfiIhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQko/NgvH79Ovr16wcbGxuYmpqiadOmSExMlJYLITBlyhQ4OTnBxMQE7dq1w5kzZ7TWkZ+fj9GjR8PW1hZmZmYICQnBtWvXtGrUajXCwsKgUqmgUqkQFhaGe/fuadWkpqaiS5cuMDMzg62tLSIiIlBQUPDS9p2IKiedBqNarYaPjw8MDQ2xY8cOnD17FnPmzNH6dbeZM2di7ty5WLhwIY4dOwYHBwf4+flp/brcmDFjsHHjRkRHR+PgwYPIyclBcHAwiouLpZrQ0FAkJSUhJiYGMTExSEpKQlhYmLS8uLgYQUFByM3NxcGDBxEdHY3169dj3Lhxr+RYEFElUqEfRHhBPvnkE9G2bdvHLi8pKREODg7im2++kdoePHggVCqV9Dsl9+7dE4aGhiI6OlqquX79utDT0xMxMTFCCCHOnj0rAIiEhASpJj4+XgAQ586dE0IIsX37dqGnpyeuX78u1axdu1YolUqh0WieaX80Go0A8Mz1RPTqPM/fp05HjJs3b0aLFi3Qo0cP2NnZoVmzZlo/H5qSkoKMjAz4+/tLbUqlEr6+vjh8+DAAIDExEYWFhVo1Tk5OcHd3l2ri4+OhUqng5eUl1bRu3RoqlUqrxt3dXetHzwMCApCfn691ak9Ebz6dBuPly5exaNEiuLi4YOfOnRg2bBgiIiKwcuVKAP/7cW97e3ut19nb20vLMjIyYGRkBCsrqyfW2NnZldm+nZ2dVo18O1ZWVjAyMir3R9qBh9c2s7KytB5E9PrT6WelS0pK0KJFC0yfPh0A0KxZM5w5cwaLFi1C//79pTr5ZxuFEE/9vKO8prz6itQ8asaMGc/0e8JE9HrR6YjR0dERbm5uWm0NGzZEamoqgIc/5g2gzIjt1q1b0ujOwcEBBQUFZX6oXl5z8+bNMtvPzMzUqpFvR61Wo7CwsMxIstTEiROh0WikR1pa2jPtNxFVbjoNRh8fH5w/f16r7e+//0bNmjUBALVr14aDgwN27dolLS8oKMD+/fvRpk0bAICnpycMDQ21atLT03H69GmpxtvbGxqNBkePHpVqjhw5Ao1Go1Vz+vRppKenSzWxsbFQKpXw9PQst/9KpVL6Jh1+ow7RG+QlTwQ90dGjR4WBgYGYNm2auHDhgli9erUwNTUVq1atkmq++eYboVKpxIYNG8SpU6dEnz59hKOjo8jKypJqhg0bJqpXry52794tTpw4Idq3by+aNGkiioqKpJpOnTqJxo0bi/j4eBEfHy88PDxEcHCwtLyoqEi4u7uLDh06iBMnTojdu3eL6tWri1GjRj3z/nBWmqjyep6/T50GoxBCbNmyRbi7uwulUikaNGggfvrpJ63lJSUlYvLkycLBwUEolUrx9ttvi1OnTmnV5OXliVGjRglra2thYmIigoODRWpqqlbNnTt3RN++fYWFhYWwsLAQffv2FWq1Wqvm6tWrIigoSJiYmAhra2sxatQo8eDBg2feFwYjUeX1PH+f/F3pFygrKwsqlQoajYan1USVzPP8fer8I4FERJUNg5GISIa/+aJDnh+v1HUX/nUSZ/V/ehH963HESEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDI6DcYpU6ZAoVBoPRwcHKTlQghMmTIFTk5OMDExQbt27XDmzBmtdeTn52P06NGwtbWFmZkZQkJCcO3aNa0atVqNsLAwqFQqqFQqhIWF4d69e1o1qamp6NKlC8zMzGBra4uIiAgUFBS8tH0nospL5yPGRo0aIT09XXqcOnVKWjZz5kzMnTsXCxcuxLFjx+Dg4AA/Pz9kZ2dLNWPGjMHGjRsRHR2NgwcPIicnB8HBwSguLpZqQkNDkZSUhJiYGMTExCApKQlhYWHS8uLiYgQFBSE3NxcHDx5EdHQ01q9fj3Hjxr2ag0BElYqBzjtgYKA1SiwlhMD8+fMxadIkvPfeewCAX375Bfb29lizZg0++OADaDQaLFu2DFFRUejYsSMAYNWqVXB2dsbu3bsREBCA5ORkxMTEICEhAV5eXgCApUuXwtvbG+fPn4erqytiY2Nx9uxZpKWlwcnJCQAwZ84chIeHY9q0abC0tHxFR4OIKgOdjxgvXLgAJycn1K5dG71798bly5cBACkpKcjIyIC/v79Uq1Qq4evri8OHDwMAEhMTUVhYqFXj5OQEd3d3qSY+Ph4qlUoKRQBo3bo1VCqVVo27u7sUigAQEBCA/Px8JCYmPrbv+fn5yMrK0noQ0etPp8Ho5eWFlStXYufOnVi6dCkyMjLQpk0b3LlzBxkZGQAAe3t7rdfY29tLyzIyMmBkZAQrK6sn1tjZ2ZXZtp2dnVaNfDtWVlYwMjKSasozY8YM6bqlSqWCs7Pzcx4BIqqMdBqMgYGBeP/99+Hh4YGOHTti27ZtAB6eMpdSKBRarxFClGmTk9eUV1+RGrmJEydCo9FIj7S0tCf2i4heDzo/lX6UmZkZPDw8cOHCBem6o3zEduvWLWl05+DggIKCAqjV6ifW3Lx5s8y2MjMztWrk21Gr1SgsLCwzknyUUqmEpaWl1oOIXn+VKhjz8/ORnJwMR0dH1K5dGw4ODti1a5e0vKCgAPv370ebNm0AAJ6enjA0NNSqSU9Px+nTp6Uab29vaDQaHD16VKo5cuQINBqNVs3p06eRnp4u1cTGxkKpVMLT0/Ol7jMRVT46nZUeP348unTpgho1auDWrVv4+uuvkZWVhQEDBkChUGDMmDGYPn06XFxc4OLigunTp8PU1BShoaEAAJVKhUGDBmHcuHGwsbGBtbU1xo8fL52aA0DDhg3RqVMnDBkyBEuWLAEADB06FMHBwXB1dQUA+Pv7w83NDWFhYZg1axbu3r2L8ePHY8iQIRwFEv0L6TQYr127hj59+uD27duoWrUqWrdujYSEBNSsWRMAMGHCBOTl5WHEiBFQq9Xw8vJCbGwsLCwspHXMmzcPBgYG6NmzJ/Ly8tChQwdERkZCX19fqlm9ejUiIiKk2euQkBAsXLhQWq6vr49t27ZhxIgR8PHxgYmJCUJDQzF79uxXdCSIqDJRCCGErjvxpsjKyoJKpYJGo3mmkabnxytfQa/oUYmz+uu6C6Qjz/P3WamuMRIRVQYMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpIx0HUHiN4knh+v1HUX/nUSZ/V/4evkiJGISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISKbSBOOMGTOgUCgwZswYqU0IgSlTpsDJyQkmJiZo164dzpw5o/W6/Px8jB49Gra2tjAzM0NISAiuXbumVaNWqxEWFgaVSgWVSoWwsDDcu3dPqyY1NRVdunSBmZkZbG1tERERgYKCgpe1u0RUiVWKYDx27Bh++uknNG7cWKt95syZmDt3LhYuXIhjx47BwcEBfn5+yM7OlmrGjBmDjRs3Ijo6GgcPHkROTg6Cg4NRXFws1YSGhiIpKQkxMTGIiYlBUlISwsLCpOXFxcUICgpCbm4uDh48iOjoaKxfvx7jxo17+TtPRJWOzoMxJycHffv2xdKlS2FlZSW1CyEwf/58TJo0Ce+99x7c3d3xyy+/4P79+1izZg0AQKPRYNmyZZgzZw46duyIZs2aYdWqVTh16hR2794NAEhOTkZMTAx+/vlneHt7w9vbG0uXLsXWrVtx/vx5AEBsbCzOnj2LVatWoVmzZujYsSPmzJmDpUuXIisr69UfFCLSKZ0H48iRIxEUFISOHTtqtaekpCAjIwP+/v5Sm1KphK+vLw4fPgwASExMRGFhoVaNk5MT3N3dpZr4+HioVCp4eXlJNa1bt4ZKpdKqcXd3h5OTk1QTEBCA/Px8JCYmPrbv+fn5yMrK0noQ0evPQJcbj46OxokTJ3Ds2LEyyzIyMgAA9vb2Wu329va4evWqVGNkZKQ10iytKX19RkYG7Ozsyqzfzs5Oq0a+HSsrKxgZGUk15ZkxYwamTp36tN0koteMzkaMaWlp+PDDD7Fq1SoYGxs/tk6hUGg9F0KUaZOT15RXX5EauYkTJ0Kj0UiPtLS0J/aLiF4POgvGxMRE3Lp1C56enjAwMICBgQH279+P7777DgYGBtIITj5iu3XrlrTMwcEBBQUFUKvVT6y5efNmme1nZmZq1ci3o1arUVhYWGYk+SilUglLS0utBxG9/nQWjB06dMCpU6eQlJQkPVq0aIG+ffsiKSkJderUgYODA3bt2iW9pqCgAPv370ebNm0AAJ6enjA0NNSqSU9Px+nTp6Uab29vaDQaHD16VKo5cuQINBqNVs3p06eRnp4u1cTGxkKpVMLT0/OlHgciqnx0do3RwsIC7u7uWm1mZmawsbGR2seMGYPp06fDxcUFLi4umD59OkxNTREaGgoAUKlUGDRoEMaNGwcbGxtYW1tj/Pjx8PDwkCZzGjZsiE6dOmHIkCFYsmQJAGDo0KEIDg6Gq6srAMDf3x9ubm4ICwvDrFmzcPfuXYwfPx5DhgzhKJDoX0inky9PM2HCBOTl5WHEiBFQq9Xw8vJCbGwsLCwspJp58+bBwMAAPXv2RF5eHjp06IDIyEjo6+tLNatXr0ZERIQ0ex0SEoKFCxdKy/X19bFt2zaMGDECPj4+MDExQWhoKGbPnv3qdpaIKg2FEELouhNviqysLKhUKmg0mmcaaXp+vPIV9IoelTir/0tdP9/TV+9Z39Pn+fvU+X2MRESVDYORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSYTASEckwGImIZBiMREQyDEYiIhkGIxGRDIORiEiGwUhEJMNgJCKSqVAwtm/fHvfu3SvTnpWVhfbt2//TPhER6VSFgnHfvn0oKCgo0/7gwQPExcX9404REemSwfMU//XXX9L/P3v2LDIyMqTnxcXFiImJQbVq1V5c74iIdOC5grFp06ZQKBRQKBTlnjKbmJjg+++/f2GdIyLShecKxpSUFAghUKdOHRw9ehRVq1aVlhkZGcHOzg76+vovvJNERK/ScwVjzZo1AQAlJSUvpTNERJXBcwXjo/7++2/s27cPt27dKhOU/+///b9/3DEiIl2pUDAuXboUw4cPh62tLRwcHKBQKKRlCoWCwUhEr7UKBePXX3+NadOm4ZNPPnnR/SEi0rkK3ceoVqvRo0ePF90XIqJKoULB2KNHD8TGxr7ovhARVQoVOpWuV68evvjiCyQkJMDDwwOGhoZayyMiIl5I54iIdKFCwfjTTz/B3Nwc+/fvx/79+7WWKRQKBiMRvdYqFIwpKSkvuh9ERJUGv3aMiEimQiPGgQMHPnH58uXLK9QZIqLKoELBqFartZ4XFhbi9OnTuHfvHr+PkYheexUKxo0bN5ZpKykpwYgRI1CnTp1/3CkiIl16YdcY9fT0MHbsWMybN+9FrZKISCde6OTLpUuXUFRU9CJXSUT0ylUoGD/66COtx9ixY9G7d2/06tULvXr1eub1LFq0CI0bN4alpSUsLS3h7e2NHTt2SMuFEJgyZQqcnJxgYmKCdu3a4cyZM1rryM/Px+jRo2FrawszMzOEhITg2rVrWjVqtRphYWFQqVRQqVQICwsr85s1qamp6NKlC8zMzGBra4uIiIhyf76BiN58FQrGkydPaj1Kf/Jgzpw5mD9//jOvp3r16vjmm29w/PhxHD9+HO3bt8e7774rhd/MmTMxd+5cLFy4EMeOHYODgwP8/PyQnZ0trWPMmDHYuHEjoqOjcfDgQeTk5CA4OBjFxcVSTWhoKJKSkhATE4OYmBgkJSUhLCxMWl5cXIygoCDk5ubi4MGDiI6Oxvr16zFu3LiKHB4ies0phBBC1514lLW1NWbNmoWBAwfCyckJY8aMkb7FJz8/H/b29vj222/xwQcfQKPRoGrVqoiKipJGqjdu3ICzszO2b9+OgIAAJCcnw83NDQkJCfDy8gIAJCQkwNvbG+fOnYOrqyt27NiB4OBgpKWlwcnJCQAQHR2N8PBw3Lp1C5aWls/U96ysLKhUKmg0mmd6jefHKytyiOgfSJzV/6Wun+/pq/es7+nz/H3+o2uMmZmZOHjwIA4dOoTMzMx/sioUFxcjOjoaubm58Pb2RkpKCjIyMuDv7y/VKJVK+Pr64vDhwwCAxMREFBYWatU4OTnB3d1dqomPj4dKpZJCEQBat24NlUqlVePu7i6FIgAEBAQgPz8fiYmJj+1zfn4+srKytB5E9PqrUDDm5uZi4MCBcHR0xNtvv4233noLTk5OGDRoEO7fv/9c6zp16hTMzc2hVCoxbNgwbNy4EW5ubtIvENrb22vV29vbS8syMjJgZGQEKyurJ9bY2dmV2a6dnZ1WjXw7VlZWMDIy0volRLkZM2ZI1y1VKhWcnZ2fa9+JqHKq8OTL/v37sWXLFty7dw/37t3D77//jv379z/3dTlXV1ckJSUhISEBw4cPx4ABA3D27Flp+aPfDg48nJCRt8nJa8qrr0iN3MSJE6HRaKRHWlraE/tFRK+HCgXj+vXrsWzZMgQGBkozyp07d8bSpUuxbt2651qXkZER6tWrhxYtWmDGjBlo0qQJFixYAAcHBwAoM2K7deuWNLpzcHBAQUFBmU/iyGtu3rxZZruZmZlaNfLtqNVqFBYWlhlJPkqpVEr7X/ogotdfhYLx/v375QaGnZ3dc59KywkhkJ+fj9q1a8PBwQG7du2SlhUUFGD//v1o06YNAMDT0xOGhoZaNenp6Th9+rRU4+3tDY1Gg6NHj0o1R44cgUaj0ao5ffo00tPTpZrY2FgolUp4enr+o/0hotdPhT4S6O3tjcmTJ2PlypUwNjYGAOTl5WHq1Knw9vZ+5vV89tlnCAwMhLOzM7KzsxEdHY19+/YhJiYGCoUCY8aMwfTp0+Hi4gIXFxdMnz4dpqamCA0NBQCoVCoMGjQI48aNg42NDaytrTF+/Hh4eHigY8eOAICGDRuiU6dOGDJkCJYsWQIAGDp0KIKDg+Hq6goA8Pf3h5ubG8LCwjBr1izcvXsX48ePx5AhQzgKJPoXqlAwzp8/H4GBgahevTqaNGkChUKBpKQkKJXK5/rJg5s3byIsLAzp6elQqVRo3LgxYmJi4OfnBwCYMGEC8vLyMGLECKjVanh5eSE2NhYWFhbSOubNmwcDAwP07NkTeXl56NChAyIjI6Gvry/VrF69GhEREdLsdUhICBYuXCgt19fXx7Zt2zBixAj4+PjAxMQEoaGhmD17dkUODxG95ip8H2NeXh5WrVqFc+fOQQgBNzc39O3bFyYmJi+6j68N3sdY+fE+xjfPy7iPsUIjxhkzZsDe3h5DhgzRal++fDkyMzP5s6pE9Fqr0OTLkiVL0KBBgzLtjRo1wuLFi/9xp4iIdKlCwZiRkQFHR8cy7VWrVtWa2SUieh1VKBidnZ1x6NChMu2HDh3S+lgdEdHrqELXGAcPHowxY8agsLBQ+imDP/74AxMmTOA30hDRa69CwThhwgTcvXsXI0aMkL6z0NjYGJ988gkmTpz4QjtIRPSqVSgYFQoFvv32W3zxxRdITk6GiYkJXFxcoFQqX3T/iIheuQoFYylzc3O0bNnyRfWFiKhSeKG/+UJE9CZgMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISEanwThjxgy0bNkSFhYWsLOzQ9euXXH+/HmtGiEEpkyZAicnJ5iYmKBdu3Y4c+aMVk1+fj5Gjx4NW1tbmJmZISQkBNeuXdOqUavVCAsLg0qlgkqlQlhYGO7du6dVk5qaii5dusDMzAy2traIiIhAQUHBS9l3Iqq8dBqM+/fvx8iRI5GQkIBdu3ahqKgI/v7+yM3NlWpmzpyJuXPnYuHChTh27BgcHBzg5+eH7OxsqWbMmDHYuHEjoqOjcfDgQeTk5CA4OBjFxcVSTWhoKJKSkhATE4OYmBgkJSUhLCxMWl5cXIygoCDk5ubi4MGDiI6Oxvr16zFu3LhXczCIqNJQCCGErjtRKjMzE3Z2dti/fz/efvttCCHg5OSEMWPG4JNPPgHwcHRob2+Pb7/9Fh988AE0Gg2qVq2KqKgo9OrVCwBw48YNODs7Y/v27QgICEBycjLc3NyQkJAALy8vAEBCQgK8vb1x7tw5uLq6YseOHQgODkZaWhqcnJwAANHR0QgPD8etW7dgaWn51P5nZWVBpVJBo9E8U73nxysreqioghJn9X+p6+d7+uo963v6PH+fleoao0ajAQBYW1sDAFJSUpCRkQF/f3+pRqlUwtfXF4cPHwYAJCYmorCwUKvGyckJ7u7uUk18fDxUKpUUigDQunVrqFQqrRp3d3cpFAEgICAA+fn5SExMLLe/+fn5yMrK0noQ0euv0gSjEAIfffQR2rZtC3d3dwBARkYGAMDe3l6r1t7eXlqWkZEBIyMjWFlZPbHGzs6uzDbt7Oy0auTbsbKygpGRkVQjN2PGDOmapUqlgrOz8/PuNhFVQpUmGEeNGoW//voLa9euLbNMoVBoPRdClGmTk9eUV1+RmkdNnDgRGo1GeqSlpT2xT0T0eqgUwTh69Ghs3rwZe/fuRfXq1aV2BwcHACgzYrt165Y0unNwcEBBQQHUavUTa27evFlmu5mZmVo18u2o1WoUFhaWGUmWUiqVsLS01HoQ0etPp8EohMCoUaOwYcMG7NmzB7Vr19ZaXrt2bTg4OGDXrl1SW0FBAfbv3482bdoAADw9PWFoaKhVk56ejtOnT0s13t7e0Gg0OHr0qFRz5MgRaDQarZrTp08jPT1dqomNjYVSqYSnp+eL33kiqrQMdLnxkSNHYs2aNfj9999hYWEhjdhUKhVMTEygUCgwZswYTJ8+HS4uLnBxccH06dNhamqK0NBQqXbQoEEYN24cbGxsYG1tjfHjx8PDwwMdO3YEADRs2BCdOnXCkCFDsGTJEgDA0KFDERwcDFdXVwCAv78/3NzcEBYWhlmzZuHu3bsYP348hgwZwpEg0b+MToNx0aJFAIB27dppta9YsQLh4eEAgAkTJiAvLw8jRoyAWq2Gl5cXYmNjYWFhIdXPmzcPBgYG6NmzJ/Ly8tChQwdERkZCX19fqlm9ejUiIiKk2euQkBAsXLhQWq6vr49t27ZhxIgR8PHxgYmJCUJDQzF79uyXtPdEVFlVqvsYX3e8j7Hy432Mb543/j5GIqLKgMFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkYxOg/HAgQPo0qULnJycoFAosGnTJq3lQghMmTIFTk5OMDExQbt27XDmzBmtmvz8fIwePRq2trYwMzNDSEgIrl27plWjVqsRFhYGlUoFlUqFsLAw3Lt3T6smNTUVXbp0gZmZGWxtbREREYGCgoKXsdtEVMnpNBhzc3PRpEkTLFy4sNzlM2fOxNy5c7Fw4UIcO3YMDg4O8PPzQ3Z2tlQzZswYbNy4EdHR0Th48CBycnIQHByM4uJiqSY0NBRJSUmIiYlBTEwMkpKSEBYWJi0vLi5GUFAQcnNzcfDgQURHR2P9+vUYN27cy9t5Iqq0DHS58cDAQAQGBpa7TAiB+fPnY9KkSXjvvfcAAL/88gvs7e2xZs0afPDBB9BoNFi2bBmioqLQsWNHAMCqVavg7OyM3bt3IyAgAMnJyYiJiUFCQgK8vLwAAEuXLoW3tzfOnz8PV1dXxMbG4uzZs0hLS4OTkxMAYM6cOQgPD8e0adNgaWn5Co4GEVUWlfYaY0pKCjIyMuDv7y+1KZVK+Pr64vDhwwCAxMREFBYWatU4OTnB3d1dqomPj4dKpZJCEQBat24NlUqlVePu7i6FIgAEBAQgPz8fiYmJj+1jfn4+srKytB5E9PqrtMGYkZEBALC3t9dqt7e3l5ZlZGTAyMgIVlZWT6yxs7Mrs347OzutGvl2rKysYGRkJNWUZ8aMGdJ1S5VKBWdn5+fcSyKqjCptMJZSKBRaz4UQZdrk5DXl1VekRm7ixInQaDTSIy0t7Yn9IqLXQ6UNRgcHBwAoM2K7deuWNLpzcHBAQUEB1Gr1E2tu3rxZZv2ZmZlaNfLtqNVqFBYWlhlJPkqpVMLS0lLrQUSvv0objLVr14aDgwN27doltRUUFGD//v1o06YNAMDT0xOGhoZaNenp6Th9+rRU4+3tDY1Gg6NHj0o1R44cgUaj0ao5ffo00tPTpZrY2FgolUp4enq+1P0kospHp7PSOTk5uHjxovQ8JSUFSUlJsLa2Ro0aNTBmzBhMnz4dLi4ucHFxwfTp02FqaorQ0FAAgEqlwqBBgzBu3DjY2NjA2toa48ePh4eHhzRL3bBhQ3Tq1AlDhgzBkiVLAABDhw5FcHAwXF1dAQD+/v5wc3NDWFgYZs2ahbt372L8+PEYMmQIR4FE/0I6Dcbjx4/jnXfekZ5/9NFHAIABAwYgMjISEyZMQF5eHkaMGAG1Wg0vLy/ExsbCwsJCes28efNgYGCAnj17Ii8vDx06dEBkZCT09fWlmtWrVyMiIkKavQ4JCdG6d1JfXx/btm3DiBEj4OPjAxMTE4SGhmL27Nkv+xAQUSWkEEIIXXfiTZGVlQWVSgWNRvNMI03Pj1e+gl7RoxJn9X+p6+d7+uo963v6PH+flfYaIxGRrjAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMBIRyTAYiYhkGIxERDIMRiIiGQYjEZEMg5GISIbBSEQkw2AkIpJhMMr8+OOPqF27NoyNjeHp6Ym4uDhdd4mIXjEG4yN+/fVXjBkzBpMmTcLJkyfx1ltvITAwEKmpqbruGhG9QgzGR8ydOxeDBg3C4MGD0bBhQ8yfPx/Ozs5YtGiRrrtGRK+Qga47UFkUFBQgMTERn376qVa7v78/Dh8+XO5r8vPzkZ+fLz3XaDQAgKysrGfaZnF+XgV7SxX1rO9NRfE9ffWe9T0trRNCPLWWwfh/bt++jeLiYtjb22u129vbIyMjo9zXzJgxA1OnTi3T7uzs/FL6SP+c6vthuu4CvWDP+55mZ2dDpVI9sYbBKKNQKLSeCyHKtJWaOHEiPvroI+l5SUkJ7t69Cxsbm8e+5k2QlZUFZ2dnpKWlwdLSUtfdoX/o3/J+CiGQnZ0NJyenp9YyGP+Pra0t9PX1y4wOb926VWYUWUqpVEKpVGq1ValS5WV1sdKxtLR8o/+Q/m3+De/n00aKpTj58n+MjIzg6emJXbt2abXv2rULbdq00VGviEgXOGJ8xEcffYSwsDC0aNEC3t7e+Omnn5Camophw3hdiujfhMH4iF69euHOnTv48ssvkZ6eDnd3d2zfvh01a9bUddcqFaVSicmTJ5e5jECvJ76fZSnEs8xdExH9i/AaIxGRDIORiEiGwUhEJMNgJKqgnJwcrF+/XtfdqNTu37+PnTt36robz43BSFRBK1aswODBg3HixAldd6XS2rJlCwIDA3H16lVdd+W5MBiJnlNhYSEAwMvLC40bN8amTZt026FKqKSkBMXFxejcuTNsbW0RGxur6y49FwYj0XMyNDQEADRu3BgtW7Z8LU8VXzY9PT3o6+vDwsICXbp0wS+//IKioiJdd+uZ8QZvoud0/vx5zJ07F0IIGBkZ4caNG4iLi8Nbb72l665VGikpKZg/fz4KCgpQu3ZtrF27FufPn0ejRo103bVnwhEjkUzpaWB5/vrrL3Tv3h1Xr15F8+bNkZqaiuvXr2Pjxo2vuJe6JT9Gj35OJC0tDUFBQTh16hSaNm2K/fv348GDB9i6dasuuloxguhfKjY2Vmzbtu2xy4uLi0VGRoZW24wZM4Szs7PIzs4WQghRWFgounXrJjw8PKS2N0liYqJYtWqVEOLh8SiP/BhNmjRJ1K9fX2q/efOm6N+/v2jUqJHIzc19uR1+QThipH+V06dPo2fPnrh+/Tp+/vlnZGRkSCMf8X+jnpMnT6Jr166oVq0a+vTpI32JSElJCU6fPo0OHTrA3NwcAGBgYIA+ffqgqKjo9RoRPcH58+fx+eefY82aNfj111+RkpIC4OF1w9JjdPbsWfTs2RNOTk4IDQ3F559/Ls08Z2Zmonr16rC3t4cQAnZ2doiIiEBycvJrM4PPYKR/jbVr1yIgIAC3b99GUVERfv31VwwcOBD6+voAHn5JcXZ2Nj7++GOoVCqsX78en332Gfbs2YNx48ZBT08PSqUSN2/exK1bt6T1NmvWDEIIbNu2TVe79sLExMSgffv2OHz4MFq1aoVvv/0Wn3/+ubRcoVAgMzMTEydOhKGhIdasWYOhQ4fi+PHj0s+CWFtbIz8/H/fu3ZO+sLl+/fqoXbs21q1bp5P9el4MRnrjCSFQVFSEhIQE1K9fH3v27JG+Mennn3/GypUrpRnTmTNnQk9PD7/88gvatGkDLy8vWFtbY82aNTh16hR69eqFY8eO4dSpU9L6TU1NoVarcejQIVy7dk0n+/iiREVFoWXLltizZw/q1auHkpISbNmyBbNmzQIA6fnly5exevVqtGvXDm3btoVSqcSvv/6KK1euoGnTpigoKMDu3bul9V6/fh3Z2dnYu3ev1n9UKisGI72xhBDST1MYGBjA0dER+fn5WLBgAbp06YKcnBxs2rQJkZGR0k/kXr9+Hebm5li9ejVcXV1Ro0YN2Nra4ueff0bDhg3h7+8PFxcXzJgxA7GxscjNzUVUVBSaN28OU1NT7NmzR8d7/XxKj1FJSQkAoGXLlkhOTkZUVBS6deuGzMxMbN++HYsXL8b9+/ehp6eHbdu2ISAgAIsWLUKTJk3g5uaGoqIiREVFoVatWvDy8kK9evXw2WefITExEXl5edizZw/8/f1x6tQprf+oVFo6u7pJ9ILIJz2KiopESUmJ9LykpERcv35dNG/eXCgUClG1alUxd+5cIYQQv//+u6hbt67Yvn27EEKIL7/8UigUCtGqVSvx448/iuvXr0vrycvLE0II8ddff4ng4GBRu3ZtYW5uLpo3by52794t7ty587J3tcJycnKEEP+bQCkqKiozmXLjxg3x9ttvC4VCIRwdHcVHH30khBBiw4YNonHjxmLNmjVCCCEmTpwoFAqFaNmypZgzZ464evWqtI6ioiIhhBB3794Vnp6eom7dusLa2lrUqFFDnDp1SqSlpb30fX0RGIz02iouLhatW7cWX331lSgsLCyz/NSpU2LmzJni2LFj4uzZs2LYsGGiXbt2YsCAAVp19evXF5MmTRIlJSVi3bp1wtnZWWzcuFGr5vjx42LGjBkiPT1dCPEwJHfu3CkOHDjwsnbvhbh7964IDw8X4eHh5S6/ePGimD17tvjzzz/F0aNHxcSJE4WLi4sYNWqUVs27774revfuLYQQIiEhQSgUCrFr1y6tdZ07d058/fXXIjk5WQghRFZWlti1a1eZutcBg5FeS6Ujk7i4OCkUS0eJu3fvFu7u7sLc3FwEBwdLo0MhHo4IW7RoIS5evCi1jRw5UrRt21akpKSI7OxsERYWJpydncX3338vzpw5IxYvXizatm0r+vTpIzIzM1/hXj6fR0fJj7YdPXpU3L9/X6s9Li5OeHp6CktLS+Ht7S1Wrlwp1Xz//ffCzs5OGmUKIcS0adNEw4YNxbVr14QQQrRr1060aNFCfPPNN+LcuXMiMjJS+Pr6igEDBmiNIF9XDEZ6rVy6dEkIIbRGiCUlJdIpWkFBgQgMDBRjx44VWVlZQoiHo6ZS27dvF15eXuK7776T2hISEkS1atXEr7/+KoQQ4v79+2LIkCGidevWolatWqJu3bpi1qxZ0voqu+vXr4v8/Pwy7aWBdefOHdGnTx/xn//8R9y9e1cUFxdrHaOLFy8KpVIptmzZIrXFxsaKZs2aiQULFgghhLhw4YKYMGGCaNWqlahZs6ZwdnYWX375ZaW+nPA8GIz0Wrh//774+OOPhaOjo9RWGpKtW7cW//nPf0RWVpa4dOmSqF69unQ97PLly6KgoEB6zY0bN0SfPn1ESEiI1vpbtWolhg8fLm7fvq1Vm5qa+jJ364UbMGCA8PLykp5fvnxZCCFEWFiYaNOmjRBCCLVarXUqXPofldJrjiUlJSIgIEB069ZNWk96eroYMGCA6Nixo9b20tPTpffhTcJZaaq0xCMfMzMxMUFAQAByc3PRo0cPGBoa4uOPPwYAdOjQAWfPnsWNGzdQpUoVBAYGYsSIEWjatCk+/vhjtG7dGu+88w7S0tLg6OiIFi1a4MaNG0hMTJTW365dO5w8eRI5OTlSm6OjI5ydnV/dDldA6TEqvd1o5MiROHXqFHr37o0qVargvffeAwA0bdoUGo0GycnJqFKlCtq3b48RI0bAw8MDY8eOhbe3N7p27Yrk5GQoFAr069cPu3fvxu3btwEADg4OaNCgAW7cuKF1S5KDgwPq1Knzivf6FdB1MhM9qri4WLp++KgHDx6Ifv36CYVCIerXry+OHDkizRInJycLJycnsWLFCiHEwxnYn3/+WaxZs0asWLFCREVFCXd3dzF48GAhhBAHDhwQzZs3F2PHjpXW/7p8VE2Ixx8jIYQIDAyUjtG6deu0rsW2atVKfPXVV0IIIVJSUsSyZcvEypUrxZIlS8SSJUtE8+bNxeDBg0V+fr64ffu2MDQ0FPPnz5fWnZmZWe4k15uI365DlYqe3sOTGCEE9uzZAysrKzRv3hxKpRLjx49HtWrVsHbtWrRq1QrAwxuOGzRogHr16mH//v0ICgpC1apVMWjQIK31rlu3Djdv3gTwcPTUtWtXeHh4SMtNTU1f0R7+c6XHCAD27duHatWqwdnZGcbGxpg3bx4cHBzw119/wc/PT/pUT6NGjdC0aVPExsbi888/R61atTBw4ECt9f72228oKSmBnp4ebGxsMG7cOFStWlVabmtr+2p2sDLQdTLTv1NJSUm5o49Lly6JQYMGCUtLS9GwYUNRr149ERERIU0m7N69W1hbW4sdO3YIIf53b+F3330n3NzcRFxcnBDi4a06hw4dEgcOHBBDhgwRHh4e4vDhw69o716cwsLCMvcbXr16VYwcOVJYW1uL6tWrCw8PDzFo0CBp+enTp8u9nWbZsmXC1dVVHDp0SAghxNmzZ8Xu3btFYmKiiIiIEI0bN37il2r8m/AaI71yJSUl0qdRACA7O1taFh0dLX0hw9mzZ7FgwQLs3LkTP//8MwDAxcUFLVu2lJ6Xfha3T58+uH//Pk6ePAkAOHXqFKZMmYIePXrg5s2b+OGHH+Dt7f0qd/OFMDAwgJ6eHtLS0nD8+HEAwLZt23Djxg2sW7cOFy9exLJlyxAdHY2oqCgUFhaiUaNGqFWrFrZs2YIHDx5I62revDmqV68ufUVaamoqPvnkEwQFBSE5ORlz5sxB586ddbKflY6uk5nefOV9XdXdu3fFtGnTRMuWLcUHH3wg3R+3e/du6f9funRJjB8/XigUCtGiRQshhBD5+fliwYIFwsbGRmu2WQghOnXqJHx8fERGRobIysoSSUlJ5d7b97ooKioSP/30k3BzcxO2traiV69eIjc3Vxw6dEj6RM7FixfF/PnzhUKhED169BDnz58XQjy8X7NOnToiJSVFWt/9+/fFqFGjhLOzsygoKBCFhYUiISGh3Ft7/u0YjPTCyD+G97gL9XFxccLNzU20bt1azJs3T2zZskXrhuvc3FzRr18/4eTkJAIDA8WUKVOEQqEQJ06cEEIIkZSUJOzs7MS4cePEzp07xdixY8WlS5dEXFycWL58+RszQbBu3TrRpEkT8e2334pr166J48ePiwcPHgghhNBoNOKDDz4QDg4OIjAwUHz44YfC3t5ebN68WQjxcKLE2NhYTJw4UezevVsMGjRIpKeni7i4OPHTTz+JBw8evNb/0XjZGIz0j129elVYWFiI48ePl7t83759YvHixeLcuXNCCCE+++wz8dZbbz12fd9++61o06aNOHjwoBDi4cixSpUq4tNPPxVCPByBRkZGiiZNmggbGxsxdOjQSv2JlIry8/OTPoYnt2TJEtGsWTPpmqoQQhgZGYlJkyZJN6LPnj1b+Pj4CGtra/Hee+9JH2ekp+OsNFXI4sWLoVKp0KNHD9SoUQObN2+Gp6entLywsBBLlizBjBkzUFhYiODgYNSsWRMuLi64ffs29PX1sW/fPly7dg1VqlSBhYUFXF1d4eDggNjYWDg4OMDHxwcAcPDgQWg0GixcuBAzZsyAnp4eBgwYAD8/Pzg5OenqELx0Xl5eWL58OSIiIlBSUgKlUom8vDxMnDgRUVFRaNWqlXTMIyMjoaenhz179qBbt27w9PTEhx9+iL59+8LBwUHHe/L6YTDScym9nWPTpk24efMm/P39YWNjg3bt2iErKwtKpRJKpRIpKSn4+eefMXnyZAwePBiFhYUoKCiAnp4ewsPDMXnyZPTq1QutWrXCjRs3cPXqVbRt2xabNm3CW2+9ha+++grr1q2DWq3Gli1b8Msvv+C///0vMjIypD/0NzkUAeCLL75AdnY20tPTUadOHWRmZmL37t0oKSmBqakpDhw4gJUrV8LGxgZ79uzB1KlTcfz4cVhbWwN4OHHDUKwgXQ9Z6fVRUlIi3R6TkJAglEqldOvHrVu3hEKhEOvWrRNCCDFv3jzRuHFj6eL/jRs3tNalVqtFQUGBuHjxosjIyBA7d+4UCoVCZGZmivv374vw8HDh6uoqatasKb777rsyEy3/NqVf6LB27VpRq1YtceDAATFixAjh7OwsnJ2dxTfffPPGXFutDBRCPPK5K6Ln4OjoiMGDB2PSpEkwNjaGr68vHB0dER0djT/++APTpk3D+fPnUb9+fVStWhXnz59Hp06d8O233wJ4+DG20lt2pk6digMHDiAqKgpOTk548OABsrKyYGdnp8td1DkhBC5fvoxq1arhwoULmDFjBkxMTLB06VLo6enh+vXrqFatmq67+cbhqTQ9s3v37mHGjBmIjIzEqFGjYGxsjIMHDyIjIwO1atXC4MGDMXLkSNy8eRMdOnSAnZ0d9u3bhypVquD+/ftwd3fH999/jxYtWsDHxwdRUVG4efMmdu7ciXv37mHOnDnS6bGxsTGMjY11vMe6V/ob1keOHMHFixfh5+eHyZMnSz9MxVB8ORiMJCkuLoaenp5003Qp8X8/D/DLL7/g119/xZIlS2BmZoaDBw9i7969SE5ORq1atRASEoKRI0di+/bt+M9//gMPDw+tj92lpqZizZo1yMrKgpmZGR48eIBr165h3LhxGDBggPTxNfqfunXrolOnTmjfvj3effddmJiYSMvk7xO9ODyV/pcT//ebH49+/rZ0guVRBQUFaNCgAcLCwjB16lQAD2ee3dzc0L59e8ybNw+mpqbo3bs3bt26hV27dgF4OKNsZ2eHlJQULF68GHl5eVi3bh1UKpXWqTRRZcKPBP7LKRQKKQSPHj2Kvn37Sh8ZKyWEQGFhIfLz8+Hi4gLgYVAaGhpiyJAh2Lp1K65fvw4AGDhwIBISEnD58mXo6+tj8+bN6Nu3LwYOHAhHR0fpNh8hBEORKi0G479IcXGx9GtwpYqKijBlyhTExMRIPx3q6uoqfb8f8DA8c3Jy0LJlS+zcuRPA/77hJSAgAOnp6UhMTERJSQnat28PAFi2bBkAYNiwYYiMjERGRgaWLFmCunXrSuskqqwYjP8CpVdL9PX1pYv2pQwMDLBp0yZ07twZderUQVRUFNzd3cuM5mxtbeHj44M9e/ZArVZLy2NiYgAAmzZtktpnz54NX19fAA+/9KFx48avYjeJXhheY/wXWbNmDVavXo0GDRrA398fAQEBUnu/fv2wbds2BAYGPvb1ly9fRrdu3WBubo5x48bBwsICmzZtgpGREQ4fPoytW7dqfX8f0euKI8bX3Lx58zBv3jytr5eSy83NRXh4OD7//HPUrVsXKSkpCAkJwfLlywE8PB02NjZGenr6E7dVOqJ0dnbG6NGj0aNHD9jZ2WHWrFk4cuQIQ5HeGBwxvqZKZ4579eqFtLQ0REZGon79+tKtNY+Ki4vDu+++i99//x1vvfUWAGDs2LGIi4vD/Pnz0bZtW3Tp0gXFxcXYtm3bM13/u3DhgjQRQ/Sm4YjxNffhhx/ixo0b+OuvvwCUP6nxxx9/oFGjRmjUqJHU1q9fP1StWhWbN28GAAwaNAh79+7FlStXnmm7DEV6kzEYXxNCCK2Z4tJZ4TZt2qBKlSo4ePCg1jdhAw9noQHAxsYGqampKCkpkSZeGjdujCpVquD69esoLCxEYGAgqlSpgg0bNryiPSKqvBiMr4HS0+PSmeD79+9L7QAQEhKCw4cP4+LFi1rtpZ8kef/995GWloYjR45II0pDQ0OkpKTA2toahoaGUCqVaN++PXbu3Fnmlh6ifxsGYyVUUlIijfaAh6fHV65cwUcffSR9+mTBggVSyPXt2xfXr1+Xfu/k0dPpkpISODk5ISAgADNnzsTvv/8OADhw4ABycnLQpk0bqXbx4sWIjY0t86kXon8b/gXowONGZKVhqKenB319feTk5CAvLw+HDx9G165d8ffff2PChAlo3rw5vvjiC6xYsQKFhYVwdXVF3bp1ceDAAWRmZgL436ix9H/nzp0LR0dHDB8+HF5eXvD390erVq3QpUsXafsWFhYvc7eJXhucldah7OxsWFhYlPlscm5uLkJDQ3H48GHs3LkTCoUCf/75J8LDw6Watm3bQqlUYtasWWjevDm+//57LF68GEuWLEHbtm3L3V5xcTF27tyJa9euISgoiN/MQvQYHDHqwPnz5+Hn54fVq1cDeDhCLCoqwvnz51GlShXMnDkTLi4u+OOPP9C0aVO4uLggPDwcJ0+eREhICKysrHDt2jWkpaUhPj4ewMOfD83OzpY+micnhIC+vj46d+6MoUOHMhSJnoDB+IqUlJRIgeXq6oqSkhLs27cPw4YNg56eHrZv3w4bGxs0atQI06ZNQ8eOHdG4cWMoFAqYm5vjxo0bGDt2LKpVq4Zdu3bhypUr0NfXR0JCAu7duwdbW1s0b94cW7ZsQWpqapnt87PJRM+OwfiK6OnpQU9PD8XFxUhJScGVK1fw22+/4cyZM/j9998RHBwMKysrdOnSBZaWltKkSGmgrV27FhkZGRg9ejRatGiB3Nxc6Onp4ezZs0hISAAA9O7dG3Z2dlAqlTrbT6I3AYPxJSjvsu2dO3fw8ccfY8mSJXBwcMDw4cPh4eGBnj17okuXLtKEi7+/P3JycnDixAkAkO5dfPDgAVQqFdLS0gAAK1asQLVq1ZCbmyvdlN27d2+sWbMGjo6Or2ZHid5QnHx5iTIzM6XPD9++fRtDhgxBXl6e9I00Xbt2hbGxMebPny/9mltOTg46d+6MGjVqYNWqVSgsLIShoSEuXbqEYcOG4fz58ygsLISFhQWio6Nhb2/P64VELxhHjP+A/H7DUvn5+Rg1ahT69esnXVe0tbVFx44dkZmZiQMHDgAA3nnnHaSkpCAxMRHAw5Gmubk5+vTpg23btqGoqAiGhoYAHn7F/YYNG6TfXPn777/RvHlzhiLRS8Bg/AdKT3+zs7OxdetWZGRkoKioCEqlEnZ2dsjJyZGu/wFAy5YtYWlpia1btwIAgoODIYSQgrH0emLHjh2h0WikWevSQb2FhQX69u0rfV0YEb0cDMZnUPq7KHKpqano06cPHB0d8cknn8DPzw//7//9PwBAUFAQFAqF9I3XAODu7g43NzccPXoUubm5qFu3Lho3boyYmBgcOnQI8fHx2LBhA+rWrYuRI0dKv5LHGWWiV4vB+ASlgahQKLTCqXRCZM2aNcjMzERiYiLOnDmDefPmYe3atfjpp5/QvHlzuLi44Pjx47h37x4AwNTUFDVq1MDFixcRFxcHAAgPD0eNGjXw3nvvwcfHB4cPH4ZCocD333+PXr16vfJ9JiIGY7lKR4elgXj58mWsXLlS+iyygYEBMjIysGjRIvzwww9wdXVFfHw8tm7diqtXryI5ORkKhQI+Pj64ffu2dE0RANLT03H79m1ER0cDAHx8fLBo0SJs374dJSUlmD17NkeIRDrGn2krh0KhQH5+PlJSUrBu3Tp88803qFu3Lq5fv46lS5fi3XffhRACOTk5mDlzJuLi4qBWq+Hn54eYmBjp907at2+PXbt2YezYsXBwcEBycjLUajUGDBgAAwMD5OXlwcTEBFZWVvD09NTxXhNRKd6uU46ioiL4+fkhPz8f9evXx6RJk1CzZk306tULWVlZmDt3Luzs7NC7d29cvHgRixcvRuvWraVbc3JycpCbmwt7e3ucPXsWERERuHDhAoqKirBgwQIEBQVp/XA6EVUuPJUuh4GBAdq3b4+TJ0+idu3acHFxgZGRESZOnIjc3Fzs2rULjo6OaNmyJfT09NClSxcpFHNzczFt2jTs3r0bRUVFcHNzw2+//YYDBw7g+vXr6N69O0ORqJLjqfRjBAUFYdWqVVptLVq0QK1atRAfH4/s7Gx8+OGH2LJlC5o2bYru3bvD0NBQunb49ttvS18sa21tDWtr61e+D0RUMRwxPkbz5s1Rv359XLp0Cbdv3wbw8L7Ftm3bIj09HQcOHICzszPWrVuHHj164NChQ9i8eTMGDRqEhISEJ/4MKRFVbhwxPkH79u3x22+/4cSJE/D39wcA+Pn5YdWqVdi2bRuCgoLg4eEBDw8PaSKFiF5/HDE+QeknU44dOya1ubq6wsvLC02aNJHuZxRCMBSJ3iCclX6Kd999F/fu3cPKlStRs2ZNXXeHiF4Bnko/xfDhw1FUVIQaNWrouitE9IpwxEhEJMNrjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBjpjTRlyhQ0bdr0met/+uknODs7Q09PD/Pnz39p/WrXrh3GjBnz0tZPLwZv8KbXnkKhwMaNG9G1a1epLScnB/n5+bCxsXnq67OysmBra4u5c+fi/fffh0qlgqmp6T/q0759+/DOO+9ArVajSpUqUvvdu3dhaGgICwuLf7R+ern4kUB6I5mbm8Pc3PyZalNTU1FYWIigoCA4Ojq+1H7xezlfDzyVpkph3bp18PDwgImJCWxsbNCxY0fk5ubi2LFj8PPzg62tLVQqFXx9fXHixAnpdbVq1QIAdOvWDQqFQnouP5Xet28fWrVqBTMzM1SpUgU+Pj64evUqIiMj4eHhAQCoU6cOFAoFrly5gkuXLuHdd9+Fvb09zM3N0bJlS+zevVurz/n5+ZgwYQKcnZ2hVCrh4uKCZcuW4cqVK3jnnXcAAFZWVlAoFAgPDwdQ9lRarVajf//+sLKygqmpKQIDA3HhwgVpeWRkJKpUqYKdO3eiYcOGMDc3R6dOnZCenv6CjjyVh8FIOpeeno4+ffpg4MCBSE5Oxr59+/Dee+9BCIHs7GwMGDAAcXFxSEhIgIuLCzp37ozs7GwAkL4SbsWKFUhPT9f6irhSRUVF6Nq1K3x9ffHXX38hPj4eQ4cOhUKhQK9evaTAO3r0KNLT0+Hs7IycnBx07twZu3fvxsmTJxEQEIAuXbogNTVVWm///v0RHR2N7777DsnJyVi8eDHMzc3h7OyM9evXAwDOnz+P9PR0LFiwoNx9Dw8Px/Hjx7F582bEx8dDCIHOnTujsLBQqrl//z5mz56NqKgoHDhwAKmpqRg/fvyLOfhUPkGkY4mJiQKAuHLlylNri4qKhIWFhdiyZYvUBkBs3LhRq27y5MmiSZMmQggh7ty5IwCIffv2lbvOkydPCgAiJSXlidt2c3MT33//vRBCiPPnzwsAYteuXeXW7t27VwAQarVaq93X11d8+OGHQggh/v77bwFAHDp0SFp++/ZtYWJiIn777TchhBArVqwQAMTFixelmh9++EHY29s/sa/0z3DESDrXpEkTdOjQAR4eHujRoweWLl0KtVoNALh16xaGDRuG+vXrQ6VSQaVSIScnR2vk9jTW1tYIDw+XRn0LFix46qlobm4uJkyYADc3N1SpUgXm5uY4d+6ctN2kpCTo6+tLP5VbEcnJyTAwMICXl5fUZmNjA1dXVyQnJ0ttpqamqFu3rvTc0dERt27dqvB26ekYjKRz+vr62LVrF3bs2AE3Nzd8//33cHV1RUpKCsLDw5GYmIj58+fj8OHDSEpKgo2NDQoKCp5rGytWrEB8fDzatGmDX3/9FfXr10dCQsJj6z/++GOsX78e06ZNQ1xcHJKSkuDh4SFt90V8Y7t4zA0hQggoFArpuaGhodZyhULx2NfSi8FgpEpBoVDAx8cHU6dOxcmTJ2FkZISNGzciLi4OERER6Ny5Mxo1agSlUin9OFkpQ0NDFBcXP3UbzZo1w8SJE3H48GG4u7tjzZo1j62Ni4tDeHg4unXrBg8PDzg4OODKlSvScg8PD5SUlGD//v3lvt7IyAgAntgvNzc3FBUV4ciRI1LbnTt38Pfff6Nhw4ZP3R96eRiMpHNHjhzB9OnTcfz4caSmpmLDhg3IzMxEw4YNUa9ePURFRSE5ORlHjhxB3759y4zWatWqhT/++AMZGRnSKfijUlJSMHHiRMTHx+Pq1auIjY19avjUq1cPGzZsQFJSEv7880+EhoaipKREa5sDBgzAwIEDsWnTJqSkpGDfvn347bffAAA1a9aEQqHA1q1bkZmZiZycnDLbcHFxwbvvvoshQ4bg4MGD+PPPP9GvXz9Uq1YN7777bkUPJ70ADEbSOUtLSxw4cACdO3dG/fr18fnnn2POnDkIDAzE8uXLoVar0axZM4SFhSEiIgJ2dnZar58zZw527doFZ2dnNGvWrMz6TU1Nce7cObz//vuoX78+hg4dilGjRuGDDz54bJ/mzZsHKysrtGnTBl26dEFAQACaN2+uVbNo0SJ0794dI0aMQIMGDTBkyBDk5uYCAKpVq4apU6fi008/hb29PUaNGlXudlasWAFPT08EBwfD29sbQghs3769zOkzvVr85AsRkQxHjEREMgxGIiIZBiMRkQyDkYhIhsFIRCTDYCQikmEwEhHJMBiJiGQYjEREMgxGIiIZBiMRkQyDkYhI5v8DMOKrkW6h1NEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -612,10 +612,9 @@ { "data": { "text/plain": [ - "satisfaction\n", "neutral or dissatisfied 0.566667\n", "satisfied 0.433333\n", - "Name: proportion, dtype: float64" + "Name: satisfaction, dtype: float64" ] }, "execution_count": 15, @@ -675,411 +674,7 @@ { "data": { "text/html": [ - "
ColumnTransformer(transformers=[('onehotencoder',\n",
+       "
ColumnTransformer(transformers=[('onehotencoder',\n",
        "                                 OneHotEncoder(handle_unknown='ignore'),\n",
        "                                 ['Gender', 'Customer Type', 'Type of Travel',\n",
        "                                  'Class', 'Inflight wifi service',\n",
@@ -1092,7 +687,7 @@
        "                                  'Inflight service', 'Cleanliness']),\n",
        "                                ('standardscaler', StandardScaler(),\n",
        "                                 ['Age', 'Flight Distance',\n",
-       "                                  'Departure Delay in Minutes'])])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness']
OneHotEncoder(handle_unknown='ignore')
['Age', 'Flight Distance', 'Departure Delay in Minutes']
StandardScaler()
" ], "text/plain": [ "ColumnTransformer(transformers=[('onehotencoder',\n", @@ -1295,36 +890,36 @@ " \n", " \n", " 0\n", - " 0.043641\n", - " 0.034473\n", + " 0.036574\n", + " 0.051641\n", " 0.566671\n", " 0.566666\n", " \n", " \n", " 1\n", - " 0.041305\n", - " 0.036428\n", + " 0.031263\n", + " 0.047769\n", " 0.566671\n", " 0.566666\n", " \n", " \n", " 2\n", - " 0.040535\n", - " 0.033999\n", + " 0.031150\n", + " 0.031248\n", " 0.566671\n", " 0.566666\n", " \n", " \n", " 3\n", - " 0.040181\n", - " 0.035316\n", + " 0.047369\n", + " 0.047524\n", " 0.566671\n", " 0.566666\n", " \n", " \n", " 4\n", - " 0.040409\n", - " 0.035199\n", + " 0.056730\n", + " 0.037709\n", " 0.566651\n", " 0.566671\n", " \n", @@ -1334,11 +929,11 @@ ], "text/plain": [ " fit_time score_time test_score train_score\n", - "0 0.043641 0.034473 0.566671 0.566666\n", - "1 0.041305 0.036428 0.566671 0.566666\n", - "2 0.040535 0.033999 0.566671 0.566666\n", - "3 0.040181 0.035316 0.566671 0.566666\n", - "4 0.040409 0.035199 0.566651 0.566671" + "0 0.036574 0.051641 0.566671 0.566666\n", + "1 0.031263 0.047769 0.566671 0.566666\n", + "2 0.031150 0.031248 0.566671 0.566666\n", + "3 0.047369 0.047524 0.566671 0.566666\n", + "4 0.056730 0.037709 0.566651 0.566671" ] }, "execution_count": 22, @@ -1379,7 +974,54 @@ "execution_count": 23, "id": "0a713acc", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n" + ] + } + ], "source": [ "log_clf = make_pipeline(preprocessor, LogisticRegression(random_state=123))\n", "log_results = pd.DataFrame(cross_validate(\n", @@ -1426,38 +1068,38 @@ " \n", " \n", " 0\n", - " 0.709055\n", - " 0.062471\n", - " 0.932342\n", - " 0.933941\n", + " 1.133854\n", + " 0.079384\n", + " 0.932390\n", + " 0.933905\n", " \n", " \n", " 1\n", - " 0.717606\n", - " 0.064878\n", - " 0.933449\n", - " 0.934013\n", + " 0.978683\n", + " 0.083032\n", + " 0.933497\n", + " 0.933917\n", " \n", " \n", " 2\n", - " 0.590595\n", - " 0.070287\n", - " 0.931139\n", - " 0.934651\n", + " 0.985641\n", + " 0.062928\n", + " 0.931091\n", + " 0.934687\n", " \n", " \n", " 3\n", - " 0.753936\n", - " 0.067966\n", - " 0.935229\n", - " 0.933592\n", + " 1.037313\n", + " 0.071967\n", + " 0.935037\n", + " 0.933520\n", " \n", " \n", " 4\n", - " 0.735722\n", - " 0.068308\n", - " 0.934504\n", - " 0.933858\n", + " 0.983722\n", + " 0.074286\n", + " 0.934408\n", + " 0.933738\n", " \n", " \n", "\n", @@ -1465,11 +1107,11 @@ ], "text/plain": [ " fit_time score_time validation_score train_score\n", - "0 0.709055 0.062471 0.932342 0.933941\n", - "1 0.717606 0.064878 0.933449 0.934013\n", - "2 0.590595 0.070287 0.931139 0.934651\n", - "3 0.753936 0.067966 0.935229 0.933592\n", - "4 0.735722 0.068308 0.934504 0.933858" + "0 1.133854 0.079384 0.932390 0.933905\n", + "1 0.978683 0.083032 0.933497 0.933917\n", + "2 0.985641 0.062928 0.931091 0.934687\n", + "3 1.037313 0.071967 0.935037 0.933520\n", + "4 0.983722 0.074286 0.934408 0.933738" ] }, "execution_count": 24, @@ -1579,26 +1221,66 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "C:\\Users\\hrayr\\anaconda3\\envs\\UBC\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n", + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n" ] } ], @@ -1663,8 +1345,8 @@ " \n", " \n", " dummy\n", - " 0.208 (+/- 0.011)\n", - " 0.455 (+/- 0.013)\n", + " 0.226 (+/- 0.020)\n", + " 0.525 (+/- 0.054)\n", " 0.567 (+/- 0.000)\n", " 0.567 (+/- 0.000)\n", " 0.321 (+/- 0.000)\n", @@ -1676,8 +1358,8 @@ " \n", " \n", " Logistic Regression\n", - " 0.697 (+/- 0.087)\n", - " 0.450 (+/- 0.025)\n", + " 1.073 (+/- 0.104)\n", + " 0.544 (+/- 0.052)\n", " 0.933 (+/- 0.002)\n", " 0.934 (+/- 0.000)\n", " 0.933 (+/- 0.002)\n", @@ -1689,8 +1371,8 @@ " \n", " \n", " Decision Tree\n", - " 3.606 (+/- 0.107)\n", - " 0.458 (+/- 0.038)\n", + " 4.430 (+/- 0.159)\n", + " 0.457 (+/- 0.022)\n", " 0.947 (+/- 0.001)\n", " 1.000 (+/- 0.000)\n", " 0.947 (+/- 0.001)\n", @@ -1706,9 +1388,9 @@ ], "text/plain": [ " fit_time score_time validation_accuracy \\\n", - "dummy 0.208 (+/- 0.011) 0.455 (+/- 0.013) 0.567 (+/- 0.000) \n", - "Logistic Regression 0.697 (+/- 0.087) 0.450 (+/- 0.025) 0.933 (+/- 0.002) \n", - "Decision Tree 3.606 (+/- 0.107) 0.458 (+/- 0.038) 0.947 (+/- 0.001) \n", + "dummy 0.226 (+/- 0.020) 0.525 (+/- 0.054) 0.567 (+/- 0.000) \n", + "Logistic Regression 1.073 (+/- 0.104) 0.544 (+/- 0.052) 0.933 (+/- 0.002) \n", + "Decision Tree 4.430 (+/- 0.159) 0.457 (+/- 0.022) 0.947 (+/- 0.001) \n", "\n", " train_accuracy validation_precision \\\n", "dummy 0.567 (+/- 0.000) 0.321 (+/- 0.000) \n", @@ -1764,7 +1446,22 @@ "execution_count": 30, "id": "fe436852-287e-4103-894f-0c3256cc5f1e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Azin\\miniforge3\\envs\\dsci522-airline-pred\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n" + ] + } + ], "source": [ "# Prepare the test set\n", "X_test = test_data.drop(columns=['satisfaction', 'Arrival Delay in Minutes'])\n", @@ -1800,7 +1497,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Logistic Regression Test Accuracy: 0.9330920850015398\n", + "Logistic Regression Test Accuracy: 0.932784108407761\n", "\n", "Classification Report:\n", " precision recall f1-score support\n", @@ -1839,7 +1536,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHFCAYAAAC9/jJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnpklEQVR4nO3deXhN1/7H8fdJyEgOCUmEmIcKITGHtrSmGutqS6vXUBpt0TTXeF1FOqDUEEONbXENVbdFtSU1KzUPaYtUW03QSkqJhCDj/v3h57RHHBInp6bPy3Oex9l7rbXX3ifDN9+119omwzAMREREREQcwOlOd0BERERE7l8KNkVERETEYRRsioiIiIjDKNgUEREREYdRsCkiIiIiDqNgU0REREQcRsGmiIiIiDiMgk0RERERcRgFmyIiIiLiMAo2ReS+8d133/HCCy9QoUIF3NzcKFKkCHXq1GHChAmcO3fOocc+ePAgTZs2xWw2YzKZiI6OLvBjmEwmoqKiCrzdW1mwYAEmkwmTycSWLVty7TcMg8qVK2MymWjWrNltHWPmzJksWLAgX3W2bNlis08icvcodKc7ICJSEObNm0e/fv2oVq0aQ4YMISgoiMzMTPbt28fs2bPZuXMnK1eudNjxe/fuTVpaGsuWLaN48eKUL1++wI+xc+dOypQpU+Dt5lXRokX54IMPcgWUW7du5dixYxQtWvS22545cyYlSpSgV69eea5Tp04ddu7cSVBQ0G0fV0QcT8GmiNzzdu7cySuvvELLli1ZtWoVrq6uln0tW7Zk0KBBxMTEOLQPhw4dIjw8nDZt2jjsGI0aNXJY23nRtWtXlixZwnvvvYeXl5dl+wcffEBYWBipqal/Sz8yMzMxmUx4eXnd8WsiIremYXQRueeNHTsWk8nE3LlzrQLNa1xcXOjYsaPlfU5ODhMmTOChhx7C1dUVX19fevTowa+//mpVr1mzZtSsWZO9e/fyyCOP4OHhQcWKFXnnnXfIyckB/hxizsrKYtasWZbhZoCoqCjL///qWp2EhATLtk2bNtGsWTN8fHxwd3enbNmyPPXUU1y6dMlS5kbD6IcOHeLJJ5+kePHiuLm5ERISwsKFC63KXBtu/uijjxgxYgQBAQF4eXnRokULjh49mreLDDz33HMAfPTRR5ZtKSkpfPrpp/Tu3fuGdd544w0aNmyIt7c3Xl5e1KlThw8++ADDMCxlypcvz+HDh9m6davl+l3LDF/r+6JFixg0aBClS5fG1dWVn3/+Odcw+h9//EFgYCCNGzcmMzPT0v6RI0fw9PSke/fueT5XESk4CjZF5J6WnZ3Npk2bqFu3LoGBgXmq88orrzBs2DBatmzJ6tWreeutt4iJiaFx48b88ccfVmWTkpJ4/vnn+ec//8nq1atp06YNw4cPZ/HixQC0a9eOnTt3AvD000+zc+dOy/u8SkhIoF27dri4uPDhhx8SExPDO++8g6enJxkZGTbrHT16lMaNG3P48GGmTZvGihUrCAoKolevXkyYMCFX+f/85z8cP36c999/n7lz5/LTTz/RoUMHsrOz89RPLy8vnn76aT788EPLto8++ggnJye6du1q89xeeuklli9fzooVK+jcuTOvvvoqb731lqXMypUrqVixIqGhoZbrd/0tD8OHD+fEiRPMnj2bzz//HF9f31zHKlGiBMuWLWPv3r0MGzYMgEuXLvHMM89QtmxZZs+enafzFJECZoiI3MOSkpIMwHj22WfzVD4uLs4AjH79+llt3717twEY//nPfyzbmjZtagDG7t27rcoGBQUZrVu3ttoGGP3797faNnr0aONGP2bnz59vAEZ8fLxhGIbxySefGIARGxt7074DxujRoy3vn332WcPV1dU4ceKEVbk2bdoYHh4exvnz5w3DMIzNmzcbgNG2bVurcsuXLzcAY+fOnTc97rX+7t2719LWoUOHDMMwjPr16xu9evUyDMMwatSoYTRt2tRmO9nZ2UZmZqbx5ptvGj4+PkZOTo5ln62614736KOP2ty3efNmq+3jx483AGPlypVGz549DXd3d+O777676TmKiOMosykiD5TNmzcD5JqI0qBBA6pXr87GjRuttvv7+9OgQQOrbbVq1eL48eMF1qeQkBBcXFzo27cvCxcu5JdffslTvU2bNtG8efNcGd1evXpx6dKlXBnWv95KAFfPA8jXuTRt2pRKlSrx4Ycf8v3337N3716bQ+jX+tiiRQvMZjPOzs4ULlyYUaNGcfbsWU6fPp3n4z711FN5LjtkyBDatWvHc889x8KFC5k+fTrBwcF5ri8iBUvBpojc00qUKIGHhwfx8fF5Kn/27FkASpUqlWtfQECAZf81Pj4+ucq5urpy+fLl2+jtjVWqVIkNGzbg6+tL//79qVSpEpUqVWLq1Kk3rXf27Fmb53Ft/19dfy7X7m/Nz7mYTCZeeOEFFi9ezOzZs6latSqPPPLIDcvu2bOHVq1aAVdXC/jmm2/Yu3cvI0aMyPdxb3SeN+tjr169uHLlCv7+/rpXU+QOU7ApIvc0Z2dnmjdvzv79+3NN8LmRawFXYmJirn2nTp2iRIkSBdY3Nzc3ANLT0622X39fKMAjjzzC559/TkpKCrt27SIsLIzIyEiWLVtms30fHx+b5wEU6Ln8Va9evfjjjz+YPXs2L7zwgs1yy5Yto3DhwnzxxRd06dKFxo0bU69evds65o0mWtmSmJhI//79CQkJ4ezZswwePPi2jikiBUPBpojc84YPH45hGISHh99wQk1mZiaff/45AI8//jiAZYLPNXv37iUuLo7mzZsXWL+uzaj+7rvvrLZf68uNODs707BhQ9577z0ADhw4YLNs8+bN2bRpkyW4vOa///0vHh4eDlsWqHTp0gwZMoQOHTrQs2dPm+VMJhOFChXC2dnZsu3y5cssWrQoV9mCyhZnZ2fz3HPPYTKZWLt2LePGjWP69OmsWLHC7rZF5PZonU0RueeFhYUxa9Ys+vXrR926dXnllVeoUaMGmZmZHDx4kLlz51KzZk06dOhAtWrV6Nu3L9OnT8fJyYk2bdqQkJDAyJEjCQwM5F//+leB9att27Z4e3vTp08f3nzzTQoVKsSCBQs4efKkVbnZs2ezadMm2rVrR9myZbly5YplxneLFi1stj969Gi++OILHnvsMUaNGoW3tzdLlizhyy+/ZMKECZjN5gI7l+u98847tyzTrl07Jk+eTLdu3ejbty9nz55l4sSJN1yeKjg4mGXLlvHxxx9TsWJF3Nzcbus+y9GjR7Nt2zbWrVuHv78/gwYNYuvWrfTp04fQ0FAqVKiQ7zZFxD4KNkXkvhAeHk6DBg2YMmUK48ePJykpicKFC1O1alW6devGgAEDLGVnzZpFpUqV+OCDD3jvvfcwm8088cQTjBs37ob3aN4uLy8vYmJiiIyM5J///CfFihXjxRdfpE2bNrz44ouWciEhIaxbt47Ro0eTlJREkSJFqFmzJqtXr7bc83gj1apVY8eOHfznP/+hf//+XL58merVqzN//vx8PYnHUR5//HE+/PBDxo8fT4cOHShdujTh4eH4+vrSp08fq7JvvPEGiYmJhIeHc+HCBcqVK2e1DmlerF+/nnHjxjFy5EirDPWCBQsIDQ2la9eubN++HRcXl4I4PRHJI5Nh/GVlXRERERGRAqR7NkVERETEYRRsioiIiIjDKNgUEREREYdRsCkiIiIiDqNgU0REREQcRsGmiIiIiDiM1tmUB05OTg6nTp2iaNGi+XoEnoiI3B0Mw+DChQsEBATg5OS4vNmVK1du+FSy/HJxcbE8vvZBpGBTHjinTp0iMDDwTndDRETsdPLkScqUKeOQtq9cuYJ7UR/IumR3W/7+/sTHxz+wAaeCTXngFC1aFACXoJ6YnPUkEbk/ndgy8U53QcRhLqSmUrlCoOXnuSNkZGRA1iVcg3qCPb8rsjNIOrKQjIwMBZsiD4prQ+cmZxcFm3Lf8vLyutNdEHG4v+VWqEJudv2uMEyaHqNgU0RERMQWE2BPUKupAQo2RURERGwyOV192VP/AacrICIiIiIOo8ymiIiIiC0mk53D6BpHV7ApIiIiYouG0e2mKyAiIiIiDqPMpoiIiIgtGka3m4JNEREREZvsHEbXILKugIiIiIg4jjKbIiIiIrZoGN1uCjZFREREbNFsdLvpCoiIiIiIwyizKSIiImKLhtHtpmBTRERExBYNo9tNwaaIiIiILcps2k3htoiIiIg4jDKbIiIiIrZoGN1uCjZFREREbDGZ7Aw2NYyucFtEREREHEaZTRERERFbnExXX/bUf8Ap2BQRERGxRfds2k1XQEREREQcRplNEREREVu0zqbdFGyKiIiI2KJhdLvpCoiIiIiIwyizKSIiImKLhtHtpmBTRERExBYNo9tNwaaIiIiILcps2k3htoiIiIg4jDKbIiIiIrZoGN1uCjZFREREbNEwut0UbouIiIiIwyizKSIiImKTncPoyusp2BQRERGxScPodlO4LSIiIiIOo8ymiIiIiC0mk52z0ZXZVLApIiIiYouWPrKbroCIiIiIOIwymyIiIiK2aIKQ3RRsioiIiNiiYXS7KdgUERERsUWZTbsp3BYRERERh1FmU0RERMQWDaPbTcGmiIiIiC0aRrebwm0RERGRu8jXX39Nhw4dCAgIwGQysWrVKsu+zMxMhg0bRnBwMJ6engQEBNCjRw9OnTpl1UZ6ejqvvvoqJUqUwNPTk44dO/Lrr79alUlOTqZ79+6YzWbMZjPdu3fn/PnzVmVOnDhBhw4d8PT0pESJEkRERJCRkZGv81GwKSIiImKDyWSy+5VfaWlp1K5dmxkzZuTad+nSJQ4cOMDIkSM5cOAAK1as4Mcff6Rjx45W5SIjI1m5ciXLli1j+/btXLx4kfbt25OdnW0p061bN2JjY4mJiSEmJobY2Fi6d+9u2Z+dnU27du1IS0tj+/btLFu2jE8//ZRBgwbl63xMhmEY+bwGIve01NRUzGYzrsHhmJxd7nR3RBwieW/uX1Ii94vU1FT8fMykpKTg5eXlsGOYzWbcO76HqbD7bbdjZF7m8ur+t91Xk8nEypUr6dSpk80ye/fupUGDBhw/fpyyZcuSkpJCyZIlWbRoEV27dgXg1KlTBAYGsmbNGlq3bk1cXBxBQUHs2rWLhg0bArBr1y7CwsL44YcfqFatGmvXrqV9+/acPHmSgIAAAJYtW0avXr04ffp0ns9HmU0RERGRe1hKSgomk4lixYoBsH//fjIzM2nVqpWlTEBAADVr1mTHjh0A7Ny5E7PZbAk0ARo1aoTZbLYqU7NmTUugCdC6dWvS09PZv39/nvunCUIiIiIitpj+/2VPfa5mSv/K1dUVV1dXOxq+6sqVK/z73/+mW7dulkxjUlISLi4uFC9e3Kqsn58fSUlJljK+vr652vP19bUq4+fnZ7W/ePHiuLi4WMrkhTKbIiIiIjYU1D2bgYGBlok4ZrOZcePG2d23zMxMnn32WXJycpg5c+YtyxuGYXUP6Y3uJ72dMreizKaIiIiIg508edLqHkd7s5qZmZl06dKF+Ph4Nm3aZNW2v78/GRkZJCcnW2U3T58+TePGjS1lfv/991ztnjlzxpLN9Pf3Z/fu3Vb7k5OTyczMzJXxvBllNkVERERsKKjMppeXl9XLnmDzWqD5008/sWHDBnx8fKz2161bl8KFC7N+/XrLtsTERA4dOmQJNsPCwkhJSWHPnj2WMrt37yYlJcWqzKFDh0hMTLSUWbduHa6urtStWzfP/VVmU0RERMSG212+6C8N5LvKxYsX+fnnny3v4+PjiY2Nxdvbm4CAAJ5++mkOHDjAF198QXZ2tuX+SW9vb1xcXDCbzfTp04dBgwbh4+ODt7c3gwcPJjg4mBYtWgBQvXp1nnjiCcLDw5kzZw4Affv2pX379lSrVg2AVq1aERQURPfu3Xn33Xc5d+4cgwcPJjw8PF8z6xVsioiIiNhwJ4LNffv28dhjj1neDxw4EICePXsSFRXF6tWrAQgJCbGqt3nzZpo1awbAlClTKFSoEF26dOHy5cs0b96cBQsW4OzsbCm/ZMkSIiIiLLPWO3bsaLW2p7OzM19++SX9+vWjSZMmuLu7061bNyZOnJiv89E6m/LA0Tqb8iDQOptyP/s719ks+tQcu9fZvPDpSw7t691OmU0RERERWwpo6aMHmYJNERERERvuxDD6/Uaz0UVERETEYZTZFBEREbHBZLrxwuZ5b6Dg+nKvUrApIiIiYoMJO4fRFW1qGF1EREREHEeZTREREREbNEHIfgo2RURERGzR0kd20zC6iIiIiDiMMpsiIiIittg5jG5oGF3BpoiIiIgt9t6zad9M9vuDgk0RERERGxRs2k/3bIqIiIiIwyizKSIiImKLZqPbTcGmiIiIiA0aRrefhtFFRERExGGU2RQRERGxQZlN+ynYFBEREbFBwab9NIwuIiIiIg6jzKaIiIiIDcps2k/BpoiIiIgtWvrIbhpGFxERERGHUWZTRERExAYNo9tPwaaIiIiIDQo27adgU0RERMQGBZv20z2bIiIiIuIwymyKiIiI2KLZ6HZTsCkiIiJig4bR7adhdBERERFxGAWbt6F8+fJER0ffseObTCZWrVoFQEJCAiaTidjY2DvWn/xcj0uXLvHUU0/h5eWFyWTi/PnzBXI9o6KiCAkJsasN+VPj0Ep8NPkljqwZQ/LeGbRtWstq/7Dwtuz+3+v8+vUk4jdOYOV7A6hbo5xVGV+fosx+owc/xIzl168nsWXRMDo+HmJVZtALrfnqg4H8tm0yCZsm3LAvj9avylcfDOTElonErR1D1IAncXbWjy5xrFodR1G8/oBcr8HjPwagX9SiXPtavjDxhm0ZhsHTETMpXn8AX2759u88DSkA1zKb9rwedA/EMHqzZs0ICQm5owGiowQGBpKYmEiJEiUcfqwFCxYQGRnJ+fPnrbbv3bsXT0/PPLWxcOFCtm3bxo4dOyhRogRmszlf9eXv4eHuyqEff2PJ57tYNCE81/5jJ04z9N3/kfDbH7i7FuaV5x5nxYwB1PnHG5w9fxGA2W/0xKuIG90GzuFsykWebl2PD8f25rEeE/j+x18BKFzYmVUbDrLn+3i6dwzLdZwalQNYHv0Kk+Z/xcuj/0sp32JM/vezODk7MWrqSsdeBHmgbVo4hOxsw/I+7tgp/jFgBp1ahFq2NQ8L4r1R/7S8dynsfMO2Zn20GcUb9y4Tdg6j66bNByPYzAvDMMjOzqZQoTtzSTIzMylcuHC+6zk7O+Pv7++AHuVdyZIl81z22LFjVK9enZo1a95Wffl7bNhxhA07jtjc/8lX+6zevx69gh6dGlOjSgBf7/0RgPrBFRj8zjIOHDkOwKQPv6Lfc49T+6FAS7D5ztw1ADzXvuENj9O5VV0O/3yKd9+PASD+1z94873VvP92LybMW8PFS+n2naiIDSWKF7V6H71wHRXKlKBJnSqWba4uhfAr4XXTdr7/8VfeW7KJTQuH8lCb/zikryJ3uzs6FtWsWTMiIiIYOnQo3t7e+Pv7ExUVZVUmJSWFvn374uvri5eXF48//jjffvvnMESvXr3o1KmTVZ3IyEiaNWtm2b9161amTp1qSWcnJCSwZcsWTCYTX331FfXq1cPV1ZVt27Zx7NgxnnzySfz8/ChSpAj169dnw4YN+TqvnJwc3nzzTcqUKYOrqyshISHExMRY9l8b+l6+fDnNmjXDzc2NxYsX37Ctn376iUcffRQ3NzeCgoJYv3691f7rh9GTk5N5/vnnKVmyJO7u7lSpUoX58+cDkJGRwYABAyhVqhRubm6UL1+ecePGWdqaPHkywcHBeHp6EhgYSL9+/bh48WqWasuWLbzwwgukpKRYruO1z+r6YfCoqCjKli2Lq6srAQEBREREAFc/70mTJvH1119jMpksn9H19W/1mQO88847+Pn5UbRoUfr06cOVK1fy9uFIgStcyJme/2hCyoVLHPrxN8v2Xd8e4x8t61LMywOTyUTnlnVxcSnE9v0/5bltF5dCpKdnWm27kp6Ju5sLtR8qW2DnIHIzGZlZLF+7l+c7hllluLbv/4kqrf5Nvafe4LW3l3Lm3AWrepeuZBD++gLeHdrllkGp3L00jG6/O37j08KFC/H09GT37t1MmDCBN9980xJQGYZBu3btSEpKYs2aNezfv586derQvHlzzp07l6f2p06dSlhYGOHh4SQmJpKYmEhgYKBl/9ChQxk3bhxxcXHUqlWLixcv0rZtWzZs2MDBgwdp3bo1HTp04MSJE3k+p6lTpzJp0iQmTpzId999R+vWrenYsSM//WT9S3bYsGFEREQQFxdH69atc7WTk5ND586dcXZ2ZteuXcyePZthw4bd9NgjR47kyJEjrF27lri4OGbNmmUZYp82bRqrV69m+fLlHD16lMWLF1O+fHlLXScnJ6ZNm8ahQ4dYuHAhmzZtYujQoQA0btyY6OhovLy8LNdx8ODBuY7/ySefMGXKFObMmcNPP/3EqlWrCA4OBmDFihWEh4cTFhZGYmIiK1asyFU/L5/58uXLGT16NGPGjGHfvn2UKlWKmTNn3vS6SMFr/XBNTm6dRNI3U3jlucf4x4AZnEtJs+zvM/xDnAs5Eb9xAr/viGbKf56l+5B5JPz2R56PsWlnHA1qVeSpVnVxcjJRqqSZwb2vfq/465e3/E2+3PIdKRcv0+0vGfgWjYOY+1ZPPpsZwVuvdebAkeN0fGUa6Rl//nH0n8mf0qBWhVz3PMs9xlQArwfcHR9Gr1WrFqNHjwagSpUqzJgxg40bN9KyZUs2b97M999/z+nTp3F1dQVg4sSJrFq1ik8++YS+ffvesn2z2YyLiwseHh43HG5+8803admypeW9j48PtWvXtrx/++23WblyJatXr2bAgAF5OqeJEycybNgwnn32WQDGjx/P5s2biY6O5r333rOUi4yMpHPnzjbb2bBhA3FxcSQkJFCmTBkAxo4dS5s2bWzWOXHiBKGhodSrVw/AKpg8ceIEVapU4eGHH8ZkMlGunPWEjsjISMv/K1SowFtvvcUrr7zCzJkzcXFxwWw2YzKZbjpsf+LECfz9/WnRogWFCxembNmyNGjQAABvb288PDxwcXGx2UZePvPo6Gh69+7Niy++CFz9jDZs2GAzu5menk56+p/DrampqTb7L3m3bd+PPPr8OHyKFaFHp8bMH9ubFi9M5I/kq9nwEa90oFhRD57sN41z59No27QWC97pTdvwaI4cO5WnY2ze/QOjpq1i8vBnmf1GD9Izs5j4QQxhoZXJzslx5OmJWCxevYMWYUGUKlnMsq1zq7qW/wdVDiA0qCy1Ooxi3fbDdHg8hDVbv2Pbvh/Zuvjfd6DHIneXO57ZrFXL+i++UqVKcfr0aQD279/PxYsX8fHxoUiRIpZXfHw8x44dK5DjXwvKrklLS2Po0KEEBQVRrFgxihQpwg8//JDnzGZqaiqnTp2iSZMmVtubNGlCXFzcTY99vbi4OMqWLWsJNAHCwnJPovirV155hWXLlhESEsLQoUPZsWOHZV+vXr2IjY2lWrVqREREsG7dOqu6mzdvpmXLlpQuXZqiRYvSo0cPzp49S1pa2vWHsemZZ57h8uXLVKxYkfDwcFauXElWVlae6+flM4+Li8t1HW52XcaNG4fZbLa8/prZltt36UoG8b/+wb5DCUS8vZSs7By6P9kYgPKlS9C3a1NefWsxX+/9kUM//caE99dyMO4ELz7zaL6OM3PpJso9NoTgDqOo3PLfrNn6HQDHT50t8HMSud6JxHNs2XOUHp0a37ScfwkzgaW8OXbyDHD1j7H4X/+g/ONDKNEoghKNrt5O1GPY+7R/KdrR3ZYCpGF0+93xzOb1k2JMJhM5/5+xyMnJoVSpUmzZsiVXvWLFigFXh34Nw7Dal5mZmau8LdfPgh4yZAhfffUVEydOpHLlyri7u/P000+TkZGR5zavncdfGYaRa9utZmBff143avd6bdq04fjx43z55Zds2LCB5s2b079/fyZOnEidOnWIj49n7dq1bNiwgS5dutCiRQs++eQTjh8/Ttu2bXn55Zd566238Pb2Zvv27fTp0ydf1zMwMJCjR4+yfv16NmzYQL9+/Xj33XfZunVrniZA5eUzz6/hw4czcOBAy/vU1FQFnA5gMplwKXz1R4qHmwsAOTnWX8PZ2QYmp9v7wZv0RwoAT7Wux69J5/j2h5N29FYkb5Z+vpOSxYvSqkmNm5Y7d/4iv/2ebLm9I7JnK8sfX9c0eW4sY//1FE88UvNGTchdSou62++OB5s3U6dOHZKSkihUqJDVcPBflSxZkkOHDllti42NtQpsXFxcyM7OztMxt23bRq9evfjHP/4BwMWLF0lISMhzn728vAgICGD79u08+uifGZwdO3ZYhpPzKigoiBMnTnDq1CkCAgIA2Llz5y3rlSxZkl69etGrVy8eeeQRhgwZwsSJEy3969q1K127duXpp5/miSee4Ny5c+zbt4+srCwmTZqEk9PVhPfy5cut2s3rdXR3d6djx4507NiR/v3789BDD/H9999Tp06dW9bNy2devXp1du3aRY8ePSzbdu3aZbNNV1dXy5C85I2nuwsVAv9cJaBcgA81q5bmfMolzqWkMah3a9Z+/T2//5FCcbMnfZ5+lADfYny28QAAPyYkcezEaaYMf46RU1dyLiWNds1q8VjDajz7r9mWdsv4FaeY2YMy/sVxcnKiZtXSAMSfPEPa5at/4L36z+Zs3BlHjpFD+8dCiOzZkheGf5grkBUpaDk5OSz5fBfPtmtIoUJ/Lmt08VI64+d+SYfHQ/AvYeZE4lnefO9zfIoVoV2zq7dh+ZXwuuGkoDL+xSlX2vFL1UnBMZmwa+kqxZp3ebDZokULwsLC6NSpE+PHj6datWqcOnWKNWvW0KlTJ+rVq8fjjz/Ou+++y3//+1/CwsJYvHgxhw4dIjT0z7XQypcvz+7du0lISKBIkSJ4e3vbPGblypVZsWIFHTp0wGQyMXLkSEumNa+GDBnC6NGjqVSpEiEhIcyfP5/Y2FiWLFmS7/OvVq0aPXr0YNKkSaSmpjJixIib1hk1ahR169alRo0apKen88UXX1C9enUApkyZQqlSpQgJCcHJyYn//e9/+Pv7U6xYMSpVqkRWVhbTp0+nQ4cOfPPNN8yePduq7fLly3Px4kU2btxI7dq18fDwwMPDw6rMggULyM7OpmHDhnh4eLBo0SLc3d1z3R96s3O+1Wf+2muv0bNnT+rVq8fDDz/MkiVLOHz4MBUrVszH1ZWbCaleji/mvGZ5P3bgUwAs/WIXA8cto0p5P55t1xCfYp6cS7nEwSPHadt3Cj/8kgRAVnYOXSJnMXrAk3w0+SU8PVyJP3mGflGLWP+XJZWGv9yObu0bWd5vWzIcgPYvTeWbA1cn1LVoHMSg3q1xKVyIQz/9xvOD5950WSaRgrJlz1F+TUrmnx0bWW13djJx5Ngplq3ZQ8qFy/iV8OKRulX5cGxvinq63aHeity97upg02QysWbNGkaMGEHv3r05c+YM/v7+PProo/j5+QHQunVrRo4cydChQ7ly5Qq9e/emR48efP/995Z2Bg8eTM+ePQkKCuLy5cvEx8fbPOaUKVPo3bs3jRs3pkSJEgwbNizfE0oiIiJITU1l0KBBnD59mqCgIFavXk2VKlVuXfkvnJycWLlyJX369KFBgwaUL1+eadOm8cQTT9is4+LiwvDhw0lISMDd3Z1HHnmEZcuWAVCkSBHGjx/PTz/9hLOzM/Xr12fNmjU4OTkREhLC5MmTGT9+PMOHD+fRRx9l3LhxVtnDxo0b8/LLL9O1a1fOnj3L6NGjcy1VVaxYMd555x0GDhxIdnY2wcHBfP755/j4+OTpnPPymXft2pVjx44xbNgwrly5wlNPPcUrr7zCV199la/rK7Z9c+Anite3PSGux9D3b9nGLyfP0HPYzcv1f2Mx/d+48bJf1zzZb/otjyXiCI83qk7y3hm5tru7ufDp9LxNGP2rG7Uld7+rmU17htELsDP3KJNxoxsDRe5jqampmM1mXIPDMTm73OnuiDiEAhu5n6WmpuLnYyYlJQUvL8csg3btd0XFiE9wdr39p9xlp6fxy7SnHdrXu90dn40uIiIiIvevu3oYXURERORO0mx0+ynYFBEREbFBs9Htp2F0EREREXEYZTZFREREbHByMuF0mw+jADDsqHu/UGZTRERExIZrw+j2vPLr66+/pkOHDgQEBGAymVi1apXVfsMwiIqKIiAgAHd3d5o1a8bhw4etyqSnp/Pqq69SokQJPD096dixI7/++qtVmeTkZLp37255nHP37t05f/68VZkTJ07QoUMHPD09KVGiBBEREfl+qqKCTREREZG7SFpaGrVr12bGjBsvYTZhwgQmT57MjBkz2Lt3L/7+/rRs2ZILFy5YykRGRrJy5UqWLVvG9u3buXjxIu3bt7d6EmC3bt2IjY0lJiaGmJgYYmNj6d69u2V/dnY27dq1Iy0tje3bt7Ns2TI+/fRTBg0alK/z0TC6iIiIiA13YjZ6mzZtaNOmzQ33GYZBdHQ0I0aMoHPnzgAsXLgQPz8/li5dyksvvURKSgoffPABixYtokWLFgAsXryYwMBANmzYQOvWrYmLiyMmJoZdu3bRsGFDAObNm0dYWBhHjx6lWrVqrFu3jiNHjnDy5EnLY7MnTZpEr169GDNmTJ7XDVVmU0RERMSGghpGT01NtXqlp6ffVn/i4+NJSkqiVatWlm2urq40bdqUHTt2ALB//34yMzOtygQEBFCzZk1LmZ07d2I2my2BJkCjRo0wm81WZWrWrGkJNOHqkxvT09PZv39/nvusYFNERETEhmuZTXteAIGBgZZ7I81mM+PGjbut/iQlJQFYHuF8jZ+fn2VfUlISLi4uFC9e/KZlfH19c7Xv6+trVeb64xQvXhwXFxdLmbzQMLqIiIiIg508edJq2NnV1dWu9q4fnjcM45ZD9teXuVH52ylzK8psioiIiNhQUJlNLy8vq9ftBpv+/v4AuTKLp0+ftmQh/f39ycjIIDk5+aZlfv/991ztnzlzxqrM9cdJTk4mMzMzV8bzZhRsioiIiNhwJ5Y+upkKFSrg7+/P+vXrLdsyMjLYunUrjRs3BqBu3boULlzYqkxiYiKHDh2ylAkLCyMlJYU9e/ZYyuzevZuUlBSrMocOHSIxMdFSZt26dbi6ulK3bt0891nD6CIiIiJ3kYsXL/Lzzz9b3sfHxxMbG4u3tzdly5YlMjKSsWPHUqVKFapUqcLYsWPx8PCgW7duAJjNZvr06cOgQYPw8fHB29ubwYMHExwcbJmdXr16dZ544gnCw8OZM2cOAH379qV9+/ZUq1YNgFatWhEUFET37t159913OXfuHIMHDyY8PDzPM9FBwaaIiIiITSbsXPqI/Nfdt28fjz32mOX9wIEDAejZsycLFixg6NChXL58mX79+pGcnEzDhg1Zt24dRYsWtdSZMmUKhQoVokuXLly+fJnmzZuzYMECnJ2dLWWWLFlCRESEZdZ6x44drdb2dHZ25ssvv6Rfv340adIEd3d3unXrxsSJE/N3DQzDMPJ9FUTuYampqZjNZlyDwzE5u9zp7og4RPLeGy8GLXI/SE1Nxc/HTEpKSr4ybPk9htlsptbw1Ti7ed52O9lX0vhuXEeH9vVup3s2RURERMRhNIwuIiIiYsOdeILQ/UbBpoiIiIgN9s4oV6ypYXQRERERcSBlNkVERERs0DC6/RRsioiIiNigYXT7KdgUERERsUGZTfvpnk0RERERcRhlNkVERERssff55kpsKtgUERERsUXD6PbTMLqIiIiIOIwymyIiIiI2aDa6/RRsioiIiNigYXT7aRhdRERERBxGmU0RERERGzSMbj8FmyIiIiI2aBjdfhpGFxERERGHUWZTRERExAZlNu2nYFNERETEBt2zaT8FmyIiIiI2KLNpP92zKSIiIiIOo8ymiIiIiA0aRrefgk0RERERGzSMbj8No4uIiIiIwyizKSIiImKDCTuH0QusJ/cuBZsiIiIiNjiZTDjZEW3aU/d+oWF0EREREXEYZTZFREREbNBsdPsp2BQRERGxQbPR7adgU0RERMQGJ9PVlz31H3S6Z1NEREREHEaZTRERERFbTHYOhSuzqWBTRERExBZNELKfhtFFRERExGGU2RQRERGxwfT//+yp/6BTsCkiIiJig2aj20/D6CIiIiLiMMpsioiIiNigRd3tl6dgc9q0aXluMCIi4rY7IyIiInI30Wx0++Up2JwyZUqeGjOZTAo2RURERMQiT8FmfHy8o/shIiIictdxMplwsiM9aU/d+8VtTxDKyMjg6NGjZGVlFWR/RERERO4a14bR7Xk96PIdbF66dIk+ffrg4eFBjRo1OHHiBHD1Xs133nmnwDsoIiIicqdcmyBkz+tBl+9gc/jw4Xz77bds2bIFNzc3y/YWLVrw8ccfF2jnREREROTelu+lj1atWsXHH39Mo0aNrKL1oKAgjh07VqCdExEREbmTNBvdfvnObJ45cwZfX99c29PS0pQqFhERkfvKtQlC9rzyIysri9dff50KFSrg7u5OxYoVefPNN8nJybGUMQyDqKgoAgICcHd3p1mzZhw+fNiqnfT0dF599VVKlCiBp6cnHTt25Ndff7Uqk5ycTPfu3TGbzZjNZrp378758+dv+1rZku9gs379+nz55ZeW99cCzHnz5hEWFlZwPRMRERF5wIwfP57Zs2czY8YM4uLimDBhAu+++y7Tp0+3lJkwYQKTJ09mxowZ7N27F39/f1q2bMmFCxcsZSIjI1m5ciXLli1j+/btXLx4kfbt25OdnW0p061bN2JjY4mJiSEmJobY2Fi6d+9e4OeU72H0cePG8cQTT3DkyBGysrKYOnUqhw8fZufOnWzdurXAOygiIiJyp5j+/2VP/fzYuXMnTz75JO3atQOgfPnyfPTRR+zbtw+4mtWMjo5mxIgRdO7cGYCFCxfi5+fH0qVLeemll0hJSeGDDz5g0aJFtGjRAoDFixcTGBjIhg0baN26NXFxccTExLBr1y4aNmwI/Jk4PHr0KNWqVbPjrK3lO7PZuHFjvvnmGy5dukSlSpVYt24dfn5+7Ny5k7p16xZYx0RERETutL97NvrDDz/Mxo0b+fHHHwH49ttv2b59O23btgWurn2elJREq1atLHVcXV1p2rQpO3bsAGD//v1kZmZalQkICKBmzZqWMjt37sRsNlsCTYBGjRphNpstZQrKbT0bPTg4mIULFxZoR0RERETuV6mpqVbvXV1dcXV1zVVu2LBhpKSk8NBDD+Hs7Ex2djZjxozhueeeAyApKQkAPz8/q3p+fn4cP37cUsbFxYXixYvnKnOtflJS0g3n4Pj6+lrKFJTbCjazs7NZuXIlcXFxmEwmqlevzpNPPkmhQrfVnIiIiMhdycl09WVPfYDAwECr7aNHjyYqKipX+Y8//pjFixezdOlSatSoQWxsLJGRkQQEBNCzZ09LueszpoZh3DKLen2ZG5XPSzv5le/o8NChQzz55JMkJSVZxvN//PFHSpYsyerVqwkODi7QDoqIiIjcKfYuzH6t7smTJ/Hy8rJsv1FWE2DIkCH8+9//5tlnnwWujiYfP36ccePG0bNnT/z9/YGrmclSpUpZ6p0+fdqS7fT39ycjI4Pk5GSr7Obp06dp3Lixpczvv/+e6/hnzpzJlTW1V77v2XzxxRepUaMGv/76KwcOHODAgQOcPHmSWrVq0bdv3wLtnIiIiMj9wMvLy+plK9i8dOkSTk7W4Zmzs7Nl6aMKFSrg7+/P+vXrLfszMjLYunWrJZCsW7cuhQsXtiqTmJjIoUOHLGXCwsJISUlhz549ljK7d+8mJSXFUqag5Duz+e2337Jv3z6rSLl48eKMGTOG+vXrF2jnRERERO60v3MZ8Q4dOjBmzBjKli1LjRo1OHjwIJMnT6Z3797/3xcTkZGRjB07lipVqlClShXGjh2Lh4cH3bp1A8BsNtOnTx8GDRqEj48P3t7eDB48mODgYMvs9OrVq/PEE08QHh7OnDlzAOjbty/t27cv0JnocBvBZrVq1fj999+pUaOG1fbTp09TuXLlAuuYiIiIyJ1WUMPoeTV9+nRGjhxJv379OH36NAEBAbz00kuMGjXKUmbo0KFcvnyZfv36kZycTMOGDVm3bh1Fixa1lJkyZQqFChWiS5cuXL58mebNm7NgwQKcnZ0tZZYsWUJERIRl1nrHjh2ZMWPGbZ+rLSbDMIxbFfrrDKrt27czdOhQoqKiaNSoEQC7du3izTff5J133rFMzRe5W6WmpmI2m3ENDsfk7HKnuyPiEMl7C/4XhsjdIjU1FT8fMykpKVb3QRb0McxmM8+9/w0uHkVuu52MSxf56MUmDu3r3S5Pmc1ixYpZReaGYdClSxfLtmvxaocOHaxWphcRERGRB1uegs3Nmzc7uh8iIiIid52/exj9fpSnYLNp06aO7oeIiIjIXefvflzl/ei2V2G/dOkSJ06cICMjw2p7rVq17O6UiIiIiNwf8h1snjlzhhdeeIG1a9fecL/u2RQREZH7hZPJhJMdQ+H21L1f5HtR98jISJKTk9m1axfu7u7ExMSwcOFCqlSpwurVqx3RRxEREZE7wmSy//Wgy3dmc9OmTXz22WfUr18fJycnypUrR8uWLfHy8mLcuHG0a9fOEf0UERERkXtQvjObaWlp+Pr6AuDt7c2ZM2eAq8/uPHDgQMH2TkREROQOujYb3Z7Xgy7fwWa1atU4evQoACEhIcyZM4fffvuN2bNnWz0QXkRERORep2F0++V7GD0yMpLExEQARo8eTevWrVmyZAkuLi4sWLCgoPsnIiIiIvewfAebzz//vOX/oaGhJCQk8MMPP1C2bFlKlChRoJ0TERERuZM0G91+t73O5jUeHh7UqVOnIPoiIiIiclexdyhcsWYeg82BAwfmucHJkyffdmdERERE7iZ6XKX98hRsHjx4ME+N6YKKiIiIyF/lKdjcvHmzo/sh8rf7ZeMEvLy87nQ3RByi5r9v/JQ3kftBTvqlv+1YTtzG0j3X1X/Q2X3PpoiIiMj9SsPo9lPALSIiIiIOo8ymiIiIiA0mEzhpNrpdFGyKiIiI2OBkZ7BpT937hYbRRURERMRhbivYXLRoEU2aNCEgIIDjx48DEB0dzWeffVagnRMRERG5k65NELLn9aDLd7A5a9YsBg4cSNu2bTl//jzZ2dkAFCtWjOjo6ILun4iIiMgdc20Y3Z7Xgy7fweb06dOZN28eI0aMwNnZ2bK9Xr16fP/99wXaORERERG5t+V7glB8fDyhoaG5tru6upKWllYgnRIRERG5G+jZ6PbLd2azQoUKxMbG5tq+du1agoKCCqJPIiIiIncFJ5PJ7teDLt+ZzSFDhtC/f3+uXLmCYRjs2bOHjz76iHHjxvH+++87oo8iIiIid4QeV2m/fAebL7zwAllZWQwdOpRLly7RrVs3SpcuzdSpU3n22Wcd0UcRERERuUfd1qLu4eHhhIeH88cff5CTk4Ovr29B90tERETkjtM9m/az6wlCJUqUKKh+iIiIiNx1nLDvvksnFG3mO9isUKHCTRco/eWXX+zqkIiIiIjcP/IdbEZGRlq9z8zM5ODBg8TExDBkyJCC6peIiIjIHadhdPvlO9h87bXXbrj9vffeY9++fXZ3SERERORuYe9TgPQEoQKckd+mTRs+/fTTgmpORERERO4Ddk0Q+qtPPvkEb2/vgmpORERE5I4zmbBrgpCG0W8j2AwNDbWaIGQYBklJSZw5c4aZM2cWaOdERERE7iTds2m/fAebnTp1snrv5OREyZIladasGQ899FBB9UtERERE7gP5CjazsrIoX748rVu3xt/f31F9EhEREbkraIKQ/fI1QahQoUK88sorpKenO6o/IiIiIncNUwH8e9DlezZ6w4YNOXjwoCP6IiIiInJXuZbZtOf1oMv3PZv9+vVj0KBB/Prrr9StWxdPT0+r/bVq1SqwzomIiIjIvS3PwWbv3r2Jjo6ma9euAERERFj2mUwmDMPAZDKRnZ1d8L0UERERuQN0z6b98hxsLly4kHfeeYf4+HhH9kdERETkrmEymayWfLyd+g+6PAebhmEAUK5cOYd1RkRERETuL/m6Z1PRuYiIiDxINIxuv3wFm1WrVr1lwHnu3Dm7OiQiIiJyt9AThOyXr2DzjTfewGw2O6ovIiIiInKfyVew+eyzz+Lr6+uovoiIiIjcVZxMJpzsSE/eTt3ffvuNYcOGsXbtWi5fvkzVqlX54IMPqFu3LnB1Hs0bb7zB3LlzSU5OpmHDhrz33nvUqFHD0kZ6ejqDBw/mo48+4vLlyzRv3pyZM2dSpkwZS5nk5GQiIiJYvXo1AB07dmT69OkUK1bsts/3RvK8qLvu1xQREZEHzd+9qHtycjJNmjShcOHCrF27liNHjjBp0iSrAHDChAlMnjyZGTNmsHfvXvz9/WnZsiUXLlywlImMjGTlypUsW7aM7du3c/HiRdq3b2+1RGW3bt2IjY0lJiaGmJgYYmNj6d69u72XLJd8z0YXEREREccYP348gYGBzJ8/37KtfPnylv8bhkF0dDQjRoygc+fOwNXlKf38/Fi6dCkvvfQSKSkpfPDBByxatIgWLVoAsHjxYgIDA9mwYQOtW7cmLi6OmJgYdu3aRcOGDQGYN28eYWFhHD16lGrVqhXYOeU5s5mTk6MhdBEREXmwmP6cJHQ7r2uPRk9NTbV6paen3/Bwq1evpl69ejzzzDP4+voSGhrKvHnzLPvj4+NJSkqiVatWlm2urq40bdqUHTt2ALB//34yMzOtygQEBFCzZk1LmZ07d2I2my2BJkCjRo0wm82WMgUl389GFxEREXlQOGGy+wUQGBiI2Wy2vMaNG3fD4/3yyy/MmjWLKlWq8NVXX/Hyyy8TERHBf//7XwCSkpIA8PPzs6rn5+dn2ZeUlISLiwvFixe/aZkbJRF9fX0tZQpKvp+NLiIiIvKgKKilj06ePImXl5dlu6ur6w3L5+TkUK9ePcaOHQtAaGgohw8fZtasWfTo0eMv7Vp36tpjw2/m+jI3Kp+XdvJLmU0RERERB/Py8rJ62Qo2S5UqRVBQkNW26tWrc+LECQD8/f0BcmUfT58+bcl2+vv7k5GRQXJy8k3L/P7777mOf+bMmVxZU3sp2BQRERGx4e+ejd6kSROOHj1qte3HH3+0PC68QoUK+Pv7s379esv+jIwMtm7dSuPGjQGoW7cuhQsXtiqTmJjIoUOHLGXCwsJISUlhz549ljK7d+8mJSXFUqagaBhdRERExIa/e53Nf/3rXzRu3JixY8fSpUsX9uzZw9y5c5k7dy5wdeg7MjKSsWPHUqVKFapUqcLYsWPx8PCgW7duAJjNZvr06cOgQYPw8fHB29ubwYMHExwcbJmdXr16dZ544gnCw8OZM2cOAH379qV9+/YFOhMdFGyKiIiI3DXq16/PypUrGT58OG+++SYVKlQgOjqa559/3lJm6NChXL58mX79+lkWdV+3bh1Fixa1lJkyZQqFChWiS5culkXdFyxYgLOzs6XMkiVLiIiIsMxa79ixIzNmzCjwczIZWkBTHjCpqamYzWZ+O51sdbO2yP0kZMRXd7oLIg6Tk36J+BlPk5KS4rCf49d+V0zd+D3unkVvXcGGy2kXeK15sEP7erdTZlNERETEBifsHEanYGd234s0QUhEREREHEaZTREREREbCmqdzQeZgk0RERERG5ywbxhYQ8i6BiIiIiLiQMpsioiIiNhgMpnsenxjQT/68V6kYFNERETEBtP/v+yp/6BTsCkiIiJiw9/9BKH7ke7ZFBERERGHUWZTRERE5CaUm7SPgk0RERERG7TOpv00jC4iIiIiDqPMpoiIiIgNWvrIfgo2RURERGzQE4Tsp2sgIiIiIg6jzKaIiIiIDRpGt5+CTREREREb9AQh+2kYXUREREQcRplNERERERs0jG4/BZsiIiIiNmg2uv0UbIqIiIjYoMym/RRwi4iIiIjDKLMpIiIiYoNmo9tPwaaIiIiIDSbT1Zc99R90GkYXEREREYdRZlNERETEBidMONkxGG5P3fuFgk0RERERGzSMbj8No4uIiIiIwyizKSIiImKD6f//2VP/QadgU0RERMQGDaPbT8PoIiIiIuIwymyKiIiI2GCycza6htEVbIqIiIjYpGF0+ynYFBEREbFBwab9dM+miIiIiDiMMpsiIiIiNmjpI/sp2BQRERGxwcl09WVP/QedhtFFRERExGGU2RQRERGxQcPo9lOwKSIiImKDZqPbT8PoIiIiIuIwymyKiIiI2GDCvqFwJTYVbIqIiIjYpNno9tMwuoiIiIg4jIJNsUtUVBQhISF5Lj937lwCAwNxcnIiOjo63/VvJCEhAZPJRGxsrF3tSP5cTLvCiCmfEtppNIFNB9E2fDIHjxz/c/+ldIZN/B+1OowksOkgGncdw/xPt92wLcMw6Bo5i5KNIliz9bu/6xTkAVW3QnFm9KzLpv88xqF32vB4kK/Dj9miph+f/esRDrzdms/+9QjNa/jZLPtis4oceqcNw9pXd3i/5NZMBfDvQadgU/LMZDKxatUqq22DBw9m48aNeaqfmprKgAEDGDZsGL/99ht9+/bNV325u0SO/Yite47y3ujubF38b5o1eIinXn2PxNPnARgZvYJNu+KYFdWDbz76Dy8/14zhkz9l7de5g8k5y7Zg0pRN+Zu4F3bmaGIqYz87UiDtPVm3NPP7NrC5v3bZYkx8LoTPD/7GU1O38/nB35jYLYTgQHOusjXLmHm6QSBHE1MLpG9iv2uz0e15PegUbIpdihQpgo+PT57KnjhxgszMTNq1a0epUqXw8PDIV325e1y+ksEXW75l1IAnaRxamYqBJRka3payAT7MX7EdgH2HEni2bQOa1K1C2QAfenRqQo3KAcTGnbRq69BPvzHro81Mfb3bnTgVeQBt//EPpq/7iQ2Hf7/h/kLOJga2qcbG4Y+x582WLO0XRv2K3rd9vO5NyrPz57O8v+UX4s+k8f6WX9j981m6NylvVc7dxZl3utYmasUhUi9n3vbxpGCZCuBlj3HjxmEymYiMjLRsMwyDqKgoAgICcHd3p1mzZhw+fNiqXnp6Oq+++iolSpTA09OTjh078uuvv1qVSU5Opnv37pjNZsxmM927d+f8+fN29jg3BZsPmE8++YTg4GDc3d3x8fGhRYsWpKWlsXfvXlq2bEmJEiUwm800bdqUAwcOWOqVL18egH/84x+YTCbL++uHwbds2UKDBg3w9PSkWLFiNGnShOPHj7NgwQKCg4MBqFixIiaTiYSEhBsOo8+fP5/q1avj5ubGQw89xMyZM63279mzh9DQUNzc3KhXrx4HDx4s8OskN5ednUN2dg5uLtZzDN1dC7P7218AaFi7IjHbDpF4+jyGYbB9/48cO3mGxxo+ZCl/6UoGL41cwDuDn8bPx+tvPQcRW95+uhah5Yoz5KNYnor+hnXfJzH7hXqU9fG4rfZqlyvGjp/+sNr2zU9/EFKuuNW2158M4uujp9n189nb7rvcX/bu3cvcuXOpVauW1fYJEyYwefJkZsyYwd69e/H396dly5ZcuHDBUiYyMpKVK1eybNkytm/fzsWLF2nfvj3Z2dmWMt26dSM2NpaYmBhiYmKIjY2le/fuBX4eCjYfIImJiTz33HP07t2buLg4tmzZQufOnTEMgwsXLtCzZ0+2bdvGrl27qFKlCm3btrV84e7duxe4GggmJiZa3v9VVlYWnTp1omnTpnz33Xfs3LmTvn37YjKZ6Nq1Kxs2bACuBouJiYkEBgbmamPevHmMGDGCMWPGEBcXx9ixYxk5ciQLFy4EIC0tjfbt21OtWjX2799PVFQUgwcPvul5p6enk5qaavUS+xTxdKN+cHkmffgVSWdSyM7O4X9r97L/8HF+P3v1+o4d+BRVK/hTq+MoAh7+F10jZzFhyDM0CqlkaWdk9ArqB1egzaO1bB1K5G8V6O1B29qlGLjkIAcSkjl57hILtsVzICGZf9Qrc1ttlijiytkL6Vbbzl5Ip0RRV8v7NrVKUb20meiYH+3qvxQ8J0w4mex43WZu8+LFizz//PPMmzeP4sX//MPEMAyio6MZMWIEnTt3pmbNmixcuJBLly6xdOlSAFJSUvjggw+YNGkSLVq0IDQ0lMWLF/P9999bfhfHxcURExPD+++/T1hYGGFhYcybN48vvviCo0eP2n/h/kJLHz1AEhMTycrKonPnzpQrVw7Akm18/PHHrcrOmTOH4sWLs3XrVtq3b0/JkiUBKFasGP7+/jdsPzU1lZSUFNq3b0+lSlcDiurV/7zB/dpwecmSJW228dZbbzFp0iQ6d+4MQIUKFThy5Ahz5syhZ8+eLFmyhOzsbD788EM8PDyoUaMGv/76K6+88orN8x43bhxvvPHGLa+P5M97o7vz2pilBHcYibOzE7WqleGpVnX57ujVYfJ5y7ey/1ACi98Np4y/NztjjzH03f/h52OmaYNqxHz9Pdv2/cSm/w69w2ci8qfqpb1wcjLx5eBHrbYXLuREyqWrQ9v+ZjdWD3zEss/ZyUQhZyf2vNHSsu2Lg6d4c9Wfw5rGdccxmUwYhmFp798dqtP3w71kZOUU8BmJvewdCr9W9/pEh6urK66urrkr/L/+/fvTrl07WrRowdtvv23ZHh8fT1JSEq1atbJqq2nTpuzYsYOXXnqJ/fv3k5mZaVUmICCAmjVrsmPHDlq3bs3OnTsxm800bNjQUqZRo0aYzWZ27NhBtWrV7Dhrawo2HyC1a9emefPmBAcH07p1a1q1asXTTz9N8eLFOX36NKNGjWLTpk38/vvvZGdnc+nSJU6cOJHn9r29venVqxetW7emZcuWtGjRgi5dulCqVKk81T9z5gwnT56kT58+hIeHW7ZnZWVhNl+9kT4uLo7atWvj4fHncFZYWNhN2x0+fDgDBw60vE9NTb1hVlXyp0KZkqye9Rppl9O5kHYF/xJmXhwxn7IBPly+ksGYWV+wYPyLtGpSA4AaVUpz6MdfeW/pRpo2qMa2/T+S8NsfVG45zKrdF4Z/QKPalfhsVsSdOC15wDmZICs7hy7Td5BtWIeIl9KzADhzIZ2npn1j2d6ihh8ta/oz7ONvLdvSrmRZ/v/HRessJoB3ERfOXswAIKi0Fz5FXfl4QGPL/kLOTtQt781zYWWp8/pX5Fwfrco95/rfO6NHjyYqKuqGZZctW8aBAwduOIqYlJQEgJ+f9YoGfn5+HD9+3FLGxcXFKiN6rcy1+klJSfj65l6JwdfX11KmoCjYfIA4Ozuzfv16duzYwbp165g+fTojRoxg9+7d9O/fnzNnzhAdHU25cuVwdXUlLCyMjIyMfB1j/vz5REREEBMTw8cff8zrr7/O+vXradSo0S3r5uRc/Yt+3rx5Vn9pXes7YMkE5Met/noU+3i6u+Lp7sr51Ets3v0Dowd0JCs7m8ysbJyum4bp7OyE8f+/NSN6tOSfHa3/UHj0+Xd467XOtH6k5t/Wf5G/ijuVSiFnJ7yLuHAgIfmGZbJzDE6evWR5fy4tg/SsbKttf/Xt8fOEVfZh0fYEy7bGVUoQe/xq+7t+PkunKdbLgr39dDDxZ9L4YOsvCjTvtAJKbZ48eRIvrz/vTbf1e+nkyZO89tprrFu3Djc3N9vNXvfz1TCMW67qcX2ZG5XPSzv5pWDzAWMymWjSpAlNmjRh1KhRlCtXjpUrV7Jt2zZmzpxJ27Ztgatf7H/8YX1De+HCha1uLLYlNDSU0NBQhg8fTlhYGEuXLs1TsOnn50fp0qX55ZdfeP75529YJigoiEWLFnH58mXc3d0B2LVr1y3bloK3aVcchmFQuZwf8SfPEDXjMyqX9eW59o0oXMiZxqGVeWPGZ7i7FqZMKW92HPiZ5Wv38mZEJwD8fLxuOCmojH9xygVohQJxHHcXZ6vJPqW9PahWqigplzI5/sclvjj4G2O71GLilz8QdyqV4p4uNKjkw09JF9h29Ey+j7f4mwQWvNSQ3k0rsvnI7zwW5Eejyj70mH31Z9eljGx+/v2iVZ3Lmdmcv5SZa7v8/exdK/NaXS8vL6tg05b9+/dz+vRp6tata9mWnZ3N119/zYwZMyz3UyYlJVmNHJ4+fdqS7fT39ycjI4Pk5GSr7Obp06dp3Lixpczvv+dekeHMmTO5sqb2UrD5ANm9ezcbN26kVatW+Pr6snv3bs6cOUP16tWpXLkyixYtol69eqSmpjJkyBBLMHdN+fLl2bhxI02aNMHV1TVXej4+Pp65c+fSsWNHAgICOHr0KD/++CM9evTIcx+joqKIiIjAy8uLNm3akJ6ezr59+0hOTmbgwIF069aNESNG0KdPH15//XUSEhKYOHFigVwfyZ/Ui5cZM+tzTp0+TzEvT9o/VpsRL7encKGrWei5b/fi7Zmf83LUfzmfeoky/sX5z0vt6NX54Tvcc3nQ1SxjZn7fP0dPri2evmr/r7z+v+95/X/f89LjlRjc7iH8vNw4fymDb0+cZ9sPp2/reLEnzjPko295tVUVXm1ZhZPnLjFkaSzfn0wpkPOR+0vz5s35/vvvrba98MILPPTQQwwbNoyKFSvi7+/P+vXrCQ0NBSAjI4OtW7cyfvx4AOrWrUvhwoVZv349Xbp0Aa7O2zh06BATJkwArt6ClpKSwp49e2jQ4Oo6sbt37yYlJcUSkBYUBZsPEC8vL77++muio6NJTU2lXLlyTJo0iTZt2uDv70/fvn0JDQ2lbNmyjB07Ntcs70mTJjFw4EDmzZtH6dKlSUhIsNrv4eHBDz/8wMKFCzl79iylSpViwIABvPTSS3nu44svvoiHhwfvvvsuQ4cOxdPTk+DgYMv6YkWKFOHzzz/n5ZdfJjQ0lKCgIMaPH89TTz1l7+WRfOrUog6dWtSxud/Px4vpI2+cobblzK5p9nZL5Jb2/nKOmv9ea3N/Vo7Bext+5r0NP+epvc/2/8Zn+3+7aZn1h5JYfyjv98G9MHdPnsuKg9m7MHs+6xYtWpSaNa1vJfL09MTHx8eyPTIykrFjx1KlShWqVKnC2LFj8fDwoFu3q+sVm81m+vTpw6BBg/Dx8cHb25vBgwcTHBxMixYtgKsTeJ944gnCw8OZM2cOAH379rWs+FKQTMbt3AQncg9LTU3FbDbz2+nkPA1piNyLQkZ8dae7IOIwOemXiJ/xNCkpKQ77OX7td8Wm2BMUKXr7x7h4IZXHQ8ra1ddmzZoREhJCdHQ0cPW+yjfeeIM5c+aQnJxMw4YNee+996yC1CtXrjBkyBCWLl3K5cuXad68OTNnzrSaqHTu3DkiIiJYvXo1AB07dmTGjBkUK1bsts/3RhRsygNHwaY8CBRsyv3sQQs273UaRhcRERGxpaAW2nyAKdgUERERsaGgZqM/yBRsioiIiNhgsnOCUAEvWXlP0rPRRURERMRhlNkUERERsUG3bNpPwaaIiIiILYo27aZhdBERERFxGGU2RURERGzQbHT7KdgUERERsUGz0e2nYXQRERERcRhlNkVERERs0Pwg+ynYFBEREbFF0abdNIwuIiIiIg6jzKaIiIiIDZqNbj8FmyIiIiI2aDa6/RRsioiIiNigWzbtp3s2RURERMRhlNkUERERsUWpTbsp2BQRERGxQROE7KdhdBERERFxGGU2RURERGzQbHT7KdgUERERsUG3bNpPw+giIiIi4jDKbIqIiIjYotSm3RRsioiIiNig2ej20zC6iIiIiDiMMpsiIiIiNmg2uv0UbIqIiIjYoFs27adgU0RERMQWRZt20z2bIiIiIuIwymyKiIiI2KDZ6PZTsCkiIiJii50ThBRrahhdRERERBxImU0RERERGzQ/yH4KNkVERERsUbRpNw2ji4iIiIjDKLMpIiIiYoNmo9tPwaaIiIiIDXpcpf00jC4iIiIiDqPMpoiIiIgNmh9kPwWbIiIiIrYo2rSbgk0RERERGzRByH66Z1NEREREHEaZTREREREbTNg5G73AenLvUrApIiIiYoNu2bSfhtFFRERE7hLjxo2jfv36FC1aFF9fXzp16sTRo0etyhiGQVRUFAEBAbi7u9OsWTMOHz5sVSY9PZ1XX32VEiVK4OnpSceOHfn111+tyiQnJ9O9e3fMZjNms5nu3btz/vz5Aj8nBZsiIiIiNlxb1N2eV35s3bqV/v37s2vXLtavX09WVhatWrUiLS3NUmbChAlMnjyZGTNmsHfvXvz9/WnZsiUXLlywlImMjGTlypUsW7aM7du3c/HiRdq3b092dralTLdu3YiNjSUmJoaYmBhiY2Pp3r273dfseibDMIwCb1XkLpaamorZbOa308l4eXnd6e6IOETIiK/udBdEHCYn/RLxM54mJSXFYT/Hr/2uOJJwhqJ2HONCaipB5Uvedl/PnDmDr68vW7du5dFHH8UwDAICAoiMjGTYsGHA1Symn58f48eP56WXXiIlJYWSJUuyaNEiunbtCsCpU6cIDAxkzZo1tG7dmri4OIKCgti1axcNGzYEYNeuXYSFhfHDDz9QrVq12z7n6ymzKSIiIuJgqampVq/09PQ81UtJSQHA29sbgPj4eJKSkmjVqpWljKurK02bNmXHjh0A7N+/n8zMTKsyAQEB1KxZ01Jm586dmM1mS6AJ0KhRI8xms6VMQVGwKSIiImJDQQ2jBwYGWu6NNJvNjBs37pbHNgyDgQMH8vDDD1OzZk0AkpKSAPDz87Mq6+fnZ9mXlJSEi4sLxYsXv2kZX1/fXMf09fW1lCkomo0uIiIiYkNBzUY/efKk1TC6q6vrLesOGDCA7777ju3bt+du97qbQQ3DyLXteteXuVH5vLSTX8psioiIiDiYl5eX1etWwearr77K6tWr2bx5M2XKlLFs9/f3B8iVfTx9+rQl2+nv709GRgbJyck3LfP777/nOu6ZM2dyZU3tpWBTRERExIa/eza6YRgMGDCAFStWsGnTJipUqGC1v0KFCvj7+7N+/XrLtoyMDLZu3Urjxo0BqFu3LoULF7Yqk5iYyKFDhyxlwsLCSElJYc+ePZYyu3fvJiUlxVKmoGgYXURERMSGv/vZ6P3792fp0qV89tlnFC1a1JLBNJvNuLu7YzKZiIyMZOzYsVSpUoUqVaowduxYPDw86Natm6Vsnz59GDRoED4+Pnh7ezN48GCCg4Np0aIFANWrV+eJJ54gPDycOXPmANC3b1/at29foDPRQcGmiIiIiG1/8yOEZs2aBUCzZs2sts+fP59evXoBMHToUC5fvky/fv1ITk6mYcOGrFu3jqJFi1rKT5kyhUKFCtGlSxcuX75M8+bNWbBgAc7OzpYyS5YsISIiwjJrvWPHjsyYMSP/53gLWmdTHjhaZ1MeBFpnU+5nf+c6mz+e/MPudTarBpZwaF/vdspsioiIiNigZ6PbT8GmiIiIiA23M8nn+voPOs1GFxERERGHUWZTRERExIa/ezb6/UjBpoiIiIgtumnTbhpGFxERERGHUWZTRERExAYlNu2nYFNERETEBs1Gt5+G0UVERETEYZTZFBEREbHJvtnoGkhXsCkiIiJik4bR7adhdBERERFxGAWbIiIiIuIwGkYXERERsUHD6PZTsCkiIiJigx5XaT8No4uIiIiIwyizKSIiImKDhtHtp2BTRERExAY9rtJ+GkYXEREREYdRZlNERETEFqU27aZgU0RERMQGzUa3n4bRRURERMRhlNkUERERsUGz0e2nYFNERETEBt2yaT8FmyIiIiK2KNq0m+7ZFBERERGHUWZTRERExAbNRrefgk0RERERGzRByH4KNuWBYxgGABcupN7hnog4Tk76pTvdBRGHycm4+vV97ee5I6Wm2ve7wt769wMFm/LAuXDhAgAPVSp3h3siIiL2uHDhAmaz2SFtu7i44O/vT5UKgXa35e/vj4uLSwH06t5kMv6OPwtE7iI5OTmcOnWKokWLYtL4xt8iNTWVwMBATp48iZeX153ujkiB09f438swDC5cuEBAQABOTo6b63zlyhUyMjLsbsfFxQU3N7cC6NG9SZlNeeA4OTlRpkyZO92NB5KXl5d+Ect9TV/jfx9HZTT/ys3N7YEOEguKlj4SEREREYdRsCkiIiIiDqNgU0QcztXVldGjR+Pq6nqnuyLiEPoaF7FNE4RERERExGGU2RQRERERh1GwKSIiIiIOo2BTRERERBxGwabIA6h8+fJER0ffseObTCZWrVoFQEJCAiaTidjY2DvWn/xcj0uXLvHUU0/h5eWFyWTi/PnzBXI9o6KiCAkJsasNcaz8fkZz584lMDAQJycnoqOjC+Qzvhu+X0TyS4u6i9wDmjVrRkhIyB0NEB0lMDCQxMRESpQo4fBjLViwgMjISM6fP2+1fe/evXh6euapjYULF7Jt2zZ27NhBiRIlMJvN+aov9waTycTKlSvp1KmTZdvgwYN59dVX81Q/NTWVAQMGMHnyZJ566inMZjM5OTl5ri9yP1GwKXKfMAyD7OxsChW6M9/WmZmZFC5cON/1nJ2d8ff3d0CP8q5kyZJ5Lnvs2DGqV69OzZo1b6u+3LuKFClCkSJF8lT2xIkTZGZm0q5dO0qVKmXVhsiDRsPoInZo1qwZERERDB06FG9vb/z9/YmKirIqk5KSQt++ffH19cXLy4vHH3+cb7/91rK/V69eVtkTgMjISJo1a2bZv3XrVqZOnYrJZMJkMpGQkMCWLVswmUx89dVX1KtXD1dXV7Zt28axY8d48skn8fPzo0iRItSvX58NGzbk67xycnJ48803KVOmDK6uroSEhBATE2PZf20ob/ny5TRr1gw3NzcWL158w7Z++uknHn30Udzc3AgKCmL9+vVW+68fFkxOTub555+nZMmSuLu7U6VKFebPnw9ARkYGAwYMoFSpUri5uVG+fHnGjRtnaWvy5MkEBwfj6elJYGAg/fr14+LFiwBs2bKFF154gZSUFMt1vPZZXT8MHhUVRdmyZXF1dSUgIICIiAjg6uc9adIkvv76a0wmk+Uzur7+rT5zgHfeeQc/Pz+KFi1Knz59uHLlSt4+HMmzTz75hODgYNzd3fHx8aFFixakpaWxd+9eWrZsaclMN23alAMHDljqlS9fHoB//OMfmEwmy/vrh8G3bNlCgwYN8PT0pFixYjRp0oTjx4+zYMECgoODAahYsaLle/ZGw+jz58+nevXquLm58dBDDzFz5kyr/Xv27CE0NBQ3Nzfq1avHwYMHC/w6iTiagk0ROy1cuBBPT092797NhAkTePPNNy0BlWEYtGvXjqSkJNasWcP+/fupU6cOzZs359y5c3lqf+rUqYSFhREeHk5iYiKJiYkEBgZa9g8dOpRx48YRFxdHrVq1uHjxIm3btmXDhg0cPHiQ1q1b06FDB06cOJHnc5o6dSqTJk1i4sSJfPfdd7Ru3ZqOHTvy008/WZUbNmwYERERxMXF0bp161zt5OTk0LlzZ5ydndm1axezZ89m2LBhNz32yJEjOXLkCGvXriUuLo5Zs2ZZhtinTZvG6tWrWb58OUePHmXx4sWWQACuPvd+2rRpHDp0iIULF7Jp0yaGDh0KQOPGjYmOjsbLy8tyHQcPHpzr+J988glTpkxhzpw5/PTTT6xatcoSOKxYsYLw8HDCwsJITExkxYoVuern5TNfvnw5o0ePZsyYMezbt49SpUrlCjLEPomJiTz33HP07t2buLg4tmzZQufOnTEMgwsXLtCzZ0+2bdvGrl27qFKlCm3btuXChQvA1dsq4GogmJiYaHn/V1lZWXTq1ImmTZvy3XffsXPnTvr27YvJZKJr166WP/D27NmT63v2mnnz5jFixAjGjBlDXFwcY8eOZeTIkSxcuBCAtLQ02rdvT7Vq1di/fz9RUVE3/JoVuesZInLbmjZtajz88MNW2+rXr28MGzbMMAzD2Lhxo+Hl5WVcuXLFqkylSpWMOXPmGIZhGD179jSefPJJq/2vvfaa0bRpU6vjvPbaa1ZlNm/ebADGqlWrbtnPoKAgY/r06Zb35cqVM6ZMmWKzfEBAgDFmzJhc59WvXz/DMAwjPj7eAIzo6OibHverr74ynJ2djZMnT1q2rV271gCMlStXWrV18OBBwzAMo0OHDsYLL7xww/ZeffVV4/HHHzdycnJuetxrli9fbvj4+Fjez58/3zCbzbnK/fV6TJo0yahataqRkZFxwzav/2yur5+XzzwsLMx4+eWXrfY3bNjQqF27dp7OS25t//79BmAkJCTcsmxWVpZRtGhR4/PPP7ds++vX6DWjR4+2fEZnz541AGPLli03bPPgwYMGYMTHx9+wvmEYRmBgoLF06VKrem+99ZYRFhZmGIZhzJkzx/D29jbS0tIs+2fNmmX1/SJyL1BmU8ROtWrVsnpfqlQpTp8+DcD+/fu5ePEiPj4+lvu9ihQpQnx8PMeOHSuQ49erV8/qfVpaGkOHDiUoKIhixYpRpEgRfvjhhzxnNlNTUzl16hRNmjSx2t6kSRPi4uJueuzrxcXFUbZsWcqUKWPZFhYWdtM6r7zyCsuWLSMkJIShQ4eyY8cOy75evXoRGxtLtWrViIiIYN26dVZ1N2/eTMuWLSldujRFixalR48enD17lrS0tJse86+eeeYZLl++TMWKFQkPD2flypVkZWXluX5ePvO4uLhc1+FW10Xyp3bt2jRv3pzg4GCeeeYZ5s2bR3JyMgCnT5/m5ZdfpmrVqpjNZsxmMxcvXsxX9t/b25tevXpZRg6mTp1KYmJinuufOXOGkydP0qdPH6uvk7ffftvq66R27dp4eHhY6unrRO5FmiAkYqfrJ8WYTCZycnKAq8PIpUqVYsuWLbnqFStWDLg69Gtc99TYzMzMPB//+lnQQ4YM4auvvmLixIlUrlwZd3d3nn76aTIyMvLc5rXz+CvDMHJtu9UM7OvP60btXq9NmzYcP36cL7/8kg0bNtC8eXP69+/PxIkTqVOnDvHx8axdu5YNGzbQpUsXWrRowSeffMLx48dp27YtL7/8Mm+99Rbe3t5s376dPn365Ot6BgYGcvToUdavX8+GDRvo168f7777Llu3bs3TBKi8fObieM7Ozqxfv54dO3awbt06pk+fzogRI9i9ezf9+/fnzJkzREdHU65cOVxdXQkLC8v398j8+fOJiIggJiaGjz/+mNdff53169fTqFGjW9a99jNi3rx5NGzYMFff4cbfPyL3ImU2RRyoTp06JCUlUahQISpXrmz1unYfYsmSJXNlRK5fQ8/FxYXs7Ow8HXPbtm306tWLf/zjHwQHB+Pv709CQkKe++zl5UVAQADbt2+32r5jxw6qV6+e53YAgoKCOHHiBKdOnbJs27lz5y3rlSxZkl69erF48WKio6OZO3euVf+6du3KvHnz+Pjjj/n00085d+4c+/btIysri0mTJtGoUSOqVq1qdVzI+3V0d3enY8eOTJs2jS1btrBz506+//77PJ1zXj7z6tWrs2vXLqt6178X+5lMJpo0acIbb7zBwYMHcXFxYeXKlWzbto2IiAjatm1LjRo1cHV15Y8//rCqW7hw4Tx9rYSGhjJ8+HB27NhBzZo1Wbp0aZ765ufnR+nSpfnll19yfZ1UqFABuPr98+2333L58mVLPX2dyL1ImU0RB2rRogVhYWF06tSJ8ePHU61aNU6dOsWaNWvo1KkT9erV4/HHH+fdd9/lv//9L2FhYSxevJhDhw4RGhpqaad8+fLs3r2bhIQEihQpgre3t81jVq5cmRUrVtChQwdMJhMjR460ZFHyasiQIYwePZpKlSoREhLC/PnziY2NZcmSJfk+/2rVqtGjRw8mTZpEamoqI0aMuGmdUaNGUbduXWrUqEF6ejpffPGFJcidMmUKpUqVIiQkBCcnJ/73v//h7+9PsWLFqFSpEllZWUyfPp0OHTrwzTffMHv2bKu2y5cvz8WLF9m4caNlePKvQ5RwdS3O7OxsGjZsiIeHB4sWLcLd3Z1y5crl+Zxv9Zm/9tpr9OzZk3r16vHwww+zZMkSDh8+TMWKFfNxdeVmdu/ezcaNG2nVqhW+vr7s3r2bM2fOUL16dSpXrsyiRYuoV68eqampDBkyBHd3d6v65cuXZ+PGjTRp0gRXV1eKFy9utT8+Pp65c+fSsWNHAgICOHr0KD/++CM9evTIcx+joqKIiIjAy8uLNm3akJ6ezr59+0hOTmbgwIF069aNESNG0KdPH15//XUSEhKYOHFigVwfkb+TMpsiDmQymVizZg2PPvoovXv3pmrVqjz77LMkJCTg5+cHQOvWrRk5ciRDhw6lfv36XLhwIdcvrMGDB+Ps7ExQUBAlS5a86b1lU6ZMoXjx4jRu3JgOHTrQunVr6tSpk69+R0REMGjQIAYNGkRwcDAxMTGsXr2aKlWq5KsdJycnVq5cSXp6Og0aNODFF19kzJgxN63j4uLC8OHDqVWrFo8++ijOzs4sW7YMuLpG4fjx46lXrx7169cnISGBNWvW4OTkREhICJMnT2b8+PHUrFmTJUuWWC2LBFdnpL/88st07dqVkiVLMmHChFzHL1asGPPmzaNJkybUqlWLjRs38vnnn+Pj45Onc87LZ961a1dGjRrFsGHDqFu3LsePH+eVV17JU/uSN15eXnz99de0bduWqlWr8vrrrzNp0iTatGnDhx9+SHJyMqGhoXTv3p2IiAh8fX2t6k+aNIn169cTGBho9YffNR4eHvzwww889dRTVK1alb59+zJgwABeeumlPPfxxRdf5P3337csldS0aVMWLFhgyWwWKVKEzz//nCNHjhAaGsqIESMYP368fRdG5A4wGbopREREREQcRJlNEREREXEYBZsiIiIi4jAKNkVERETEYRRsioiIiIjDKNgUEREREYdRsCkiIiIiDqNgU0REREQcRsGmiMgdEBUVRUhIiOV9r1696NSp09/ej4SEBEwmU65HpP5V+fLliY6OznObCxYsKJDnwJtMJlatWmV3OyJyZynYFBH5f7169cJkMmEymShcuDAVK1Zk8ODBpKWlOfzYU6dOZcGCBXkqm5cAUUTkbqFno4uI/MUTTzzB/PnzyczMZNu2bbz44oukpaUxa9asXGUzMzMpXLhwgRzXbDYXSDsiIncbZTZFRP7C1dUVf39/AgMD6datG88//7xlKPfa0PeHH35IxYoVcXV1xTAMUlJS6Nu3L76+vnh5efH444/z7bffWrX7zjvv4OfnR9GiRenTpw9Xrlyx2n/9MHpOTg7jx4+ncuXKuLq6UrZsWctz5a89Ozs0NBSTyUSzZs0s9ebPn0/16tVxc3PjoYceYubMmVbH2bNnD6Ghobi5uVGvXj0OHjyY72s0efJkgoOD8fT0JDAwkH79+nHx4sVc5VatWkXVqlVxc3OjZcuWnDx50mr/559/Tt26dXFzc6NixYq88cYbZGVl5bs/InJ3U7ApInIT7u7uZGZmWt7//PPPLF++nE8//dQyjN2uXTuSkpJYs2YN+/fvp06dOjRv3pxz584BsHz5ckaPHs2YMWPYt28fpUqVyhUEXm/48OGMHz+ekSNHcuTIEZYuXYqfnx9wNWAE2LBhA4mJiaxYsQKAefPmMWLECMaMGUNcXBxjx45l5MiRLFy4EIC0tDTat29PtWrV2L9/P1FRUQwePDjf18TJyYlp06Zx6NAhFi5cyKZNmxg6dKhVmUuXLjFmzBgWLlzIN998Q2pqKs8++6xl/1dffcU///lPIiIiOHLkCHPmzGHBggWWgFpE7iOGiIgYhmEYPXv2NJ588knL+927dxs+Pj5Gly5dDMMwjNGjRxuFCxc2Tp8+bSmzceNGw8vLy7hy5YpVW5UqVTLmzJljGIZhhIWFGS+//LLV/oYNGxq1a9e+4bFTU1MNV1dXY968eTfsZ3x8vAEYBw8etNoeGBhoLF261GrbW2+9ZYSFhRmGYRhz5swxvL29jbS0NMv+WbNm3bCtvypXrpwxZcoUm/uXL19u+Pj4WN7Pnz/fAIxdu3ZZtsXFxRmAsXv3bsMwDOORRx4xxo4da9XOokWLjFKlSlneA8bKlSttHldE7g26Z1NE5C+++OILihQpQlZWFpmZmTz55JNMnz7dsr9cuXKULFnS8n7//v1cvHgRHx8fq3YuX77MsWPHAIiLi+Pll1+22h8WFsbmzZtv2Ie4uDjS09Np3rx5nvt95swZTp48SZ8+fQgPD7dsz8rKstwPGhcXR+3atfHw8LDqR35t3ryZsWPHcuTIEVJTU8nKyuLKlSukpaXh6ekJQKFChahXr56lzkMPPUSxYsWIi4ujQYMG7N+/n71791plMrOzs7ly5QqXLl2y6qOI3NsUbIqI/MVjjz3GrFmzKFy4MAEBAbkmAF0Lpq7JycmhVKlSbNmyJVdbt7v8j7u7e77r5OTkAFeH0hs2bGi1z9nZGQDDMG6rP391/Phx2rZty8svv8xbb72Ft7c327dvp0+fPla3G8DVpYuud21bTk4Ob7zxBp07d85Vxs3Nze5+isjdQ8GmiMhfeHp6Urly5TyXr1OnDklJSRQqVIjy5cvfsEz16tXZtWsXPXr0sGzbtWuXzTarVKmCu7s7Gzdu5MUXX8y138XFBbiaCbzGz8+P0qVL88svv/D888/fsN2goCAWLVrE5cuXLQHtzfpxI/v27SMrK4tJkybh5HT1tv/ly5fnKpeVlcW+ffto0KABAEePHuX8+fM89NBDwNXrdvTo0XxdaxG5NynYFBGxQ4sWLQgLC6NTp06MHz+eatWqcerUKdasWUOnTp2oV68er732Gj179qRevXo8/PDDLFmyhMOHD1OxYsUbtunm5sawYcMYOnQoLi4uNGnShDNnznD48GH69OmDr68v7u7uxMTEUKZMGdzc3DCbzURFRREREYGXlxdt2rQhPT2dffv2kZyczMCBA+nWrRsjRoygT58+vP766yQkJDBx4sR8nW+lSpXIyspi+vTpdOjQgW+++YbZs2fnKle4cGFeffVVpk2bRuHChRkwYACNGjWyBJ+jRo2iffv2BAYG8swzz+Dk5MR3333H999/z9tvv53/D0JE7lqajS4iYgeTycSaNWt49NFH6d27N1WrVuXZZ58lISHBMnu8a9eujBo1imHDhlG3bl2OHz/OK6+8ctN2R44cyaBBgxg1ahTVq1ena9eunD59Grh6P+S0adOYM2cOAQEBPPnkkwC8+OKLvP/++yxYsIDg4GCaNm3KggULLEslFSlShM8//5wjR44QGhrKiBEjGD9+fL7ONyQkhMmTJzN+/Hhq1qzJkiVLGDduXK5yHh4eDBs2jG7duhEWFoa7uzvLli2z7G/dujVffPEF69evp379+jRq1IjJkydTrly5fPVHRO5+JqMgbuIREREREbkBZTZFRERExGEUbIqIiIiIwyjYFBERERGHUbApIiIiIg6jYFNEREREHEbBpoiIiIg4jIJNEREREXEYBZsiIiIi4jAKNkVERETEYRRsioiIiIjDKNgUEREREYdRsCkiIiIiDvN/RF3uh7w6PvcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHFCAYAAAC9/jJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoxElEQVR4nO3deXhN1/7H8fdJyEgOSSQRQswVQmIObbnGGqsTrV5DRVTRNNd4XTW1RampaE1tcQ1Vt8WlJTUUpWaVtki11QQtKdVIiMi4f3/4ObdHHBInp6bPq89+np6911p77X1Cvr5rr7VNhmEYiIiIiIg4gNOd7oCIiIiI3L8UbIqIiIiIwyjYFBERERGHUbApIiIiIg6jYFNEREREHEbBpoiIiIg4jIJNEREREXEYBZsiIiIi4jAKNkVERETEYRRsish949tvv+WFF16gQoUKuLm5UaxYMerUqcPkyZP5448/HHruQ4cO0bRpU8xmMyaTiRkzZhT6OUwmE2PHji30dm9l0aJFmEwmTCYT27Zty3PcMAwqV66MyWSiWbNmt3WOd999l0WLFhWozrZt22z2SUTuHkXudAdERArDggUL6N+/P9WqVWPo0KGEhISQlZXFgQMHmDt3Lrt372b16tUOO3/v3r1JS0tjxYoVlCxZkuDg4EI/x+7duylbtmyht5tfxYsX5/33388TUG7fvp3jx49TvHjx22773XffxdfXl169euW7Tp06ddi9ezchISG3fV4RcTwFmyJyz9u9ezcvvfQSrVq1Ys2aNbi6ulqOtWrVisGDBxMbG+vQPhw+fJioqCjatm3rsHM0atTIYW3nR9euXVm2bBnvvPMOXl5elv3vv/8+ERERpKam/iX9yMrKwmQy4eXldcfviYjcmobRReSeN2HCBEwmE/Pnz7cKNK9xcXGhU6dOls+5ublMnjyZhx56CFdXV/z8/OjRowe//PKLVb1mzZpRs2ZN9u/fzyOPPIKHhwcVK1bkzTffJDc3F/jfEHN2djZz5syxDDcDjB071vL/f3atTmJiomXfF198QbNmzfDx8cHd3Z1y5crx1FNPcfnyZUuZGw2jHz58mMcff5ySJUvi5uZGWFgYixcvtipzbbj5ww8/ZOTIkQQGBuLl5UXLli05duxY/m4y8NxzzwHw4YcfWvalpKTwySef0Lt37xvWGTduHA0bNsTb2xsvLy/q1KnD+++/j2EYljLBwcEcOXKE7du3W+7ftczwtb4vWbKEwYMHU6ZMGVxdXfnpp5/yDKP//vvvBAUF0bhxY7KysiztHz16FE9PT7p3757vaxWRwqNgU0TuaTk5OXzxxRfUrVuXoKCgfNV56aWXGD58OK1atWLt2rW8/vrrxMbG0rhxY37//XersklJSTz//PP8/e9/Z+3atbRt25YRI0awdOlSANq3b8/u3bsBePrpp9m9e7flc34lJibSvn17XFxc+OCDD4iNjeXNN9/E09OTzMxMm/WOHTtG48aNOXLkCDNnzmTVqlWEhITQq1cvJk+enKf8v/71L06cOMF7773H/Pnz+fHHH+nYsSM5OTn56qeXlxdPP/00H3zwgWXfhx9+iJOTE127drV5bS+++CIrV65k1apVPPnkk7z88su8/vrrljKrV6+mYsWKhIeHW+7f9Y88jBgxgpMnTzJ37lzWrVuHn59fnnP5+vqyYsUK9u/fz/DhwwG4fPkyzzzzDOXKlWPu3Ln5uk4RKWSGiMg9LCkpyQCMZ599Nl/l4+PjDcDo37+/1f69e/cagPGvf/3Lsq9p06YGYOzdu9eqbEhIiNGmTRurfYAxYMAAq31jxowxbvTX7MKFCw3ASEhIMAzDMD7++GMDMOLi4m7ad8AYM2aM5fOzzz5ruLq6GidPnrQq17ZtW8PDw8O4cOGCYRiGsXXrVgMw2rVrZ1Vu5cqVBmDs3r37pue91t/9+/db2jp8+LBhGIZRv359o1evXoZhGEaNGjWMpk2b2mwnJyfHyMrKMl577TXDx8fHyM3NtRyzVffa+R599FGbx7Zu3Wq1f9KkSQZgrF692ujZs6fh7u5ufPvttze9RhFxHGU2ReSBsnXrVoA8E1EaNGhA9erV2bJli9X+gIAAGjRoYLWvVq1anDhxotD6FBYWhouLC3379mXx4sX8/PPP+ar3xRdf0KJFizwZ3V69enH58uU8GdY/P0oAV68DKNC1NG3alEqVKvHBBx/w3XffsX//fptD6Nf62LJlS8xmM87OzhQtWpTRo0dz/vx5zp49m+/zPvXUU/kuO3ToUNq3b89zzz3H4sWLmTVrFqGhofmuLyKFS8GmiNzTfH198fDwICEhIV/lz58/D0Dp0qXzHAsMDLQcv8bHxydPOVdXV9LT02+jtzdWqVIlNm/ejJ+fHwMGDKBSpUpUqlSJt99++6b1zp8/b/M6rh3/s+uv5drzrQW5FpPJxAsvvMDSpUuZO3cuVatW5ZFHHrlh2X379tG6dWvg6moBX331Ffv372fkyJEFPu+NrvNmfezVqxdXrlwhICBAz2qK3GEKNkXknubs7EyLFi04ePBgngk+N3It4Dpz5kyeY6dPn8bX17fQ+ubm5gZARkaG1f7rnwsFeOSRR1i3bh0pKSns2bOHiIgIYmJiWLFihc32fXx8bF4HUKjX8me9evXi999/Z+7cubzwwgs2y61YsYKiRYvy6aef0qVLFxo3bky9evVu65w3mmhly5kzZxgwYABhYWGcP3+eIUOG3NY5RaRwKNgUkXveiBEjMAyDqKioG06oycrKYt26dQA0b94cwDLB55r9+/cTHx9PixYtCq1f12ZUf/vtt1b7r/XlRpydnWnYsCHvvPMOAF9//bXNsi1atOCLL76wBJfX/Pvf/8bDw8NhywKVKVOGoUOH0rFjR3r27GmznMlkokiRIjg7O1v2paens2TJkjxlCytbnJOTw3PPPYfJZGLDhg1MnDiRWbNmsWrVKrvbFpHbo3U2ReSeFxERwZw5c+jfvz9169blpZdeokaNGmRlZXHo0CHmz59PzZo16dixI9WqVaNv377MmjULJycn2rZtS2JiIqNGjSIoKIh//OMfhdavdu3a4e3tTWRkJK+99hpFihRh0aJFnDp1yqrc3Llz+eKLL2jfvj3lypXjypUrlhnfLVu2tNn+mDFj+PTTT/nb3/7G6NGj8fb2ZtmyZXz22WdMnjwZs9lcaNdyvTfffPOWZdq3b8+0adPo1q0bffv25fz580yZMuWGy1OFhoayYsUKPvroIypWrIibm9ttPWc5ZswYduzYwcaNGwkICGDw4MFs376dyMhIwsPDqVChQoHbFBH7KNgUkftCVFQUDRo0YPr06UyaNImkpCSKFi1K1apV6datGwMHDrSUnTNnDpUqVeL999/nnXfewWw289hjjzFx4sQbPqN5u7y8vIiNjSUmJoa///3vlChRgj59+tC2bVv69OljKRcWFsbGjRsZM2YMSUlJFCtWjJo1a7J27VrLM483Uq1aNXbt2sW//vUvBgwYQHp6OtWrV2fhwoUFehOPozRv3pwPPviASZMm0bFjR8qUKUNUVBR+fn5ERkZalR03bhxnzpwhKiqKixcvUr58eat1SPNj06ZNTJw4kVGjRlllqBctWkR4eDhdu3Zl586duLi4FMbliUg+mQzjTyvrioiIiIgUIj2zKSIiIiIOo2BTRERERBxGwaaIiIiIOIyCTRERERFxGAWbIiIiIuIwCjZFRERExGG0zqY8cHJzczl9+jTFixcv0CvwRETk7mAYBhcvXiQwMBAnJ8flza5cuXLDt5IVlIuLi+X1tQ8iBZvywDl9+jRBQUF3uhsiImKnU6dOUbZsWYe0feXKFdyL+0D2ZbvbCggIICEh4YENOBVsygOnePHiALiE9MTkrDeJyP3p5LYpd7oLIg5zMTWVyhWCLH+fO0JmZiZkX8Y1pCfY87siJ5Oko4vJzMxUsCnyoLg2dG5ydlGwKfctLy+vO90FEYf7Sx6FKuJm1+8Kw6TpMQo2RURERGwxAfYEtZoaoGBTRERExCaT09XNnvoPON0BEREREXEYZTZFREREbDGZ7BxG1zi6gk0RERERWzSMbjfdARERERFxGGU2RURERGzRMLrdFGyKiIiI2GTnMLoGkXUHRERERMRxlNkUERERsUXD6HZTsCkiIiJii2aj2013QEREREQcRplNEREREVs0jG43BZsiIiIitmgY3W4KNkVERERsUWbTbgq3RURERMRhlNkUERERsUXD6HZTsCkiIiJii8lkZ7CpYXSF2yIiIiLiMMpsioiIiNjiZLq62VP/AadgU0RERMQWPbNpN90BEREREXEYZTZFREREbNE6m3ZTsCkiIiJii4bR7aY7ICIiIiIOo8ymiIiIiC0aRrebgk0RERERWzSMbjcFmyIiIiK2KLNpN4XbIiIiIuIwymyKiIiI2KJhdLsp2BQRERGxRcPodlO4LSIiIiIOo8ymiIiIiE12DqMrr6dgU0RERMQmDaPbTeG2iIiIiDiMMpsiIiIitphMds5GV2ZTwaaIiIiILVr6yG66AyIiIiLiMMpsioiIiNiiCUJ2U7ApIiIiYouG0e2mYFNERETEFmU27aZwW0REREQcRplNEREREVs0jG43BZsiIiIitmgY3W4Kt0VERETuIl9++SUdO3YkMDAQk8nEmjVrLMeysrIYPnw4oaGheHp6EhgYSI8ePTh9+rRVGxkZGbz88sv4+vri6elJp06d+OWXX6zKJCcn0717d8xmM2azme7du3PhwgWrMidPnqRjx454enri6+tLdHQ0mZmZBboeBZsiIiIiNphMJru3gkpLS6N27drMnj07z7HLly/z9ddfM2rUKL7++mtWrVrFDz/8QKdOnazKxcTEsHr1alasWMHOnTu5dOkSHTp0ICcnx1KmW7duxMXFERsbS2xsLHFxcXTv3t1yPCcnh/bt25OWlsbOnTtZsWIFn3zyCYMHDy7Q9ZgMwzAKeA9E7mmpqamYzWZcQ6MwObvc6e6IOETy/ry/pETuF6mpqfj7mElJScHLy8th5zCbzbh3egdTUffbbsfISid97YDb7qvJZGL16tV07tzZZpn9+/fToEEDTpw4Qbly5UhJSaFUqVIsWbKErl27AnD69GmCgoJYv349bdq0IT4+npCQEPbs2UPDhg0B2LNnDxEREXz//fdUq1aNDRs20KFDB06dOkVgYCAAK1asoFevXpw9ezbf16PMpoiIiIiDpaamWm0ZGRmF1nZKSgomk4kSJUoAcPDgQbKysmjdurWlTGBgIDVr1mTXrl0A7N69G7PZbAk0ARo1aoTZbLYqU7NmTUugCdCmTRsyMjI4ePBgvvunYFNERETEFlMhbEBQUJDl2Uiz2czEiRMLpXtXrlzhn//8J926dbNkGpOSknBxcaFkyZJWZf39/UlKSrKU8fPzy9Oen5+fVRl/f3+r4yVLlsTFxcVSJj80G11ERETEhtt97vJPDQBw6tQpq2FnV1dXe7tGVlYWzz77LLm5ubz77ru3LG8YhtW13Oi6bqfMrSizKSIiIuJgXl5eVpu9wWZWVhZdunQhISGBTZs2WQWyAQEBZGZmkpycbFXn7NmzlkxlQEAAv/32W552z507Z1Xm+gxmcnIyWVlZeTKeN6NgU0RERMSGOzEb/VauBZo//vgjmzdvxsfHx+p43bp1KVq0KJs2bbLsO3PmDIcPH6Zx48YAREREkJKSwr59+yxl9u7dS0pKilWZw4cPc+bMGUuZjRs34urqSt26dfPdXw2ji4iIiNhQWMPoBXHp0iV++ukny+eEhATi4uLw9vYmMDCQp59+mq+//ppPP/2UnJwcS/bR29sbFxcXzGYzkZGRDB48GB8fH7y9vRkyZAihoaG0bNkSgOrVq/PYY48RFRXFvHnzAOjbty8dOnSgWrVqALRu3ZqQkBC6d+/OW2+9xR9//MGQIUOIiooq0Mx6BZsiIiIiNtyJYPPAgQP87W9/s3weNGgQAD179mTs2LGsXbsWgLCwMKt6W7dupVmzZgBMnz6dIkWK0KVLF9LT02nRogWLFi3C2dnZUn7ZsmVER0dbZq136tTJam1PZ2dnPvvsM/r370+TJk1wd3enW7duTJkypUDXo3U25YGjdTblQaB1NuV+9leus1n8qXl2r7N58ZMXHdrXu50ymyIiIiK2/Gn5otuu/4BTsCkiIiJiw50YRr/faDa6iIiIiDiMMpsiIiIiNphMN17YPP8NFF5f7lUKNkVERERsMGHvWpmKNjWMLiIiIiIOo8ymiIiIiA2aIGQ/BZsiIiIitmjpI7tpGF1EREREHEaZTRERERFb7BxGNzSMrmBTRERExBZ7n9m0byb7/UHBpoiIiIgNCjbtp2c2RURERMRhlNkUERERsUWz0e2mYFNERETEBg2j20/D6CIiIiLiMMpsioiIiNigzKb9FGyKiIiI2KBg034aRhcRERERh1FmU0RERMQGZTbtp2BTRERExBYtfWQ3DaOLiIiIiMMosykiIiJig4bR7adgU0RERMQGBZv2U7ApIiIiYoOCTfvpmU0RERERcRhlNkVERERs0Wx0uynYFBEREbFBw+j20zC6iIiIiDiMMpu3ITg4mJiYGGJiYu7I+U0mE6tXr6Zz584kJiZSoUIFDh06RFhY2B3pT0Hux+XLl+nevTubNm3i4sWLJCcnExYWZvf9HDt2LGvWrCEuLu6225D/aRxeiZe7t6T2Q+UoXcrM80Pms377t5bjw6Pa8WTrOpTxL0lWVg5x35/kjXfXcfDICUsZP5/ivBb9BM0aPkQxD1d+OnGWaQs/Z+0XcZYyg19oQ+uHa1CzalmysrIJbj4sT1+S98/Os2/QxBUsXLWzcC9a5E9qdRrNqTN/5Nkf+fQjTBnelf5jl/DhZ3utjtWrGcymhUMsn3/7PZXRM1ezbe/3XLqcQeXyfgx6oQ2Ptwh3eP+l8Cizab8HIths1qwZYWFhzJgx4053pdAFBQVx5swZfH19HX6uRYsWERMTw4ULF6z279+/H09Pz3y1sXjxYnbs2MGuXbvw9fXFbDYXqL78NTzcXTn8w68sW7eHJZOj8hw/fvIsw976D4m//o67a1Feeq45q2YPpM4T4zh/4RIAc8f1xKuYG90GzeN8yiWeblOPDyb05m89JvPdD78AULSoM2s2H2Lfdwl07xRhsz/9xy1hy+6jls+pl64U8hWLWPti8VBycgzL5/jjp3li4Gw6t/xfoNgiIoR3Rv/d8tmlqLNVG/3GLCb10hWWT3sRH3MxPv78AL3/9QFb/z2MWtWCHH8RUihM2Bls6qHNByPYzA/DMMjJyaFIkTtzS7KysihatGiB6zk7OxMQEOCAHuVfqVKl8l32+PHjVK9enZo1a95WfflrbN51lM27jto8/vHnB6w+vzpjFT06N6ZGlUC+3P8DAPVDKzDkzRV8ffRqtnPqB5/T/7nm1H4oyBJsvjl/PQDPdWh40/6kXEzn7PmLt309IgXlW7K41ecZizdSoawvTepUsexzdSmCv6+XzTb2f5fAlH8+S90awQAMiXyMdz/8gm++P6VgUx4od/SZzWbNmhEdHc2wYcPw9vYmICCAsWPHWpVJSUmhb9+++Pn54eXlRfPmzfnmm28sx3v16kXnzp2t6sTExNCsWTPL8e3bt/P2229bUuGJiYls27YNk8nE559/Tr169XB1dWXHjh0cP36cxx9/HH9/f4oVK0b9+vXZvHlzga4rNzeX1157jbJly+Lq6kpYWBixsbGW44mJiZhMJlauXEmzZs1wc3Nj6dKlN2zrxx9/5NFHH8XNzY2QkBA2bdpkdfxaW9eGj5OTk3n++ecpVaoU7u7uVKlShYULFwKQmZnJwIEDKV26NG5ubgQHBzNx4kRLW9OmTSM0NBRPT0+CgoLo378/ly5dzVJt27aNF154gZSUFMt9vPZdBQcHW2WNx44dS7ly5XB1dSUwMJDo6Gjg6vc9depUvvzyS0wmk+U7ur7+rb5zgDfffBN/f3+KFy9OZGQkV64o03WnFC3iTM8nmpBy8TKHf/jVsn/PN8d5olVdSnh5YDKZeLJVXVxcirDz4I8FPsfkoc/w06Y32bJ4KC88+bCGpeQvlZmVzcoN+3m+U4TVz97Ogz9SpfU/qffUOF55Yznn/rD+B1Gj2pVYvekgySlp5Obm8snGA2RmZvNw3SrXn0LuYtd+59mzPejueGZz8eLFDBo0iL1797J792569epFkyZNaNWqFYZh0L59e7y9vVm/fj1ms5l58+bRokULfvjhB7y9vW/Z/ttvv80PP/xAzZo1ee2114CrmbTExEQAhg0bxpQpU6hYsSIlSpTgl19+oV27drzxxhu4ubmxePFiOnbsyLFjxyhXrly+runtt99m6tSpzJs3j/DwcD744AM6derEkSNHqFLlf3/JDB8+nKlTp7Jw4UJcXV3ztJObm8uTTz6Jr68ve/bsITU19ZbPNY4aNYqjR4+yYcMGfH19+emnn0hPTwdg5syZrF27lpUrV1KuXDlOnTrFqVOnLHWdnJyYOXMmwcHBJCQk0L9/f4YNG8a7775L48aNmTFjBqNHj+bYsWMAFCtWLM/5P/74Y6ZPn86KFSuoUaMGSUlJlkBx1apV/POf/+Tw4cOsWrUKFxeXPPXz852vXLmSMWPG8M477/DII4+wZMkSZs6cScWKFW/95UihafNwTd4b/wIebkVJ+j2VJwbO5o+UNMvxyBEf8P7E3iRsmUxWdg7pVzLpPnQBib/+XqDzvDFnHV/u/4H0jEya1q/G6zFP4F3Ck6kffF7YlyRyQ59t+5aUS+l0+1MGvmXjEB5vGU5QgDcnTp9nwtxP6fTSTLYtGYary9VRqvcn9iZyxAdUbDmcIs5OuLu5sOStKCqU1WjOPUVLH9ntjgebtWrVYsyYMQBUqVKF2bNns2XLFlq1asXWrVv57rvvOHv2rCUYmzJlCmvWrOHjjz+mb9++t2zfbDbj4uKCh4fHDYebX3vtNVq1amX57OPjQ+3atS2f33jjDVavXs3atWsZOHBgvq5pypQpDB8+nGeffRaASZMmsXXrVmbMmME777xjKRcTE8OTTz5ps53NmzcTHx9PYmIiZcuWBWDChAm0bdvWZp2TJ08SHh5OvXr1gKtZwz8fq1KlCg8/fDUzVL58eau6fw5kK1SowOuvv85LL73Eu+++i4uLC2azGZPJdNNh+5MnTxIQEEDLli0pWrQo5cqVo0GDBgB4e3vj4eGBi4uLzTby853PmDGD3r1706dPH+Dqd7R582ab2c2MjAwyMjIsn1NTU232X/Jvx4EfePT5ifiUKEaPzo1ZOKE3LV+Ywu/JV7PhI1/qSIniHjzefyZ/XEijXdNaLHqzN+2iZnD0+Ol8n+fPQeW1zOmwPm0VbMpfZunaXbSMCKF0qRKWfU+2rmv5/5DKgYSHlKNWx9Fs3HmEjs3DABg/Zx0XLl5mzTsv413Ck/Xbv6XXPz9g/YIYalQu8xdfhcidc8eXPqpVq5bV59KlS3P27FkADh48yKVLl/Dx8aFYsWKWLSEhgePHjxfK+a8FZdekpaUxbNgwQkJCKFGiBMWKFeP777/n5MmT+WovNTWV06dP06RJE6v9TZo0IT4+/qbnvl58fDzlypWzBJoAERG2J1EAvPTSS6xYsYKwsDCGDRvGrl27LMd69epFXFwc1apVIzo6mo0bN1rV3bp1K61ataJMmTIUL16cHj16cP78edLS0q4/jU3PPPMM6enpVKxYkaioKFavXk12dna+6+fnO4+Pj89zH252XyZOnIjZbLZsQUF6VqowXL6SScIvv3PgcCLRbywnOyeX7o83BiC4jC99uzbl5deX8uX+Hzj8469Mfm8Dh+JP0ueZR+0674HvEvEq5k4p7+K3Lixip5Nn/mDbvmP06Nz4puUCfM0Elfbm+KlzACT8co4FK79k1qi/07RBNUKrlmV4VDvCq5fjvf98+Vd0XQqJhtHtd8czm9dPijGZTOTm5gJXh5FLly7Ntm3b8tQrUaIEcHXo1zAMq2NZWVn5Pv/1s6CHDh3K559/zpQpU6hcuTLu7u48/fTTZGZm5rvNa9fxZ4Zh5Nl3qxnY11/Xjdq9Xtu2bTlx4gSfffYZmzdvpkWLFgwYMIApU6ZQp04dEhIS2LBhA5s3b6ZLly60bNmSjz/+mBMnTtCuXTv69evH66+/jre3Nzt37iQyMrJA9zMoKIhjx46xadMmNm/eTP/+/XnrrbfYvn17viZA5ec7L6gRI0YwaNAgy+fU1FQFnA5gMplwKXr1rxQPt6uPSOTmWv8M5+QYmJzs+4u3VrWypF/JJOViul3tiOTH8nW7KVWyOK2b1LhpuT8uXOLX35IJ+P8JQ5evXP2d4XTdz7uzswkjN+/f7XL30tJH9rvjwebN1KlTh6SkJIoUKWI1HPxnpUqV4vDhw1b74uLirAIbFxcXcnJy8nXOHTt20KtXL5544gkALl26ZHm+Mz+8vLwIDAxk586dPPro/zI4u3btsgwn51dISAgnT57k9OnTBAYGArB79+5b1itVqhS9evWiV69ePPLIIwwdOpQpU6ZY+te1a1e6du3K008/zWOPPcYff/zBgQMHyM7OZurUqTg5XU14r1y50qrd/N5Hd3d3OnXqRKdOnRgwYAAPPfQQ3333HXXq1Lll3fx859WrV2fPnj306NHDsm/Pnj0223R1db3hM7Fim6e7CxWC/vdcWflAH2pWLcOFlMv8kZLG4N5t2PDld/z2ewolzZ5EPv0ogX4l+O+WrwH4ITGJ4yfPMn3Ec4x6ezV/pKTRvlkt/tawGs/+Y66l3bL+JSlh9qBsQEmcnJyoWfXq0GLCqXOkpWfy2CM18fPxYv93CaRfyeKRelV4tX9HFq/5isys/GfMRW5Hbm4uy9bt4dn2DSlS5H/LGl26nMGk+Z/RsXkYAb5mTp45z2vvrMOnRDHaN7v6GFbV4AAqBpXiHxM/5PVXnsDb7Mln275l695jrJje705dktwGk+nqZk/9B91dHWy2bNmSiIgIOnfuzKRJk6hWrRqnT59m/fr1dO7cmXr16tG8eXPeeust/v3vfxMREcHSpUs5fPgw4eH/WwstODiYvXv3kpiYSLFixW46sahy5cqsWrWKjh07YjKZGDVqlCXTml9Dhw5lzJgxVKpUibCwMBYuXEhcXBzLli0r8PVXq1aNHj16MHXqVFJTUxk5cuRN64wePZq6detSo0YNMjIy+PTTT6levToA06dPp3Tp0oSFheHk5MR//vMfAgICKFGiBJUqVSI7O5tZs2bRsWNHvvrqK+bOnWvVdnBwMJcuXWLLli3Url0bDw8PPDw8rMosWrSInJwcGjZsiIeHB0uWLMHd3T3P86E3u+ZbfeevvPIKPXv2pF69ejz88MMsW7aMI0eOaIJQIQqrXp5P571i+Txh0FMALP90D4MmrqBKsD/Ptm+ITwlP/ki5zKGjJ2jXdzrf/5wEQHZOLl1i5jBm4ON8OO1FPD1cSTh1jv5jl7DpT0sqjejXnm4dGlk+71g2AoAOL77NV1//SFZ2DpFPP8IbMU/i5GTixK/nmTDvMw1Dyl9i275j/JKUzN87NbLa7+xk4ujx06xYv4+Ui+n4+3rxSN2qfDChN8U93YCrqzSsnPES42b/l+cGzSPtcgYVgkrx7tjut8ySitxv7upg02QysX79ekaOHEnv3r05d+4cAQEBPProo/j7+wPQpk0bRo0axbBhw7hy5Qq9e/emR48efPfdd5Z2hgwZQs+ePQkJCSE9PZ2EhASb55w+fTq9e/emcePG+Pr6Mnz48AJPKImOjiY1NZXBgwdz9uxZQkJCWLt2rdVM9PxwcnJi9erVREZG0qBBA4KDg5k5cyaPPfaYzTouLi6MGDGCxMRE3N3deeSRR1ixYgVwdfb4pEmT+PHHH3F2dqZ+/fqsX78eJycnwsLCmDZtGpMmTWLEiBE8+uijTJw40Sp72LhxY/r160fXrl05f/48Y8aMybNUVYkSJXjzzTcZNGgQOTk5hIaGsm7dOnx8fPJ1zfn5zrt27crx48cZPnw4V65c4amnnuKll17i8881YaSwfPX1j5Ssb3tCXI9h792yjZ9PnaPn8JuXGzBuKQPG3XjZL4Atu+PZsjve5nERR2reqPoN32Dl7ubCJ7NuPWG0Ujk//n2DlyLIveVqZtOeYfRC7Mw9ymTc6MFAkftYamoqZrMZ19AoTM55l18SuR/cKEgSuV+kpqbi72MmJSUFLy/bC+vbew6z2UzF6I9xdr39t9zlZKTx88ynHdrXu90dn40uIiIiIvevu3oYXURERORO0mx0+ynYFBEREbFBs9Htp2F0EREREXEYZTZFREREbHByMuVZnL8gDDtfZHE/UGZTRERExIZrw+j2bAX15Zdf0rFjRwIDAzGZTKxZs8bquGEYjB07lsDAQNzd3WnWrBlHjhyxKpORkcHLL7+Mr68vnp6edOrUiV9++cWqTHJyMt27d7e8zrl79+5cuHDBqszJkyfp2LEjnp6e+Pr6Eh0dXeC3KirYFBEREbmLpKWlUbt2bWbPvvESZpMnT2batGnMnj2b/fv3ExAQQKtWrbh48aKlTExMDKtXr2bFihXs3LmTS5cu0aFDB6s3AXbr1o24uDhiY2OJjY0lLi6O7t27W47n5OTQvn170tLS2LlzJytWrOCTTz5h8ODBBboeDaOLiIiI2HAnZqO3bduWtm3b3vCYYRjMmDGDkSNH8uSTTwKwePFi/P39Wb58OS+++CIpKSm8//77LFmyhJYtWwKwdOlSgoKC2Lx5M23atCE+Pp7Y2Fj27NlDw4YNAViwYAEREREcO3aMatWqsXHjRo4ePcqpU6csr82eOnUqvXr1Yvz48fleN1SZTREREREbCmsYPTU11WrLyMi4rf4kJCSQlJRE69atLftcXV1p2rQpu3btAuDgwYNkZWVZlQkMDKRmzZqWMrt378ZsNlsCTYBGjRphNputytSsWdMSaMLVNzdmZGRw8ODBfPdZwaaIiIiIDdcym/ZsAEFBQZZnI81mMxMnTryt/iQlJQFYXuF8jb+/v+VYUlISLi4ulCxZ8qZl/Pz88rTv5+dnVeb685QsWRIXFxdLmfzQMLqIiIiIg506dcpq2NnV1dWu9q4fnjcM45ZD9teXuVH52ylzK8psioiIiNhQWJlNLy8vq+12g82AgACAPJnFs2fPWrKQAQEBZGZmkpycfNMyv/32W572z507Z1Xm+vMkJyeTlZWVJ+N5Mwo2RURERGy4E0sf3UyFChUICAhg06ZNln2ZmZls376dxo0bA1C3bl2KFi1qVebMmTMcPnzYUiYiIoKUlBT27dtnKbN3715SUlKsyhw+fJgzZ85YymzcuBFXV1fq1q2b7z5rGF1ERETkLnLp0iV++ukny+eEhATi4uLw9vamXLlyxMTEMGHCBKpUqUKVKlWYMGECHh4edOvWDQCz2UxkZCSDBw/Gx8cHb29vhgwZQmhoqGV2evXq1XnssceIiopi3rx5APTt25cOHTpQrVo1AFq3bk1ISAjdu3fnrbfe4o8//mDIkCFERUXleyY6KNgUERERscmEnUsfUfC6Bw4c4G9/+5vl86BBgwDo2bMnixYtYtiwYaSnp9O/f3+Sk5Np2LAhGzdupHjx4pY606dPp0iRInTp0oX09HRatGjBokWLcHZ2tpRZtmwZ0dHRllnrnTp1slrb09nZmc8++4z+/fvTpEkT3N3d6datG1OmTCnYPTAMwyjwXRC5h6WmpmI2m3ENjcLk7HKnuyPiEMn7b7wYtMj9IDU1FX8fMykpKQXKsBX0HGazmVoj1uLs5nnb7eRcSePbiZ0c2te7nZ7ZFBERERGH0TC6iIiIiA134g1C9xsFmyIiIiI22DujXLGmhtFFRERExIGU2RQRERGxQcPo9lOwKSIiImKDhtHtp2BTRERExAZlNu2nZzZFRERExGGU2RQRERGxxd73myuxqWBTRERExBYNo9tPw+giIiIi4jDKbIqIiIjYoNno9lOwKSIiImKDhtHtp2F0EREREXEYZTZFREREbNAwuv0UbIqIiIjYoGF0+2kYXUREREQcRplNERERERuU2bSfgk0RERERG/TMpv0UbIqIiIjYoMym/fTMpoiIiIg4jDKbIiIiIjZoGN1+CjZFREREbNAwuv00jC4iIiIiDqPMpoiIiIgNJuwcRi+0nty7FGyKiIiI2OBkMuFkR7RpT937hYbRRURERMRhlNkUERERsUGz0e2nYFNERETEBs1Gt5+CTREREREbnExXN3vqP+j0zKaIiIiIOIwymyIiIiK2mOwcCldmU8GmiIiIiC2aIGQ/DaOLiIiIiMMosykiIiJig+n//7On/oNOwaaIiIiIDZqNbj8No4uIiIiIwyizKSIiImKDFnW3X76CzZkzZ+a7wejo6NvujIiIiMjdRLPR7ZevYHP69On5asxkMinYFBERERGLfAWbCQkJju6HiIiIyF3HyWTCyY70pD117xe3PUEoMzOTY8eOkZ2dXZj9EREREblrXBtGt2d70BU42Lx8+TKRkZF4eHhQo0YNTp48CVx9VvPNN98s9A6KiIiI3CnXJgjZsz3oChxsjhgxgm+++YZt27bh5uZm2d+yZUs++uijQu2ciIiIiNzbCrz00Zo1a/joo49o1KiRVbQeEhLC8ePHC7VzIiIiIneSZqPbr8CZzXPnzuHn55dnf1pamlLFIiIicl+5NkHInq0gsrOzefXVV6lQoQLu7u5UrFiR1157jdzcXEsZwzAYO3YsgYGBuLu706xZM44cOWLVTkZGBi+//DK+vr54enrSqVMnfvnlF6syycnJdO/eHbPZjNlspnv37ly4cOG275UtBQ4269evz2effWb5fC3AXLBgAREREYXXMxEREZEHzKRJk5g7dy6zZ88mPj6eyZMn89ZbbzFr1ixLmcmTJzNt2jRmz57N/v37CQgIoFWrVly8eNFSJiYmhtWrV7NixQp27tzJpUuX6NChAzk5OZYy3bp1Iy4ujtjYWGJjY4mLi6N79+6Ffk0FHkafOHEijz32GEePHiU7O5u3336bI0eOsHv3brZv317oHRQRERG5U0z/v9lTvyB2797N448/Tvv27QEIDg7mww8/5MCBA8DVrOaMGTMYOXIkTz75JACLFy/G39+f5cuX8+KLL5KSksL777/PkiVLaNmyJQBLly4lKCiIzZs306ZNG+Lj44mNjWXPnj00bNgQ+F/i8NixY1SrVs2Oq7ZW4Mxm48aN+eqrr7h8+TKVKlVi48aN+Pv7s3v3burWrVtoHRMRERG50/7q2egPP/wwW7Zs4YcffgDgm2++YefOnbRr1w64uvZ5UlISrVu3ttRxdXWladOm7Nq1C4CDBw+SlZVlVSYwMJCaNWtayuzevRuz2WwJNAEaNWqE2Wy2lCkst/Vu9NDQUBYvXlyoHRERERG5X6Wmplp9dnV1xdXVNU+54cOHk5KSwkMPPYSzszM5OTmMHz+e5557DoCkpCQA/P39rer5+/tz4sQJSxkXFxdKliyZp8y1+klJSTecg+Pn52cpU1huK9jMyclh9erVxMfHYzKZqF69Oo8//jhFitxWcyIiIiJ3JSfT1c2e+gBBQUFW+8eMGcPYsWPzlP/oo49YunQpy5cvp0aNGsTFxRETE0NgYCA9e/a0lLs+Y2oYxi2zqNeXuVH5/LRTUAWODg8fPszjjz9OUlKSZTz/hx9+oFSpUqxdu5bQ0NBC7aCIiIjInWLvwuzX6p46dQovLy/L/htlNQGGDh3KP//5T5599lng6mjyiRMnmDhxIj179iQgIAC4mpksXbq0pd7Zs2ct2c6AgAAyMzNJTk62ym6ePXuWxo0bW8r89ttvec5/7ty5PFlTexX4mc0+ffpQo0YNfvnlF77++mu+/vprTp06Ra1atejbt2+hdk5ERETkfuDl5WW12Qo2L1++jJOTdXjm7OxsWfqoQoUKBAQEsGnTJsvxzMxMtm/fbgkk69atS9GiRa3KnDlzhsOHD1vKREREkJKSwr59+yxl9u7dS0pKiqVMYSlwZvObb77hwIEDVpFyyZIlGT9+PPXr1y/UzomIiIjcaX/lMuIdO3Zk/PjxlCtXjho1anDo0CGmTZtG7969/78vJmJiYpgwYQJVqlShSpUqTJgwAQ8PD7p16waA2WwmMjKSwYMH4+Pjg7e3N0OGDCE0NNQyO7169eo89thjREVFMW/ePAD69u1Lhw4dCnUmOtxGsFmtWjV+++03atSoYbX/7NmzVK5cudA6JiIiInKnFdYwen7NmjWLUaNG0b9/f86ePUtgYCAvvvgio0ePtpQZNmwY6enp9O/fn+TkZBo2bMjGjRspXry4pcz06dMpUqQIXbp0IT09nRYtWrBo0SKcnZ0tZZYtW0Z0dLRl1nqnTp2YPXv2bV+rLSbDMIxbFfrzDKqdO3cybNgwxo4dS6NGjQDYs2cPr732Gm+++aZlar7I3So1NRWz2YxraBQmZ5c73R0Rh0jeX/i/METuFqmpqfj7mElJSbF6DrKwz2E2m3nuva9w8Sh22+1kXr7Eh32aOLSvd7t8ZTZLlChhFZkbhkGXLl0s+67Fqx07drRamV5EREREHmz5Cja3bt3q6H6IiIiI3HX+6mH0+1G+gs2mTZs6uh8iIiIid52/+nWV96PbXoX98uXLnDx5kszMTKv9tWrVsrtTIiIiInJ/KHCwee7cOV544QU2bNhww+N6ZlNERETuF04mE052DIXbU/d+UeBF3WNiYkhOTmbPnj24u7sTGxvL4sWLqVKlCmvXrnVEH0VERETuCJPJ/u1BV+DM5hdffMF///tf6tevj5OTE+XLl6dVq1Z4eXkxceJE2rdv74h+ioiIiMg9qMCZzbS0NPz8/ADw9vbm3LlzwNV3d3799deF2zsRERGRO+jabHR7tgddgYPNatWqcezYMQDCwsKYN28ev/76K3PnzrV6IbyIiIjIvU7D6PYr8DB6TEwMZ86cAWDMmDG0adOGZcuW4eLiwqJFiwq7fyIiIiJyDytwsPn8889b/j88PJzExES+//57ypUrh6+vb6F2TkRERORO0mx0+932OpvXeHh4UKdOncLoi4iIiMhdxd6hcMWa+Qw2Bw0alO8Gp02bdtudEREREbmb6HWV9stXsHno0KF8NaYbKiIiIiJ/lq9gc+vWrY7uh8hf7uctk/Hy8rrT3RBxiJr/vPFb3kTuB7kZl/+yczlxG0v3XFf/QWf3M5siIiIi9ysNo9tPAbeIiIiIOIwymyIiIiI2mEzgpNnodlGwKSIiImKDk53Bpj117xcaRhcRERERh7mtYHPJkiU0adKEwMBATpw4AcCMGTP473//W6idExEREbmTrk0Qsmd70BU42JwzZw6DBg2iXbt2XLhwgZycHABKlCjBjBkzCrt/IiIiInfMtWF0e7YHXYGDzVmzZrFgwQJGjhyJs7OzZX+9evX47rvvCrVzIiIiInJvK/AEoYSEBMLDw/Psd3V1JS0trVA6JSIiInI30LvR7VfgzGaFChWIi4vLs3/Dhg2EhIQURp9ERERE7gpOJpPd24OuwJnNoUOHMmDAAK5cuYJhGOzbt48PP/yQiRMn8t577zmijyIiIiJ3hF5Xab8CB5svvPAC2dnZDBs2jMuXL9OtWzfKlCnD22+/zbPPPuuIPoqIiIjIPeq2FnWPiooiKiqK33//ndzcXPz8/Aq7XyIiIiJ3nJ7ZtJ9dbxDy9fUtrH6IiIiI3HWcsO+5SycUbRY42KxQocJNFyj9+eef7eqQiIiIiNw/ChxsxsTEWH3Oysri0KFDxMbGMnTo0MLql4iIiMgdp2F0+xU42HzllVduuP+dd97hwIEDdndIRERE5G5h71uA9AahQpyR37ZtWz755JPCak5ERERE7gN2TRD6s48//hhvb+/Cak5ERETkjjOZsGuCkIbRbyPYDA8Pt5ogZBgGSUlJnDt3jnfffbdQOyciIiJyJ+mZTfsVONjs3Lmz1WcnJydKlSpFs2bNeOihhwqrXyIiIiJyHyhQsJmdnU1wcDBt2rQhICDAUX0SERERuStogpD9CjRBqEiRIrz00ktkZGQ4qj8iIiIidw1TIfz3oCvwbPSGDRty6NAhR/RFRERE5K5yLbNpz/agK/Azm/3792fw4MH88ssv1K1bF09PT6vjtWrVKrTOiYiIiMi9Ld/BZu/evZkxYwZdu3YFIDo62nLMZDJhGAYmk4mcnJzC76WIiIjIHaBnNu2X72Bz8eLFvPnmmyQkJDiyPyIiIiJ3DZPJZLXk4+3Uf9DlO9g0DAOA8uXLO6wzIiIiInJ/KdAzm4rORURE5EGiYXT7FSjYrFq16i0Dzj/++MOuDomIiIjcLfQGIfsVKNgcN24cZrPZUX0RERERkftMgYLNZ599Fj8/P0f1RUREROSu4mQy4WRHevJ26v76668MHz6cDRs2kJ6eTtWqVXn//fepW7cucHUezbhx45g/fz7Jyck0bNiQd955hxo1aljayMjIYMiQIXz44Yekp6fTokUL3n33XcqWLWspk5ycTHR0NGvXrgWgU6dOzJo1ixIlStz29d5Ivhd11/OaIiIi8qD5qxd1T05OpkmTJhQtWpQNGzZw9OhRpk6dahUATp48mWnTpjF79mz2799PQEAArVq14uLFi5YyMTExrF69mhUrVrBz504uXbpEhw4drJao7NatG3FxccTGxhIbG0tcXBzdu3e395blUeDZ6CIiIiLiGJMmTSIoKIiFCxda9gUHB1v+3zAMZsyYwciRI3nyySeBq8tT+vv7s3z5cl588UVSUlJ4//33WbJkCS1btgRg6dKlBAUFsXnzZtq0aUN8fDyxsbHs2bOHhg0bArBgwQIiIiI4duwY1apVK7RryndmMzc3V0PoIiIi8mAx/W+S0O1s116NnpqaarVlZGTc8HRr166lXr16PPPMM/j5+REeHs6CBQssxxMSEkhKSqJ169aWfa6urjRt2pRdu3YBcPDgQbKysqzKBAYGUrNmTUuZ3bt3YzabLYEmQKNGjTCbzZYyhaXA70YXEREReVA4YbJ7AwgKCsJsNlu2iRMn3vB8P//8M3PmzKFKlSp8/vnn9OvXj+joaP79738DkJSUBIC/v79VPX9/f8uxpKQkXFxcKFmy5E3L3CiJ6OfnZylTWAr8bnQRERGRB0VhLX106tQpvLy8LPtdXV1vWD43N5d69eoxYcIEAMLDwzly5Ahz5syhR48ef2rXulPXXht+M9eXuVH5/LRTUMpsioiIiDiYl5eX1WYr2CxdujQhISFW+6pXr87JkycBCAgIAMiTfTx79qwl2xkQEEBmZibJyck3LfPbb7/lOf+5c+fyZE3tpWBTRERExIa/ejZ6kyZNOHbsmNW+H374wfK68AoVKhAQEMCmTZssxzMzM9m+fTuNGzcGoG7duhQtWtSqzJkzZzh8+LClTEREBCkpKezbt89SZu/evaSkpFjKFBYNo4uIiIjY8Fevs/mPf/yDxo0bM2HCBLp06cK+ffuYP38+8+fPB64OfcfExDBhwgSqVKlClSpVmDBhAh4eHnTr1g0As9lMZGQkgwcPxsfHB29vb4YMGUJoaKhldnr16tV57LHHiIqKYt68eQD07duXDh06FOpMdFCwKSIiInLXqF+/PqtXr2bEiBG89tprVKhQgRkzZvD8889bygwbNoz09HT69+9vWdR948aNFC9e3FJm+vTpFClShC5dulgWdV+0aBHOzs6WMsuWLSM6Otoya71Tp07Mnj270K/JZGgBTXnApKamYjab+fVsstXD2iL3k7CRn9/pLog4TG7GZRJmP01KSorD/h6/9rvi7S3f4e5Z/NYVbEhPu8grLUId2te7nTKbIiIiIjY4YecwOoU7s/tepAlCIiIiIuIwymyKiIiI2FBY62w+yBRsioiIiNjghH3DwBpC1j0QEREREQdSZlNERETEBpPJZNfrGwv71Y/3IgWbIiIiIjaY/n+zp/6DTsGmiIiIiA1/9RuE7kd6ZlNEREREHEaZTREREZGbUG7SPgo2RURERGzQOpv20zC6iIiIiDiMMpsiIiIiNmjpI/sp2BQRERGxQW8Qsp/ugYiIiIg4jDKbIiIiIjZoGN1+CjZFREREbNAbhOynYXQRERERcRhlNkVERERs0DC6/RRsioiIiNig2ej2U7ApIiIiYoMym/ZTwC0iIiIiDqPMpoiIiIgNmo1uPwWbIiIiIjaYTFc3e+o/6DSMLiIiIiIOo8ymiIiIiA1OmHCyYzDcnrr3CwWbIiIiIjZoGN1+GkYXEREREYdRZlNERETEBtP//2dP/Qedgk0RERERGzSMbj8No4uIiIiIwyizKSIiImKDyc7Z6BpGV7ApIiIiYpOG0e2nYFNERETEBgWb9tMzmyIiIiLiMMpsioiIiNigpY/sp2BTRERExAYn09XNnvoPOg2ji4iIiIjDKLMpIiIiYoOG0e2nYFNERETEBs1Gt5+G0UVERETEYZTZFBEREbHBhH1D4UpsKtgUERERsUmz0e2nYXQRERERcRgFm2KXsWPHEhYWlu/y8+fPJygoCCcnJ2bMmFHg+jeSmJiIyWQiLi7OrnakYC6lXWHk9E8I7zyGoKaDaRc1jUNHT/zv+OUMhk/5D7U6jiKo6WAadx3Pwk92WLXx2/lU+o/9NyHtRlK+2RCa95jM2i8O/dWXIg+YuhVKMrtnXb741984/GZbmof4OfycLWv6899/PMLXb7Thv/94hBY1/G2W7dOsIoffbMvwDtUd3i+5NVMh/PegU7Ap+WYymVizZo3VviFDhrBly5Z81U9NTWXgwIEMHz6cX3/9lb59+xaovtxdYiZ8yPZ9x3hnTHe2L/0nzRo8xFMvv8OZsxcAGDVjFV/siWfO2B589eG/6PdcM0ZM+4QNX35raWPA2CX8dPIsS9/qy/Zl/6R9s9pEvbqIb4+dukNXJQ8C96LOHDuTyoT/Hi2U9h6vW4aFfRvYPF67XAmmPBfGukO/8tTbO1l36FemdAsjNMicp2zNsmaebhDEsTOphdI3sd+12ej2bA86BZtil2LFiuHj45OvsidPniQrK4v27dtTunRpPDw8ClRf7h7pVzL5dNs3jB74OI3DK1MxqBTDotpRLtCHhat2AnDgcCLPtmtAk7pVKBfoQ4/OTahROZC4+P8FkvsPJ9DnmUepU6M8wWV8Gdy7DeZi7nx77Jc7dWnyANj5w+/M2vgjm4/8dsPjRZxNDGpbjS0j/sa+11qxvH8E9St63/b5ujcJZvdP53lv288knEvjvW0/s/en83RvEmxVzt3FmTe71mbsqsOkpmfd9vmkcJkKYbPHxIkTMZlMxMTEWPYZhsHYsWMJDAzE3d2dZs2aceTIEat6GRkZvPzyy/j6+uLp6UmnTp345Rfrv1uTk5Pp3r07ZrMZs9lM9+7duXDhgp09zkvB5gPm448/JjQ0FHd3d3x8fGjZsiVpaWns37+fVq1a4evri9lspmnTpnz99deWesHBwQA88cQTmEwmy+frh8G3bdtGgwYN8PT0pESJEjRp0oQTJ06waNEiQkNDAahYsSImk4nExMQbDqMvXLiQ6tWr4+bmxkMPPcS7775rdXzfvn2Eh4fj5uZGvXr1OHRIw65/tZycXHJycnFzsZ5j6O5alL3f/AxAw9oVid1xmDNnL2AYBjsP/sDxU+f4W8OHLOUb1q7Ims2HSE5JIzc3l9WbDpKRlU2TOpX/0usR+bM3nq5FePmSDP0wjqdmfMXG75KY+0I9yvl43FZ7tcuXYNePv1vt++rH3wkrX9Jq36uPh/DlsbPs+en8bfdd7i/79+9n/vz51KpVy2r/5MmTmTZtGrNnz2b//v0EBATQqlUrLl68aCkTExPD6tWrWbFiBTt37uTSpUt06NCBnJwcS5lu3boRFxdHbGwssbGxxMXF0b1790K/Ds1Gf4CcOXOG5557jsmTJ/PEE09w8eJFduzYgWEYXLx4kZ49ezJz5kwApk6dSrt27fjxxx8pXrw4+/fvx8/Pj4ULF/LYY4/h7Oycp/3s7Gw6d+5MVFQUH374IZmZmezbtw+TyUTXrl0JCgqiZcuW7Nu3j6CgIEqVKpWnjQULFjBmzBhmz55NeHg4hw4dIioqCk9PT3r27ElaWhodOnSgefPmLF26lISEBF555ZWbXndGRgYZGRmWz6mpGp6yVzFPN+qHBjP1g8+pGhxAKe/irNp4kINHTlAx6Or3OmHQU/xj4gpqdRpNEWcnnJxMTP/XczQKq2Rp5703XqDPqwup2mYERZydcHdzYfGbfahQNu/PhshfIcjbg3a1S9Ni4lbOXbz698aiHQk0qerLE/XK8vbnPxS4Td9irpy/mGG17/zFDHyLu1o+t61VmuplzDw7e5d9FyCFzgkTTnaMhTvdZm7z0qVLPP/88yxYsIA33njDst8wDGbMmMHIkSN58sknAVi8eDH+/v4sX76cF198kZSUFN5//32WLFlCy5YtAVi6dClBQUFs3ryZNm3aEB8fT2xsLHv27KFhw4bA1d/BERERHDt2jGrVqt32NV9PweYD5MyZM2RnZ/Pkk09Svnx5AEu2sXnz5lZl582bR8mSJdm+fTsdOnSwBIYlSpQgICDghu2npqaSkpJChw4dqFTpakBRvfr/HnC/NlxeqlQpm228/vrrTJ061fIHqEKFChw9epR58+bRs2dPli1bRk5ODh988AEeHh7UqFGDX375hZdeesnmdU+cOJFx48bd8v5IwbwzpjuvjF9OaMdRODs7UataWZ5qXdfyvOWClds5eDiRpW9FUTbAm91xxxn21n/w9zHTtMHVv8QmzP2MlNR0Ppk1AO8Sxdiw/VsiRy5k3dxXCKkceCcvTx5Q1ct44eRk4rMhj1rtL1rEiZTLV4e2A8xurB30iOWYs5OJIs5O7BvXyrLv00OneW3N/4Y1jevOYzKZMAzD0t4/O1an7wf7yczOLeQrEnvZOxR+re71iQ5XV1dcXV3zVvh/AwYMoH379rRs2dIq2ExISCApKYnWrVtbtdW0aVN27drFiy++yMGDB8nKyrIqExgYSM2aNdm1axdt2rRh9+7dmM1mS6AJ0KhRI8xmM7t27VKwKbendu3atGjRgtDQUNq0aUPr1q15+umnKVmyJGfPnmX06NF88cUX/Pbbb+Tk5HD58mVOnjyZ7/a9vb3p1asXbdq0oVWrVrRs2ZIuXbpQunTpfNU/d+4cp06dIjIykqioKMv+7OxszOarD9LHx8dTu3ZtPDz+N5wVERFx03ZHjBjBoEGDLJ9TU1MJCgrK93XJjVUoW4q1c14hLT2Di2lXCPA102fkQsoF+pB+JZPxcz5l0aQ+tG5SA4AaVcpw+IdfeGf5Fpo2qEbCL+d4/+Mv2bF8BA9VvPozUrNKGfbEHeeDT3YwZXjXO3l58oByMkF2Ti5dZu0ix7AOES9nZANw7mIGT838yrK/ZQ1/WtUMYPhH31j2pV3Jtvz/75ess5gA3sVcOH8pE4CQMl74FHflo4GNLceLODtRN9ib5yLKUefVz8m9PlqVe871v3fGjBnD2LFjb1h2xYoVfP311+zfvz/PsaSkJAD8/a1XNPD39+fEiROWMi4uLpQsWTJPmWv1k5KS8PPLuxKDn5+fpUxhUbD5AHF2dmbTpk3s2rWLjRs3MmvWLEaOHMnevXsZMGAA586dY8aMGZQvXx5XV1ciIiLIzMws0DkWLlxIdHQ0sbGxfPTRR7z66qts2rSJRo0a3bJubu7Vf9EvWLDA6l9a1/oOWDIBBXGrfz2KfTzdXfF0d+VC6mW27v2eMQM7kZ2TQ1Z2Tp6hJ2dnJ4z//62ZfuVqluj6Mk7OTuTqN6vcIfGnUyni7IR3MRe+Tky+YZmcXINT5y9bPv+RlklGdo7Vvj/75sQFIir7sGRnomVf4yq+xJ242v6en87Tebr1smBvPB1Kwrk03t/+swLNO62QUpunTp3Cy8vLstvW76VTp07xyiuvsHHjRtzc3Gw3e93fnYZh5Nl3vevL3Kh8ftopKE0QesCYTCaaNGnCuHHjOHToEC4uLqxevZodO3YQHR1Nu3btqFGjBq6urvz+u/UD7UWLFrV6sNiW8PBwRowYwa5du6hZsybLly/PV9/8/f0pU6YMP//8M5UrV7baKlSoAEBISAjffPMN6enplnp79uwpwB2QwvLFnni27D7KidPn2bb3ezoPmEXlcn4816ERxT3daRxemXGz/8tXB3/kxOnzfPjpXlZu2E+7plcfdK8S7E+FsqUYPOkjvj5ygoRfzvHusi/Yvu8YbZuG3uGrk/uZu4sz1UoXp1rp4gCU8fagWuniBJjdOPH7ZT499CsTutSiZQ1/ypR0p2ZZM72bVuSRarf3LPHSrxJpXMWX3k0rUqGUJ72bVqRRZR+WfJUIwOXMHH767ZLVlp6Vw4XLWfz026XCumy5TYW1zqaXl5fVZivYPHjwIGfPnqVu3boUKVKEIkWKsH37dmbOnEmRIkUsGc3rs49nz561HAsICCAzM5Pk5OSblvntt7wrMpw7dy5P1tReymw+QPbu3cuWLVto3bo1fn5+7N27l3PnzlG9enUqV67MkiVLqFevHqmpqQwdOhR3d3er+sHBwWzZsoUmTZrg6uqaJz2fkJDA/Pnz6dSpE4GBgRw7dowffviBHj165LuPY8eOJTo6Gi8vL9q2bUtGRgYHDhwgOTmZQYMG0a1bN0aOHElkZCSvvvoqiYmJTJkypVDujxRM6qV0xs9Zx+mzFyjh5UmHv9VmZL8OFC1yNQs9/41evPHuOvqN/TcXUi9TNqAk/3qxPb2efBiAokWc+XDai7z+7jr+PmQ+aekZVCjry+zRz9OqcY07eWlyn6tZ1szCvv8bPbm2ePqag7/w6n++49X/fMeLzSsxpP1D+Hu5ceFyJt+cvMCO78/e1vniTl5g6Iff8HLrKrzcqgqn/rjM0OVxfHcqpVCuR+4vLVq04LvvvrPa98ILL/DQQw8xfPhwKlasSEBAAJs2bSI8PByAzMxMtm/fzqRJkwCoW7cuRYsWZdOmTXTp0gW4Om/j8OHDTJ48Gbj6CFpKSgr79u2jQYOr68Tu3buXlJQUGjduTGFSsPkA8fLy4ssvv2TGjBmkpqZSvnx5pk6dStu2bQkICKBv376Eh4dTrlw5JkyYwJAhQ6zqT506lUGDBrFgwQLKlClDYmKi1XEPDw++//57Fi9ezPnz5yldujQDBw7kxRdfzHcf+/Tpg4eHB2+99RbDhg3D09OT0NBQy/pixYoVY926dfTr14/w8HBCQkKYNGkSTz31lL23Rwqoc8s6dG5Zx+Zxfx8vZo16/qZtVCrnx6I3Iwu7ayI3tf/nP6j5zw02j2fnGryz+Sfe2fxTvtr778Ff+e/BX29aZtPhJDYdzv9zcC/M35fvsuJg9i7MXsC6xYsXp2bNmlb7PD098fHxseyPiYlhwoQJVKlShSpVqjBhwgQ8PDzo1q0bAGazmcjISAYPHoyPjw/e3t4MGTKE0NBQy+z06tWr89hjjxEVFcW8efMA6Nu3Lx06dCjUyUEAJuN2HoITuYelpqZiNpv59Wyy1fMzIveTsJGf3+kuiDhMbsZlEmY/TUpKisP+Hr/2u+KLuJMUK37757h0MZXmYeXs6muzZs0ICwtjxowZwNXnKseNG8e8efNITk6mYcOGvPPOO1ZB6pUrVxg6dCjLly8nPT2dFi1a8O6771pNVPrjjz+Ijo5m7dq1AHTq1InZs2dTokSJ277eG1GwKQ8cBZvyIFCwKfezBy3YvNdpGF1ERETElsJaaPMBpmBTRERExIY/zyi/3foPOgWbIiIiIjaY7JwgVMhLVt6TtM6miIiIiDiMMpsiIiIiNuiRTfsp2BQRERGxRdGm3TSMLiIiIiIOo8ymiIiIiA2ajW4/BZsiIiIiNmg2uv00jC4iIiIiDqPMpoiIiIgNmh9kPwWbIiIiIrYo2rSbhtFFRERExGGU2RQRERGxQbPR7adgU0RERMQGzUa3n4JNERERERv0yKb99MymiIiIiDiMMpsiIiIitii1aTcFmyIiIiI2aIKQ/TSMLiIiIiIOo8ymiIiIiA2ajW4/BZsiIiIiNuiRTftpGF1EREREHEaZTRERERFblNq0m4JNERERERs0G91+GkYXEREREYdRZlNERETEBs1Gt5+CTREREREb9Mim/RRsioiIiNiiaNNuemZTRERERBxGmU0RERERGzQb3X4KNkVERERssXOCkGJNDaOLiIiIiAMpsykiIiJig+YH2U/BpoiIiIgtijbtpmF0EREREXEYZTZFREREbNBsdPsp2BQRERGxQa+rtJ+G0UVERETEYZTZFBEREbFB84Psp2BTRERExBZFm3ZTsCkiIiJigyYI2U/PbIqIiIiIwyizKSIiImKDCTtnoxdaT+5dCjZFREREbNAjm/bTMLqIiIjIXWLixInUr1+f4sWL4+fnR+fOnTl27JhVGcMwGDt2LIGBgbi7u9OsWTOOHDliVSYjI4OXX34ZX19fPD096dSpE7/88otVmeTkZLp3747ZbMZsNtO9e3cuXLhQ6NekYFNERETEhmuLutuzFcT27dsZMGAAe/bsYdOmTWRnZ9O6dWvS0tIsZSZPnsy0adOYPXs2+/fvJyAggFatWnHx4kVLmZiYGFavXs2KFSvYuXMnly5dokOHDuTk5FjKdOvWjbi4OGJjY4mNjSUuLo7u3bvbfc+uZzIMwyj0VkXuYqmpqZjNZn49m4yXl9ed7o6IQ4SN/PxOd0HEYXIzLpMw+2lSUlIc9vf4td8VRxPPUdyOc1xMTSUkuNRt9/XcuXP4+fmxfft2Hn30UQzDIDAwkJiYGIYPHw5czWL6+/szadIkXnzxRVJSUihVqhRLliyha9euAJw+fZqgoCDWr19PmzZtiI+PJyQkhD179tCwYUMA9uzZQ0REBN9//z3VqlW77Wu+njKbIiIiIneplJQUALy9vQFISEggKSmJ1q1bW8q4urrStGlTdu3aBcDBgwfJysqyKhMYGEjNmjUtZXbv3o3ZbLYEmgCNGjXCbDZbyhQWTRASERERsaGw3o2emppqtd/V1RVXV9eb1jUMg0GDBvHwww9Ts2ZNAJKSkgDw9/e3Kuvv78+JEycsZVxcXChZsmSeMtfqJyUl4efnl+ecfn5+ljKFRZlNERERERtMhbABBAUFWSbimM1mJk6ceMtzDxw4kG+//ZYPP/wwb7+ui4ANw8iz73rXl7lR+fy0U1DKbIqIiIg42KlTp6ye2bxVVvPll19m7dq1fPnll5QtW9ayPyAgALiamSxdurRl/9mzZy3ZzoCAADIzM0lOTrbKbp49e5bGjRtbyvz22295znvu3Lk8WVN7KbMpIiIiYkNhzUb38vKy2mwFm4ZhMHDgQFatWsUXX3xBhQoVrI5XqFCBgIAANm3aZNmXmZnJ9u3bLYFk3bp1KVq0qFWZM2fOcPjwYUuZiIgIUlJS2Ldvn6XM3r17SUlJsZQpLMpsioiIiNjwV78bfcCAASxfvpz//ve/FC9e3PL8pNlsxt3dHZPJRExMDBMmTKBKlSpUqVKFCRMm4OHhQbdu3SxlIyMjGTx4MD4+Pnh7ezNkyBBCQ0Np2bIlANWrV+exxx4jKiqKefPmAdC3b186dOhQqDPRQcGmiIiIiG1/8SuE5syZA0CzZs2s9i9cuJBevXoBMGzYMNLT0+nfvz/Jyck0bNiQjRs3Urx4cUv56dOnU6RIEbp06UJ6ejotWrRg0aJFODs7W8osW7aM6Ohoy6z1Tp06MXv27IJf4y1onU154GidTXkQaJ1NuZ/9lets/nDqd7vX2awa5OvQvt7tlNkUERERsUHvRrefgk0RERERGwprnc0HmWaji4iIiIjDKLMpIiIiYsNfPRv9fqRgU0RERMQWPbRpNw2ji4iIiIjDKLMpIiIiYoMSm/ZTsCkiIiJig2aj20/D6CIiIiLiMMpsioiIiNhk32x0DaQr2BQRERGxScPo9tMwuoiIiIg4jIJNEREREXEYDaOLiIiI2KBhdPsp2BQRERGxQa+rtJ+G0UVERETEYZTZFBEREbFBw+j2U7ApIiIiYoNeV2k/DaOLiIiIiMMosykiIiJii1KbdlOwKSIiImKDZqPbT8PoIiIiIuIwymyKiIiI2KDZ6PZTsCkiIiJigx7ZtJ+CTRERERFbFG3aTc9sioiIiIjDKLMpIiIiYoNmo9tPwaaIiIiIDZogZD8Fm/LAMQwDgIsXU+9wT0QcJzfj8p3ugojD5GZe/fm+9ve5I6Wm2ve7wt769wMFm/LAuXjxIgAPVSp/h3siIiL2uHjxImaz2SFtu7i4EBAQQJUKQXa3FRAQgIuLSyH06t5kMv6KfxaI3EVyc3M5ffo0xYsXx6Txjb9EamoqQUFBnDp1Ci8vrzvdHZFCp5/xv5ZhGFy8eJHAwECcnBw31/nKlStkZmba3Y6Liwtubm6F0KN7kzKb8sBxcnKibNmyd7obDyQvLy/9Ipb7mn7G/zqOymj+mZub2wMdJBYWLX0kIiIiIg6jYFNEREREHEbBpog4nKurK2PGjMHV1fVOd0XEIfQzLmKbJgiJiIiIiMMosykiIiIiDqNgU0REREQcRsGmiIiIiDiMgk2RB1BwcDAzZsy4Y+c3mUysWbMGgMTEREwmE3FxcXesPwW5H5cvX+app57Cy8sLk8nEhQsXCuV+jh07lrCwMLvaEMcq6Hc0f/58goKCcHJyYsaMGYXyHd8Nf15ECkqLuovcA5o1a0ZYWNgdDRAdJSgoiDNnzuDr6+vwcy1atIiYmBguXLhgtX///v14enrmq43FixezY8cOdu3aha+vL2azuUD15d5gMplYvXo1nTt3tuwbMmQIL7/8cr7qp6amMnDgQKZNm8ZTTz2F2WwmNzc33/VF7icKNkXuE4ZhkJOTQ5Eid+aPdVZWFkWLFi1wPWdnZwICAhzQo/wrVapUvsseP36c6tWrU7NmzduqL/euYsWKUaxYsXyVPXnyJFlZWbRv357SpUtbtSHyoNEwuogdmjVrRnR0NMOGDcPb25uAgADGjh1rVSYlJYW+ffvi5+eHl5cXzZs355tvvrEc79Wrl1X2BCAmJoZmzZpZjm/fvp23334bk8mEyWQiMTGRbdu2YTKZ+Pzzz6lXrx6urq7s2LGD48eP8/jjj+Pv70+xYsWoX78+mzdvLtB15ebm8tprr1G2bFlcXV0JCwsjNjbWcvzaUN7KlStp1qwZbm5uLF269IZt/fjjjzz66KO4ubkREhLCpk2brI5fPyyYnJzM888/T6lSpXB3d6dKlSosXLgQgMzMTAYOHEjp0qVxc3MjODiYiRMnWtqaNm0aoaGheHp6EhQURP/+/bl06RIA27Zt44UXXiAlJcVyH699V9cPg48dO5Zy5crh6upKYGAg0dHRwNXve+rUqXz55ZeYTCbLd3R9/Vt95wBvvvkm/v7+FC9enMjISK5cuZK/L0fy7eOPPyY0NBR3d3d8fHxo2bIlaWlp7N+/n1atWlky002bNuXrr7+21AsODgbgiSeewGQyWT5fPwy+bds2GjRogKenJyVKlKBJkyacOHGCRYsWERoaCkDFihUtf2ZvNIy+cOFCqlevjpubGw899BDvvvuu1fF9+/YRHh6Om5sb9erV49ChQ4V+n0QcTcGmiJ0WL16Mp6cne/fuZfLkybz22muWgMowDNq3b09SUhLr16/n4MGD1KlThxYtWvDHH3/kq/23336biIgIoqKiOHPmDGfOnCEoKMhyfNiwYUycOJH4+Hhq1arFpUuXaNeuHZs3b+bQoUO0adOGjh07cvLkyXxf09tvv83UqVOZMmUK3377LW3atKFTp078+OOPVuWGDx9OdHQ08fHxtGnTJk87ubm5PPnkkzg7O7Nnzx7mzp3L8OHDb3ruUaNGcfToUTZs2EB8fDxz5syxDLHPnDmTtWvXsnLlSo4dO8bSpUstgQBcfe/9zJkzOXz4MIsXL+aLL75g2LBhADRu3JgZM2bg5eVluY9DhgzJc/6PP/6Y6dOnM2/ePH788UfWrFljCRxWrVpFVFQUERERnDlzhlWrVuWpn5/vfOXKlYwZM4bx48dz4MABSpcunSfIEPucOXOG5557jt69exMfH8+2bdt48sknMQyDixcv0rNnT3bs2MGePXuoUqUK7dq14+LFi8DVxyrgaiB45swZy+c/y87OpnPnzjRt2pRvv/2W3bt307dvX0wmE127drX8A2/fvn15/sxes2DBAkaOHMn48eOJj49nwoQJjBo1isWLFwOQlpZGhw4dqFatGgcPHmTs2LE3/JkVuesZInLbmjZtajz88MNW++rXr28MHz7cMAzD2LJli+Hl5WVcuXLFqkylSpWMefPmGYZhGD179jQef/xxq+OvvPKK0bRpU6vzvPLKK1Zltm7dagDGmjVrbtnPkJAQY9asWZbP5cuXN6ZPn26zfGBgoDF+/Pg819W/f3/DMAwjISHBAIwZM2bc9Lyff/654ezsbJw6dcqyb8OGDQZgrF692qqtQ4cOGYZhGB07djReeOGFG7b38ssvG82bNzdyc3Nvet5rVq5cafj4+Fg+L1y40DCbzXnK/fl+TJ061ahataqRmZl5wzav/26ur5+f7zwiIsLo16+f1fGGDRsatWvXztd1ya0dPHjQAIzExMRbls3OzjaKFy9urFu3zrLvzz+j14wZM8byHZ0/f94AjG3btt2wzUOHDhmAkZCQcMP6hmEYQUFBxvLly63qvf7660ZERIRhGIYxb948w9vb20hLS7McnzNnjtWfF5F7gTKbInaqVauW1efSpUtz9uxZAA4ePMilS5fw8fGxPO9VrFgxEhISOH78eKGcv169elaf09LSGDZsGCEhIZQoUYJixYrx/fff5zuzmZqayunTp2nSpInV/iZNmhAfH3/Tc18vPj6ecuXKUbZsWcu+iIiIm9Z56aWXWLFiBWFhYQwbNoxdu3ZZjvXq1Yu4uDiqVatGdHQ0GzdutKq7detWWrVqRZkyZShevDg9evTg/PnzpKWl3fScf/bMM8+Qnp5OxYoViYqKYvXq1WRnZ+e7fn6+8/j4+Dz34Vb3RQqmdu3atGjRgtDQUJ555hkWLFhAcnIyAGfPnqVfv35UrVoVs9mM2Wzm0qVLBcr+e3t706tXL8vIwdtvv82ZM2fyXf/cuXOcOnWKyMhIq5+TN954w+rnpHbt2nh4eFjq6edE7kWaICRip+snxZhMJnJzc4Grw8ilS5dm27ZteeqVKFECuDr0a1z31tisrKx8n//6WdBDhw7l888/Z8qUKVSuXBl3d3eefvppMjMz893mtev4M8Mw8uy71Qzs66/rRu1er23btpw4cYLPPvuMzZs306JFCwYMGMCUKVOoU6cOCQkJbNiwgc2bN9OlSxdatmzJxx9/zIkTJ2jXrh39+vXj9ddfx9vbm507dxIZGVmg+xkUFMSxY8fYtGkTmzdvpn///rz11lts3749XxOg8vOdi+M5OzuzadMmdu3axcaNG5k1axYjR45k7969DBgwgHPnzjFjxgzKly+Pq6srERERBf4zsnDhQqKjo4mNjeWjjz7i1VdfZdOmTTRq1OiWda/9HbFgwQIaNmyYp+9w4z8/IvciZTZFHKhOnTokJSVRpEgRKleubLVdew6xVKlSeTIi16+h5+LiQk5OTr7OuWPHDnr16sUTTzxBaGgoAQEBJCYm5rvPXl5eBAYGsnPnTqv9u3btonr16vluByAkJISTJ09y+vRpy77du3ffsl6pUqXo1asXS5cuZcaMGcyfP9+qf127dmXBggV89NFHfPLJJ/zxxx8cOHCA7Oxspk6dSqNGjahatarVeSH/99Hd3Z1OnToxc+ZMtm3bxu7du/nuu+/ydc35+c6rV6/Onj17rOpd/1nsZzKZaNKkCePGjePQoUO4uLiwevVqduzYQXR0NO3ataNGjRq4urry+++/W9UtWrRovn5WwsPDGTFiBLt27aJmzZosX748X33z9/enTJky/Pzzz3l+TipUqABc/fPzzTffkJ6ebqmnnxO5FymzKeJALVu2JCIigs6dOzNp0iSqVavG6dOnWb9+PZ07d6ZevXo0b96ct956i3//+99ERESwdOlSDh8+THh4uKWd4OBg9u7dS2JiIsWKFcPb29vmOStXrsyqVavo2LEjJpOJUaNGWbIo+TV06FDGjBlDpUqVCAsLY+HChcTFxbFs2bICX3+1atXo0aMHU6dOJTU1lZEjR960zujRo6lbty41atQgIyODTz/91BLkTp8+ndKlSxMWFoaTkxP/+c9/CAgIoESJElSqVIns7GxmzZpFx44d+eqrr5g7d65V28HBwVy6dIktW7ZYhif/PEQJV9fizMnJoWHDhnh4eLBkyRLc3d0pX758vq/5Vt/5K6+8Qs+ePalXrx4PP/wwy5Yt48iRI1SsWLEAd1duZu/evWzZsoXWrVvj5+fH3r17OXfuHNWrV6dy5cosWbKEevXqkZqaytChQ3F3d7eqHxwczJYtW2jSpAmurq6ULFnS6nhCQgLz58+nU6dOBAYGcuzYMX744Qd69OiR7z6OHTuW6OhovLy8aNu2LRkZGRw4cIDk5GQGDRpEt27dGDlyJJGRkbz66qskJiYyZcqUQrk/In8lZTZFHMhkMrF+/XoeffRRevfuTdWqVXn22WdJTEzE398fgDZt2jBq1CiGDRtG/fr1uXjxYp5fWEOGDMHZ2ZmQkBBKlSp102fLpk+fTsmSJWncuDEdO3akTZs21KlTp0D9jo6OZvDgwQwePJjQ0FBiY2NZu3YtVapUKVA7Tk5OrF69moyMDBo0aECfPn0YP378Teu4uLgwYsQIatWqxaOPPoqzszMrVqwArq5ROGnSJOrVq0f9+vVJTExk/fr1ODk5ERYWxrRp05g0aRI1a9Zk2bJlVssiwdUZ6f369aNr166UKlWKyZMn5zl/iRIlWLBgAU2aNKFWrVps2bKFdevW4ePjk69rzs933rVrV0aPHs3w4cOpW7cuJ06c4KWXXspX+5I/Xl5efPnll7Rr146qVavy6quvMnXqVNq2bcsHH3xAcnIy4eHhdO/enejoaPz8/KzqT506lU2bNhEUFGT1D79rPDw8+P7773nqqaeoWrUqffv2ZeDAgbz44ov57mOfPn147733LEslNW3alEWLFlkym8WKFWPdunUcPXqU8PBwRo4cyaRJk+y7MSJ3gMnQQyEiIiIi4iDKbIqIiIiIwyjYFBERERGHUbApIiIiIg6jYFNEREREHEbBpoiIiIg4jIJNEREREXEYBZsiIiIi4jAKNkVE7oCxY8cSFhZm+dyrVy86d+78l/cjMTERk8mU5xWpfxYcHMyMGTPy3eaiRYsK5T3wJpOJNWvW2N2OiNxZCjZFRP5fr169MJlMmEwmihYtSsWKFRkyZAhpaWkOP/fbb7/NokWL8lU2PwGiiMjdQu9GFxH5k8cee4yFCxeSlZXFjh076NOnD2lpacyZMydP2aysLIoWLVoo5zWbzYXSjojI3UaZTRGRP3F1dSUgIICgoCC6devG888/bxnKvTb0/cEHH1CxYkVcXV0xDIOUlBT69u2Ln58fXl5eNG/enG+++caq3TfffBN/f3+KFy9OZGQkV65csTp+/TB6bm4ukyZNonLlyri6ulKuXDnLe+WvvTs7PDwck8lEs2bNLPUWLlxI9erVcXNz46GHHuLdd9+1Os++ffsIDw/Hzc2NevXqcejQoQLfo2nTphEaGoqnpydBQUH079+fS5cu5Sm3Zs0aqlatipubG61ateLUqVNWx9etW0fdunVxc3OjYsWKjBs3juzs7AL3R0Tubgo2RURuwt3dnaysLMvnn376iZUrV/LJJ59YhrHbt29PUlIS69ev5+DBg9SpU4cWLVrwxx9/ALBy5UrGjBnD+PHjOXDgAKVLl84TBF5vxIgRTJo0iVGjRnH06FGWL1+Ov78/cDVgBNi8eTNnzpxh1apVACxYsICRI0cyfvx44uPjmTBhAqNGjWLx4sUApKWl0aFDB6pVq8bBgwcZO3YsQ4YMKfA9cXJyYubMmRw+fJjFixfzxRdfMGzYMKsyly9fZvz48SxevJivvvqK1NRUnn32Wcvxzz//nL///e9ER0dz9OhR5s2bx6JFiywBtYjcRwwRETEMwzB69uxpPP7445bPe/fuNXx8fIwuXboYhmEYY8aMMYoWLWqcPXvWUmbLli2Gl5eXceXKFau2KlWqZMybN88wDMOIiIgw+vXrZ3W8YcOGRu3atW947tTUVMPV1dVYsGDBDfuZkJBgAMahQ4es9gcFBRnLly+32vf6668bERERhmEYxrx58wxvb28jLS3NcnzOnDk3bOvPypcvb0yfPt3m8ZUrVxo+Pj6WzwsXLjQAY8+ePZZ98fHxBmDs3bvXMAzDeOSRR4wJEyZYtbNkyRKjdOnSls+AsXr1apvnFZF7g57ZFBH5k08//ZRixYqRnZ1NVlYWjz/+OLNmzbIcL1++PKVKlbJ8PnjwIJcuXcLHx8eqnfT0dI4fPw5AfHw8/fr1szoeERHB1q1bb9iH+Ph4MjIyaNGiRb77fe7cOU6dOkVkZCRRUVGW/dnZ2ZbnQePj46lduzYeHh5W/SiorVu3MmHCBI4ePUpqairZ2dlcuXKFtLQ0PD09AShSpAj16tWz1HnooYcoUaIE8fHxNGjQgIMHD7J//36rTGZOTg5Xrlzh8uXLVn0UkXubgk0RkT/529/+xpw5cyhatCiBgYF5JgBdC6auyc3NpXTp0mzbti1PW7e7/I+7u3uB6+Tm5gJXh9IbNmxodczZ2RkAwzBuqz9/duLECdq1a0e/fv14/fXX8fb2ZufOnURGRlo9bgBXly663rV9ubm5jBs3jieffDJPGTc3N7v7KSJ3DwWbIiJ/4unpSeXKlfNdvk6dOiQlJVGkSBGCg4NvWKZ69ers2bOHHj16WPbt2bPHZptVqlTB3d2dLVu20KdPnzzHXVxcgKuZwGv8/f0pU6YMP//8M88///wN2w0JCWHJkiWkp6dbAtqb9eNGDhw4QHZ2NlOnTsXJ6epj/ytXrsxTLjs7mwMHDtCgQQMAjh07xoULF3jooYeAq/ft2LFjBbrXInJvUrApImKHli1bEhERQefOnZk0aRLVqlXj9OnTrF+/ns6dO1OvXj1eeeUVevbsSb169Xj44YdZtmwZR44coWLFijds083NjeHDhzNs2DBcXFxo0qQJ586d48iRI0RGRuLn54e7uzuxsbGULVsWNzc3zGYzY8eOJTo6Gi8vL9q2bUtGRgYHDhwgOTmZQYMG0a1bN0aOHElkZCSvvvoqiYmJTJkypUDXW6lSJbKzs5k1axYdO3bkq6++Yu7cuXnKFS1alJdffpmZM2dStGhRBg4cSKNGjSzB5+jRo+nQoQNBQUE888wzODk58e233/Ldd9/xxhtvFPyLEJG7lmaji4jYwWQysX79eh599FF69+5N1apVefbZZ0lMTLTMHu/atSujR49m+PDh1K1blxMnTvDSSy/dtN1Ro0YxePBgRo8eTfXq1enatStnz54Frj4POXPmTObNm0dgYCCPP/44AH369OG9995j0aJFhIaG0rRpUxYtWmRZKqlYsWKsW7eOo0ePEh4ezsiRI5k0aVKBrjcsLIxp06YxadIkatasybJly5g4cWKech4eHgwfPpxu3boRERGBu7s7K1assBxv06YNn376KZs2baJ+/fo0atSIadOmUb58+QL1R0TufiajMB7iERERERG5AWU2RURERMRhFGyKiIiIiMMo2BQRERERh1GwKSIiIiIOo2BTRERERBxGwaaIiIiIOIyCTRERERFxGAWbIiIiIuIwCjZFRERExGEUbIqIiIiIwyjYFBERERGHUbApIiIiIg7zf8zIL5u0G+u+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1874,7 +1571,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHFCAYAAABl6CnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjK0lEQVR4nO3dd1hT1/8H8HdISMIGB1MUxL1wK1rFCRVrsUut1q111Dr4qdVadx21rVr9ql1UaquWatXWLa0LR6lbK64KCCLWojIEZCTn9wcSjYCGkBAw79fz8DQ599x7P7nSfDjnnnOPRAghQEREZGYsTB0AERGRKTABEhGRWWICJCIis8QESEREZokJkIiIzBITIBERmSUmQCIiMktMgEREZJaYAImIyCwxAVKZCQsLg0Qi0fzIZDJUq1YNQ4cORWJiYpnHM2TIEHh5eZVon7i4OEgkEoSFhRklpucZMmSI1jWUy+Xw8fHB5MmTkZaWZpKYnlTU9Sn4d4+Li9PpGOfPn8fQoUPh7e0NpVIJW1tbNG/eHEuWLMG9e/eMEziZJZmpAyDzs3btWtSrVw9ZWVk4fPgwFi1ahEOHDuHChQuwsbEpszhmzpyJCRMmlGgfNzc3HD9+HD4+PkaK6vmsrKywf/9+AEBKSgo2b96Mzz//HOfPn8e+fftMFpchfPPNNxg7dizq1q2LKVOmoEGDBsjNzcXJkyfx5Zdf4vjx49i6daupw6QXBBMglblGjRqhZcuWAIDOnTtDpVJh/vz52LZtGwYMGFDkPpmZmbC2tjZoHPokMYVCgbZt2xo0jpKysLDQiuHll19GTEwMIiIiEBsbC29vbxNGp7/jx49jzJgx6N69O7Zt2waFQqHZ1r17d/zf//0f9uzZY5BzZWVlQalUQiKRGOR4VDGxC5RMruDL/MaNGwDyu/lsbW1x4cIFBAQEwM7ODl27dgUA5OTk4OOPP0a9evWgUChQtWpVDB06FP/991+h427YsAF+fn6wtbWFra0tmjZtitDQUM32orpAN23ahDZt2sDBwQHW1taoWbMmhg0bptleXBfokSNH0LVrV9jZ2cHa2hrt2rXDzp07teoUdAUeOHAAY8aMQZUqVVC5cmW8/vrruHXrlt7XD4DmD4p///1Xqzw8PBx+fn6wsbGBra0tAgMDcebMmUL7R0VFoVevXqhcuTKUSiV8fHwwceJEzfZ//vkHQ4cORe3atWFtbQ0PDw/06tULFy5cKFXcT1q4cCEkEgm+/vprreRXQC6X49VXX9W8l0gkmDNnTqF6Xl5eGDJkiOZ9wXXft28fhg0bhqpVq8La2hrh4eGQSCT4448/Ch1jzZo1kEgkOH/+vKbs5MmTePXVV1GpUiUolUo0a9YMP//8c+k+NJkUEyCZ3D///AMAqFq1qqYsJycHr776Krp06YJff/0Vc+fOhVqtRnBwMBYvXoz+/ftj586dWLx4MSIiItCpUydkZWVp9p81axYGDBgAd3d3hIWFYevWrRg8eLAmyRbl+PHj6Nu3L2rWrImffvoJO3fuxKxZs5CXl/fM+A8dOoQuXbogNTUVoaGh2LhxI+zs7NCrVy+Eh4cXqj9ixAhYWlpiw4YNWLJkCQ4ePIh33nmnpJdNS2xsLGQyGWrWrKkpW7hwId5++200aNAAP//8M3744Qekp6ejQ4cOiI6O1tTbu3cvOnTogPj4eCxduhS7d+/GRx99pJVMb926hcqVK2Px4sXYs2cPVq1aBZlMhjZt2uDKlSulih0AVCoV9u/fjxYtWsDT07PUxyvKsGHDYGlpiR9++AGbN2/Ga6+9BmdnZ6xdu7ZQ3bCwMDRv3hxNmjQBABw4cADt27dHSkoKvvzyS/z6669o2rQp+vbta7L7wWQAgqiMrF27VgAQf/75p8jNzRXp6elix44domrVqsLOzk7cvn1bCCHE4MGDBQDx3Xffae2/ceNGAUD88ssvWuUnTpwQAMTq1auFEELExMQIqVQqBgwY8Mx4Bg8eLGrUqKF5/9lnnwkAIiUlpdh9YmNjBQCxdu1aTVnbtm2Fs7OzSE9P15Tl5eWJRo0aiWrVqgm1Wq31+ceOHat1zCVLlggAIikp6ZnxFsRsY2MjcnNzRW5urkhOThZr1qwRFhYW4sMPP9TUi4+PFzKZTLz//vta+6enpwtXV1fRp08fTZmPj4/w8fERWVlZzz3/k58vJydH1K5dW0yaNElTXtT1KfjcsbGxxR7v9u3bAoDo16+fzjEAELNnzy5UXqNGDTF48OBC5x80aFChuiEhIcLKykrr3zw6OloAECtXrtSU1atXTzRr1kzk5uZq7f/KK68INzc3oVKpdI6byg+2AKnMtW3bFpaWlrCzs8Mrr7wCV1dX7N69Gy4uLlr13njjDa33O3bsgKOjI3r16oW8vDzNT9OmTeHq6oqDBw8CACIiIqBSqfDee++VKK5WrVoBAPr06YOff/5Zp5GpGRkZiIqKwptvvglbW1tNuVQqxcCBA3Hz5s1CLaQnu/EAaFoZBa1TtVqt9flUKlWhc1paWsLS0hJVqlTBmDFj0LdvXyxYsEBTZ+/evcjLy8OgQYO0jqVUKuHv76+5VlevXsX169cxfPhwKJXKYj9nXl4eFi5ciAYNGkAul0Mmk0Eul+PatWu4dOnSc69TefD07xOQ3yrMysrSaqmvXbsWCoUC/fv3B5DfQ3H58mXN/eknr2dQUBCSkpIM0gqmsscESGVu3bp1OHHiBM6cOYNbt27h/PnzaN++vVYda2tr2Nvba5X9+++/SElJgVwu1ySAgp/bt28jOTkZADT3A6tVq1aiuDp27Iht27ZpEke1atXQqFEjbNy4sdh97t+/DyEE3NzcCm1zd3cHANy9e1ervHLlylrvC+53FXThzps3T+uzPT1Yx8rKCidOnMCJEyewfft2dOrUCRs3bsTixYs1dQq6L1u1alXoWoWHh5f4WoWEhGDmzJno3bs3tm/fjqioKJw4cQK+vr5aXc/6qlKlCqytrREbG1vqYxWnqH+jhg0bolWrVppuUJVKhR9//BHBwcGoVKkSgMfXcvLkyYWu5dixYwFAcz2pYuEoUCpz9evX1wzaKE5Ro/MKBo0UNxLQzs4OwON7iTdv3izx/aTg4GAEBwcjOzsbf/75JxYtWoT+/fvDy8sLfn5+heo7OTnBwsICSUlJhbYVDGypUqVKiWJ499138corr2jePz0gxMLCQuv6de/eHS1atMDcuXMxYMAAeHp6as65efNm1KhRo9hzPXmtnuXHH3/EoEGDsHDhQq3y5ORkODo66vS5nkUqlaJr167YvXs3bt68qdMfLwqFAtnZ2YXKn/6Do0BxIz6HDh2KsWPH4tKlS4iJiUFSUhKGDh2q2V5wLadPn47XX3+9yGPUrVv3ufFS+cMESBXGK6+8gp9++gkqlQpt2rQptl5AQACkUinWrFlTZNLShUKhgL+/PxwdHbF3716cOXOmyGPZ2NigTZs22LJlCz777DNYWVkByO/G/PHHH1GtWjXUqVOnROd2d3fXtB51jXXVqlXo1KkTPv74Y3z11VcIDAyETCbD9evXi+z6K1CnTh34+Pjgu+++Q0hISJGjL4H85PH0tp07dyIxMRG1atXSOdZnmT59Onbt2oWRI0fi119/hVwu19qem5uLPXv2oFevXgDyR3s+OUoTAPbv348HDx6U6Lxvv/02QkJCEBYWhpiYGHh4eCAgIECzvW7duqhduzbOnTtX6A8AqtiYAKnC6NevH9avX4+goCBMmDABrVu3hqWlJW7evIkDBw4gODgYr732Gry8vPDhhx9i/vz5yMrKwttvvw0HBwdER0cjOTkZc+fOLfL4s2bNws2bN9G1a1dUq1YNKSkp+OKLL2BpaQl/f/9i41q0aBG6d++Ozp07Y/LkyZDL5Vi9ejX+/vtvbNy4sUzmmvn7+yMoKAhr167FtGnT4O3tjXnz5mHGjBmIiYnByy+/DCcnJ/z777/466+/YGNjo7kOq1atQq9evdC2bVtMmjQJ1atXR3x8PPbu3Yv169cDyP/jIywsDPXq1UOTJk1w6tQpfPrppyXuZn4WPz8/rFmzBmPHjkWLFi0wZswYNGzYELm5uThz5gy+/vprNGrUSJMABw4ciJkzZ2LWrFnw9/dHdHQ0/ve//8HBwaFE53V0dMRrr72GsLAwpKSkYPLkybCw0L479NVXX6FHjx4IDAzEkCFD4OHhgXv37uHSpUs4ffo0Nm3aZLDrQGXI1KNwyHwUjMY7ceLEM+sVjHQsSm5urvjss8+Er6+vUCqVwtbWVtSrV0+MGjVKXLt2TavuunXrRKtWrTT1mjVrpjU68elRoDt27BA9evQQHh4eQi6XC2dnZxEUFCQiIyM1dYoa5SiEEJGRkaJLly7CxsZGWFlZibZt24rt27fr9PkPHDggAIgDBw4887o879pcuHBBWFhYiKFDh2rKtm3bJjp37izs7e2FQqEQNWrUEG+++ab4/ffftfY9fvy46NGjh3BwcBAKhUL4+Phoje68f/++GD58uHB2dhbW1tbipZdeEpGRkcLf31/4+/s/8/roMgr0SWfPnhWDBw8W1atXF3K5XNjY2IhmzZqJWbNmiTt37mjqZWdni6lTpwpPT09hZWUl/P39xdmzZ4sdBfqs37t9+/YJAAKAuHr1apF1zp07J/r06SOcnZ2FpaWlcHV1FV26dBFffvmlTp+Lyh+JEEKYLPsSERGZCEeBEhGRWWICJCIis8QESEREZokJkIiIzBITIBERmSUmQCIiMksmnQh/+PBhfPrppzh16hSSkpKwdetW9O7d+5n7HDp0CCEhIbh48SLc3d0xdepUjB49WudzqtVq3Lp1C3Z2dlwMk4ioAhJCID09He7u7oUeWlASJk2AGRkZ8PX1xdChQ5/5uKYCsbGxCAoKwsiRI/Hjjz/i6NGjGDt2LKpWrarT/kD+8xmNtd4YERGVnYSEhFI9jajcTISXSCTPbQF+8MEH+O2337SWXxk9ejTOnTuH48eP63Se1NRUODo6IiEhodBqA0REVP6lpaXB09MTKSkpJX703ZMq1LNAjx8/rvWQWgAIDAxEaGgocnNzYWlp+dxjFHR72tvbw9bWDgeu3DFKrCXhbKdEIw/7IrtkhRAQAlALAfWj/0okgEImNUGkRETlR2lvY1WoBHj79u1Ci6a6uLggLy8PycnJRa73lZ2drbVkSlpamua1WggM//6k8QIuIaWlBdQiP+kVJLtntc+lFhKo1AKelawwrnMtCAEkP8hG72YecHOwgkotIJdxnBMRUVEqVAIECmf8gh7c4v4SWLRoUbFP/wcA32r6N58N4dzNVM3rh7nqEu2rUud/9oR7Wfjglwua8s/2XdWq93JDV+So1MjJU+PIP/kLd3o4WmHqy3WhFgIN3R1Qx8VO349A5UxBr4EoeA3tP6bytz3uWRCPyqD1/nG51ms8dewijvn0/niivCCOnDw17JQyWMtlkFpIYCmVwE5pCQtJ6f+qJ9JVhUqArq6uuH37tlbZnTt3IJPJCq2yXWD69OkICQnRvC/oOwYAmdQCv457yXgB60AIgeikNNgpLCGRABYWElhIAAuJJP+9RPLoJ/+LQSIBfjh+A9WcrHDqxn2sO34DANCkmgPikjOQ9jCv0Dn2XLxdqCwxJQsTfjqrVeZsp0COSo2M7DzkqvK/2Vp7V8LVf9MxskNNSC0kmi+67Fw1HuapcCruPnJUagQ39YAE0IrzXkYOZBYSNK7mCAkAiQSQIH9brkoNO6UlKtnINdfBzcEKSksLnb4Ai+oaLnifpxLIVqmQk6dGrko8+q8a2Y/+W/CTkye036sE8jTv87flqQRy1fn/zXtUR6VWQ6UuaKnnn//xl7uAWv04rifraMWoFlCpC/6bf/zH7x//FGzXlD06FopIOOpycTffMB7/7uf/PuXkPf7j0M1BCQuJBFKL/J/Y5AwAQCMPe/ydmN/D81aLavj90r8IauyGRh4OkFlIkJ2nxr2MHLT0coLSUgoXeyU8HK1M8vmofKhwg2C2b9+O6OhoTdmYMWNw9uxZnQfBpKWlwcHBAampqS/kIJi0h7nIyM6DUibFyHUnkZqVi0HtvKCQWkAus8CGqHj8FXfP1GE+k/xRrEBBIhEl6homw8r/w+XRHzZ4/IcMNOWP/mB7og6e3Oep/VVCICUzFwAgs5Agrxxk7mpOVnCylkNpaQEPRytsO3sL1StZo5azLV5p4oZazraoWdUWNnIpW6jlgKG+x02aAB88eIB//vkHANCsWTMsXboUnTt3RqVKlVC9enVMnz4diYmJWLduHYD8aRCNGjXCqFGjMHLkSBw/fhyjR4/Gxo0bdZ4G8aInQH38l56N9Ie5yMxRQSGzgNJSimURV3Hl33TcfZCD22kPEdTYFVaW+R0G+YNw8uuFHokFALzq665pBRV0pe3+O7/l2cDNXtNKAfK7xa78mw4AsFPIkP2oe9bQ5DILTeKXyyxgKbWApVQCS6kFFI/eyx69t5RaQP7ofcF/ZQVlFvmvLaUSyCwebbN43EKXSB632p9sAT/5/vHr/HJLqQWkFvnHyf+vhaZFI5NKIJUUfi21eHQcC0mhFnVxyUYiKb7c4tEXeZHHeWJfYxNCICs3v8WuFo//6NFq4asFrv6bDhd7JdQivzVcUDcp9SFO37iPVl6V8MOfcVBaSiEEcOjqfwCAbvVdkKdW4+CV/Pcu9gr8m5b9rJBKrGUNJ/Rp6QkfZ1tUtVWgmpMVLCyYKI3lhUiABw8eROfOnQuVDx48GGFhYRgyZAji4uJw8OBBzbZDhw5h0qRJmonwH3zwQYkmwjMBlk95KjUyslXIVqk03Zb5XaoSnbqGLZ4oe5yg+AVExUvNysX9jBz8c+cBUrNyEZucATulDKlZuVh98Doq2chxLyOn1OdxtlNg4WuN0bW+M38nDeSFSICmwARIRPpIzcpFTp4aOSo1LtxMQVpWHrafv4XIa8l6Ha+dT2WM7FgT9kpLNHS3h9KSU5t0xQSoJyZAIjKmXJUaV/9Nx+gfTyHhXpbO+8mlFni9uQc61a2Kpp5OcHVQGjHKio0JUE9MgERU1rJyVIhOSsX1/zKw4o9ruHlf98T4enMPTOtRD852TIgFmAD1xARIROXJw1wV5u2IxpFryYi/l/nMup3rVsV7nWuhkYeDWXeZMgHqiQmQiMq70/H38frqY8+t51ezMtYNbw1LqXk98YkJUE9MgERU0Uz75Tx+OpFQ7PYWNZzww/DWsJZXqGeb6I0JUE9MgERUkQkhsHjPZXx1KKbYOmuHtIKfT+UXtpuUCVBPTIBE9KK4+yAbLT7+/Zl1Wnk5YePItpC9QN2kTIB6YgIkoheNEAI/n0zQeij+0+wUMhyd3gX2yucvG1feMQHqiQmQiF50Qgjs+fs2xqw/XeT2kO51MMq/ZoVdV5QJUE9MgERkTv5Ne4g2C/8odnvk1M7wrGRdhhGVHhOgnpgAicgcCSEQdiwOc7dHF7n9zMzucHq0PFl5xwSoJyZAIjJ3SalZGLfhDE7duK9VvuSNJujTytNEUemOCVBPTIBERPmEEOj46YFCzyw9MaMbqtopTBTV8xnqe/zFGRdLREQlIpFIEDm1C7aObadV3mrB7/ji92t40dtHTIBERGauWXUnXF8YBHvl4yfJLPv9Kryn78LDXJUJIzMuJkAiIoLUQoLzcwLx5/SuWuX1Zu7B9f8emCgq42ICJCIiDVcHJeIW99RqDXb9/BC8pu3EvYwcE0ZmeEyARERUyPk5gZj1SgOtsubzI/AgO89EERkeEyARERVp2EveiFkYpFXWaPZeXPs33UQRGRYTIBERFcvCQoK4xT0xp9fj1mD3ZYfxw/E40wVlIEyARET0XEPae2PzaD/N+5m/XkS/r4+bMKLSYwIkIiKdtPSqhENTOmne/xlzD3U+2o1cldp0QZUCEyAREemsRmUb/LOgB+SP1hfMyVOj0ey9Jo5KP0yARERUIjKpBa4u6IFh7b0BANl5anx3JNbEUZUcEyAREell5iv1Na/n7YjGv2kPTRhNyTEBEhGRXiQSCU5+1E3zvsOSAyaMpuSYAImISG9VbBX49M0mAPLvB/58MsHEEemOCZCIiErlrZae8HC0AgBM3XweMRXk2aFMgEREVGor3m6mef3Ot1EmjER3TIBERFRqLWo4YVznWgCAW6kPK8RagkyARERkEO/619S8Hv3jKRNGohsmQCIiMgh7pSXqudoBAPZe/BcTfjpj4oiejQmQiIgMZt2w1prXv569hUtJaSaM5tmYAImIyGCc7ZW4NO9lzfseX0SaMJpnYwIkIiKDspJLMTmgjuZ98oNsE0ZTPCZAIiIyuNH+PprX5fVeIBMgEREZnExqAXcHJQDg6D93y+W0CCZAIiIyik8ePSINAA5cuWPCSIrGBEhEREbRoXZVVLKRAwCmb7lg4mgKYwIkIiKj6VzXGUD+g7LLGyZAIiIymld83QAA9zNzEX2rfM0JZAIkIiKj8a9dVfN641/xJoykMCZAIiIyGgsLCRq42QMAfvjzhomj0cYESERERjX8JW/N6/I0HYIJkIiIjKpnEzfN668Px5gwEm1MgEREZFRKSyl8qtoAABbtvmziaB5jAiQiIqMb37W25nX6w1wTRvIYEyARERldrybumtehR2JNGMljTIBERGR0FhYSVK9kDQD4OzHVxNHkYwIkIqIyUTAa9PdLd6BWm340KBMgERGVid7NPDSvr/ybbsJI8jEBEhFRmXCwstS8/jPmrgkjyccESEREZaZn4/w5gfsvm355JCZAIiIqM3Vc7AAAkdeSTRwJEyAREZUhryrWmte5KtMukcQESEREZaZHo8ePRYtNzjBhJEyARERUhuSyx2ln65lEE0bCBEhERCay5uB1k55fpu+OCQkJiIuLQ2ZmJqpWrYqGDRtCoVAYMjYiInoBDWvvje+Omv5xaCVqAd64cQPTp0+Hl5cXvLy84O/vjx49eqBly5ZwcHBA9+7dsWnTJqjVpr2xSURE5VefVtU0rx/mqkwWh84JcMKECWjcuDGuXbuGefPm4eLFi0hNTUVOTg5u376NXbt24aWXXsLMmTPRpEkTnDhxwphxExFRBVX30VQIAIhOSjNZHDp3gcrlcly/fh1Vq1YttM3Z2RldunRBly5dMHv2bOzatQs3btxAq1atDBosERFVfBKJBI087PF3Yhou3kpD8+pOJolD5xbgp59+WmTyK0pQUBDefPNNnequXr0a3t7eUCqVaNGiBSIjI59Zf/369fD19YW1tTXc3NwwdOhQ3L1r+kfqEBGR7jKz87s+r9w2XQvQpKNAw8PDMXHiRMyYMQNnzpxBhw4d0KNHD8THxxdZ/8iRIxg0aBCGDx+OixcvYtOmTThx4gRGjBhRxpETEVFpeFfJXyH+4q0K0AXarFkzSCQSneqePn1ap3pLly7F8OHDNQls+fLl2Lt3L9asWYNFixYVqv/nn3/Cy8sL48ePBwB4e3tj1KhRWLJkiY6fgoiIyoMG7vb44/IdnIlPMVkMOrcAe/fujeDgYAQHByMwMBDXr1+HQqFAp06d0KlTJyiVSly/fh2BgYE6HS8nJwenTp1CQECAVnlAQACOHTtW5D7t2rXDzZs3sWvXLggh8O+//2Lz5s3o2bNnsefJzs5GWlqa1g8REZlWO58qmtemWhtQ5xbg7NmzNa9HjBiB8ePHY/78+YXqJCQk6HS85ORkqFQquLi4aJW7uLjg9u3bRe7Trl07rF+/Hn379sXDhw+Rl5eHV199FStXriz2PIsWLcLcuXN1iomIiMpGS6/HA19u3s9C9crWz6htHHrdA9y0aRMGDRpUqPydd97BL7/8UqJjPd2tKoQotqs1Ojoa48ePx6xZs3Dq1Cns2bMHsbGxGD16dLHHnz59OlJTUzU/uiZoIiIyHkvp4/Qzfet5k8Sg15NgrKyscOTIEdSuXVur/MiRI1AqlTodo0qVKpBKpYVae3fu3CnUKiywaNEitG/fHlOmTAEANGnSBDY2NujQoQM+/vhjuLm5FdpHoVDwCTVEROVQVTsF/kvPxtF/TDOSX68EOHHiRIwZMwanTp1C27ZtAeQPUPnuu+8wa9YsnY4hl8vRokULRERE4LXXXtOUR0REIDg4uMh9MjMzIZNphyyVSgHktxyJiKjiGO3vg/k7ouFlgu5PQM8EOG3aNNSsWRNffPEFNmzYAACoX78+wsLC0KdPH52PExISgoEDB6Jly5bw8/PD119/jfj4eE2X5vTp05GYmIh169YBAHr16oWRI0dizZo1CAwMRFJSEiZOnIjWrVvD3d1dn49CREQm0qF2/kCYuLuZeJirgtJSWqbn1/th2H369ClRsitK3759cffuXcybNw9JSUlo1KgRdu3ahRo1agAAkpKStOYEDhkyBOnp6fjf//6H//u//4OjoyO6dOmCTz75pFRxEBFR2avtbKt5fTLuPl6qXeUZtQ1PIvTsO0xJScHmzZsRExODyZMno1KlSjh9+jRcXFzg4eFh6DgNJi0tDQ4ODkhNTYW9vb2pwyEiMmu1Z+xCrkpgTCcffPByPZ32MdT3uF4twPPnz6Nbt25wcHBAXFwcRowYgUqVKmHr1q24ceOGpsuSiIjoWWo72yE6KQ130rLL/Nx6TYMICQnBkCFDcO3aNa1Rnz169MDhw4cNFhwREb3YfB51gzpYWZb5ufVKgCdOnMCoUaMKlXt4eBQ7iZ2IiOhpBfcBD165U+bn1isBKpXKIh8pduXKFZ1XjCAiIpJa5D/45HbawzI/t14JMDg4GPPmzUNubi6A/Ke5xMfHY9q0aXjjjTcMGiAREb246jxaHDczp+xXhtcrAX722Wf477//4OzsjKysLPj7+6NWrVqws7PDggULDB0jERG9oBp5PB7F+SA7r0zPrdcoUHt7exw5cgT79+/H6dOnoVar0bx5c3Tr1s3Q8RER0QvMzcFK8zr6Vhpae1cqs3PrPREeALp06YIuXboYKhYiIjJDSksLPMxVY+/F2+UzAa5YsQLvvvsulEolVqxY8cy6BQvWEhERPY9PVVtcvJWGM/H3y/S8OifAZcuWYcCAAVAqlVi2bFmx9SQSCRMgERHprGUNJ1y8lYa8Ml4YV+cEePbsWTg4OAAAYmNjjRYQERGZl55N3PH98Ru4fDu9TM+r8yjQSpUq4c6d/ImKXbp0QUpKirFiIiIiM9LQPX8kaE6eGv+ll90j0XROgLa2trh7N3/RwoMHD2rmABIREZWGjUIGW0V+h+S3kTFldl6du0C7deuGzp07o379+gCA1157DXK5vMi6+/fvN0x0RERkFqzkUjzIzsP6qHhMD6pfJufUOQH++OOP+P7773H9+nUcOnQIDRs2hLW1aVbxJSKiF0vPxm4IOxZXppPhdU6AVlZWmpXaT548iU8++QSOjo7GiouIiMzIa808EHYsrkzPqdej0A4cOKCV/FQqFc6ePYv798t2DgcREb0Yala10bz+t4wejK1XApw4cSJCQ0MB5Ce/jh07onnz5vD09MTBgwcNGR8REZkBO+Xj9QAv3kotk3PqlQA3bdoEX19fAMD27dsRFxeHy5cvY+LEiZgxY4ZBAyQiIvNQsCju6RspZXI+vRLg3bt34erqCgDYtWsX3nrrLdSpUwfDhw/HhQsXDBogERGZh4L5gDvO3yqT8+mVAF1cXBAdHQ2VSoU9e/ZoVoHIzMyEVCo1aIBERGQeCu4Dxt3NLJPz6ZUAhw4dij59+qBRo0aQSCTo3r07ACAqKgr16tUzaIBERGQeWntXBqA9IMaY9FoOac6cOWjUqBESEhLw1ltvQaFQAACkUimmTZtm0ACJiMg81KiUP7c85r+MMjmf3usBvvnmm4XKBg8eXKpgiIjIfDnbKzSvs/NUUMiMe0uN6wESEVG54Gqv1Lw+FXcf7WpVMer5JEIInRZg8vb2xsmTJ1G5cmV4e3sXf0CJBDExZfcw05JKS0uDg4MDUlNTYW9vb+pwiIjoCV0+P4iY/zIwoWttTOpep8g6hvoe17kF+OQagFwPkIiIjKGNdyXE/JeBE3H3jH4uvUaBzps3D5mZhYepZmVlYd68eaUOioiIzJOVZX677NqdB0Y/l14JcO7cuXjwoHBwmZmZmDt3bqmDIiIi81THxRYAcC8jx+jn0isBCiEgkUgKlZ87dw6VKlUqdVBERGSe2tTMnwuoUguo1DoNUdFbiaZBODk5QSKRQCKRoE6dOlpJUKVS4cGDB5olk4iIiErKw9FK8/rug2w4PzEy1NBKlACXL18OIQSGDRuGuXPnwsHBQbNNLpfDy8sLfn5+Bg+SiIjMg1z2uGPy4q208pMACya6e3t7o127drC0tHzOHkRERPpJTMky6vH1ehKMv7+/5nVWVhZyc3O1tnN+HRER6auRhz3+TkyD1KLwWBND0msQTGZmJsaNGwdnZ2fY2trCyclJ64eIiEhf3lXyR4Kev5li1PPolQCnTJmC/fv3Y/Xq1VAoFPj2228xd+5cuLu7Y926dYaOkYiIzEhWjgqA8R+KrVcX6Pbt27Fu3Tp06tQJw4YNQ4cOHVCrVi3UqFED69evx4ABAwwdJxERmQl3x/yBLy5GHAAD6NkCvHfvnuZ5oPb29rh3L/+RNS+99BIOHz5suOiIiMjs1HfLH0cSee0/o55HrwRYs2ZNxMXFAQAaNGiAn3/+GUB+y9DR0dFQsRERkRmSPppjfj8z9zk1S0fvFeHPnTsHAJg+fbrmXuCkSZMwZcoUgwZIRETmpVyvCD9p0iTN686dO+Py5cs4efIkfHx84Ovra7DgiIjI/HhVeZwAjbkwrt4rwj+pevXqsLe3Z/cnERGVWmUbueb1hZupaOllnGdM69UF+sknnyA8PFzzvk+fPqhcuTI8PDw0XaNERET6ePI501m5KqOdR68E+NVXX8HT0xMAEBERgYiICOzevRs9evTgPUAiIiq1FjXyH6py5Xa60c6hVxdoUlKSJgHu2LEDffr0QUBAALy8vNCmTRuDBkhERObn4aOWn0URS+8Zil4tQCcnJyQkJAAA9uzZg27dugHIXydQpTJec5WIiMyDr6cjACAp1XgPxNYrAb7++uvo378/unfvjrt376JHjx4AgLNnz6JWrVoGDZCIiMyP26OnwPxx+Y7RzqFXF+iyZcvg5eWFhIQELFmyBLa2+Q8uTUpKwtixYw0aIBERmR+ZNL999m/qQ+OdQ5+dLC0tMXny5ELlEydOLG08REREmsnwGTnlbBQoERGRMdWobG30czABEhFRuVPJOn8yvESSP8DSGJgAiYio3LFR5N+hEwJIy8ozyjmYAImIqNyxUchg+ygJ3jLSVAgmQCIiKpfcHPKnQvybZpyRoHonwGHDhmHGjBlaZR9++CGGDRtW6qCIiIgq2+bfB4xOSjPK8fVOgLGxsUhMTNQqS0xM1CyUS0REVBoPsvPv/f0Zc88ox9d7OaQDBw4UKvv+++9LFQwREVEBZzslgDQ8NNJcQN4DJCKicqnpo+eBJmdkG+X4OrcAf/vtN50P+uqrr+oVDBERUYFKjxbGNdaKEDonwN69e+tUTyKRcEUIIiIqtap2CgCAtVxqlOPrnADVarVRAiAiIipKQeLLyTNO/in1PcCHD0s3P2P16tXw9vaGUqlEixYtEBkZ+cz62dnZmDFjBmrUqAGFQgEfHx989913pYqBiIjKH/mjFSEuG2lVeL0SoEqlwvz58+Hh4QFbW1vExMQAAGbOnInQ0FCdjxMeHo6JEydixowZOHPmDDp06IAePXogPj6+2H369OmDP/74A6Ghobhy5Qo2btyIevXq6fMxiIioHFNYGqfrs4BeCXDBggUICwvDkiVLIJfLNeWNGzfGt99+q/Nxli5diuHDh2PEiBGoX78+li9fDk9PT6xZs6bI+nv27MGhQ4ewa9cudOvWDV5eXmjdujXatWunz8cgIqJyrJqTlea1MbpB9UqA69atw9dff40BAwZAKn2coZs0aYLLly/rdIycnBycOnUKAQEBWuUBAQE4duxYkfv89ttvaNmyJZYsWQIPDw/UqVMHkydPRlaWcZ4TR0REpmOnfDxMJTvP8IMr9ZoIn5iYiFq1ahUqV6vVyM3N1ekYycnJUKlUcHFx0Sp3cXHB7du3i9wnJiYGR44cgVKpxNatW5GcnIyxY8fi3r17xd4HzM7ORnb24zkkaWnGeaQOEREZVsE9QADIzlPDzsDH16sF2LBhwyIHq2zatAnNmjUr0bEkT83vEEIUKiugVqshkUiwfv16tG7dGkFBQVi6dCnCwsKKbQUuWrQIDg4Omh9PT88SxUdERKYhkUhg8Sgd3Ekz/GR4vVqAs2fPxsCBA5GYmAi1Wo0tW7bgypUrWLduHXbs2KHTMapUqQKpVFqotXfnzp1CrcICbm5u8PDwgIODg6asfv36EELg5s2bqF27dqF9pk+fjpCQEM37tLQ0JkEiogpCLrPAw1w1clTl5B5gr169EB4ejl27dkEikWDWrFm4dOkStm/fju7du+t0DLlcjhYtWiAiIkKrPCIiothBLe3bt8etW7fw4MEDTdnVq1dhYWGBatWqFbmPQqGAvb291g8REVUMHo75A2Eysw2/KK7eD8MODAxEYGBgqU4eEhKCgQMHomXLlvDz88PXX3+N+Ph4jB49GkB+6y0xMRHr1q0DAPTv3x/z58/H0KFDMXfuXCQnJ2PKlCkYNmwYrKysnnUqIiKqgB7m5rf8/k03/JqAeidAADh58iQuXboEiUSC+vXro0WLFiXav2/fvrh79y7mzZuHpKQkNGrUCLt27UKNGjUAAElJSVpzAm1tbREREYH3338fLVu2ROXKldGnTx98/PHHpfkYRERUTuU+6vpUygw/J1AihBAl3enmzZt4++23cfToUTg6OgIAUlJS0K5dO2zcuLFc32NLS0uDg4MDUlNT2R1KRFTOvf31nzgecxcr326GXr7uAAz3Pa7XPcBhw4YhNzcXly5dwr1793Dv3j1cunQJQggMHz5c72CIiIieJJPmDwPNM8LzqPXqAo2MjMSxY8dQt25dTVndunWxcuVKtG/f3mDBERGReZM9mgeRpypxZ+Vz6dUCrF69epET3vPy8uDh4VHqoIiIiABAapGfpuLuZhj82HolwCVLluD999/HyZMnUXAL8eTJk5gwYQI+++wzgwZIRETm6+b9TACArcLS4MfWuQvUyclJ6wktGRkZaNOmDWSy/EPk5eVBJpNh2LBhOi+eS0RE9CxtvCvh8u10nIy7B8DHoMfWOQEuX77coCcmIiJ6nuSMHACAu6Ph53rrnAAHDx5s8JMTERE9SwM3e+w8n1R+VoN4UlZWVqEBMZxfR0REhqCQ5Q9V+TPmnsGPrdcgmIyMDIwbNw7Ozs6wtbWFk5OT1g8REZEhZGTnt/x8qtoY/Nh6JcCpU6di//79WL16NRQKBb799lvMnTsX7u7umud2EhERlZb3o8R3P1O3tWZLQq8u0O3bt2PdunXo1KkThg0bhg4dOqBWrVqoUaMG1q9fjwEDBhg6TiIiMkMFi+Kev5li8GPr1QK8d+8evL29AeTf77t3L79v9qWXXsLhw4cNFx0REZk16aMnwfhUtTX4sfVKgDVr1kRcXBwAoEGDBvj5558B5LcMCx6OTUREVFpO1vkT4HPLy4K4Q4cOxblz5wDkr9lXcC9w0qRJmDJlikEDJCIi82X5qAs01wjPAtXrHuCkSZM0rzt37ozLly/j5MmT8PHxga+vr8GCIyIi81awGkRiSpbhj22Ig1SvXh3Vq1c3xKGIiIg0CgbBKC316rB8Jp0T4IoVK3Q+6Pjx4/UKhoiI6EnWivw0ZYTlAHVPgMuWLdOpnkQiYQIkIiKDsHw0CjTXlAvixsbGGvzkREREzyJ71AUqBKBSC820CEMwfKcqERGRgVhKHyc8Q0+FYAIkIqJyy8pSqnmdmWPYFSGYAImIqNx6sstTCMPOBWQCJCKicksikUDyKAeqDTwXngmQiIjKNYtHGbDctAAjIyPxzjvvwM/PD4mJiQCAH374AUeOHDFYcERERAW9oKrykAB/+eUXBAYGwsrKCmfOnEF2djYAID09HQsXLjRogEREZN4kj1qA5aIL9OOPP8aXX36Jb775BpaWlprydu3a4fTp0wYLjoiIqKAFqDZwBtQrAV65cgUdO3YsVG5vb4+UlJTSxkRERKTx+B6ggY+rz05ubm74559/CpUfOXIENWvWLHVQREREBSw0XaDloAU4atQoTJgwAVFRUZBIJLh16xbWr1+PyZMnY+zYsQYNkIiIzJuxBsHotRzS1KlTkZqais6dO+Phw4fo2LEjFAoFJk+ejHHjxhk0QCIiMm8WjzKgoe8B6r0e4IIFCzBjxgxER0dDrVajQYMGsLW1NWRsRERESMnMBQCkPcwz6HH16gL9/vvvkZGRAWtra7Rs2RKtW7dm8iMiIqOSGXAlCEDPBDh58mQ4OzujX79+2LFjB/LyDJuViYiIClRzsgJQTgbBJCUlITw8HFKpFP369YObmxvGjh2LY8eOGTQ4IiIii/I0EV4mk+GVV17B+vXrcefOHSxfvhw3btxA586d4ePjY9gIiYjIrBX0fBr6WaB6D4IpYG1tjcDAQNy/fx83btzApUuXDBEXERERgCdGgZaHFiAAZGZmYv369QgKCoK7uzuWLVuG3r174++//zZkfEREZOYKukBV5WEaxNtvv43t27fD2toab731Fg4ePIh27doZNDAiIiKgnHWBSiQShIeHIzAwEDJZqXtRiYiIimWsQTB6Za8NGzYYNgoiIqJiGOtZoDonwBUrVuDdd9+FUqnEihUrnll3/PjxpQ6MiIgIACwejVYxWQJctmwZBgwYAKVSiWXLlhVbTyKRMAESEZHB3UnLNujxdE6AsbGxRb4mIiIypmv/PgAA2CgMO+ZEr2kQ8+bNQ2ZmZqHyrKwszJs3r9RBERERFWhe3QlAOXkU2ty5c/HgwYNC5ZmZmZg7d26pgyIiIipgrHuAeiVAIQQkksJP5T537hwqVapU6qCIiIgKlIuJ8E5OTpBIJJBIJKhTp45WElSpVHjw4AFGjx5t0ACJiMi8lYt5gMuXL4cQAsOGDcPcuXPh4OCg2SaXy+Hl5QU/Pz/DRkhERGZNWh5WhB88eDAAwNvbG+3atYOlpaVBgyEiInqaySfCp6Wlwd7eHgDQrFkzZGVlISsrq8i6BfWIiIhKq+BZoCpTJUAnJyckJSXB2dkZjo6ORQ6CKRgco1KpDBokERGZL5N3ge7fv18zwvPAgQMGDYKIiKg4xloPUCIMvb5EOZeWlgYHBwekpqayq5aIqAJIf5iLPJWAlVwKpaXUYN/jes0D3LNnD44cOaJ5v2rVKjRt2hT9+/fH/fv39Q6GiIjoaXZKSzjZyKG0lBr0uHolwClTpiAtLQ0AcOHCBYSEhCAoKAgxMTEICQkxaIBERETGoNeTRWNjY9GgQQMAwC+//IJevXph4cKFOH36NIKCggwaIBERkTHo1QKUy+Wah2H//vvvCAgIAABUqlRJ0zIkIiIqz/RqAb700ksICQlB+/bt8ddffyE8PBwAcPXqVVSrVs2gARIRERmDXi3A//3vf5DJZNi8eTPWrFkDDw8PAMDu3bvx8ssvGzRAIiIiY+A0CCIiqlAM9T2u9/K6KpUK27Ztw6VLlyCRSFC/fn0EBwdDKjXsMFUiIiJj0KsL9J9//kH9+vUxaNAgbNmyBZs3b8bAgQPRsGFDXL9+vUTHWr16Nby9vaFUKtGiRQtERkbqtN/Ro0chk8nQtGlTPT4BERGZO70S4Pjx4+Hj44OEhAScPn0aZ86cQXx8PLy9vTF+/HidjxMeHo6JEydixowZOHPmDDp06IAePXogPj7+mfulpqZi0KBB6Nq1qz7hExER6XcP0MbGBn/++ScaN26sVX7u3Dm0b98eDx480Ok4bdq0QfPmzbFmzRpNWf369dG7d28sWrSo2P369euH2rVrQyqVYtu2bTh79qzOsfMeIBFRxWbSR6EpFAqkp6cXKn/w4AHkcrlOx8jJycGpU6c0cwgLBAQE4NixY8Xut3btWly/fh2zZ8/W6TzZ2dlIS0vT+iEiItIrAb7yyit49913ERUVBSEEhBD4888/MXr0aLz66qs6HSM5ORkqlQouLi5a5S4uLrh9+3aR+1y7dg3Tpk3D+vXrIZPpNn5n0aJFcHBw0Px4enrqtB8REb3Y9EqAK1asgI+PD/z8/KBUKqFUKtG+fXvUqlULX3zxRYmO9fS6ggVrCj5NpVKhf//+mDt3LurUqaPz8adPn47U1FTNT0JCQoniIyKiF5Ne0yAcHR3x66+/4p9//sGlS5cghECDBg1Qq1YtnY9RpUoVSKXSQq29O3fuFGoVAkB6ejpOnjyJM2fOYNy4cQAAtVoNIQRkMhn27duHLl26FNpPoVBAoVCU8BMSEdGLrkQJUK1W4/PPP8e2bduQm5uLbt26YdasWVAqlSU+sVwuR4sWLRAREYHXXntNUx4REYHg4OBC9e3t7XHhwgWtstWrV2P//v3YvHkzvL29SxwDERGZrxIlwE8++QQfffQRunbtCisrKyxduhTJycn4+uuv9Tp5SEgIBg4ciJYtW8LPzw9ff/014uPjMXr0aAD53ZeJiYlYt24dLCws0KhRI639nZ2doVQqC5UTERE9T4kSYFhYGFauXImxY8cCyF8Yt3fv3vjqq6+KvG/3PH379sXdu3cxb948JCUloVGjRti1axdq1KgBAEhKSnrunEAiIiJ9lGgeoFKpxNWrV1G9enUA+QNWlEolYmJiNA/ELu84D5CIqGIzyTzAnJwcWFlZad5LJBLI5XJkZ2frHQAREZEplHgU6MyZM2Ftba15n5OTgwULFsDBwUFTtnTpUsNER0REZCQlSoAdO3bElStXtMratWuHmJgYzXt97gUSERGVtRIlwIMHDxopDCIiorKl15NgiIiIKjqdE+DixYuRkZGhU92oqCjs3LlT76CIiIiMTecEGB0djRo1amDMmDHYvXs3/vvvP822vLw8nD9/HqtXr0a7du3Qr18/TjEgIqJyTed7gOvWrcP58+exatUqDBgwAKmpqZBKpVAoFMjMzAQANGvWDO+++y4GDx7M528SEVG5pteCuEIInD9/HnFxccjKykKVKlXQtGlTVKlSxRgxGhQnwhMRVWyG+h7XazUIiUQCX19f+Pr66n1iIiIiU+IoUCIiMktMgEREZJaYAImIyCwxARIRkVliAiQiIrOk1yjQjIwMLF68GH/88Qfu3LkDtVqttf3Jh2MTERGVR3olwBEjRuDQoUMYOHAg3NzcuAIEERFVOHolwN27d2Pnzp1o3769oeMhIiIqE3rdA3RyckKlSpUMHQsREVGZ0SsBzp8/H7NmzdI8A5SIiKii0asL9PPPP8f169fh4uICLy8vWFpaam0/ffq0QYIjIiIyFr0SYO/evQ0cBhERUdnSazWIioyrQRARVWwmXQ2iwKlTp3Dp0iVIJBI0aNAAzZo1K83hiIiIyoxeCfDOnTvo168fDh48CEdHRwghkJqais6dO+Onn35C1apVDR0nERGRQek1CvT9999HWloaLl68iHv37uH+/fv4+++/kZaWhvHjxxs6RiIiIoPT6x6gg4MDfv/9d7Rq1Uqr/K+//kJAQABSUlIMFZ/B8R4gEVHFZqjvcb1agGq1utDUBwCwtLQs9FxQIiKi8kivBNilSxdMmDABt27d0pQlJiZi0qRJ6Nq1q8GCIyIiMha9EuD//vc/pKenw8vLCz4+PqhVqxa8vb2Rnp6OlStXGjpGIiIig9NrFKinpydOnz6NiIgIXL58GUIINGjQAN26dTN0fEREREbBifBERFShlPlE+BUrVuDdd9+FUqnEihUrnlmXUyGIiKi807kF6O3tjZMnT6Jy5crw9vYu/oASSbleEZ4tQCKiiq3MW4CxsbFFviYiIqqI9BoF+jSVSoWzZ8/i/v37hjgcERGR0emVACdOnIjQ0FAA+cmvY8eOaN68OTw9PXHw4EFDxkdERGQUeiXAzZs3w9fXFwCwfft2xMXF4fLly5g4cSJmzJhh0ACJiIiMQa8EmJycDFdXVwDArl278NZbb6FOnToYPnw4Lly4YNAAiYiIjEGvBOji4oLo6GioVCrs2bNHMwE+MzMTUqnUoAESEREZg15Pghk6dCj69OkDNzc3SCQSdO/eHQAQFRWFevXqGTRAIiIiY9ArAc6ZMweNGjVCQkIC3nrrLSgUCgCAVCrFtGnTDBogERGRMfBRaEREVKHwUWhERESlwEehERFRhcJHoREREZWCQR6FRkREVNHolQDffPNNLF68uFD5p59+irfeeqvUQRERERmbXgnw0KFD6NmzZ6Hyl19+GYcPHy51UERERMamVwJ88OAB5HJ5oXJLS0ukpaWVOigiIiJj0ysBNmrUCOHh4YXKf/rpJzRo0KDUQRERERmbXk+CmTlzJt544w1cv34dXbp0AQD88ccf2LhxIzZt2mTQAImIiIxBrwT46quvYtu2bVi4cCE2b94MKysrNGnSBL///jv8/f0NHSMREZHB8VFoRERUoRjqe1zveYApKSn49ttv8eGHH+LevXsAgNOnTyMxMVHvYIiIiMqKXl2g58+fR7du3eDg4IC4uDiMGDEClSpVwtatW3Hjxg2sW7fO0HESEREZlF4twJCQEAwZMgTXrl2DUqnUlPfo0YPzAImIqELQKwGeOHECo0aNKlTu4eGB27dvlzooIiIiY9MrASqVyiInvF+5cgVVq1YtdVBERETGplcCDA4Oxrx585Cbmwsgfwmk+Ph4TJs2DW+88YZBAyQiIjIGvRLgZ599hv/++w/Ozs7IysqCv78/atWqBTs7OyxYsMDQMRIRERmcXgnQ3t4eR44cwS+//ILFixdj3Lhx2LVrFw4dOgQbG5sSHWv16tXw9vaGUqlEixYtEBkZWWzdLVu2oHv37qhatSrs7e3h5+eHvXv36vMRiIjIzJV4GkReXh6USiXOnj2LLl26aB6Fpo/w8HBMnDgRq1evRvv27fHVV1+hR48eiI6ORvXq1QvVP3z4MLp3746FCxfC0dERa9euRa9evRAVFYVmzZrpHQcREZkfvZ4E4+Pjgy1btsDX17dUJ2/Tpg2aN2+ONWvWaMrq16+P3r17Y9GiRTodo2HDhujbty9mzZqlU30+CYaIqGIz6ZNgPvroI0yfPl3zBBh95OTk4NSpUwgICNAqDwgIwLFjx3Q6hlqtRnp6OipVqqR3HEREZJ70ehLMihUr8M8//8Dd3R01atQodN/v9OnTzz1GcnIyVCoVXFxctMpdXFx0nkv4+eefIyMjA3369Cm2TnZ2NrKzszXvuV4hEREBeibA4OBgSCQSgwTw9HGEEDode+PGjZgzZw5+/fVXODs7F1tv0aJFmDt3bqnjJCKiF4teCXDOnDmlPnGVKlUglUoLtfbu3LlTqFX4tPDwcAwfPhybNm1Ct27dnll3+vTpCAkJ0bxPS0uDp6en/oETEdELoUT3ADMzM/Hee+/Bw8MDzs7O6N+/P5KTk/U6sVwuR4sWLRAREaFVHhERgXbt2hW738aNGzFkyBBs2LABPXv2fO55FAoF7O3ttX6IiIhKlABnz56NsLAw9OzZE/369UNERATGjBmj98lDQkLw7bff4rvvvsOlS5cwadIkxMfHY/To0QDyW2+DBg3S1N+4cSMGDRqEzz//HG3btsXt27dx+/ZtpKam6h0DERGZKVECNWvWFBs3btS8j4qKEjKZTOTl5ZXkMFpWrVolatSoIeRyuWjevLk4dOiQZtvgwYOFv7+/5r2/v78AUOhn8ODBOp8vNTVVABCpqal6x0xERKZjqO/xEs0DlMvliI2NhYeHh6bMysoKV69erTD31TgPkIioYjPJPECVSgW5XK5VJpPJkJeXp3cAREREplCiUaBCCAwZMgQKhUJT9vDhQ4wePVprLuCWLVsMFyEREZERlCgBDh48uFDZO++8Y7BgiIiIykqJEuDatWuNFQcREVGZ0utZoERERBUdEyAREZklJkAiIjJLTIBERGSWmACJiMgsMQESEZFZYgIkIiKzxARIRERmiQmQiIjMEhMgERGZJSZAIiIyS0yARERklpgAiYjILDEBEhGRWWICJCIis8QESEREZokJkIiIzBITIBERmSUmQCIiMktMgEREZJaYAImIyCwxARIRkVliAiQiIrPEBEhERGaJCZCIiMwSEyAREZklJkAiIjJLTIBERGSWmACJiMgsMQESEZFZYgIkIiKzxARIRERmiQmQiIjMkszUAZRHQgjk5eVBpVKZOhQio5JKpZDJZJBIJKYOhajMMQE+JScnB0lJScjMzDR1KERlwtraGm5ubpDL5aYOhahMMQE+Qa1WIzY2FlKpFO7u7pDL5fzLmF5YQgjk5OTgv//+Q2xsLGrXrg0LC94VIfPBBPiEnJwcqNVqeHp6wtra2tThEBmdlZUVLC0tcePGDeTk5ECpVJo6JKIywz/3isC/gsmc8PedzBV/84mIyCwxAZqJOXPmoGnTpgY95sGDByGRSJCSkgIACAsLg6Ojo0HPUZwrV67A1dUV6enpZXK+iqpVq1bYsmWLqcMgKpeYAF8QQ4YMgUQigUQigaWlJWrWrInJkycjIyMDADB58mT88ccfRo2hb9++uHr1qlHPUWDGjBl47733YGdnV2hb3bp1IZfLkZiYWGhbp06dNNdJoVCgTp06WLhwoVGnvAghMGfOHLi7u8PKygqdOnXCxYsXn7lPbm4u5s2bBx8fHyiVSvj6+mLPnj1adfLy8vDRRx/B29sbVlZWqFmzJubNmwe1Wq2pM3PmTEybNk2rjIgeEWYmNTVVABCpqamFtmVlZYno6GiRlZVlgshKZ/DgweLll18WSUlJIj4+Xqxfv15YWVmJ0aNHG+2cBw4cEADE/fv3jXaOoiQkJAhLS0uRkJBQaFtkZKSoXr266N+/v/j4448Lbff39xcjR44USUlJIjY2VqxcuVJIJBKxePFio8W7ePFiYWdnJ3755Rdx4cIF0bdvX+Hm5ibS0tKK3Wfq1KnC3d1d7Ny5U1y/fl2sXr1aKJVKcfr0aU2djz/+WFSuXFns2LFDxMbGik2bNglbW1uxfPlyTZ28vDzh7Owsdu3aVey5KvLvPZmnZ32PlwRbgC8QhUIBV1dXeHp6on///hgwYAC2bdsGoHAX6JAhQ9C7d2/MnTsXzs7OsLe3x6hRo5CTk6OpI4TAkiVLULNmTVhZWcHX1xebN28u9vxPd4EWnPOHH36Al5cXHBwc0K9fP61uy5KeAwB+/vln+Pr6olq1aoW2hYaGon///hg4cCC+++47CCEK1bG2toarqyu8vLwwbtw4dO3aVXOdDE0IgeXLl2PGjBl4/fXX0ahRI3z//ffIzMzEhg0bit3vhx9+wIcffoigoCDUrFkTY8aMQWBgID7//HNNnePHjyM4OBg9e/aEl5cX3nzzTQQEBODkyZOaOlKpFEFBQdi4caNRPh9RRcZpEM8hhEBWrmmeCGNlKS3VPEQrKyvk5uYWu/2PP/6AUqnEgQMHEBcXh6FDh6JKlSpYsGABAOCjjz7Cli1bsGbNGtSuXRuHDx/GO++8g6pVq8Lf31+nGK5fv45t27Zhx44duH//Pvr06YPFixeX6hyHDx9Gy5YtC5Wnp6dj06ZNiIqKQr169ZCRkYGDBw+ic+fOz71O9+/fL3Z7jx49EBkZ+cxjPHjwoMjy2NhY3L59GwEBAZoyhUIBf39/HDt2DKNGjSpyv+zs7EJTEqysrHDkyBHN+5deeglffvklrl69ijp16uDcuXM4cuQIli9frrVf69atsWTJkmfGT2SOmACfIytXhQaz9prk3NHzAmEt1++f6K+//sKGDRvQtWvXYuvI5XJ89913sLa2RsOGDTFv3jxMmTIF8+fPR1ZWFpYuXYr9+/fDz88PAFCzZk0cOXIEX331lc4JUK1WIywsTHOvbuDAgfjjjz+wYMECZGRk6HWOuLg4tGjRolD5Tz/9hNq1a6Nhw4YAgH79+iE0NLTYBKhWq7Fv3z7s3bsXEydOLPYzfPvtt8jKytLp8z7t9u3bAAAXFxetchcXF9y4caPY/QIDA7F06VJ07NgRPj4++OOPP/Drr79q3av84IMPkJqainr16kEqlUKlUmHBggV4++23tY7l4eGB+Ph4qNVqTnkgegIT4Atkx44dsLW1RV5eHnJzcxEcHIyVK1cWW9/X11drwr+fnx8ePHiAhIQE3LlzBw8fPkT37t219snJyUGzZs10jsnLy0troIqbmxvu3LkDAIiOjtbrHFlZWUVO2A4NDcU777yjef/OO++gY8eOSElJ0eqaXb16Nb799ltNd+/AgQMxe/bsYs/n4eHx7A+pg6db8kKIZ7buv/jiC4wcORL16tWDRCKBj48Phg4dirVr12rqhIeH48cff8SGDRvQsGFDnD17FhMnToS7uzsGDx6sqWdlZQW1Wo3s7GxYWVmV+rMQvSiYAJ/DylKK6HmBJjt3SXTu3Blr1qyBpaUl3N3dYWlpqdd5JRKJZtTgzp07CyUAhUKh87GejuHJY+t7jipVqhTqsoyOjkZUVBROnDiBDz74QFOuUqmwceNGjBkzRlM2YMAAzJgxAwqFAu7u7pBKn32dS9MF6urqCiC/Jejm5qYpv3PnTqFW4ZOqVq2Kbdu24eHDh7h79y7c3d0xbdo0eHt7a+pMmTIF06ZNQ79+/QAAjRs3xo0bN7Bo0SKtBHjv3j1YW1sz+RE9hQnwOSQSid7dkGXNxsYGtWrV0rn+uXPnkJWVpfli/PPPP2Fra4tq1arByckJCoUC8fHxOnd3llSDBg30OkezZs0QHR2tVRYaGoqOHTti1apVWuU//PADQkNDtRKgg4NDia5TabpAvb294erqioiICE2rNicnB4cOHcInn3zy3P2VSiU8PDyQm5uLX375BX369NFsy8zMLNSlKZVKC015+Pvvv9G8eXO94id6kVWMb3YyipycHAwfPhwfffQRbty4gdmzZ2PcuHGwsLCAnZ0dJk+ejEmTJkGtVuOll15CWloajh07BltbW60Whr70PUdgYCBGjBgBlUoFqVSK3Nxc/PDDD5g3bx4aNWqkVXfEiBFYsmQJzp07B19fX73iLE0XqEQiwcSJE7Fw4ULUrl0btWvXxsKFC2FtbY3+/ftr6g0aNAgeHh5YtGgRACAqKgqJiYlo2rQpEhMTMWfOHKjVakydOlWzT69evbBgwQJUr14dDRs2xJkzZ7B06VIMGzZMK4bIyEitQThElI8J0Ix17doVtWvXRseOHZGdnY1+/fphzpw5mu3z58+Hs7MzFi1ahJiYGDg6OqJ58+b48MMPDRaDPucICgqCpaUlfv/9dwQGBuK3337D3bt38dprrxWqW7t2bTRu3BihoaFYsWKFweIuialTpyIrKwtjx47F/fv30aZNG+zbt0/r3mh8fLxWa+7hw4f46KOPEBMTA1tbWwQFBeGHH37Qupe5cuVKzJw5E2PHjsWdO3fg7u6OUaNGYdasWZo6iYmJOHbsGH788ccy+axEFYlEFDVR6gWWlpYGBwcHpKamwt7eXmvbw4cPERsbC29v7xf+qfhDhgxBSkqK0ea/Gdvq1avx66+/Yu9e04zQrSimTJmC1NRUfP3118XWMaffe3oxPOt7vCTYAqQK6d1338X9+/eRnp5e5OPQKJ+zszMmT55s6jCIyiUmQKqQZDIZZsyYYeowyr0pU6aYOgSicosJ0EyFhYWZOgQiIpPiYyGIiMgsMQESEZFZYgIsgpkNjCUzx993MldMgE8oeGxXZmamiSMhKjsFv+/6PjqPqKIy+SCY1atX49NPP0VSUhIaNmyI5cuXo0OHDsXWP3ToEEJCQnDx4kW4u7tj6tSpGD16tEFikUqlcHR01Dys2draulTLERGVZ0IIZGZm4s6dO3B0dHzuM1GJXjQmTYDh4eGYOHEiVq9ejfbt2+Orr75Cjx49EB0djerVqxeqHxsbi6CgIIwcORI//vgjjh49irFjx6Jq1ap44403DBJTwcOLC5Ig0YvO0dFR83tPZE5M+iSYNm3aoHnz5lizZo2mrH79+ujdu7fmmYhP+uCDD/Dbb7/h0qVLmrLRo0fj3LlzOH78uE7n1PUJAiqV6pmLyRK9CCwtLdnyowqnwj8JJicnB6dOncK0adO0ygMCAnDs2LEi9zl+/Hihh/oGBgYiNDQUubm5Rd7DyM7ORnZ2tuZ9WlqaTvFJpVJ+MRARvcBMNggmOTkZKpWqyJWyC1bRftrt27eLrJ+Xl4fk5OQi91m0aBEcHBw0P56enob5AEREVKGZfBRoSVfKLqp+UeUFpk+fjtTUVM1PQkJCKSMmIqIXgcm6QKtUqQKpVFqotfeslbJdXV2LrC+TyVC5cuUi91EoFCVawZyIiMyDyRKgXC5HixYtEBERobWOW0REBIKDg4vcx8/PD9u3b9cq27dvH1q2bKnzHKaCFqOu9wKJiKh8Kfj+LvUYTmFCP/30k7C0tBShoaEiOjpaTJw4UdjY2Ii4uDghhBDTpk0TAwcO1NSPiYkR1tbWYtKkSSI6OlqEhoYKS0tLsXnzZp3PmZCQIADwhz/84Q9/KvhPQkJCqXKQSecB9u3bF3fv3sW8efOQlJSERo0aYdeuXahRowYAICkpCfHx8Zr63t7e2LVrFyZNmoRVq1bB3d0dK1asKNEcQHd3dyQkJMDOzg4SiQRpaWnw9PREQkJCqYbTvqh4fZ6P1+jZeH2ej9fo2Z6+PkIIpKenw93dvVTHNbsV4Z9mqPkkLypen+fjNXo2Xp/n4zV6NmNdH5OPAiUiIjIFJkAiIjJLZp8AFQoFZs+ezakSxeD1eT5eo2fj9Xk+XqNnM9b1Mft7gEREZJ7MvgVIRETmiQmQiIjMEhMgERGZJSZAIiIyS2aRAFevXg1vb28olUq0aNECkZGRz6x/6NAhtGjRAkqlEjVr1sSXX35ZRpGaRkmuz5YtW9C9e3dUrVoV9vb28PPzw969e8swWtMo6e9QgaNHj0Imk6Fp06bGDdDESnp9srOzMWPGDNSoUQMKhQI+Pj747rvvyiha0yjpNVq/fj18fX1hbW0NNzc3DB06FHfv3i2jaMvW4cOH0atXL7i7u0MikWDbtm3P3ccg39OlepBaBVDwvNFvvvlGREdHiwkTJggbGxtx48aNIusXPG90woQJIjo6WnzzzTclft5oRVLS6zNhwgTxySefiL/++ktcvXpVTJ8+XVhaWorTp0+XceRlp6TXqEBKSoqoWbOmCAgIEL6+vmUTrAnoc31effVV0aZNGxERESFiY2NFVFSUOHr0aBlGXbZKeo0iIyOFhYWF+OKLL0RMTIyIjIwUDRs2FL179y7jyMvGrl27xIwZM8Qvv/wiAIitW7c+s76hvqdf+ATYunVrMXr0aK2yevXqiWnTphVZf+rUqaJevXpaZaNGjRJt27Y1WoymVNLrU5QGDRqIuXPnGjq0ckPfa9S3b1/x0UcfidmzZ7/QCbCk12f37t3CwcFB3L17tyzCKxdKeo0+/fRTUbNmTa2yFStWiGrVqhktxvJClwRoqO/pF7oLNCcnB6dOnUJAQIBWeUBAAI4dO1bkPsePHy9UPzAwECdPnkRubq7RYjUFfa7P09RqNdLT01GpUiVjhGhy+l6jtWvX4vr165g9e7axQzQpfa7Pb7/9hpYtW2LJkiXw8PBAnTp1MHnyZGRlZZVFyGVOn2vUrl073Lx5E7t27YIQAv/++y82b96Mnj17lkXI5Z6hvqdNuhqEsSUnJ0OlUhVaYNfFxaXQwroFbt++XWT9vLw8JCcnw83NzWjxljV9rs/TPv/8c2RkZKBPnz7GCNHk9LlG165dw7Rp0xAZGQmZ7IX+X0yv6xMTE4MjR45AqVRi69atSE5OxtixY3Hv3r0X8j6gPteoXbt2WL9+Pfr27YuHDx8iLy8Pr776KlauXFkWIZd7hvqefqFbgAUkEonWeyFEobLn1S+q/EVR0utTYOPGjZgzZw7Cw8Ph7OxsrPDKBV2vkUqlQv/+/TF37lzUqVOnrMIzuZL8DqnVakgkEqxfvx6tW7dGUFAQli5dirCwsBe2FQiU7BpFR0dj/PjxmDVrFk6dOoU9e/YgNjYWo0ePLotQKwRDfE+/0H+eVqlSBVKptNBfWXfu3Cn010MBV1fXIuvLZDJUrlzZaLGagj7Xp0B4eDiGDx+OTZs2oVu3bsYM06RKeo3S09Nx8uRJnDlzBuPGjQOQ/4UvhIBMJsO+ffvQpUuXMom9LOjzO+Tm5gYPDw84ODhoyurXrw8hBG7evInatWsbNeayps81WrRoEdq3b48pU6YAAJo0aQIbGxt06NABH3/88QvVE6UPQ31Pv9AtQLlcjhYtWiAiIkKrPCIiAu3atStyHz8/v0L19+3bh5YtW8LS0tJosZqCPtcHyG/5DRkyBBs2bHjh70mU9BrZ29vjwoULOHv2rOZn9OjRqFu3Ls6ePYs2bdqUVehlQp/fofbt2+PWrVt48OCBpuzq1auwsLBAtWrVjBqvKehzjTIzM2Fhof31LJVKATxu6Zgzg31Pl2jITAVUMPw4NDRUREdHi4kTJwobGxsRFxcnhBBi2rRpYuDAgZr6BcNrJ02aJKKjo0VoaKhZTIPQ9fps2LBByGQysWrVKpGUlKT5SUlJMdVHMLqSXqOnveijQEt6fdLT00W1atXEm2++KS5evCgOHTokateuLUaMGGGqj2B0Jb1Ga9euFTKZTKxevVpcv35dHDlyRLRs2VK0bt3aVB/BqNLT08WZM2fEmTNnBACxdOlScebMGc00EWN9T7/wCVAIIVatWiVq1Kgh5HK5aN68uTh06JBm2+DBg4W/v79W/YMHD4pmzZoJuVwuvLy8xJo1a8o44rJVkuvj7+8vABT6GTx4cNkHXoZK+jv0pBc9AQpR8utz6dIl0a1bN2FlZSWqVasmQkJCRGZmZhlHXbZKeo1WrFghGjRoIKysrISbm5sYMGCAuHnzZhlHXTYOHDjwzO8VY31PczkkIiIySy/0PUAiIqLiMAESEZFZYgIkIiKzxARIRERmiQmQiIjMEhMgERGZJSZAIiIyS0yARERklpgAqcLx8vLC8uXLNe8lEgm2bdv2zH3u3r0LZ2dnxMXFGTW2AkOGDEHv3r2fWefgwYOQSCRISUkxWhz6nKNTp06YOHFiqc4bFhYGR0fHUh3DEEr6+Y8ePYrGjRvD0tISvXv3Nti/0ZO/s9nZ2ahevTpOnTpVqmNS6TEBks6GDBkCiUQCiUQCmUyG6tWrY8yYMbh//76pQ3uuRYsWoVevXvDy8gIAxMXFaT6LRCKBk5MTOnbsiEOHDhnkfF988QXCwsI074tKKu3atUNSUpLWqgikP0Nc45CQEDRt2hSxsbEICwszyr+RQqHA5MmT8cEHHxjsmKQfJkAqkZdffhlJSUmIi4vDt99+i+3bt2Ps2LGmDuuZsrKyEBoaihEjRhTa9vvvvyMpKQmHDh2Cvb09goKCEBsbW+pzOjg4PLcFJJfL4erq+sKuM1kelPQaX79+HV26dEG1atXg6OhotH+jAQMGIDIyEpcuXTLocalkmACpRBQKBVxdXVGtWjUEBASgb9++2Ldvn1adtWvXon79+lAqlahXrx5Wr16ttf3mzZvo168fKlWqBBsbG7Rs2RJRUVEA8r+AgoOD4eLiAltbW7Rq1Qq///57qWLevXs3ZDIZ/Pz8Cm2rXLkyXF1d0aRJE3z11VfIzMzUfJ5Dhw6hdevWUCgUcHNzw7Rp05CXl6fZd/PmzWjcuDGsrKxQuXJldOvWDRkZGQC0u0CHDBmCQ4cO4YsvvtC0OOPi4rS611JTU2FlZYU9e/ZoxbdlyxbY2Nholg5KTExE37594eTkhMqVKyM4OLhE3bp3797F22+/jWrVqsHa2hqNGzfGxo0bC9XLy8vDuHHj4OjoiMqVK+Ojjz7SWoYnJycHU6dOhYeHB2xsbNCmTRscPHhQ5ziKcu7cOXTu3Bl2dnawt7dHixYtcPLkSZ3i1uUaA8CNGzfQq1cvODk5wcbGBg0bNsSuXbs0PQJ3797FsGHDIJFIEBYWVmQX6LFjx9CxY0dYWVnB09MT48eP1/y7A/nr0vXq1QtWVlbw9vbG+vXrC33WypUro127dkVeeyo7TICkt5iYGOzZs0dr/a1vvvkGM2bMwIIFC3Dp0iUsXLgQM2fOxPfffw8AePDgAfz9/XHr1i389ttvOHfuHKZOnQq1Wq3ZHhQUhN9//x1nzpxBYGAgevXqhfj4eL3jPHz4MFq2bPncetbW1gCA3NxcJCYmIigoCK1atcK5c+ewZs0ahIaG4uOPPwYAJCUl4e2338awYcNw6dIlHDx4EK+//nqRa7V98cUX8PPzw8iRI5GUlISkpCR4enpq1XFwcEDPnj0LfVlu2LABwcHBsLW1RWZmJjp37gxbW1scPnwYR44cga2tLV5++WXk5OTodC0ePnyIFi1aYMeOHfj777/x7rvvYuDAgZo/QAp8//33kMlkiIqKwooVK7Bs2TJ8++23mu1Dhw7F0aNH8dNPP+H8+fN466238PLLL+PatWtFnrcgwTwrSQ4YMADVqlXDiRMncOrUKUybNk3zu/W8uHW5xgDw3nvvITs7G4cPH8aFCxfwySefwNbWFp6enkhKSoK9vT2WL1+OpKQk9O3bt9D+Fy5cQGBgIF5//XWcP38e4eHhOHLkiGbxYyA/GcfFxWH//v3YvHkzVq9ejTt37hQ6VuvWrREZGVns9aAyUMpVLMiMDB48WEilUmFjYyOUSqVmyZKlS5dq6nh6eooNGzZo7Td//nzh5+cnhBDiq6++EnZ2duLu3bs6n7dBgwZi5cqVmvc1atQQy5Yt07wHILZu3Vrs/sHBwWLYsGFaZbGxsQKAOHPmjBBCiAcPHohRo0YJqVQqzp8/Lz788ENRt25doVarNfusWrVK2NraCpVKJU6dOiUAaNZze9rgwYNFcHCw5r2/v7+YMGGCVp2CJWDu378vhBBiy5YtwtbWVmRkZAghhEhNTRVKpVLs3LlTCCFEaGhooZiys7OFlZWV2Lt3b5FxPH2OogQFBYn/+7//04q1fv36Wuf54IMPRP369YUQQvzzzz9CIpGIxMREreN07dpVTJ8+XQiRv56dg4ODZtvNmzdF3bp1RVRUVLFx2NnZibCwsGK36xL3865x48aNxZw5c4o9poODg1i7dm2x+w8cOFC8++67WvtERkYKCwsLkZWVJa5cuSIAiD///FOz/dKlSwKA1u+sEEJ88cUXwsvLS+fPS4YnM1HepQqqc+fOWLNmDTIzM/Htt9/i6tWreP/99wEA//33HxISEjB8+HCMHDlSs09eXp5mEMHZs2fRrFkzVKpUqcjjZ2RkYO7cudixYwdu3bqFvLw8ZGVllaoFmJWVBaVSWeS2du3awcLCApmZmXBzc0NYWBgaN26M2bNnw8/PT+veT/v27fHgwQPcvHkTvr6+6Nq1Kxo3bozAwEAEBATgzTffhJOTk95x9uzZEzKZDL/99hv69euHX375BXZ2dggICAAAnDp1Cv/88w/s7Oy09nv48CGuX7+u0zlUKhUWL16M8PBwJCYmIjs7G9nZ2bCxsdGq17ZtW63P7ufnh88//xwqlQqnT5+GEAJ16tTR2ic7OxuVK1cu8rweHh64fPnyM2MLCQnBiBEj8MMPP6Bbt25466234OPjU6K4n2f8+PEYM2YM9u3bh27duuGNN95AkyZNdN6/4N/gyZa6EAJqtRqxsbG4evUqZDKZVo9DvXr1irwfbGVlhczMzBLFT4bFBEglYmNjg1q1agEAVqxYgc6dO2Pu3LmYP3++phvzm2++QZs2bbT2k0qlAPL/p3+WKVOmYO/evfjss89Qq1YtWFlZ4c0339S5i68oVapUKXakanh4OBo0aKC511VACFFo4IN41L0pkUgglUoRERGBY8eOYd++fVi5ciVmzJiBqKgoeHt76xWnXC7Hm2++iQ0bNqBfv37YsGED+vbtC5ks/39TtVqNFi1aFHlPqWrVqjqd4/PPP8eyZcuwfPlyNG7cGDY2Npg4cWKJrq9arYZUKsWpU6c0/64FbG1tdT7O0+bMmYP+/ftj586d2L17N2bPno2ffvoJr732mkHiBoARI0YgMDAQO3fuxL59+7Bo0SJ8/vnnmj/inketVmPUqFEYP358oW3Vq1fHlStXAECnQTP37t3T+d+NjIP3AKlUZs+ejc8++wy3bt2Ci4sLPDw8EBMTg1q1amn9FCSFJk2a4OzZs7h3716Rx4uMjMSQIUPw2muvoXHjxnB1dS313L1mzZohOjq6yG2enp7w8fEp1HJp0KABjh07pnVP79ixY7Czs4OHhweA/C+59u3bY+7cuThz5gzkcjm2bt1a5HnkcjlUKtVzYx0wYAD27NmDixcv4sCBAxgwYIBmW/PmzXHt2jU4OzsXur66DtOPjIxEcHAw3nnnHfj6+qJmzZpF3rf7888/C72vXbs2pFIpmjVrBpVKhTt37hSKw9XVVac4ilOnTh1MmjQJ+/btw+uvv461a9fqHLeu19jT0xOjR4/Gli1b8H//93/45ptvdI6vefPmuHjxYqHPXatWLcjlctSvXx95eXmawTsAcOXKlSLnEf79999o1qyZzucmw2MCpFLp1KkTGjZsiIULFwLI/yt+0aJF+OKLL3D16lVcuHABa9euxdKlSwEAb7/9NlxdXdG7d28cPXoUMTEx+OWXX3D8+HEAQK1atbBlyxacPXsW586dQ//+/TUtS30FBgbi4sWLJZqvOHbsWCQkJOD999/H5cuX8euvv2L27NkICQmBhYUFoqKisHDhQpw8eRLx8fHYsmUL/vvvP9SvX7/I43l5eSEqKgpxcXFITk4u9jP5+/vDxcUFAwYMgJeXF9q2bavZNmDAAFSpUgXBwcGIjIxEbGwsDh06hAkTJuDmzZs6fa5atWppWq6XLl3CqFGjcPv27UL1EhISEBISgitXrmDjxo1YuXIlJkyYACA/SQ0YMACDBg3Cli1bEBsbixMnTuCTTz7Brl27ijxvYmIi6tWrh7/++qvI7VlZWRg3bhwOHjyIGzdu4OjRozhx4oTmeuoSty7XeOLEidi7dy9iY2Nx+vRp7N+/v9h/s6J88MEHOH78ON577z2cPXsW165dw2+//aZpQdatWxcvv/wyRo4ciaioKJw6dQojRowosucjMjJS071NJmLSO5BUoTw9sKPA+vXrhVwuF/Hx8Zr3TZs2FXK5XDg5OYmOHTuKLVu2aOrHxcWJN954Q9jb2wtra2vRsmVLzeCI2NhY0blzZ2FlZSU8PT3F//73v0KDG0o6CEYIIdq2bSu+/PJLzfunB8EU5eDBg6JVq1ZCLpcLV1dX8cEHH4jc3FwhhBDR0dEiMDBQVK1aVSgUClGnTh2tgTpPX6srV66Itm3bCisrKwFAxMbGFjtAZcqUKQKAmDVrVqGYkpKSxKBBg0SVKlWEQqEQNWvWFCNHjhSpqalFfoanz3H37l0RHBwsbG1thbOzs/joo4/EoEGDCg3YGTt2rBg9erSwt7cXTk5OYtq0aVqDYnJycsSsWbOEl5eXsLS0FK6uruK1114T58+fF0IUHgRTcL0PHDhQZJzZ2dmiX79+wtPTU8jlcuHu7i7GjRsnsrKydI5bl2s8btw44ePjIxQKhahataoYOHCgSE5O1hzjeYNghBDir7/+Et27dxe2trbCxsZGNGnSRCxYsEDr36hnz55CoVCI6tWri3Xr1hX6nT127JhwdHQUmZmZRV4PKhsSIYoYt030gtm1axcmT56Mv//+GxYW7Pgg03rrrbfQrFkzfPjhh6YOxaxxEAyZhaCgIFy7dg2JiYlFzg8jKivZ2dnw9fXFpEmTTB2K2WMLkIiIzBL7goiIyCwxARIRkVliAiQiIrPEBEhERGaJCZCIiMwSEyAREZklJkAiIjJLTIBERGSWmACJiMgs/T/3Qa4jDwfoOQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsqklEQVR4nO3deXhM59sH8O8smZnsiZA9JGLfgthCUWuIKm1tpXZFVW0/Wopa2qJetbZ0saRaVItqa4/aotQaS+0kESIaCUlkT2bO+8fIMLKYTCY5M/H9XNdcZp7znHPuOcK582xHIgiCACIiIqJyQip2AERERESmxOSGiIiIyhUmN0RERFSuMLkhIiKicoXJDREREZUrTG6IiIioXGFyQ0REROUKkxsiIiIqV5jcEBERUbnC5IaoDISGhkIikehecrkc3t7eGDp0KGJjY8s8niFDhsDX17dY+0RHR0MikSA0NLRUYnqRIUOG6F1DhUIBf39/TJ48GSkpKaLE9KyCrk/e33t0dLRBx7hw4QKGDh0KPz8/qFQq2NnZoXHjxli4cCEePnxYOoETlUNysQMgepmsW7cOtWrVQkZGBo4cOYL58+fj8OHDuHjxImxtbcssjpkzZ2L8+PHF2sfDwwPHjx+Hv79/KUX1YtbW1jhw4AAAICkpCVu2bMGXX36JCxcuYN++faLFZQrff/89xowZg5o1a2LKlCmoU6cOcnJycPr0aXzzzTc4fvw4fvvtN7HDJLIITG6IylC9evXQpEkTAEC7du2gVqvx6aefYvv27RgwYECB+6Snp8PGxsakcRiToCiVSrRo0cKkcRSXVCrVi6FLly6IjIxEWFgYoqKi4OfnJ2J0xjt+/Djee+89dOrUCdu3b4dSqdRt69SpE/73v/9hz549JjlXRkYGVCoVJBKJSY5HZI7YLUUkorwb9e3btwFou17s7Oxw8eJFdO7cGfb29ujQoQMAIDs7G5999hlq1aoFpVKJSpUqYejQoXjw4EG+427cuBFBQUGws7ODnZ0dGjZsiDVr1ui2F9Qt9euvv6J58+ZwdHSEjY0NqlatimHDhum2F9YtdfToUXTo0AH29vawsbFBy5YtsXPnTr06ed0zBw8exHvvvYeKFSvCxcUFb775Ju7du2f09QOgSxb/++8/vfLNmzcjKCgItra2sLOzQ3BwMCIiIvLtf+LECXTv3h0uLi5QqVTw9/fHhAkTdNtv3ryJoUOHonr16rCxsYGXlxe6d++OixcvlijuZ82bNw8SiQTfffedXmKTR6FQ4PXXX9d9lkgkmD17dr56vr6+GDJkiO5z3nXft28fhg0bhkqVKsHGxgabN2+GRCLBX3/9le8Yq1atgkQiwYULF3Rlp0+fxuuvv44KFSpApVKhUaNG+OWXX0r2pYlKEZMbIhHdvHkTAFCpUiVdWXZ2Nl5//XW0b98ev//+O+bMmQONRoMePXpgwYIF6N+/P3bu3IkFCxYgLCwMr776KjIyMnT7f/LJJxgwYAA8PT0RGhqK3377DYMHD9YlUAU5fvw4+vbti6pVq+Lnn3/Gzp078cknnyA3N7fI+A8fPoz27dsjOTkZa9aswaZNm2Bvb4/u3btj8+bN+eqPGDECVlZW2LhxIxYuXIhDhw7hnXfeKe5l0xMVFQW5XI6qVavqyubNm4e3334bderUwS+//IIff/wRjx8/RuvWrXH58mVdvb1796J169aIiYnB4sWLsXv3bsyYMUMvUbp37x5cXFywYMEC7NmzB19//TXkcjmaN2+Oa9eulSh2AFCr1Thw4AACAwPh4+NT4uMVZNiwYbCyssKPP/6ILVu24I033oCrqyvWrVuXr25oaCgaN26MBg0aAAAOHjyIVq1aISkpCd988w1+//13NGzYEH379hVt/BXRCwlEVOrWrVsnABD++ecfIScnR3j8+LGwY8cOoVKlSoK9vb1w//59QRAEYfDgwQIAYe3atXr7b9q0SQAgbN26Va/81KlTAgBh5cqVgiAIQmRkpCCTyYQBAwYUGc/gwYOFKlWq6D4vWrRIACAkJSUVuk9UVJQAQFi3bp2urEWLFoKrq6vw+PFjXVlubq5Qr149wdvbW9BoNHrff8yYMXrHXLhwoQBAiIuLKzLevJhtbW2FnJwcIScnR0hISBBWrVolSKVS4eOPP9bVi4mJEeRyufDBBx/o7f/48WPB3d1d6NOnj67M399f8Pf3FzIyMl54/me/X3Z2tlC9enVh4sSJuvKCrk/e946Kiir0ePfv3xcACP369TM4BgDCrFmz8pVXqVJFGDx4cL7zDxo0KF/dSZMmCdbW1np/55cvXxYACCtWrNCV1apVS2jUqJGQk5Ojt/9rr70meHh4CGq12uC4icoKW26IylCLFi1gZWUFe3t7vPbaa3B3d8fu3bvh5uamV++tt97S+7xjxw44OTmhe/fuyM3N1b0aNmwId3d3HDp0CAAQFhYGtVqN999/v1hxNW3aFADQp08f/PLLLwbN4EpLS8OJEyfQq1cv2NnZ6cplMhkGDhyIu3fv5mvZeLZrBYCudSCvVUmj0eh9P7Vane+cVlZWsLKyQsWKFfHee++hb9+++Pzzz3V19u7di9zcXAwaNEjvWCqVCm3bttVdq+vXr+PWrVsYPnw4VCpVod8zNzcX8+bNQ506daBQKCCXy6FQKHDjxg1cuXLlhdfJHDz/8wRoW3MyMjL0WtjWrVsHpVKJ/v37A9C2LF69elU3HuzZ6xkSEoK4uDiTtF4RmRqTG6IytH79epw6dQoRERG4d+8eLly4gFatWunVsbGxgYODg17Zf//9h6SkJCgUCt3NPe91//59JCQkAIBu/I23t3ex4mrTpg22b9+uSwq8vb1Rr149bNq0qdB9Hj16BEEQ4OHhkW+bp6cnACAxMVGv3MXFRe9z3viSvG61uXPn6n235wc+W1tb49SpUzh16hT+/PNPvPrqq9i0aRMWLFigq5PXpdS0adN812rz5s3FvlaTJk3CzJkz0bNnT/z55584ceIETp06hYCAAL3uQGNVrFgRNjY2iIqKKvGxClPQ31HdunXRtGlTXdeUWq3GTz/9hB49eqBChQoAnl7LyZMn57uWY8aMAQDd9SQyJ5wtRVSGateurRsAW5iCZrHkDcAtbMaMvb09gKdjd+7evVvs8Rs9evRAjx49kJWVhX/++Qfz589H//794evri6CgoHz1nZ2dIZVKERcXl29b3iDhihUrFiuGkSNH4rXXXtN9fn5wrVQq1bt+nTp1QmBgIObMmYMBAwbAx8dHd84tW7agSpUqhZ7r2WtVlJ9++gmDBg3CvHnz9MoTEhLg5ORk0PcqikwmQ4cOHbB7927cvXvXoMRUqVQiKysrX/nzyWSewmZGDR06FGPGjMGVK1cQGRmJuLg4DB06VLc971pOmzYNb775ZoHHqFmz5gvjJSprTG6ILMBrr72Gn3/+GWq1Gs2bNy+0XufOnSGTybBq1aoCExJDKJVKtG3bFk5OTti7dy8iIiIKPJatrS2aN2+Obdu2YdGiRbC2tgag7Vr66aef4O3tjRo1ahTr3J6enrpWH0Nj/frrr/Hqq6/is88+w7fffovg4GDI5XLcunWrwO6YPDVq1IC/vz/Wrl2LSZMmFThLCdAmBs9v27lzJ2JjY1GtWjWDYy3KtGnTsGvXLrz77rv4/fffoVAo9Lbn5ORgz5496N69OwDtrKhnZzMBwIEDB5Camlqs87799tuYNGkSQkNDERkZCS8vL3Tu3Fm3vWbNmqhevTrOnz+fL7kjMmdMbogsQL9+/bBhwwaEhIRg/PjxaNasGaysrHD37l0cPHgQPXr0wBtvvAFfX198/PHH+PTTT5GRkYG3334bjo6OuHz5MhISEjBnzpwCj//JJ5/g7t276NChA7y9vZGUlIRly5bBysoKbdu2LTSu+fPno1OnTmjXrh0mT54MhUKBlStX4t9//8WmTZvKZC2Vtm3bIiQkBOvWrcPUqVPh5+eHuXPnYvr06YiMjESXLl3g7OyM//77DydPnoStra3uOnz99dfo3r07WrRogYkTJ6Jy5cqIiYnB3r17sWHDBgDaxDI0NBS1atVCgwYNcObMGfzf//1fsbv+ihIUFIRVq1ZhzJgxCAwMxHvvvYe6desiJycHERER+O6771CvXj1dcjNw4EDMnDkTn3zyCdq2bYvLly/jq6++gqOjY7HO6+TkhDfeeAOhoaFISkrC5MmTIZXqj1b49ttv0bVrVwQHB2PIkCHw8vLCw4cPceXKFZw9exa//vqrya4DkcmIPaKZ6GWQN2vl1KlTRdbLmxFUkJycHGHRokVCQECAoFKpBDs7O6FWrVrCqFGjhBs3bujVXb9+vdC0aVNdvUaNGunN4nl+ttSOHTuErl27Cl5eXoJCoRBcXV2FkJAQITw8XFenoNlAgiAI4eHhQvv27QVbW1vB2tpaaNGihfDnn38a9P0PHjwoABAOHjxY5HV50bW5ePGiIJVKhaFDh+rKtm/fLrRr105wcHAQlEqlUKVKFaFXr17C/v379fY9fvy40LVrV8HR0VFQKpWCv7+/3iyoR48eCcOHDxdcXV0FGxsb4ZVXXhHCw8OFtm3bCm3bti3y+hgyW+pZ586dEwYPHixUrlxZUCgUgq2trdCoUSPhk08+EeLj43X1srKyhA8//FDw8fERrK2thbZt2wrnzp0rdLZUUT93+/btEwAIAITr168XWOf8+fNCnz59BFdXV8HKykpwd3cX2rdvL3zzzTcGfS+isiYRBEEQLbMiIiIiMjHOliIiIqJyhckNERERlStMboiIiKhcYXJDRERE5QqTGyIiIipXmNwQERFRufLSLeKn0Whw79492Nvbl8kCY0RERFRygiDg8ePH8PT0zLfY5PNeuuTm3r17xX7mDhEREZmHO3fuvHCF8Jcuucl7wOCdO3fyPXmZiIiIzFNKSgp8fHx09/GivHTJTV5XlIODA5MbIiIiC2PIkBIOKCYiIqJyhckNERERlStMboiIiKhcYXJDRERE5QqTGyIiIipXmNwQERFRucLkhoiIiMoVJjdERERUrjC5ISIionKFyQ0RERGVK6ImN0eOHEH37t3h6ekJiUSC7du3v3Cfw4cPIzAwECqVClWrVsU333xT+oESERGRxRA1uUlLS0NAQAC++uorg+pHRUUhJCQErVu3RkREBD7++GOMGzcOW7duLeVIiYiIyFKI+uDMrl27omvXrgbX/+abb1C5cmUsXboUAFC7dm2cPn0aixYtwltvvVVKURpGrREQl5whagxFcbFVwlohEzsMIiKiUmdRTwU/fvw4OnfurFcWHByMNWvWICcnB1ZWVvn2ycrKQlZWlu5zSkpKqcSWmJaFV744WCrHNpWBLarARimDWi0gVyNAIwhQawRoBECT91kQIAjaZE37XlvndmI62tSohCB/F6jVAup7O8LNQSX2VyIiIsrHopKb+/fvw83NTa/Mzc0Nubm5SEhIgIeHR7595s+fjzlz5pRJfEq5eY7PzsrVAAB+/Od2iY5z9f5jfHckUve5uqsdWlevhGy1GrcT0zGkpS861HYr4ghERESlz6KSGwCQSCR6nwVBKLA8z7Rp0zBp0iTd55SUFPj4+Jg8Lld7Fa59ZngXW1laHHYdy/+6gaGtfCGXSiCVSiCXSiCTaN9LJRLInvwplQAyqQQSiQSyJ+8TUrOx7K8bAIBqrna4GZ8KALgRn4obT94DQPiNBDhaWyE5I0dXtqh3ADKyc5GZo0FGjhp3Hqajia8zKlewReMqTlDK2VVGRESmZVHJjbu7O+7fv69XFh8fD7lcDhcXlwL3USqVUCqVZRGe2ZrUqQYmdapRomNMfGb/szGP8ObKYwjwcUIrfxfcT8nEtrOxAKCX2ADA5F/P5zvWr2fu6t5XcbHB7cR09GnijflvNkB2rgZp2blIz1Jr/8zORQVbJXxdbApNYMky5HVx5qgF5Gg0yFULyFVrkKN58qdaQG5e+TNlao22vvrJ9hy1gLSsXFR2sdF1oWqedKdqBG03q1qj7VLV6MqEQutqnul+ffpZf/uz30EQAAF48qfwpFxbBkHQbQO02wuqD12Z/vZn99GdD8CFu8m4n5yJ/s0rQyrRtsaejn6ErvXd4WhtBdmTX1gyczRQWcng6aR68suKBFIpdO+VcimcbKxgJZNCZcVfLKj8sqjkJigoCH/++ade2b59+9CkSZMCx9tQ6Whc2RnRC7rplU3oUAN3H6XD9ck4nI6LDwMA2taoBGsrGawVMtxOTMPZmCS9/W4npgMAfjl9F7+cvoui1HSzh1oQ8HazyshVa/AwPRuX76Xg9QBPZKs1SMvKRVqWGveTM3HuThL6NfNBQx8n5Gq0Ny61RnjyXnsDTc9Ww8vZGt7O1qhgq0B6lhrpOWpkZOdCrQE8nVSQSSWwUWj/meSqNcjVCKLdFNQaAVm5amTmaJCVq0ZWjgZZuU/e52qQlaNBtlr95E/t5yy1Blk5amSrNcjOffrKUT+pk6tNFrJz1U/+1JbnqLXX6Om4rKdjs9RPyp4dm6V55s+8hEBX58l7KrnFYdf1Ph+PTCzR8SraKSAIQGJatl552xqV8HYzH1gr5NoWXgl0rbw13e1hr5RDKuUvG2S+JIIgiPa/TmpqKm7evAkAaNSoERYvXox27dqhQoUKqFy5MqZNm4bY2FisX78egHYqeL169TBq1Ci8++67OH78OEaPHo1NmzYZPFsqJSUFjo6OSE5OhoODQ6l9NyraR1suIEejwb2kDPwT+TDfdmsrGWyVciSkZhWwd9lTyKTIVmv0ykLqu0MikeDs7UeIS87Em428kKsRkJGjRmaO+plk6skA7id/5qg1yMxR4+6jp7PrAqs4QyrR/vae+SSBycjOS1rUyHySfJQ3Ugkgl0lhJdV2jVrJpJDLJJBLtX9ayaSQSyWQyySQSbX1Tt9+hCouNlDIpE9aJp7cfJ+7CT8t07ZeSPB83WfeS7Vd28+WSZ45pgTaG7lEon0BEuQ1JEryyp+U5d3y81oaJc/vrzuORLc/Ctz/admqQ7eQq9Em9oIgYP+VeCSkZsFWIUPDyk7IfdLCdfr2IwCAp6NKr9VKIwAPn0tgTMleKcfAoCpoXNkZdTwd4Ghtpf37k0qZBJHJFOf+LWpyc+jQIbRr1y5f+eDBgxEaGoohQ4YgOjoahw4d0m07fPgwJk6ciEuXLsHT0xMfffQRRo8ebfA5mdyYp+iENFgrZLBRyGCjkEP2zH+I3x+JxOe7rug+13SzRx1PB/wWoe0K83BUob6XI2yVctgqZfjpnxhdXWsrGdwdVbpm+7w/07PVeuOF8ijkUmTnavKVmxu5VAKVlQxKuRQKuRRKuVTvs7ZMBoXs6WeFXAqFTPq0jkwKqyd/Prs9L8Gwkkl0SUDemCyZVALZk0RA9uSz5MnYLL0xXM90hzw/nksuk8KKNz5R5LU+JqZlIy0rFxpB21q340IcXO2ViEvOxJqjUbr6dTwcdAnS9f/y/3sxxpTgmmhdvSKqudppk9gn4wCJXsRikhsxMLmh5yWlZ0MikcBGIYOVTDvjLTNHDY0g4FT0I3g5qWCjkMNGIcP+K/G6cUTj2ldDBVsF9l+Jx9GbCRjfoTrsVXLYKORQWUmfJFLSp4mV7GmCZW0lg1wqxS+n76CZX4Un59X+U1RayaCSy6Cy0iYs2pcUKrkMSitt0iLjzYBEIAjalsnbien48/w9rDx0y+TnaOrrDEEA+jb1Qa9Ab461Ix0mN0VgckNEVHqyczW6gd+pWbmIepCGbLUaw0JPm+T4vQK98VGXWqhk/3JPFHkZMbkpApMbIiJx5T4Z0J6rEaBWC7h0LwWf7byMq/cfF+s4Dio5PnujPpr7VeCioi8BJjdFYHJDRGT+Hmfm4PD1B3BzUOGbQ7fw19X4F+5T28MBbapXREMfJ7SsVhGO1pxFW54wuSkCkxsiIst2/FYi3v7+H4PrN/OtgI51XDEoyJfr+1gwJjdFYHJDRFR+5Kg1CF56BJEP0gyqH1LfHcv6NdJNHiDLweSmCExuiIjKN0EQsPyvm1iy//oL675asxIGt/RFu5quZRAZlQSTmyIwuSEievnsuhiHMRvOFlmnaz139G3qg1eZ6JglJjdFYHJDRPTyUmsEHLuVgBUHbuJkVP7V0fPsm9gGNdzsyzAyehEmN0VgckNERHk0GgHBS48UuGI5ANgqZFjUOwBd6rlzQUGRMbkpApMbIiIqiCAIqDdrL9Ky1YXWOflxB90DgqlsMbkpApMbIiJ6kYt3k7Fw71WE30gocPuVuV1greC08rLE5KYITG6IiKg4rsSloOuy8Hzlu8a1Rh1P3kfKCpObIjC5ISIiY2g0AhrM2YfUrFy9cncHFSZ1roFejb35hPNSxOSmCExuiIioJLZHxGLC5nOFbv9lVBCa+jpzALKJMbkpApMbIiIyhT/O38O4TRGFbl/atyF6NvIqw4jKNyY3RWByQ0REphb5IBXtvzxc4LYzMzrCxU5ZxhGVP0xuisDkhoiIStPq8Eh8tvOKXllDHyf8NqYlu6pKoDj3bz45jIiIyIRGtK6K6AXdMLSVr67s3J0k+E3bhS/2XMVL1qYgCrbcEBERlZK7j9LxyhcHC9x28/OukPPp5AZjyw0REZEZ8Ha2QfSCbtgyOijftmrTd2PR3msiRFX+seWGiIiojGRkq1H7kz35yue8XheDW/qWfUAWhC03REREZshaIUP0gm74v14N9Mpn/XEJvlN3cjyOiTC5ISIiKmO9m/ggekE3DAqqolfuN22XSBGVL0xuiIiIRDK3Rz3cmheiV9Z5ScHr5ZDhmNwQERGJSCaV4MrcLrrP1/9Lhe/UnVBr2EVlLCY3REREIrNWyHB5brBemf/Hu/DDsWhxArJwTG6IiIjMgI1Cjpufd9Urm/XHJQxdd1KkiCwXkxsiIiIzIZdJEb2gG8a1r6YrO3jtAXZeiBMxKsvD5IaIiMjMTOpcE9c+ezoO5/2NZ/FvbLKIEVkWJjdERERmSCmX4ff3W+k+v7biKPZeui9iRJaDyQ0REZGZCvBxwoYRzXWfR/14BpM2nxMvIAvB5IaIiMiMtapWEb+Naan7vC0iFr5Td4oYkfljckNERGTmGlV2xt9T2+uVMcEpHJMbIiIiC+DlZI3I51YzbrXggEjRmDcmN0RERBZCKpXg+mdP18KJTcpgC04BmNwQERFZEIVciqufdtEr+3LfNZGiMU9MboiIiCyMykqmt5rxigM3ceb2IxEjMi9MboiIiCyQXCbFngmtdZ/fWnUMcckZIkZkPpjcEBERWaha7g54t7Wf7nPQ/APYf/k/ESMyD0xuiIiILNj0bnXwdf/Gus8j1p/GyaiHIkYkPiY3REREFq5bAw9sereF7nOfb4+LGI34mNwQERGVA0H+LnpPE49KSBMxGnExuSEiIionJnSsoXvfbtEh8QIRGZMbIiKickIqleh9Ts/OFSkScRmd3Ny5cwfh4eHYu3cvzp49i6ysLFPGRUREREa4OLuz7n2dT/aKGIl45MWpfPv2bXzzzTfYtGkT7ty5A0EQdNsUCgVat26NkSNH4q233oJUykYhIiKismavskLVSraIfKAdc3MlLgW1PRxEjqpsGZyBjB8/HvXr18eNGzcwd+5cXLp0CcnJycjOzsb9+/exa9cuvPLKK5g5cyYaNGiAU6dOlWbcREREVIj9E9vq3nddFi5iJOIwuOVGoVDg1q1bqFSpUr5trq6uaN++Pdq3b49Zs2Zh165duH37Npo2bWrSYImIiOjFpFIJ3mrsja1n7wIA1BoBsufG45RnEuHZvqWXQEpKChwdHZGcnAwHh5ermY6IiF4esUkZaLXggO5z9IJuIkZTcsW5f4s+MGblypXw8/ODSqVCYGAgwsOLbj77+uuvUbt2bVhbW6NmzZpYv359GUVKRERkObycrPU+7710X6RIyp7B3VKNGjWCRGJYk9bZs2cNqrd582ZMmDABK1euRKtWrfDtt9+ia9euuHz5MipXrpyv/qpVqzBt2jR8//33aNq0KU6ePIl3330Xzs7O6N69u6FfhYiI6KUQNT8EftN2AQBm/X4JwXXdRY6obBjcctOzZ0/06NEDPXr0QHBwMG7dugWlUolXX30Vr776KlQqFW7duoXg4GCDT7548WIMHz4cI0aMQO3atbF06VL4+Phg1apVBdb/8ccfMWrUKPTt2xdVq1ZFv379MHz4cHzxxRcGn5OIiOhlIZFI0K+pDwDgfkqmyNGUHYNbbmbNmqV7P2LECIwbNw6ffvppvjp37twx6HjZ2dk4c+YMpk6dqlfeuXNnHDt2rMB9srKyoFKp9Mqsra1x8uRJ5OTkwMrKqsB9nl2DJyUlxaD4iIiIyoOPutTCz6e09+azMY/QuLKzyBGVPqPG3Pz6668YNGhQvvJ33nkHW7duNegYCQkJUKvVcHNz0yt3c3PD/fsF9wsGBwdj9erVOHPmDARBwOnTp7F27Vrk5OQgISGhwH3mz58PR0dH3cvHx8eg+IiIiMoDZ1uF7v0HGyNEjKTsGJXcWFtb4+jRo/nKjx49mq9l5UWeH8cjCEKhY3tmzpyJrl27okWLFrCyskKPHj0wZMgQAIBMJitwn2nTpiE5OVn3MrRliYiIqLxwtNb2bMQmZSA5PUfkaEqfUcnNhAkT8N5772Hs2LH46aef8NNPP2Hs2LF4//33MXHiRIOOUbFiRchksnytNPHx8flac/JYW1tj7dq1SE9PR3R0NGJiYuDr6wt7e3tUrFixwH2USiUcHBz0XkRERC+THR+8onsfMHcf1JryvQqMUcnN1KlTsX79ekRERGDcuHEYN24cIiIiEBoamm8MTWEUCgUCAwMRFhamVx4WFoaWLVsWua+VlRW8vb0hk8nw888/47XXXuPjHoiIiArhU8EGI9tU1X0euf60iNGUPlEX8du8eTMGDhyIb775BkFBQfjuu+/w/fff49KlS6hSpQqmTZuG2NhY3Vo2169fx8mTJ9G8eXM8evQIixcvRlhYGM6cOQNfX1+DzslF/IiI6GXlO3Wn7r2lLepXJov4JSUlYfXq1fj444/x8OFDANr1bWJjYw0+Rt++fbF06VLMnTsXDRs2xJEjR7Br1y5UqVIFABAXF4eYmBhdfbVajS+//BIBAQHo1KkTMjMzcezYMYMTGyIiopfZhhHNde9XHropYiSly6iWmwsXLqBjx45wdHREdHQ0rl27hqpVq2LmzJm4ffu2Wa8azJYbIiJ6meW13tTzcsCOD1qLHI3hSr3lZtKkSRgyZAhu3LihNzuqa9euOHLkiDGHJCIiojLw3qv+AIB/Y1NQXh8vaVRyc+rUKYwaNSpfuZeXV6Fr1BAREZH43mlRRfd+86nyuTyKUcmNSqUqcKXfa9euoVKlSiUOioiIiErHsw/UDLv8n4iRlB6jkpsePXpg7ty5yMnRLgQkkUgQExODqVOn4q233jJpgERERGRa77TQPpz6r6vxIkdSOoxKbhYtWoQHDx7A1dUVGRkZaNu2LapVqwZ7e3t8/vnnpo6RiIiITKhnQy/d+2O3Cn58kSUz+MGZz3JwcMDRo0dx4MABnD17FhqNBo0bN0bHjh1NHR8RERGZWBPfCrr3/7f3Gn4bU/Aq/5bKqOQmT/v27dG+fXtTxUJERERlJKiqC45HJiIiJknsUEzO4ORm+fLlGDlyJFQqFZYvX15k3XHjxpU4MCIiIio9bzb2wvHIRLHDKBUGL+Ln5+eH06dPw8XFBX5+foUfUCJBZGSkyQI0NS7iR0REBDzOzEH92fsAAGdndkIFW4XIERWtOPdvg1tuzp07B0dHRwBAVFRUySIkIiIiUdmrrHTvL91LRuvq5WcpF4NnS1WoUAHx8dopY+3bt0dSUlJpxURERERlaOCak2KHYFIGJzd2dnZITNT2zR06dEi3xg0RERFZpu4BnmKHUCoM7pbq2LEj2rVrh9q1awMA3njjDSgUBffPHThwwDTRERERUamZ+Vpt/Hn+HgAgV62BXGbU8ndmx+Dk5qeffsIPP/yAW7du4fDhw6hbty5sbGxKMzYiIiIqRRVsFJBLJcjVCIhLzoRPhfJxXzc4ubG2tsbo0aMBAKdPn8YXX3wBJyen0oqLiIiISplcJoWTjQIJqVnYdDIGH3apJXZIJmFU+9PBgwf1Ehu1Wo1z587h0aNHpoqLiIiIykBCahYAYOWhWyJHYjpGJTcTJkzAmjVrAGgTmzZt2qBx48bw8fHBoUOHTBkfERERlaKRbaqKHYLJGZXc/PrrrwgICAAA/Pnnn4iOjsbVq1cxYcIETJ8+3aQBEhERUekZFFRF9/5m/GMRIzEdo5KbxMREuLu7AwB27dqF3r17o0aNGhg+fDguXrxo0gCJiIio9Hg7Px1E/P2R8rFIr1HJjZubGy5fvgy1Wo09e/bongaenp4OmUxm0gCJiIiodDV78pTwzafviByJaRiV3AwdOhR9+vRBvXr1IJFI0KlTJwDAiRMnUKtW+RhpTURE9LJ4dtxNrlojYiSmYfBU8GfNnj0b9erVw507d9C7d28olUoAgEwmw9SpU00aIBEREZWuNjWePlfqr6vxCK7rLmI0JWdUcgMAvXr1ylc2ePDgEgVDREREZU8hl0IplyIrV4OtZ+6+PMnN8uXLMXLkSKhUKixfvrzIuuPGjStxYERERFR2WlevhP1X/sO+y/+JHUqJSQRBEAyp6Ofnh9OnT8PFxQV+fn6FH1AiQWRkpMkCNLWUlBQ4OjoiOTkZDg4OYodDRERkFkL/jsLsPy8DAKLmh0AikYgckb7i3L8NbrmJiooq8D0RERFZvjcaeeuSm7uPMiz6OVNGzZaaO3cu0tPT85VnZGRg7ty5JQ6KiIiIypajjRWsrbTLuaw5atmNGEYlN3PmzEFqamq+8vT0dMyZM6fEQREREVHZs1VqO3RikzJEjqRkjEpuBEEosC/u/PnzqFChQomDIiIiorLXsbYrACAmMX/vjCUp1lRwZ2dnSCQSSCQS1KhRQy/BUavVSE1NxejRo00eJBEREZW+vHE2CrlRbR9mo1jJzdKlSyEIAoYNG4Y5c+bA0dFRt02hUMDX1xdBQUEmD5KIiIhKX4uqLgCAi7HJIkdSMsVKbvIW6fPz80PLli1hZWVVKkERERFR2fN1eTpDKiUzBw4qy7zPG7VCcdu2bXXvMzIykJOTo7ed68cQERFZHhc7pe791bjHaOZnmeNojepUS09Px9ixY+Hq6go7Ozs4OzvrvYiIiMiy7b9iuSsVG5XcTJkyBQcOHMDKlSuhVCqxevVqzJkzB56enli/fr2pYyQiIqIy4mKrAABk5qhFjsR4RiU3f/75J1auXIlevXpBLpejdevWmDFjBubNm4cNGzaYOkYiIiIqIx2eTAdff/y2yJEYz6jk5uHDh7rnSzk4OODhw4cAgFdeeQVHjhwxXXRERERUphp4O4kdQokZldxUrVoV0dHRAIA6dergl19+AaBt0XFycjJVbERERFTGWlevqHufq9aIGInxjEpuhg4divPnzwMApk2bpht7M3HiREyZMsWkARIREVHZ8XF+Oh382n+PRYzEeEZNBZ84caLufbt27XD16lWcPn0a/v7+CAgIMFlwREREVLakUgkcVHKkZObij/P3UNfT8cU7mRmjkpvnVa5cGQ4ODuySIiIiKgdSMnMBAIevPcC0rrVFjqb4jOqW+uKLL7B582bd5z59+sDFxQVeXl667ioiIiKyTF3qugN4+pRwS2NUcvPtt9/Cx8cHABAWFoawsDDs3r0bXbt25ZgbIiIiC9fqyaDiM7cfiRyJcYxKyeLi4nTJzY4dO9CnTx907twZvr6+aN68uUkDJCIiorLV1Pfp0wY0GgFSqUTEaIrPqJYbZ2dn3LlzBwCwZ88edOzYEQAgCALUastd0ZCIiIj0Z0xlWOBKxUa13Lz55pvo378/qlevjsTERHTt2hUAcO7cOVSrVs2kARIREVHZsraSQSIBBAF4mJZtcWNvjIp2yZIl8PX1xZ07d7Bw4ULY2dkB0HZXjRkzxqQBEhERUdmSSiUQBO37mw9S4VPBpugdzIxRyY2VlRUmT56cr3zChAkljYeIiIjMgMpKiswcDW7Fp6JdTVexwykWo8bcmNLKlSvh5+cHlUqFwMBAhIeHF1l/w4YNCAgIgI2NDTw8PDB06FAkJiaWUbREREQvB2srGQDgbIzlzZgSNbnZvHkzJkyYgOnTpyMiIgKtW7dG165dERMTU2D9o0ePYtCgQRg+fDguXbqEX3/9FadOncKIESPKOHIiIqLyLVej7Zc6cDVe5EiKT9TkZvHixRg+fDhGjBiB2rVrY+nSpfDx8cGqVasKrP/PP//A19cX48aNg5+fH1555RWMGjUKp0+fLuPIiYiIyrcpwTUBAJk5lvfwTNGSm+zsbJw5cwadO3fWK+/cuTOOHTtW4D4tW7bE3bt3sWvXLgiCgP/++w9btmxBt27dyiJkIiKil4abg0rsEIwmWnKTkJAAtVoNNzc3vXI3Nzfcv3+/wH1atmyJDRs2oG/fvlAoFHB3d4eTkxNWrFhR6HmysrKQkpKi9yIiIqKi+VeyFTsEoxmd3AwbNgzTp0/XK/v4448xbNiwYh1HItFf9VAQhHxleS5fvoxx48bhk08+wZkzZ7Bnzx5ERUVh9OjRhR5//vz5cHR01L3yVlYmIiKiwrk7Wuve/5eSKWIkxWd0chMVFYXY2Fi9stjYWERHRxu0f8WKFSGTyfK10sTHx+drzckzf/58tGrVClOmTEGDBg0QHByMlStXYu3atYiLiytwn2nTpiE5OVn3yltZmYiIiApn98zCfd8fiRQxkuIzesnBgwcP5iv74YcfDN5foVAgMDAQYWFheOONN3TlYWFh6NGjR4H7pKenQy7XD1km005VE/JWG3qOUqmEUqk0OC4iIiLS8na2xt1HGThwNR4zXqsjdjgGE3W21KRJk7B69WqsXbsWV65cwcSJExETE6PrZpo2bRoGDRqkq9+9e3ds27YNq1atQmRkJP7++2+MGzcOzZo1g6enp1hfg4iIqFwKrKJ9gOa95AyRIykeg1tu/vjjD4MP+vrrrxtUr2/fvkhMTMTcuXMRFxeHevXqYdeuXahSpQoA7eMcnl3zZsiQIXj8+DG++uor/O9//4OTkxPat2+PL774wuDYiIiIyDDN/Vzw+7l7el1UlkAiFNaf8xyp1LBGHolEYtZPBk9JSYGjoyOSk5Ph4OAgdjhERERm6++bCRiw+gQAIHqBuMuuFOf+bXAqptFY3iI+REREZDy/ik+ngyekZqGinWWMYS3xmJvMTMuaHkZERESG8XR6Oh08Lsly7vdGJTdqtRqffvopvLy8YGdnh8hI7RSxmTNnYs2aNSYNkIiIiMRTxcUGABCdmCZyJIYzKrn5/PPPERoaioULF0KhUOjK69evj9WrV5ssOCIiIhJXXtfU1rN3RY7EcEYlN+vXr8d3332HAQMG6NaZAYAGDRrg6tWrJguOiIiIxOVkbQUAuPUgVeRIDGdUchMbG4tq1arlK9doNMjJySlxUERERGQemvpVAAA4PklyLIFRyU3dunURHh6er/zXX39Fo0aNShwUERERmYfKFbRjbnLVBq0cYxaMWpVn1qxZGDhwIGJjY6HRaLBt2zZcu3YN69evx44dO0wdIxEREYnESqZtB4lKKOcDirt3747Nmzdj165dkEgk+OSTT3DlyhX8+eef6NSpk6ljJCIiIpFIJRIAQFau5ax3Z/R6ysHBwQgODjZlLERERGRmKtopXlzJzJToYRGnT5/GlStXIJFIULt2bQQGBpoqLiIiIjIDLrZPVyVOTM2CiwWsUmxUcnP37l28/fbb+Pvvv+Hk5AQASEpKQsuWLbFp0yb4+PiYMkYiIiISiaPN01lSdx9lWERyY9SYm2HDhiEnJwdXrlzBw4cP8fDhQ1y5cgWCIGD48OGmjpGIiIhE5GKr7ZrK1VjGjCmjWm7Cw8Nx7Ngx1KxZU1dWs2ZNrFixAq1atTJZcERERCQ+Z1sFEtOycT/ZMp4vZVTLTeXKlQtcrC83NxdeXl4lDoqIiIjMx72kDACWs0qxUcnNwoUL8cEHH+D06dMQBG0T1enTpzF+/HgsWrTIpAESERGRuNwdVACADSduixyJYQzulnJ2dobkyVx3AEhLS0Pz5s0hl2sPkZubC7lcjmHDhqFnz54mD5SIiIjE0a2BB1YcuAkHlWU8gsHg5Gbp0qWlGAYRERGZqya+2udL3Yi3jG4pg5ObwYMHl2YcREREZKYCvB117/9LyYTbk24qc1WiRfwAICMjI9/gYgcHh5IeloiIiMyEk83TVYqjE9LMPrkxakBxWloaxo4dC1dXV9jZ2cHZ2VnvRUREROWLtZUMAHAy6qHIkbyYUcnNhx9+iAMHDmDlypVQKpVYvXo15syZA09PT6xfv97UMRIREZHI7FTazp49l+6LHMmLGZXc/Pnnn1i5ciV69eoFuVyO1q1bY8aMGZg3bx42bNhg6hiJiIhIZI0rOwEAsi3g6eBGJTcPHz6En58fAO34mocPtU1Ur7zyCo4cOWK66IiIiMgsNLWgGVNGJTdVq1ZFdHQ0AKBOnTr45ZdfAGhbdPIepElERETlR6MnLTeWwKjkZujQoTh//jwAYNq0abqxNxMnTsSUKVNMGiARERGJz9fFVvc+M0ctYiQvZtRU8IkTJ+ret2vXDlevXsXp06fh7++PgIAAkwVHRERE5uHZ6eA341NRz8uxiNriMqrl5nmVK1fGm2++ycSGiIionJJJJfCrqG292XQyRuRoimZwy83y5csNPui4ceOMCoaIiIjMl08FG0QlpOFibLLYoRTJ4ORmyZIlBtWTSCRMboiIiMqhBl6OOHL9Ae4nZ4odSpEMTm6ioqJKMw4iIiIyc75PuqUUcpOMaik15h0dERERmY0qLjYAgLuPMkSOpGhMboiIiMgg/pXsdO9TMnOKqCkuJjdERERkkAq2T6eDp2XlihhJ0ZjcEBERkcHslNrhuubcNcXkhoiIiAyWo9Y+OPOWGT9jyujkJjw8HO+88w6CgoIQGxsLAPjxxx9x9OhRkwVHRERE5iWv5eaCGa91Y1Rys3XrVgQHB8Pa2hoRERHIysoCADx+/Bjz5s0zaYBERERkPhpVdgYA/HY2VuRICmdUcvPZZ5/hm2++wffffw8rKytdecuWLXH27FmTBUdERETmpW3NSgCernljjoxKbq5du4Y2bdrkK3dwcEBSUlJJYyIiIiIz5e1kDQC4EpciciSFMyq58fDwwM2bN/OVHz16FFWrVi1xUERERGSe8qaDuzwzLdzcGJXcjBo1CuPHj8eJEycgkUhw7949bNiwAZMnT8aYMWNMHSMRERGZCVulDACQmJYtciSFM/jZUs/68MMPkZycjHbt2iEzMxNt2rSBUqnE5MmTMXbsWFPHSERERGbC0fppi01yeg4cbayKqC0OiSAIgrE7p6en4/Lly9BoNKhTpw7s7OxevJPIUlJS4OjoiOTkZDg4OIgdDhERkcXxnboTAPDzyBZoUdWlTM5ZnPu3Ud1SP/zwA9LS0mBjY4MmTZqgWbNmFpHYEBERkelk5qjFDqFARiU3kydPhqurK/r164cdO3YgN9d8ny9BREREptXMtwIA4Mj1BJEjKZhRyU1cXBw2b94MmUyGfv36wcPDA2PGjMGxY8dMHR8RERGZmYr22nE3/0QmihxJwYxKbuRyOV577TVs2LAB8fHxWLp0KW7fvo127drB39/f1DESERGRGalkpwQA+Fa0ETmSghk1W+pZNjY2CA4OxqNHj3D79m1cuXLFFHERERGRmfJ7sjrx3zfLUcsNoJ0ptWHDBoSEhMDT0xNLlixBz5498e+//xbrOCtXroSfnx9UKhUCAwMRHh5eaN0hQ4ZAIpHke9WtW9fYr0FERETFlJatHUicnJEjciQFMyq5efvtt+Hq6oqJEyfCz88Phw4dwq1bt/DZZ5+hdu3aBh9n8+bNmDBhAqZPn46IiAi0bt0aXbt2RUxMTIH1ly1bhri4ON3rzp07qFChAnr37m3M1yAiIiIjvB7gqXufnasRMZKCGZXcSCQSbN68Gffu3cPXX3+Nli1bGnXyxYsXY/jw4RgxYgRq166NpUuXwsfHB6tWrSqwvqOjI9zd3XWv06dP49GjRxg6dKhR5yciIqLi83a21r2/nZgmYiQFM2rMzcaNG0t84uzsbJw5cwZTp07VK+/cubPBs67WrFmDjh07okqVKiWOh4iIiAwjkUh078/GPEJ1N3sRo8nP4ORm+fLlGDlyJFQqFZYvX15k3XHjxr3weAkJCVCr1XBzc9Mrd3Nzw/3791+4f1xcHHbv3v3CRCsrKwtZWVm6zykp5vsUUyIiIktR0U6JhNQss3zGlMHJzZIlSzBgwACoVCosWbKk0HoSicSg5ObZ+s8SBCFfWUFCQ0Ph5OSEnj17Fllv/vz5mDNnjsHxEBER0YtVc7VFQmoWbiekix1KPgYnN1FRUQW+N1bFihUhk8nytdLEx8fna815niAIWLt2LQYOHAiFouhHrk+bNg2TJk3SfU5JSYGPj4/xgRMRERFkUm1DhDk+ONOoAcVz585Fenr+TC0jIwNz58416BgKhQKBgYEICwvTKw8LC3vhAOXDhw/j5s2bGD58+AvPo1Qq4eDgoPciIiKikmno4wQAuHg3WdxACmBUcjNnzhykpqbmK09PTy9WF9CkSZOwevVqrF27FleuXMHEiRMRExOD0aNHA9C2ugwaNCjffmvWrEHz5s1Rr149Y8InIiKiEpI+GUJyNuaRyJHkZ9RsqcLGxZw/fx4VKlQw+Dh9+/ZFYmIi5s6di7i4ONSrVw+7du3SzX6Ki4vLt+ZNcnIytm7dimXLlhkTOhEREZmAh6N2OniWGa5zU6zkxtnZWbcqcI0aNfQSHLVajdTUVF2ri6HGjBmDMWPGFLgtNDQ0X5mjo2OBXWJERERUdnwqaJMbF9uix76KoVjJzdKlSyEIAoYNG4Y5c+bA0dFRt02hUMDX1xdBQUEmD5KIiIjMS4UnSU3ewGJzUqzkZvDgwQAAPz8/tGzZElZW5jdCmoiIiEqfQqYdtpujtuBuqZSUFN1Mo0aNGiEjIwMZGRkF1uWMJCIiovJN/iS5eZRufg/PNDi5cXZ2RlxcHFxdXeHk5FTggOK8gcZqtdqkQRIREZF5cbJ+2nuTmaOGykomYjT6DE5uDhw4oJsJdfDgwVILiIiIiMyf0zOL9915mG5Wz5cyOLlp27Ztge+JiIjo5aOdPQ0IApCrEcQOR49Ri/jt2bMHR48e1X3++uuv0bBhQ/Tv3x+PHpnfYj5ERERkelZPxt2cvm1e936jkpspU6bonq598eJFTJo0CSEhIYiMjNR7jhMRERGVX9lPFvBTyo1KJ0qNUdFERUWhTp06AICtW7eie/fumDdvHlauXIndu3ebNEAiIiIyT8F1tQ+6vnA3SdxAnmNUcqNQKHSrBO/fvx+dO3cGAFSoUEHXokNERETlW2JqNgDgdqJ5PTnAqGdLvfLKK5g0aRJatWqFkydPYvPmzQCA69evw9vb26QBEhERkXnyrWiL07cfwfPJc6bMhVEtN1999RXkcjm2bNmCVatWwcvLCwCwe/dudOnSxaQBEhERkXmq+WT6d1auea1vZ1TLTeXKlbFjx4585UuWLClxQERERGQZbJXaNOJibLLIkegzKrkBtE8B3759O65cuQKJRILatWujR48ekMnMZ4VCIiIiKj2V7JUAgFsP0kSORJ9Ryc3NmzcREhKC2NhY1KxZE4Ig4Pr16/Dx8cHOnTvh7+9v6jiJiIjIzHg6qcQOoUBGjbkZN24c/P39cefOHZw9exYRERGIiYmBn58fxo0bZ+oYiYiIyAw52Sh07wXBfFYpNqrl5vDhw/jnn390z5oCABcXFyxYsACtWrUyWXBERERkvp59eGZathp2SqNHu5iUUS03SqUSjx8/zleempoKhUJRwB5ERERU3tgono6zjTGjtW6MSm5ee+01jBw5EidOnIAgCBAEAf/88w9Gjx6N119/3dQxEhERkRmSSCS69ymZOSJGos+o5Gb58uXw9/dHUFAQVCoVVCoVWrVqhWrVqmHZsmWmjpGIiIjMVC137Vo36dm5IkfylFGdY05OTvj9999x8+ZNXLlyBYIgoE6dOqhWrZqp4yMiIiIz9uBxFgAgLjlT5EieKlZyo9Fo8OWXX2L79u3IyclBx44d8cknn0ClMs+pYERERFS6KtkrkZiWjbQs82m5KVa31BdffIGpU6fC1tYWHh4eWLx4Mad+ExERvcQUcm0qkZiWLXIkTxUruQkNDcWKFSuwb98+/P7779i+fTvWr19vVnPbiYiIqOx4O2sfmil9ZnCx2IqV3Ny+fRuvvfaa7nNwcDAEQcC9e/dMHhgRERGZP48nTwTfe+m+yJE8VazkJjs7G9bWTx9rLpFIoFAokJWVZfLAiIiIyPylZ2ufCH7bjNa5KfZsqZkzZ8LGxkb3OTs7G59//jkcHR11ZYsXLzZNdERERGTWGld2wqaTMVBrzGeISrGSmzZt2uDatWt6ZS1btkRkZKTus8SM+tyIiIiodFWtZCd2CPkUK7k5dOhQKYVBRERElihvQLE5MWqFYiIiIiIAUMiephLm0jVlcHKzYMECpKWlGVT3xIkT2Llzp9FBERERkWWQy54OR8lRa0SM5CmDk5vLly+jSpUqeO+997B79248ePBAty03NxcXLlzAypUr0bJlS/Tr1w8ODg6lEjARERGZj7xF/ICnM6fEZvCYm/Xr1+PChQv4+uuvMWDAACQnJ0Mmk0GpVCI9XTv9q1GjRhg5ciQGDx4MpVJZakETERGReVDKZbr36dm5qGCrEDEarWINKG7QoAG+/fZbfPPNN7hw4QKio6ORkZGBihUromHDhqhYsWJpxUlERERmykElR0pmLhJTs+HtbPPiHUqZUU8Fl0gkCAgIQEBAgKnjISIiIguTkql9aGZ0YhoCfJzEDQacLUVEREQmYi6rFDO5ISIiohJp4K19SsG1/x6LHIkWkxsiIiIqEXuVdpSLrUL2gpplg8kNERERlUhQVRcAwMXYFJEj0WJyQ0RERCWSnatdvE8QzGOFYqNmS6WlpWHBggX466+/EB8fD41Gf0XCZx+kSUREROWbdwXt9O+b8akiR6JlVHIzYsQIHD58GAMHDoSHhwefBE5ERPQSc3gy5sbfTJ4QblRys3v3buzcuROtWrUydTxERERkYRyttasS52os7NlSz3J2dkaFChVMHQsRERFZIKsnD8+0uKeCP+vTTz/FJ598onumFBEREb285DJtOhFtJov4GdUt9eWXX+LWrVtwc3ODr68vrKys9LafPXvWJMERERGR+VM8SW7y1rsRm1FR9OzZ08RhEBERkaVysNamE+nZapEj0TIquZk1a5ap4yAiIiILpZBrW27UGgEajQCpVNxZ1CVqPzpz5gyuXLkCiUSCOnXqoFGjRqaKi4iIiCyEg+rp8JT0HDXslOJ2Txk1oDg+Ph7t27dH06ZNMW7cOIwdOxaBgYHo0KEDHjx4UKxjrVy5En5+flCpVAgMDER4eHiR9bOysjB9+nRUqVIFSqUS/v7+WLt2rTFfg4iIiEzASvY0ncjJFX86uFHJzQcffICUlBRcunQJDx8+xKNHj/Dvv/8iJSUF48aNM/g4mzdvxoQJEzB9+nRERESgdevW6Nq1K2JiYgrdp0+fPvjrr7+wZs0aXLt2DZs2bUKtWrWM+RpERERkAjKpBLInXVHZavGTG4lgxIMgHB0dsX//fjRt2lSv/OTJk+jcuTOSkpIMOk7z5s3RuHFjrFq1SldWu3Zt9OzZE/Pnz89Xf8+ePejXrx8iIyONXmcnJSUFjo6OSE5OhoODg1HHICIiIn2+U3cCAPZOaIOa7vYmP35x7t9GtdxoNJp8078BwMrKKt9zpgqTnZ2NM2fOoHPnznrlnTt3xrFjxwrc548//kCTJk2wcOFCeHl5oUaNGpg8eTIyMjIKPU9WVhZSUlL0XkRERFQ6zGGVYqOSm/bt22P8+PG4d++eriw2NhYTJ05Ehw4dDDpGQkIC1Go13Nzc9Mrd3Nxw//79AveJjIzE0aNH8e+//+K3337D0qVLsWXLFrz//vuFnmf+/PlwdHTUvXx8fAyKj4iIiAzn5WQNAMiy1DE3X331FR4/fgxfX1/4+/ujWrVq8PPzw+PHj7FixYpiHev5h24KglDogzg1Gg0kEgk2bNiAZs2aISQkBIsXL0ZoaGihrTfTpk1DcnKy7nXnzp1ixUdEREQvlpWrXeMmPiVT5EiMnAru4+ODs2fPIiwsDFevXoUgCKhTpw46duxo8DEqVqwImUyWr5UmPj4+X2tOHg8PD3h5ecHR0VFXVrt2bQiCgLt376J69er59lEqlVAqlQbHRURERMWXmaNtsclb80ZMJZqI3qlTJ3Tq1MmofRUKBQIDAxEWFoY33nhDVx4WFoYePXoUuE+rVq3w66+/IjU1FXZ22seqX79+HVKpFN7e3kbFQURERCVXw80OZ2OSkKMW/+GZBic3y5cvx8iRI6FSqbB8+fIi6xo6HXzSpEkYOHAgmjRpgqCgIHz33XeIiYnB6NGjAWi7lGJjY7F+/XoAQP/+/fHpp59i6NChmDNnDhISEjBlyhQMGzYM1tbWhn4VIiIiMrG8h2fmWlJys2TJEgwYMAAqlQpLliwptJ5EIjE4uenbty8SExMxd+5cxMXFoV69eti1axeqVKkCAIiLi9Nb88bOzg5hYWH44IMP0KRJE7i4uKBPnz747LPPDP0aREREVArkT9a5iU5MEzkSI9e5sWRc54aIiMj0Wi04gNikDMztUReDgnxNfvxSX+fmeWq1GufOncOjR49McTgiIiKyMM2rahfXvXA3WeRIjExuJkyYgDVr1gDQJjZt2rRB48aN4ePjg0OHDpkyPiIiIrIAdx9ql2RxtRd/hrJRyc2WLVsQEBAAAPjzzz8RHR2Nq1ev6p4TRURERC+X+t7aZVo0ZjDYxajkJiEhAe7u7gCAXbt2oXfv3qhRowaGDx+OixcvmjRAIiIiMn9PxhPDHIbyGpXcuLm54fLly1Cr1dizZ49u8b709HTIZDKTBkhERETmT/oku1GbQdONUYv4DR06FH369IGHhwckEoluIb8TJ06gVq1aJg2QiIiIzJ/syaOTzCC3MS65mT17NurVq4c7d+6gd+/euscbyGQyTJ061aQBEhERkfmT6pIb8bMbox+/0KtXr3xlgwcPLlEwREREZJnyuqUsKrkpjccvEBERUfmQN6D4bIz4a96J+vgFIiIiKh9SM3MBAOnZapEjKUZyExUVVeB7IiIiIndHFQDAVmH0iBeTMcnjF4iIiOjl5ulkDQBQyMVPLYyKoFevXliwYEG+8v/7v/9D7969SxwUERERWRaFTJtS5Ko1IkdiZHJz+PBhdOvWLV95ly5dcOTIkRIHRURERJZFJtOOKM41g4VujEpuUlNToVAo8pVbWVkhJSWlxEERERGRZbGSalOKS/fEzwOMSm7q1auHzZs35yv/+eefUadOnRIHRURERJYlb32bSmbwVHCjhjTPnDkTb731Fm7duoX27dsDAP766y9s2rQJv/76q0kDJCIiIvPnYqft0ZGIHAdgZHLz+uuvY/v27Zg3bx62bNkCa2trNGjQAPv370fbtm1NHSMRERGZubwBxRk5FrTOzfO6detW4KBiIiIievlYPUluHj9ZzE9MRk9GT0pKwurVq/Hxxx/j4cOHAICzZ88iNjbWZMERERGRZbBXPW0vyRF5OrhRLTcXLlxAx44d4ejoiOjoaIwYMQIVKlTAb7/9htu3b2P9+vWmjpOIiIjMmN0zyU1KRg5c7MQbWGxUy82kSZMwZMgQ3LhxAyqVSlfetWtXrnNDRET0ElLKZbr3mbnittwYldycOnUKo0aNylfu5eWF+/fvlzgoIiIisjw2Cm2Co1aLu5CfUcmNSqUqcLG+a9euoVKlSiUOioiIiCyPTJq3SrEFttz06NEDc+fORU5ODgBAIpEgJiYGU6dOxVtvvWXSAImIiMgy5M2YUov8CAajkptFixbhwYMHcHV1RUZGBtq2bYtq1arB3t4en3/+ualjJCIiIguSkJot6vmNmi3l4OCAo0eP4sCBAzh79iw0Gg0aN26Mjh07mjo+IiIishAP07RJTV73lFiKndzk5uZCpVLh3LlzaN++ve7xC0RERPRyq+Zqh5vxqZY35kYul6NKlSpQq8VfXpmIiIjMh0WPuZkxYwamTZumW5mYiIiISP6kOyotS9xHMBg15mb58uW4efMmPD09UaVKFdja2uptP3v2rEmCIyIiIsvxKF075iYpPUfUOIxKbnr06AGJxBweak5ERETmQinXdgiprGQvqFm6jEpuZs+ebeIwiIiIyNJ5Odvg1oM05FrSmJv09HS8//778PLygqurK/r374+EhITSio2IiIgsiOxJp47GkpKbWbNmITQ0FN26dUO/fv0QFhaG9957r7RiIyIiIgsikz6ZLSWIm9wUq1tq27ZtWLNmDfr16wcAeOedd9CqVSuo1WrIZOL2rxEREZG4nswEt6yp4Hfu3EHr1q11n5s1awa5XI579+6ZPDAiIiKyLHkrE1+8myxqHMVKbtRqNRQKhV6ZXC5Hbq6489mJiIhIfCejtOvfValoI2ocxeqWEgQBQ4YMgVKp1JVlZmZi9OjRemvdbNu2zXQREhERkUVoV9MVv565C5GH3BQvuRk8eHC+snfeecdkwRAREZHlkprJGnjFSm7WrVtXWnEQERGRhcvLbQSRm26MerYUERER0fPykhuRJ0sxuSEiIiLTyHs0k9hjbpjcEBERkUnkjbgRwG4pIiIiKgfYLUVERETlivTpiGJx4xD17ERERFRuPO2WEheTGyIiIjKJvAHFGrbcEBERUXlgJr1S4ic3K1euhJ+fH1QqFQIDAxEeHl5o3UOHDkEikeR7Xb16tQwjJiIiooJInnRMvdTdUps3b8aECRMwffp0REREoHXr1ujatStiYmKK3O/atWuIi4vTvapXr15GERMREVFhpLrZUi9xt9TixYsxfPhwjBgxArVr18bSpUvh4+ODVatWFbmfq6sr3N3ddS+ZTFZGERMREVFh8rqlohPSRI1DtOQmOzsbZ86cQefOnfXKO3fujGPHjhW5b6NGjeDh4YEOHTrg4MGDRdbNyspCSkqK3ouIiIhM77+ULACAvcpK1DhES24SEhKgVqvh5uamV+7m5ob79+8XuI+Hhwe+++47bN26Fdu2bUPNmjXRoUMHHDlypNDzzJ8/H46OjrqXj4+PSb8HERERaVWuYAMAsJKJO6S3WE8FLw2S5x6PLghCvrI8NWvWRM2aNXWfg4KCcOfOHSxatAht2rQpcJ9p06Zh0qRJus8pKSlMcIiIiEqBjVI7TCRXrRE1DtFSq4oVK0Imk+VrpYmPj8/XmlOUFi1a4MaNG4VuVyqVcHBw0HsRERGR6cmfjChWi/z8BdGSG4VCgcDAQISFhemVh4WFoWXLlgYfJyIiAh4eHqYOj4iIiIpJLtWmFUduPBA3DjFPPmnSJAwcOBBNmjRBUFAQvvvuO8TExGD06NEAtF1KsbGxWL9+PQBg6dKl8PX1Rd26dZGdnY2ffvoJW7duxdatW8X8GkRERATg7qMMAEA1VztR4xA1uenbty8SExMxd+5cxMXFoV69eti1axeqVKkCAIiLi9Nb8yY7OxuTJ09GbGwsrK2tUbduXezcuRMhISFifQUiIiJ6oqa7NqmxthJ3iRaJIIi9SHLZSklJgaOjI5KTkzn+hoiIyIR+OX0HH265gFdrVkLo0GYmPXZx7t+iP36BiIiIygfdU8Ff9mdLERERUfmQt5SL2F1CTG6IiIjIJJ623LykU8GJiIiofClkDd4yx+SGiIiITCIvueGYGyIiIioXJMgbc8NuKSIiIioH2HJDRERE5RKTGyIiIioXnk4FZ7cUERERlQNcxI+IiIjKFSkX8SMiIqLy5OmAYnZLERERUTnAbikiIiIqV3QtN+KGAbnI5zdLgiAgNzcXarVa7FCISpVMJoNcLtfNcCAiKpknY25EbrphcvOc7OxsxMXFIT09XexQiMqEjY0NPDw8oFAoxA6FiCwcW27MkEajQVRUFGQyGTw9PaFQKPgbLZVbgiAgOzsbDx48QFRUFKpXrw6plD3VRGS8vDtmREySmGEwuXlWdnY2NBoNfHx8YGNjI3Y4RKXO2toaVlZWuH37NrKzs6FSqcQOiYgs2OPMXABADTc7UePgr2kF4G+v9DLhzzsRmYqHk3n8gsT/1YiIiMgk8p4KruFUcCoLs2fPRsOGDU16zEOHDkEikSApKQkAEBoaCicnJ5OeozDXrl2Du7s7Hj9+XCbns1RNmzbFtm3bxA6DiF4SUi7iR6Y0ZMgQSCQSSCQSWFlZoWrVqpg8eTLS0tIAAJMnT8Zff/1VqjH07dsX169fL9Vz5Jk+fTref/992Nvb59tWs2ZNKBQKxMbG5tv26quv6q6TUqlEjRo1MG/evFKd9i8IAmbPng1PT09YW1vj1VdfxaVLl4rcJycnB3PnzoW/vz9UKhUCAgKwZ88evTq+vr667/Ls6/3339fVmTlzJqZOnQqNRlMq342I6Fm6B2ey5YZMpUuXLoiLi0NkZCQ+++wzrFy5EpMnTwYA2NnZwcXFpVTPb21tDVdX11I9BwDcvXsXf/zxB4YOHZpv29GjR5GZmYnevXsjNDS0wP3fffddxMXF4dq1axg3bhxmzJiBRYsWlVq8CxcuxOLFi/HVV1/h1KlTcHd3R6dOnYpsdZoxYwa+/fZbrFixApcvX8bo0aPxxhtvICIiQlfn1KlTiIuL073CwsIAAL1799bV6datG5KTk7F3795S+35ERHmkZjIVnMlNOaJUKuHu7g4fHx/0798fAwYMwPbt2wHk75YaMmQIevbsiTlz5sDV1RUODg4YNWoUsrOzdXUEQcDChQtRtWpVWFtbIyAgAFu2bCn0/M93S+Wd88cff4Svry8cHR3Rr18/vZt6cc8BAL/88gsCAgLg7e2db9uaNWvQv39/DBw4EGvXri2wadTGxgbu7u7w9fXF2LFj0aFDB911MjVBELB06VJMnz4db775JurVq4cffvgB6enp2LhxY6H7/fjjj/j4448REhKCqlWr4r333kNwcDC+/PJLXZ1KlSrB3d1d99qxYwf8/f3Rtm1bXR2ZTIaQkBBs2rSpVL4fEdGz8lZP0XARP/MmCAIycsRZqdjaSlaidXasra2Rk5NT6Pa//voLKpUKBw8eRHR0NIYOHYqKFSvi888/B6BtPdi2bRtWrVqF6tWr48iRI3jnnXdQqVIlvRtoUW7duoXt27djx44dePToEfr06YMFCxaU6BxHjhxBkyZN8pU/fvwYv/76K06cOIFatWohLS0Nhw4dQrt27V54nR49elTo9q5duyI8PLzIY6SmphZYHhUVhfv376Nz5866MqVSibZt2+LYsWMYNWpUgftlZWXlm5ZtbW2No0ePFlg/OzsbP/30EyZNmpTvZ6ZZs2ZYuHBhkfETEZlC3v8/TG7MXEaOGnU+EadJ//LcYNgojPsrOnnyJDZu3IgOHToUWkehUGDt2rWwsbFB3bp1MXfuXEyZMgWffvopMjIysHjxYhw4cABBQUEAgKpVq+Lo0aP49ttvDU5uNBoNQkNDdWNjBg4ciL/++guff/450tLSjDpHdHQ0AgMD85X//PPPqF69OurWrQsA6NevH9asWVNocqPRaLBv3z7s3bsXEyZMKPQ7rF69GhkZGQZ93+fdv38fAODm5qZX7ubmhtu3bxe6X3BwMBYvXow2bdrA398ff/31F37//fdCxwZt374dSUlJGDJkSL5tXl5eiImJgUaj4bRvIipV5vLgTCY35ciOHTtgZ2eH3Nxc5OTkoEePHlixYkWh9QMCAvQWKwwKCkJqairu3LmD+Ph4ZGZmolOnTnr7ZGdno1GjRgbH5Ovrqzfo18PDA/Hx8QCAy5cvG3WOjIyMAhebW7NmDd555x3d53feeQdt2rRBUlKSXnfZypUrsXr1al0X3MCBAzFr1qxCz+fl5VX0lzTA860pgiAU2Sq3bNkyvPvuu6hVqxYkEgn8/f0xdOhQrFu3rsD6a9asQdeuXeHp6Zlvm7W1NTQaDbKysmBtbV2yL0JEVASpmQwoZnLzAtZWMlyeGyzauYujXbt2WLVqFaysrODp6QkrKyujziuRSHSza3bu3Jnv5q5UKg0+1vMxPHtsY89RsWLFfN1Ily9fxokTJ3Dq1Cl89NFHunK1Wo1Nmzbhvffe05UNGDAA06dPh1KphKenJ2Syoq9zSbql3N3dAWhbcDw8PHTl8fHx+VpznlWpUiVs374dmZmZSExMhKenJ6ZOnQo/P798dW/fvo39+/cXOuX74cOHsLGxYWJDRKVOYiZTwZncvIBEIjG6a6is2draolq1agbXP3/+PDIyMnQ3vX/++Qd2dnbw9vaGs7MzlEolYmJiDO6CKq46deoYdY5GjRrh8uXLemVr1qxBmzZt8PXXX+uV//jjj1izZo1ecuPo6Fis61SSbik/Pz+4u7sjLCxM1xqVnZ2Nw4cP44svvnjh/iqVCl5eXsjJycHWrVvRp0+ffHXWrVsHV1dXdOvWrcBj/Pvvv2jcuLFR8RMRFYdUYh6L+FnGXZtKRXZ2NoYPH44ZM2bg9u3bmDVrFsaOHQupVAp7e3tMnjwZEydOhEajwSuvvIKUlBQcO3YMdnZ2GDx4cInPb+w5goODMWLECKjVashkMuTk5ODHH3/E3LlzUa9ePb26I0aMwMKFC3H+/HkEBAQYFWdJuqUkEgkmTJiAefPmoXr16qhevTrmzZsHGxsb9O/fX1dv0KBB8PLywvz58wEAJ06cQGxsLBo2bIjY2FjMnj0bGo0GH374od7xNRoN1q1bh8GDB0MuL/ifc3h4uN6AZiKi0iaIPBmcyc1LrEOHDqhevTratGmDrKws9OvXD7Nnz9Zt//TTT+Hq6or58+cjMjISTk5OaNy4MT7++GOTxWDMOUJCQmBlZYX9+/cjODgYf/zxBxITE/HGG2/kq1u9enXUr18fa9aswfLly00Wd3F8+OGHyMjIwJgxY/Do0SM0b94c+/bt0xuLFBMTozfYNzMzEzNmzEBkZCTs7OwQEhKCH3/8Md8K0Pv370dMTAyGDRtW4LljY2Nx7Ngx/PTTT6Xy3YiIniWTSqCUS6GQizt5QSKI3TFWxlJSUuDo6Ijk5GQ4ODjobcvMzERUVBT8/PzK/dORhwwZgqSkpFJb36W0rVy5Er///jsXp3uBKVOmIDk5Gd99912hdV6mn3sislxF3b+fx5YbskgjR47Eo0eP8Pjx4wIfwUBarq6uulWqiYheFkxuyCLJ5XJMnz5d7DDM3pQpU8QOgYiozDG5eUkV9twlIiIiS8flSomIiKhcYXJDRERE5QqTmwK8ZBPI6CXHn3ciKm+Y3Dwj71EB6enpIkdCVHbyft6NfVwHEZG54YDiZ8hkMjg5Oeke7GhjY1Pkww2JLJkgCEhPT0d8fDycnJxe+IwtIiJLweTmOXkPOsxLcIjKOycnJ93PPRFRecDk5jkSiQQeHh5wdXVFTk6O2OEQlSorKyu22BBRucPkphAymYz/6RMREVkgDigmIiKicoXJDREREZUrTG6IiIioXHnpxtzkLViWkpIiciRERERkqLz7tiELj750yc3jx48BAD4+PiJHQkRERMX1+PFjODo6FllHIrxka69rNBrcu3cP9vb2Jl+gLyUlBT4+Prhz5w4cHBxMemx6ite5bPA6lw1e57LDa102Sus6C4KAx48fw9PTE1Jp0aNqXrqWG6lUCm9v71I9h4ODA//hlAFe57LB61w2eJ3LDq912SiN6/yiFps8HFBMRERE5QqTGyIiIipXmNyYkFKpxKxZs6BUKsUOpVzjdS4bvM5lg9e57PBalw1zuM4v3YBiIiIiKt/YckNERETlCpMbIiIiKleY3BAREVG5wuSGiIiIyhUmN8W0cuVK+Pn5QaVSITAwEOHh4UXWP3z4MAIDA6FSqVC1alV88803ZRSpZSvOdd62bRs6deqESpUqwcHBAUFBQdi7d28ZRmu5ivvznOfvv/+GXC5Hw4YNSzfAcqK41zkrKwvTp09HlSpVoFQq4e/vj7Vr15ZRtJaruNd5w4YNCAgIgI2NDTw8PDB06FAkJiaWUbSW6ciRI+jevTs8PT0hkUiwffv2F+4jyn1QIIP9/PPPgpWVlfD9998Lly9fFsaPHy/Y2toKt2/fLrB+ZGSkYGNjI4wfP164fPmy8P333wtWVlbCli1byjhyy1Lc6zx+/Hjhiy++EE6ePClcv35dmDZtmmBlZSWcPXu2jCO3LMW9znmSkpKEqlWrCp07dxYCAgLKJlgLZsx1fv3114XmzZsLYWFhQlRUlHDixAnh77//LsOoLU9xr3N4eLgglUqFZcuWCZGRkUJ4eLhQt25doWfPnmUcuWXZtWuXMH36dGHr1q0CAOG3334rsr5Y90EmN8XQrFkzYfTo0XpltWrVEqZOnVpg/Q8//FCoVauWXtmoUaOEFi1alFqM5UFxr3NB6tSpI8yZM8fUoZUrxl7nvn37CjNmzBBmzZrF5MYAxb3Ou3fvFhwdHYXExMSyCK/cKO51/r//+z+hatWqemXLly8XvL29Sy3G8saQ5Eas+yC7pQyUnZ2NM2fOoHPnznrlnTt3xrFjxwrc5/jx4/nqBwcH4/Tp08jJySm1WC2ZMdf5eRqNBo8fP0aFChVKI8RywdjrvG7dOty6dQuzZs0q7RDLBWOu8x9//IEmTZpg4cKF8PLyQo0aNTB58mRkZGSURcgWyZjr3LJlS9y9exe7du2CIAj477//sGXLFnTr1q0sQn5piHUffOkenGmshIQEqNVquLm56ZW7ubnh/v37Be5z//79Auvn5uYiISEBHh4epRavpTLmOj/vyy+/RFpaGvr06VMaIZYLxlznGzduYOrUqQgPD4dczv86DGHMdY6MjMTRo0ehUqnw22+/ISEhAWPGjMHDhw857qYQxlznli1bYsOGDejbty8yMzORm5uL119/HStWrCiLkF8aYt0H2XJTTBKJRO+zIAj5yl5Uv6By0lfc65xn06ZNmD17NjZv3gxXV9fSCq/cMPQ6q9Vq9O/fH3PmzEGNGjXKKrxyozg/zxqNBhKJBBs2bECzZs0QEhKCxYsXIzQ0lK03L1Cc63z58mWMGzcOn3zyCc6cOYM9e/YgKioKo0ePLotQXypi3Af565eBKlasCJlMlu+3gPj4+HxZaR53d/cC68vlcri4uJRarJbMmOucZ/PmzRg+fDh+/fVXdOzYsTTDtHjFvc6PHz/G6dOnERERgbFjxwLQ3oQFQYBcLse+ffvQvn37Mondkhjz8+zh4QEvLy84OjrqymrXrg1BEHD37l1Ur169VGO2RMZc5/nz56NVq1aYMmUKAKBBgwawtbVF69at8dlnn7Fl3UTEug+y5cZACoUCgYGBCAsL0ysPCwtDy5YtC9wnKCgoX/19+/ahSZMmsLKyKrVYLZkx1xnQttgMGTIEGzduZJ+5AYp7nR0cHHDx4kWcO3dO9xo9ejRq1qyJc+fOoXnz5mUVukUx5ue5VatWuHfvHlJTU3Vl169fh1Qqhbe3d6nGa6mMuc7p6emQSvVvgTKZDMDTlgUqOdHug6U6XLmcyZtquGbNGuHy5cvChAkTBFtbWyE6OloQBEGYOnWqMHDgQF39vClwEydOFC5fviysWbOGU8ENUNzrvHHjRkEulwtff/21EBcXp3slJSWJ9RUsQnGv8/M4W8owxb3Ojx8/Fry9vYVevXoJly5dEg4fPixUr15dGDFihFhfwSIU9zqvW7dOkMvlwsqVK4Vbt24JR48eFZo0aSI0a9ZMrK9gER4/fixEREQIERERAgBh8eLFQkREhG7KvbncB5ncFNPXX38tVKlSRVAoFELjxo2Fw4cP67YNHjxYaNu2rV79Q4cOCY0aNRIUCoXg6+srrFq1qowjtkzFuc5t27YVAOR7DR48uOwDtzDF/Xl+FpMbwxX3Ol+5ckXo2LGjYG1tLXh7ewuTJk0S0tPTyzhqy1Pc67x8+XKhTp06grW1teDh4SEMGDBAuHv3bhlHbVkOHjxY5P+35nIflAgC29+IiIio/OCYGyIiIipXmNwQERFRucLkhoiIiMoVJjdERERUrjC5ISIionKFyQ0RERGVK0xuiIiIqFxhckNERETlCpMbIgvi6+uLpUuX6j5LJBJs3769yH0SExPh6uqK6OjoUo0tz5AhQ9CzZ88i6xw6dAgSiQRJSUmlFocx53j11VcxYcKEEp03NDQUTk5OJTqGKRT3+//999+oX78+rKys0LNnT5P9HT37M5uVlYXKlSvjzJkzJTom0YswuSEywJAhQyCRSCCRSCCXy1G5cmW89957ePTokdihvdD8+fPRvXt3+Pr6AgCio6N130UikcDZ2Rlt2rTB4cOHTXK+ZcuWITQ0VPe5oIShZcuWiIuL03vyNRnPFNd40qRJaNiwIaKiohAaGloqf0dKpRKTJ0/GRx99ZLJjEhWEyQ2Rgbp06YK4uDhER0dj9erV+PPPPzFmzBixwypSRkYG1qxZgxEjRuTbtn//fsTFxeHw4cNwcHBASEgIoqKiSnxOR0fHF7ZcKBQKuLu7QyKRlPh8VLDiXuNbt26hffv28Pb2hpOTU6n9HQ0YMADh4eG4cuWKSY9L9CwmN0QGUiqVcHd3h7e3Nzp37oy+ffti3759enXWrVuH2rVrQ6VSoVatWli5cqXe9rt376Jfv36oUKECbG1t0aRJE5w4cQKA9ubSo0cPuLm5wc7ODk2bNsX+/ftLFPPu3bshl8sRFBSUb5uLiwvc3d3RoEEDfPvtt0hPT9d9n8OHD6NZs2ZQKpXw8PDA1KlTkZubq9t3y5YtqF+/PqytreHi4oKOHTsiLS0NgH631JAhQ3D48GEsW7ZM11IUHR2t1+WRnJwMa2tr7NmzRy++bdu2wdbWFqmpqQCA2NhY9O3bF87OznBxcUGPHj2K1dWWmJiIt99+G97e3rCxsUH9+vWxadOmfPVyc3MxduxYODk5wcXFBTNmzMCzj+DLzs7Ghx9+CC8vL9ja2qJ58+Y4dOiQwXEU5Pz582jXrh3s7e3h4OCAwMBAnD592qC4DbnGAHD79m10794dzs7OsLW1Rd26dbFr1y5dS15iYiKGDRsGiUSC0NDQAruljh07hjZt2sDa2ho+Pj4YN26c7u8dAOLj49G9e3dYW1vDz88PGzZsyPddXVxc0LJlywKvPZGpMLkhMkJkZCT27NkDKysrXdn333+P6dOn4/PPP8eVK1cwb948zJw5Ez/88AMAIDU1FW3btsW9e/fwxx9/4Pz58/jwww+h0Wh020NCQrB//35EREQgODgY3bt3R0xMjNFxHjlyBE2aNHlhPRsbGwBATk4OYmNjERISgqZNm+L8+fNYtWoV1qxZg88++wwAEBcXh7fffhvDhg3DlStXcOjQIbz55pso6Bm8y5YtQ1BQEN59913ExcUhLi4OPj4+enUcHR3RrVu3fDfCjRs3okePHrCzs0N6ejratWsHOzs7HDlyBEePHoWdnR26dOmC7Oxsg65FZmYmAgMDsWPHDvz7778YOXIkBg4cqEsu8/zwww+Qy+U4ceIEli9fjiVLlmD16tW67UOHDsXff/+Nn3/+GRcuXEDv3r3RpUsX3Lhxo8Dz5iUPRSVAAwYMgLe3N06dOoUzZ85g6tSpup+tF8VtyDUGgPfffx9ZWVk4cuQILl68iC+++AJ2dnbw8fFBXFwcHBwcsHTpUsTFxaFv37759r948SKCg4Px5ptv4sKFC9i8eTOOHj2KsWPH6uoMGTIE0dHROHDgALZs2YKVK1ciPj4+37GaNWuG8PDwQq8HUYmV+nPHicqBwYMHCzKZTLC1tRVUKpUAQAAgLF68WFfHx8dH2Lhxo95+n376qRAUFCQIgiB8++23gr29vZCYmGjweevUqSOsWLFC97lKlSrCkiVLdJ8BCL/99luh+/fo0UMYNmyYXllUVJQAQIiIiBAEQRBSU1OFUaNGCTKZTLhw4YLw8ccfCzVr1hQ0Go1un6+//lqws7MT1Gq1cObMGQGAEB0dXeA5Bw8eLPTo0UP3uW3btsL48eP16hw8eFAAIDx69EgQBEHYtm2bYGdnJ6SlpQmCIAjJycmCSqUSdu7cKQiCIKxZsyZfTFlZWYK1tbWwd+/eAuN4/hwFCQkJEf73v//pxVq7dm2983z00UdC7dq1BUEQhJs3bwoSiUSIjY3VO06HDh2EadOmCYIgCOvWrRMcHR112+7evSvUrFlTOHHiRKFx2NvbC6GhoYVuNyTuF13j+vXrC7Nnzy70mI6OjsK6desK3X/gwIHCyJEj9fYJDw8XpFKpkJGRIVy7dk0AIPzzzz+67VeuXBEA6P3MCoIgLFu2TPD19TX4+xIVl1yknIrI4rRr1w6rVq1Ceno6Vq9ejevXr+ODDz4AADx48AB37tzB8OHD8e677+r2yc3N1Q3IPHfuHBo1aoQKFSoUePy0tDTMmTMHO3bswL1795Cbm4uMjIwStdxkZGRApVIVuK1ly5aQSqVIT0+Hh4cHQkNDUb9+fcyaNQtBQUF6Yy1atWqF1NRU3L17FwEBAejQoQPq16+P4OBgdO7cGb169YKzs7PRcXbr1g1yuRx//PEH+vXrh61bt8Le3h6dO3cGAJw5cwY3b96Evb293n6ZmZm4deuWQedQq9VYsGABNm/ejNjYWGRlZSErKwu2trZ69Vq0aKH33YOCgvDll19CrVbj7NmzEAQBNWrU0NsnKysLLi4uBZ7Xy8sLV69eLTK2SZMmYcSIEfjxxx/RsWNH9O7dG/7+/sWK+0XGjRuH9957D/v27UPHjh3x1ltvoUGDBgbvn/d38GwLmyAI0Gg0iIqKwvXr1yGXy/VaCmvVqlXg+Ctra2ukp6cXK36i4mByQ2QgW1tbVKtWDQCwfPlytGvXDnPmzMGnn36q61r6/vvv0bx5c739ZDIZAO1/6EWZMmUK9u7di0WLFqFatWqwtrZGr169DO52KUjFihULndG1efNm1KlTRze2JI8gCPkGkQpPupwkEglkMhnCwsJw7Ngx7Nu3DytWrMD06dNx4sQJ+Pn5GRWnQqFAr169sHHjRvTr1w8bN25E3759IZdr/4vSaDQIDAwscAxHpUqVDDrHl19+iSVLlmDp0qWoX78+bG1tMWHChGJdX41GA5lMhjNnzuj+XvPY2dkZfJznzZ49G/3798fOnTuxe/duzJo1Cz///DPeeOMNk8QNACNGjEBwcDB27tyJffv2Yf78+fjyyy91CfqLaDQajBo1CuPGjcu3rXLlyrh27RoAGDQA+eHDhwb/vREZg2NuiIw0a9YsLFq0CPfu3YObmxu8vLwQGRmJatWq6b3ybvgNGjTAuXPn8PDhwwKPFx4ejiFDhuCNN95A/fr14e7uXuK1aRo1aoTLly8XuM3Hxwf+/v75Whzq1KmDY8eO6Y2hOXbsGOzt7eHl5QVAewNr1aoV5syZg4iICCgUCvz2228FnkehUECtVr8w1gEDBmDPnj24dOkSDh48iAEDBui2NW7cGDdu3ICrq2u+62voVOXw8HD06NED77zzDgICAlC1atUCx8n8888/+T5Xr14dMpkMjRo1glqtRnx8fL443N3dDYqjMDVq1MDEiROxb98+vPnmm1i3bp3BcRt6jX18fDB69Ghs27YN//vf//D9998bHF/jxo1x6dKlfN+7WrVqUCgUqF27NnJzc3UDoQHg2rVrBa6T8++//6JRo0YGn5uouJjcEBnp1VdfRd26dTFv3jwA2t++58+fj2XLluH69eu4ePEi1q1bh8WLFwMA3n77bbi7u6Nnz574+++/ERkZia1bt+L48eMAgGrVqmHbtm04d+4czp8/j/79++tahIwVHByMS5cuFWs9njFjxuDOnTv44IMPcPXqVfz++++YNWsWJk2aBKlUihMnTmDevHk4ffo0YmJisG3bNjx48AC1a9cu8Hi+vr44ceIEoqOjkZCQUOh3atu2Ldzc3DBgwAD4+vqiRYsWum0DBgxAxYoV0aNHD4SHhyMqKgqHDx/G+PHjcffuXYO+V7Vq1XQtTleuXMGoUaNw//79fPXu3LmDSZMm4dq1a9i0aRNWrFiB8ePHA9AmIAMGDMCgQYOwbds2REVF4dSpU/jiiy+wa9euAs8bGxuLWrVq4eTJkwVuz8jIwNixY3Ho0CHcvn0bf//9N06dOqW7nobEbcg1njBhAvbu3YuoqCicPXsWBw4cKPTvrCAfffQRjh8/jvfffx/nzp3DjRs38Mcff+hafmrWrIkuXbrg3XffxYkTJ3DmzBmMGDGiwBbL8PBwXZcjUWlgckNUApMmTcL333+PO3fuYMSIEVi9erVu7Erbtm0RGhqqa7lRKBTYt28fXF1dERISgvr162PBggW67o0lS5bA2dkZLVu2RPfu3REcHIzGjRuXKL769eujSZMm+OWXXwzex8vLC7t27cLJkycREBCA0aNHY/jw4ZgxYwYAwMHBAUeOHEFISAhq1KiBGTNm4Msvv0TXrl0LPN7kyZMhk8lQp04dVKpUqdAxRBKJBG+//TbOnz+v12oDaGdzHTlyBJUrV8abb76J2rVrY9iwYcjIyICDg4NB32vmzJlo3LgxgoOD8eqrr+oSzecNGjQIGRkZaNasGd5//3188MEHGDlypG77unXrMGjQIPzvf/9DzZo18frrr+PEiRMFzlACtDPQrl27VugYE5lMhsTERAwaNAg1atRAnz590LVrV8yZM8fguA25xmq1Gu+//z5q166NLl26oGbNmvmWKihKgwYNcPjwYdy4cQOtW7dGo0aNMHPmTHh4eOhdGx8fH7Rt2xZvvvkmRo4cCVdXV73jHD9+HMnJyejVq5fB5yYqLokgFDB/k4jKjV27dmHy5Mn4999/IZXy9xkSV+/evdGoUSN8/PHHYodC5RgHFBOVcyEhIbhx4wZiY2MLbV0gKgtZWVkICAjAxIkTxQ6Fyjm23BAREVG5wjZqIiIiKleY3BAREVG5wuSGiIiIyhUmN0RERFSuMLkhIiKicoXJDREREZUrTG6IiIioXGFyQ0REROUKkxsiIiIqV/4fYdB2E72IzoUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1913,7 +1610,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHFCAYAAABl6CnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsfklEQVR4nO3dd1xTV/8H8E9CCARkyBQQAVHcA6Uq+lirVXHU1dZqtXXbUm2t0mr151NR6+jTPnXvifVxta7aVq1Y96qKOHFVUVBAAWXPJOf3B5IaGUIIRMjn/XrlJTl35Htv8H45555zj0QIIUBERGRkpIYOgIiIyBCYAImIyCgxARIRkVFiAiQiIqPEBEhEREaJCZCIiIwSEyARERklJkAiIjJKTIBERGSUmACJSiAkJAQSiUTzkslkcHFxwcCBA3H79u1Ct8nNzcXy5cvh7+8PGxsbKBQKNGjQAJMnT0ZiYmKh26jVamzcuBGdO3eGg4MDTE1N4eTkhLfeegu//vor1Gr1S2PNzs7GkiVL8K9//QvVq1eHXC6Hm5sb3nvvPRw9erRM54GoKmECJCqF9evX4/Tp0zh48CA+/fRT7NmzB//617/w9OlTrfUyMjLQpUsXfPbZZ/D19cWWLVuwd+9efPjhh1i1ahV8fX1x8+ZNrW2ysrLQo0cPDB06FE5OTli+fDkOHTqEFStWwNXVFf3798evv/5abHwJCQlo164dgoKC0LhxY4SEhODPP//EDz/8ABMTE7z55pu4dOmS3s8LUaUkiOil1q9fLwCIc+fOaZXPmDFDABDr1q3TKv/oo48EALF169YC+7p586awsbERjRo1EkqlUlP+ySefCABiw4YNhcZw69YtcenSpWLj7N69u5DJZOLPP/8sdPnZs2fF/fv3i91HSWVkZOhlP0SGwhogURn4+fkBAB49eqQpi4uLw7p16xAQEIABAwYU2MbHxwdfffUVrl27ht27d2u2WbNmDQICAjBkyJBCP6tu3bpo2rRpkbGEhYVh3759GDlyJDp16lToOq+99hpq1aoFAJg+fTokEkmBdfKbe+/du6cp8/T0xFtvvYWdO3fC19cX5ubmmDFjBnx9fdG+ffsC+1CpVHBzc8Pbb7+tKcvJycGsWbNQv359mJmZwdHREcOHD0d8fHyRx0RUnpgAicogMjISQF5Sy3f48GEolUr07du3yO3yl4WGhmq2yc3NLXablzlw4IDWvvXtwoULmDhxIsaNG4f9+/fjnXfewfDhw3HixIkC90EPHDiAmJgYDB8+HEDevc0+ffrg22+/xaBBg/D777/j22+/RWhoKN544w1kZmaWS8xExZEZOgCiykSlUkGpVCIrKwsnT57ErFmz8Prrr6N3796adaKiogAAXl5eRe4nf1n+uiXZ5mX0sY/iPH78GBEREVrJvnbt2pg4cSJCQkIwe/ZsTXlISAicnZ3RvXt3AMBPP/2E/fv3Y8eOHVq1wmbNmuG1115DSEgIPvnkk3KJm6gorAESlUKbNm1gamoKKysrdOvWDdWrV8cvv/wCmUy3vyULa4J8VTVt2lQr+QGAvb09evXqhQ0bNmh6qD59+hS//PILhgwZojkvv/32G2xtbdGrVy8olUrNq3nz5qhRowaOHDlS0YdDxARIVBo//vgjzp07h0OHDuHjjz/G9evX8f7772utk3+PLb95tDD5y9zd3Uu8zcvoYx/FcXFxKbR8xIgRePjwoaY5d8uWLcjOzsawYcM06zx69AhJSUmQy+UwNTXVesXFxSEhIaFcYiYqDhMgUSk0aNAAfn5+6NixI1asWIFRo0Zh//792L59u2adjh07QiaTaTq4FCZ/WZcuXTTbmJqaFrvNywQEBGjt+2XMzc0B5I0bfF5Ryaio2mpAQABcXV2xfv16AHlDRVq3bo2GDRtq1nFwcIC9vT3OnTtX6GvZsmUliplIrwzdDZWoMihqGMSTJ09E9erVRYMGDYRKpdKUl8cwiL///rvMwyDOnTunGQaxZcsWAUCcPXtWa53XX39dABCRkZGaMg8PD9GzZ88iP/err74SZmZm4tixYwKAWLlypdby//3vfwKAOHPmTLHxE1UkJkCiEigqAQohxHfffScAiI0bN2rK0tLSRIcOHYRMJhNjxowR+/btE4cOHRJz5swRdnZ2ombNmuLGjRta+8nMzBQBAQFCIpGIQYMGiZ9//lkcO3ZM7Ny5U3zyySfC3Nxc7N69u9g44+PjRcuWLYVcLheBgYHil19+EceOHRPbtm0TH3zwgTAxMREXL14UQgiRnJws7OzsRJMmTcSuXbvEr7/+Kt555x3h5eVV6gR48+ZNAUDUrFlTKBQKkZSUpLVcqVSK7t27Czs7OzFjxgyxb98+cfDgQRESEiKGDh0qdu7cWexxEZUHJkCiEiguAWZmZopatWqJunXratXocnJyxNKlS0Xr1q1FtWrVhJmZmahXr56YNGmSSEhIKPRzlEql2LBhg+jUqZOws7MTMplMODo6iu7du4vNmzdr1TKLkpmZKRYtWiT8/f2FtbW1kMlkwtXVVbz99tvi999/11r37Nmzom3btsLS0lK4ubmJ4OBgsWbNmlInQCGEaNu2rQAgBg8eXOjy3Nxc8d///lc0a9ZMmJubi2rVqon69euLjz/+WNy+ffulx0WkbxIhhDBE0ysREZEhsRMMEREZJSZAIiIySkyARERklJgAiYjIKDEBEhGRUWICJCIio2TQ2SCOHTuG77//HmFhYYiNjcWuXbteOpXL0aNHERQUhGvXrsHV1RWTJk1CYGBgiT9TrVYjJiYGVlZWlepBxERElEcIgdTUVLi6ukIq1b0eZ9AEmJ6ejmbNmmH48OF45513Xrp+ZGQkevTogdGjR+N///sfTp48iTFjxsDR0bFE2wNATEyM5gHERERUeUVHR6NmzZo6b//KDISXSCQvrQF+9dVX2LNnD65fv64pCwwMxKVLl3D69OkSfU5ycjJsbW0RHR0Na2vrsoZNREQVLCUlBe7u7khKSoKNjY3O+6lUE+KePn0aXbt21SoLCAjA2rVrkZubC1NT05fuI7/Z09ramgmQiPRCpRZQCwEhAPWzOoUQgIB49i80y1FEuchbAAEgR6mGSi2QXzsR4vmf8z/1+c/RXpa//6LKUNz6L/nM/M9LysiFuam0wL6e38c/y7RLRJFvnp2HQvYJAD7OVnC3s9C8L+ttrEqVAOPi4uDs7KxV5uzsDKVSiYSEhELnK8vOztaa7iUlJaXc4yR6FQkhnl2o8y666uffP7uAZ+SokKNSI0epxtP0HEACzUU9fzshBNTqf8rEs3+zlSo8Sc+BlbkMKjWgerbu85+hEgK3H6Whho0ZlCqBHJUaN2JT4WBlBqkE/8Smzo8vf/8C12JSUMPGHHITaYHPfv59fjK6E58OWwtTmMtMtBJO3kVV+4Kff7EX4rkLvyhk2YtJRwA5KnVFf5VGa2afRhji76m3/VWqBAgUzPj5f1kU9ZfA3LlzMWPGjHKPi0hXSpUaWUo1kjNzkaNUIz1biacZObifmAETqQQ3YlNgYyFHjlKNO/FpMDc1gamJ5FmSyEs0F6OS4GJjDokEUKoFwp+9z1WpkZCWY+hD1JvHqdkvX+k5SRm5AHLLJxg9k0gACf65lqnUAlZmsrxCaC+TPFeGZ+WS5/aTv7TgekD+moXt4/lYiltfIpEgI0eJRynZqF/DqsD2z+9XO6YXfkbBzyxs+/yF9pZm0KdKlQBr1KiBuLg4rbLHjx9DJpPB3t6+0G2mTJmCoKAgzfv8tmMiXeXXdLJy1UhIy9YkmRylGtlKFf5+nAZrc1PcTUiHBMDTjBw8TsmGlbkM5+8/hbudAjlKNR6llO5i/jIPkzK13scmZ+m8L4dqZjA1kSA2OUtzgZNKJJBK8/6VSCSQSp6VSf65AKdlK5GtVMPLwRImz61vIpU8WzfvQhaXkolGrjaQSSUwNZHicWo2ajtYQmYi0exT+mwbE0nehVwqkSAlKxc1rM3/2Z8Uz2L5Jx6JBM8+W4JcpRrWirxbI/kXc4lE+2cg/6Ke99PziUiCQtbV/PvPchOJBGYyE0Czb2jO0YvbSjXbPbd/9kg3iEqVAP39/fHrr79qlR04cAB+fn5F3v8zMzODmZl+/2qgykmtFohPy8ajlCzkqtTIUQpk5ioREZMCE6kUSpUaOSo1Lj9IhqutORLTcnAnPg0PkzLhYqNA9JMMKNVl7zMW/SSz2OUO1czwJD0brrYKqNQCfp52iEnKRHN3W8hlUjxNz0ENG3NYymWQSiUwkQAmUgmSMnJRx6kaZCZSyPKuvKhhbQ65TAq5iRSWZjJNsspLINAkJemzffBCTMbEoAkwLS0Nf//9t+Z9ZGQkLl68CDs7O9SqVQtTpkzBw4cP8eOPPwLI6/G5ZMkSBAUFYfTo0Th9+jTWrl2LLVu2GOoQ6BXwOCULJ+8kID1bhZSsXDxJy8HVmGRIIEF8Wjb+fpwGM5kU2Urd79VEJqQXKLOUm0AlBLJy1WjsZo245GzUdrREdQtTJGXkoombDdJzVHC2NoONwhQWchM4WZlDZiJBdQs5zGRSyGVS2ChMYSYzgZlMCqmUCYioohg0AZ4/fx4dO3bUvM9vqhw6dChCQkIQGxuLqKgozXIvLy/s3bsXEyZMwNKlS+Hq6opFixaVeAwgVQ65KjUS03IQm5yJO/HpSMrIQURsCp6k58BMJsWpO4lIzVLC3lKOxPSS3d96Mfk5W5vBytwUpiZSqNUCCWnZaFPbHg7V5JDLpIhPzUZDV2uYPqtNOVubo4aNOcxkJnC2NoO1uSmTFVEl98qMA6woKSkpsLGxQXJyModBGFBGjhKXHyTjYnQSjt2Kh8xEiltxqYhL0e2+lb2lHG7VFajtYAlbCzlsLfKaxOvXsIKrrQIWchPYWshRzUwGc1MTfR4KEVUwfV3HK9U9QKo8VGqBh08z8Xd8Kq7HpuLO4zTEJGciPCoJcpkUqVnKEu3HzVaBus7V4GFnAYVcBku5CVxtFZBIgFp2FnC2Nod9NTks5PxVJqLS4VWDSiUlKxc341Jx61EqpBIJcpRq3IhLxeOULDxOzcaDpxkAgKcZRXc9z2+OlEklcLVVwLeWLTzsLeHtaAlrhSnqOFaDq60CJmxiJKJyxARIhcpVqXHg2iOcuZuIKw+TIZdJcTbySan2kT+w2UZhCldbBdp626NFrepwt1PAw84S1goZex0SkcEwARoplVogJikTsclZuBufhnuJGYh6ko678em4EZf60u0lEsDVRoFm7jYwk5ngaUYOatlZoH4Na7jbKVDHqRocq5lBZsIZt4jo1cQEaASSMnIQHpWEIzcf4+ewB8jIUZVoOxOpBBZyE/jWqo6WtaqjdW071HO2gq2FKWtuRFTpMQFWIUIIXH6QjPtPMnD8VjyuPEx+aW3O0coM8anZaFrTBl4OlvC0t0Tr2nbwtLeE87MnbhARVUVMgJWYEAJXHiZje9gDnI18gtuP06Aq5kklthamqFldgaY1bfFhGw/UffbUECIiY8QEWMkIIbDnUgw2/RVVaKcUiQQwl5mgS0NnyKQS+HnaoXMDJzhZmxsgWiKiVxcTYCXwMCkTx2/F4+iteOy7GldgubO1GV7ztMOgVrXQwqM6B3oTEZUAE+ArSAiBM3efYMOpe7j0IKnIp/oHdvDG2I7esDJ/+UTARESkjQnwFfI4NQs7LzzEt/tuFLq8VzNX9GhcA229HWBjwaRHRFQWTICvgOgnGRiy7myBGQfsLeXoWN8JPZrUQKf6zgaKjoioamICNCAhBL7/4yaWHbmjVf7JG94IfN2btTwionLEBGggQgiMCDmHwzfjAQDudgp80aUe+jR35SBzIqIKwARYwRLTsjFg1Rn8/ThNU/ZBm1qY0bsxB50TEVUgJsAKdCHqKd5edkqrrG9zV8zq28RAERERGS8mwAqQrVQh+Jdr2HouWlM2wM8dE7vVg0M1MwNGRkRkvJgAy9mVB8noteSE5r23oyXWDn0Nng6WBoyKiIiYAMvRjrAH+OLnS5r3X3b1waed6howIiIiyscEWE5m/RaBNSciNe93jmmLFrWqGzAiIiJ6HhNgOYhNztQkPxOpBOendkZ1S7mBoyIioucxAepZrkqNoevOat6HT+sCaz6rk4jolcPJ4PTsi58u4dajvDF+2wP9mfyIiF5RTIB6tPH0Pey5FAMgb5iDn6edgSMiIqKiMAHqyak7Cfj6l2sAgEau1vj2HQ5uJyJ6lTEB6oEQAoNW/6V5v374a3yeJxHRK44JUA8O33ys+fmXse3gZGVuwGiIiKgkdOoFmp2djbNnz+LevXvIyMiAo6MjfH194eXlpe/4Xnnp2UpM2n4ZANCloTOaudsaNiAiIiqRUiXAU6dOYfHixdi9ezdycnJga2sLhUKBJ0+eIDs7G7Vr18ZHH32EwMBAWFlZlVfMr5S+S08iIS0H1cxkmNG7kaHDISKiEipxE2ifPn3w7rvvws3NDX/88QdSU1ORmJiIBw8eICMjA7dv38a///1v/Pnnn/Dx8UFoaGh5xv1K2HclFrefTWv0Td9GcLVVGDgiIiIqqRLXALt27Yqff/4ZcnnhTzSpXbs2ateujaFDh+LatWuIiYnRW5CvIiEE5h+8BQAwNZGgb3M3A0dERESlUeIEOHbs2BLvtFGjRmjUqGo3B245G60Z8P7bZ+3Z65OIqJJhL1AdqNQC03/NG/PXvq4D6tUwjvudRERVSYlrgNWrVy9xLefJkyc6B1QZLD50GzlKNQBgZp/GBo6GiIh0UeIEuGDBAs3PiYmJmDVrFgICAuDv7w8AOH36NP744w98/fXXeg/yVZKjVGPDqXsAgM4NnODFiW2JiColiRBClHajd955Bx07dsSnn36qVb5kyRIcPHgQu3fv1ld8epeSkgIbGxskJyfD2tq61NvPD72FhX/ehkQCXJ/ZDeamJuUQJRERFaWs1/F8Ot0D/OOPP9CtW7cC5QEBATh48KDOwVQGC/+8DQD4rGMdJj8iokpMpwRob2+PXbt2FSjfvXs37O3tyxzUq+rWo1TNz72auRowEiIiKiudHoU2Y8YMjBw5EkeOHNHcAzxz5gz279+PNWvW6DXAV8mSQ38DAMxNpajrzJ6fRESVmU4JcNiwYWjQoAEWLVqEnTt3QgiBhg0b4uTJk2jdurW+Y3xl5NcA32lR08CREBFRWemUAAGgdevW2LRpkz5jeaXdS0jHjbi8BPhppzoGjoaIiMpK54Hwd+7cwb///W8MGjQIjx/nTQe0f/9+XLt2TW/BvUo2nrkPALA2l8HFhs/8JCKq7HRKgEePHkWTJk3w119/YceOHUhLy3sk2OXLlxEcHKzXAF8Vp+4kAgB6NHExcCRERKQPOiXAyZMnY9asWQgNDdV6OHbHjh1x+vRpvQX3qrj9KBXXY1MAAGPeYPMnEVFVoFMCvHLlCvr161eg3NHREYmJiWUO6lWz51LezBYtatmilr2FgaMhIiJ90CkB2traIjY2tkB5eHg43Nyq3rRAISfvAQD6+7kbNhAiItIbnRLgoEGD8NVXXyEuLg4SiQRqtRonT57El19+iSFDhug7RoMSQkD97GlxtexY+yMiqip0SoCzZ89GrVq14ObmhrS0NDRs2BCvv/462rZti3//+9/6jtGgbsSlIj1HBQBoWtPGwNEQEZG+6DQO0NTUFJs2bcLMmTMRHh4OtVoNX19f1K1bV9/xGdxvl/Pu/9V2tISVuamBoyEiIn3ReSA8AHh7e8Pb21tfsbyS7iVmAABcbMwNHAkREelTiRNgUFAQvvnmG1haWiIoKKjYdefNm1fmwF4Vh67nDfJv7MrmTyKiqqTECTA8PBy5ubkAgAsXLhQ5O3xJZ42vDI7dikdmbt79v0Gtaxk4GiIi0qcSJ8CFCxdqJh48cuRIecXzSllzIhIA0MTNBh72nPmdiKgqKXEvUF9fXyQkJAAAateuXSUHvD9PCIEzd/OOcTBrf0REVU6JE6CtrS0iI/NqRPfu3YNarS63oF4F9xMzkKPMO8Y36jkZOBoiItK3EjeBvvPOO+jQoQNcXFwgkUjg5+cHExOTQte9e/eu3gI0lOdnf6/BHqBERFVOiRPgqlWr8Pbbb+Pvv//GuHHjMHr0aFhZVd1Z0S9GJwEAqltw7B8RUVVUqnGA3bp1AwCEhYXh888/r9IJMDEtBwDg41x1j5GIyJjp9Ci09evXayW/lJQU7N69G9evX9dbYIYkhMDhm3nj/z709zBwNEREVB50SoDvvfcelixZAgDIzMyEn58f3nvvPTRt2hQ7duzQa4CGEJOchcep2QCAN+s7GzgaIiIqDzolwGPHjqF9+/YAgF27dkEIgaSkJCxatAizZs3Sa4CGcOVBMgCgZnUFFPLCO/oQEVHlplMCTE5Ohp2dHQBg//79eOedd2BhYYGePXvi9u3beg3QEE7+nTfe8dksSEREVAXplADd3d1x+vRppKenY//+/ejatSsA4OnTpzA3L92QgWXLlsHLywvm5uZo2bIljh8/Xuz6mzZtQrNmzWBhYQEXFxcMHz5c74PykzLzHvnW1tter/slIqJXh04JcPz48Rg8eDBq1qwJV1dXvPHGGwDymkabNGlS4v1s27YN48ePx9SpUxEeHo727duje/fuiIqKKnT9EydOYMiQIRg5ciSuXbuGn3/+GefOncOoUaN0OYwi7buSN9t9ex9Hve6XiIheHTolwDFjxuD06dNYt24dTpw4Aak0bze1a9cu1T3AefPmYeTIkRg1ahQaNGiABQsWwN3dHcuXLy90/TNnzsDT0xPjxo2Dl5cX/vWvf+Hjjz/G+fPndTmMItlayAEAzlZmet0vERG9OnRKgADg5+eHfv36oVq1apqynj17ol27diXaPicnB2FhYZrm03xdu3bFqVOnCt2mbdu2ePDgAfbu3QshBB49eoTt27ejZ8+eRX5OdnY2UlJStF7FSctWIiEtrweolyMfgE1EVFUZbD7AhIQEqFQqODtrDzNwdnZGXFxcodu0bdsWmzZtwoABA5CVlQWlUonevXtj8eLFRX7O3LlzMWPGjJfGk+/Qjbzxfw7VzOBkxUegERFVVTrNBxgeHq63AF6cP1AIUeScghERERg3bhymTZuGgIAAxMbGYuLEiQgMDMTatWsL3WbKlClaCTslJQXu7u5FxnPncRoAwNWWyY+IqCorcQI8fPhwoT/rysHBASYmJgVqe48fPy5QK8w3d+5ctGvXDhMnTgQANG3aFJaWlmjfvj1mzZoFFxeXAtuYmZnBzKzk9/JSsvKSfCtPuxJvQ0RElY9O9wBHjBiB1NTUAuXp6ekYMWJEifYhl8vRsmVLhIaGapWHhoaibdu2hW6TkZGh6XCTL39GCqGnQXv5T4Cx4AB4IqIqTacEuGHDBmRmZhYoz8zMxI8//lji/QQFBWHNmjVYt24drl+/jgkTJiAqKgqBgYEA8povhwwZolm/V69e2LlzJ5YvX467d+/i5MmTGDduHFq1agVXV1ddDqWAiJi8TjKO7AFKRFSllWo2iJSUFAghIIRAamqq1qB3lUqFvXv3wsmp5JPHDhgwAImJiZg5cyZiY2PRuHFj7N27Fx4eeQ+gjo2N1RoTOGzYMKSmpmLJkiX44osvYGtri06dOuE///lPaQ6jWJEJ6QAAV1uF3vZJRESvHokoRduhVCotsoMKkNehZcaMGZg6dapegisPKSkpsLGxQXJyMqytrbWWCSHgNWUvAODPLzrA27FaYbsgIiIDKu46XhqlqgEePnwYQgh06tQJO3bs0DwPFMi7p+fh4aG3pkhDSHg2ByAAuFe3MGAkRERU3kqVADt06AAAiIyMhLu7e4EOKZXd3fi8IRAKUxPIZVXr2IiISFupEmC+/Ht0GRkZiIqKQk5Ojtbypk2blj0yA4h6kgEAaOJmY+BIiIiovOmUAOPj4zF8+HDs27ev0OUqlapMQRlK9NO8nq0e9mz+JCKq6nSeDeLp06c4c+YMFAoF9u/fjw0bNqBu3brYs2ePvmOsMOtORAIAavL+HxFRladTDfDQoUP45Zdf8Nprr0EqlcLDwwNdunSBtbU15s6dW+zDqV9lbrYK3HyUCplJ0T1diYioatCpBpienq4Z72dnZ4f4+HgAQJMmTXDhwgX9RVfBbj7Ke7pNKy8+Bo2IqKrTKQHWq1cPN2/eBAA0b94cK1euxMOHD7FixYpCn8dZWcikeTU/PgaNiKjq06kJdPz48YiNzZs1PTg4GAEBAdi0aRPkcjlCQkL0GV+FEUJAqc57JoBDNT4GjYioqtMpAQ4ePFjzs6+vL+7du4cbN26gVq1acHBw0FtwFSk1W6n5uZqZTqeFiIgqEb2M9jYzM4NUKtXMzFAZRSVmaH62ZAIkIqrydB4GkT8BrUqlwuuvv44WLVrA3d0dR44c0Wd8FSb+2TRIpuwBSkRkFHRKgNu3b0ezZs0AAL/++qumCXT8+PGv9IOwi5OcmTcRrpW5qYEjISKiiqBTAkxISECNGjUAAHv37kX//v3h4+ODkSNH4sqVK3oNsKLcS8ybBolPgSEiMg46JUBnZ2dERERApVJh//796Ny5M4C8Z4NW1vuA5qZ5cav1M7E8ERG94nTq7TF8+HC89957cHFxgUQiQZcuXQAAf/31F+rXr6/XACtKyrMm0Eauus8tRURElYdOCXD69Olo3LgxoqOj0b9/f5iZ5Y2bMzExweTJk/UaYEW5/6wXqEkxE/4SEVHVoXN//3fffbdA2dChQ8sUjCFZK/I6v2TlVs6ZLIiIqHQ46+sz5+89AQD4OFsZOBIiIqoITIDP2FeTAwBUgr1giIiMARPgM4lpebPa16/BGiARkTFgAnwmR6UGwIHwRETGggnwmVxlXgLko9CIiIyDzgmwY8eOGDZsmFbZ0KFD0alTp7LGZBDZmgTIvwmIiIyBzsMgPD09C0x+6+bmBqm08iUQIQSSng2EV5hWzifZEBFR6eicANevX1+gbM6cOWUKxlCylWqo8ifDteJkuERExqDyVdfKQVJGXu1PIgHMZTwlRETGoMQ1wEWLFpV4p+PGjdMpGENJzcpLgNbmppDxHiARkVEocQKcP39+idaTSCSVLgHmzwVYjTPBExEZjRJf8SMjI8szDoNKeDYI3taCYwCJiIxFmdr7cnJycPPmTSiVSn3FYxD/DIJnDZCIyFjolAAzMjIwcuRIWFhYoFGjRoiKigKQd+/v22+/1WuAFSH6Sd5USBwDSERkPHS64k+ZMgWXLl3CkSNHYG5urinv3Lkztm3bprfgKor1s5rf3fh0A0dCREQVRac2v927d2Pbtm1o06YNJM9NINuwYUPcuXNHb8FVlFxV3hhA31q2hg2EiIgqjE41wPj4eDg5ORUoT09P10qIlYVSzcegEREZG52u+K+99hp+//13zfv8pLd69Wr4+/vrJ7IKpHz2FBiZtPIlbyIi0o1OTaBz585Ft27dEBERAaVSiYULF+LatWs4ffo0jh49qu8Yy11WjgoAIONMEERERkOnGmDbtm1x8uRJZGRkwNvbGwcOHICzszNOnz6Nli1b6jvGcpeSlTeMw5wPwiYiMho6D3xr0qQJNmzYoM9YDCZbmVcDtFXIDRwJERFVFJ0ToEqlwq5du3D9+nVIJBI0aNAAffr0gUxW+QaT5/cClfNB2ERERkOnbHX16lX06dMHcXFxqFevHgDg1q1bcHR0xJ49e9CkSRO9BlneLkUnAeBs8ERExkSnKs+oUaPQqFEjPHjwABcuXMCFCxcQHR2Npk2b4qOPPtJ3jOXOy8ESAJCYnmPgSIiIqKLoVAO8dOkSzp8/j+rVq2vKqlevjtmzZ+O1117TW3AVJX8yXC97SwNHQkREFUWnGmC9evXw6NGjAuWPHz9GnTp1yhxURct9lgBNOA6QiMholDgBpqSkaF5z5szBuHHjsH37djx48AAPHjzA9u3bMX78ePznP/8pz3jLherZk2A4DpCIyHiUuAnU1tZW6zFnQgi89957mjIh8mpRvXr1gkql0nOY5StHmZcAWQMkIjIeJU6Ahw8fLs84DOpCVBIAwKQSPseUiIh0U+IE2KFDh/KMw6Dq17DCtZgUzcS4RERU9ZVp1HpGRgaioqKQk6M9fKBp06ZlCqqi5fcCtbPkk2CIiIyFTgkwPj4ew4cPx759+wpdXtnuAT67fckmUCIiI6LTMIjx48fj6dOnOHPmDBQKBfbv348NGzagbt262LNnj75jLHfqZxmwMs5lSEREutGpBnjo0CH88ssveO211yCVSuHh4YEuXbrA2toac+fORc+ePfUdZ7lSPUuA7ARKRGQ8dKoBpqena2aEt7OzQ3x8PIC8GSIuXLigv+gqiKYJlBmQiMho6PwkmJs3bwIAmjdvjpUrV+Lhw4dYsWIFXFxc9BpgRcjvBMMmUCIi46FTE+j48eMRGxsLAAgODkZAQAA2bdoEuVyOkJAQfcZXIfLvAbIGSERkPHRKgIMHD9b87Ovri3v37uHGjRuoVasWHBwc9BZcRclvAmX+IyIyHnqZvdbCwgItWrTQx64M4mFSJgBAyiZQIiKjUeIEGBQUVOKdzps3T6dgDMVSboL0nMo1dpGIiMqmxAkwPDy8ROtVxo4k0mdtnxZyEwNHQkREFYUPwwaHQRARGSOdhkFUNWrNQHgmQCIiY2HwBLhs2TJ4eXnB3NwcLVu2xPHjx4tdPzs7G1OnToWHhwfMzMzg7e2NdevWlSmGf8YBlmk3RERUieilF6iutm3bhvHjx2PZsmVo164dVq5cie7duyMiIgK1atUqdJv33nsPjx49wtq1a1GnTh08fvwYSqWyTHGwCZSIyPgYNAHOmzcPI0eOxKhRowAACxYswB9//IHly5dj7ty5Bdbfv38/jh49irt378LOzg4A4OnpWeY42ARKRGR8DNYEmpOTg7CwMHTt2lWrvGvXrjh16lSh2+zZswd+fn747rvv4ObmBh8fH3z55ZfIzMwsUywqwSZQIiJjo3MC3LhxI9q1awdXV1fcv38fQF4N7pdffinR9gkJCVCpVHB2dtYqd3Z2RlxcXKHb3L17FydOnMDVq1exa9cuLFiwANu3b8fYsWOL/Jzs7GykpKRovZ4nhOB8gERERkinBLh8+XIEBQWhR48eSEpK0kyAa2triwULFpRqXy+OGxRCFDmWUK1WQyKRYNOmTWjVqhV69OiBefPmISQkpMha4Ny5c2FjY6N5ubu7a+9T/PMzm0CJiIyHTglw8eLFWL16NaZOnQoTk38Gj/v5+eHKlSsl2oeDgwNMTEwK1PYeP35coFaYz8XFBW5ubrCxsdGUNWjQAEIIPHjwoNBtpkyZguTkZM0rOjpaa7lSrdb8zARIRGQ8dEqAkZGR8PX1LVBuZmaG9PT0Eu1DLpejZcuWCA0N1SoPDQ1F27ZtC92mXbt2iImJQVpamqbs1q1bkEqlqFmzZqHbmJmZwdraWuv1vFzVP1VAM1ODjwohIqIKotMV38vLCxcvXixQvm/fPjRs2LDE+wkKCsKaNWuwbt06XL9+HRMmTEBUVBQCAwMB5NXehgwZoll/0KBBsLe3x/DhwxEREYFjx45h4sSJGDFiBBQKhS6HQkRERkqnYRATJ07E2LFjkZWVBSEEzp49iy1btmDu3LlYs2ZNifczYMAAJCYmYubMmYiNjUXjxo2xd+9eeHh4AABiY2MRFRWlWb9atWoIDQ3FZ599Bj8/P9jb2+O9997DrFmzdDkMAHn3HImIyPhIhI4ZYPXq1Zg1a5bmnpqbmxumT5+OkSNH6jVAfUtJSYGNjQ2Sk5NhbW2N1KxcNJl+AABw45tuMDflA7GJiF5lL17HdaXzQPjRo0dj9OjRSEhIgFqthpOTk85BGBLrf0RExkmne4AzZszAnTt3AOT15qysye9F7ARKRGQ8dEqAO3bsgI+PD9q0aYMlS5YgPj5e33ERERGVK50S4OXLl3H58mV06tQJ8+bNg5ubG3r06IHNmzcjIyND3zGWq+fvgErAKiARkbHQeeBbo0aNMGfOHNy9exeHDx+Gl5cXxo8fjxo1augzPiIionKhl5HflpaWUCgUkMvlyM3N1ccuKw57wRARGSWdE2BkZCRmz56Nhg0bws/PDxcuXMD06dOLfJB1ZcBOMERExkOnYRD+/v44e/YsmjRpguHDh2PQoEFwc3PTd2xERETlRqcE2LFjR6xZswaNGjXSdzwVTjzXBsoKIBGR8dApAc6ZM0ffcRAREVWoEifAoKAgfPPNN7C0tERQUFCx686bN6/MgVUUPgqUiMg4lTgBhoeHa3p4hoeHl1tAhlTURLxERFT1lDgBHj58uNCfiYiIKiOdhkGMGDECqampBcrT09MxYsSIMgdVkZ5vAWX9j4jIeOiUADds2IDMzMwC5ZmZmfjxxx/LHBQREVF5K1Uv0JSUFAghIIRAamoqzM3NNctUKhX27t1b6WaGeH46RN4CJCIyHqVKgLa2tpBIJJBIJPDx8SmwXCKRYMaMGXoLjoiIqLyUKgEePnwYQgh06tQJO3bsgJ2dnWaZXC6Hh4cHXF1d9R4kERGRvpUqAXbo0AFA3nNAa9WqVSWGDWh1gqkCx0NERCVT4gR4+fJlNG7cGFKpFMnJybhy5UqR6zZt2lQvwREREZWXEifA5s2bIy4uDk5OTmjevDkkEolWB5J8EokEKpVKr0GWJz4JhojIOJU4AUZGRsLR0VHzMxERUWVW4gTo4eFR6M9VBW//EREZF50Hwv/++++a95MmTYKtrS3atm2L+/fv6y24iiA4JTwRkVHSKQHOmTMHCoUCAHD69GksWbIE3333HRwcHDBhwgS9BkhERFQedJoPMDo6GnXq1AEA7N69G++++y4++ugjtGvXDm+88YY+4yt/zyqAbAElIjIuOtUAq1WrhsTERADAgQMH0LlzZwCAubl5oc8IJSIietXoVAPs0qULRo0aBV9fX9y6dQs9e/YEAFy7dg2enp76jK/c5d8B5CB4IiLjolMNcOnSpfD390d8fDx27NgBe3t7AEBYWBjef/99vQZIRERUHnSqAdra2mLJkiUFyvkgbCIiqix0SoAAkJSUhLVr1+L69euQSCRo0KABRo4cCRsbG33GV+4EO8EQERklnZpAz58/D29vb8yfPx9PnjxBQkIC5s+fD29vb1y4cEHfMRIREemdTjXACRMmoHfv3li9ejVksrxdKJVKjBo1CuPHj8exY8f0GmR5yh8Izz4wRETGRacEeP78ea3kBwAymQyTJk2Cn5+f3oIjIiIqLzo1gVpbWyMqKqpAeXR0NKysrMoclCFIeBeQiMio6JQABwwYgJEjR2Lbtm2Ijo7GgwcPsHXrVowaNarSDYPgdEhERMZJpybQ//73v5BIJBgyZAiUSiUAwNTUFJ988gm+/fZbvQZIRERUHnRKgHK5HAsXLsTcuXNx584dCCFQp04dWFhY6Du+cqepALIFlIjIqJSqCTQjIwNjx46Fm5sbnJycMGrUKLi4uKBp06aVMvkREZHxKlUCDA4ORkhICHr27ImBAwciNDQUn3zySXnFVqFYASQiMi6lagLduXMn1q5di4EDBwIAPvjgA7Rr1w4qlQomJiblEmB5E+wFQ0RklEpVA4yOjkb79u0171u1agWZTIaYmBi9B1bROBCeiMi4lCoBqlQqyOVyrTKZTKbpCVoZsQJIRGScStUEKoTAsGHDYGZmpinLyspCYGAgLC0tNWU7d+7UX4RERETloFQJcOjQoQXKPvjgA70FY0h8EgwRkXEpVQJcv359ecVBRERUoXR6FFpVxE4wRETGpcQJMDAwENHR0SVad9u2bdi0aZPOQVUkdoIhIjJOJW4CdXR0ROPGjdG2bVv07t0bfn5+cHV1hbm5OZ4+fYqIiAicOHECW7duhZubG1atWlWecRMREZVJiRPgN998g88++wxr167FihUrcPXqVa3lVlZW6Ny5M9asWYOuXbvqPdDyxhZQIiLjUqpOME5OTpgyZQqmTJmCpKQk3L9/H5mZmXBwcIC3tzcklfBGmgDbQImIjJFOs0EAgK2tLWxtbfUYimFVxuRNRES6M/peoOwEQ0RknIw+AeZj/Y+IyLgwARIRkVEy+gTIFlAiIuOkcwJUKpU4ePAgVq5cidTUVABATEwM0tLS9BZchWIbKBGRUdGpF+j9+/fRrVs3REVFITs7G126dIGVlRW+++47ZGVlYcWKFfqOs9xk5qgAAOnZlXdKJyIiKj2daoCff/45/Pz88PTpUygUCk15v3798Oeff+otuIogfXYG1GwLJSIyKjrVAE+cOIGTJ08WmBzXw8MDDx8+1EtgFSV/GIRDNXnxKxIRUZWiUw1QrVZDpVIVKH/w4AGsrKzKHJRh8CYgEZEx0SkBdunSBQsWLNC8l0gkSEtLQ3BwMHr06KGv2CoEB8ITERknnRLg/PnzcfToUTRs2BBZWVkYNGgQPD098fDhQ/znP/8p1b6WLVsGLy8vmJubo2XLljh+/HiJtjt58iRkMhmaN2+uwxEUxCehEREZF53uAbq6uuLixYvYunUrwsLCoFarMXLkSAwePFirU8zLbNu2DePHj8eyZcvQrl07rFy5Et27d0dERARq1apV5HbJyckYMmQI3nzzTTx69EiXQ9Dgw7CJiIyTRIjSNwIeO3YMbdu2hUymnT+VSiVOnTqF119/vUT7ad26NVq0aIHly5dryho0aIC+ffti7ty5RW43cOBA1K1bFyYmJti9ezcuXrxY4thTUlJgY2OD5ORkWFtb41pMMnouOgEnKzOcndq5xPshIiLDePE6riudmkA7duyIJ0+eFChPTk5Gx44dS7SPnJwchIWFFZg7sGvXrjh16lSR261fvx537txBcHBwiT4nOzsbKSkpWq/n8R4gEZFx0ikBCiEKnT4oMTERlpaWJdpHQkICVCoVnJ2dtcqdnZ0RFxdX6Da3b9/G5MmTsWnTpgK1z6LMnTsXNjY2mpe7u3uh6/EeIBGRcSnVPcC3334bQF6vz2HDhsHMzEyzTKVS4fLly2jbtm2pAngxkRaVXFUqFQYNGoQZM2bAx8enxPufMmUKgoKCNO9TUlKKTIJERGQ8SpUAbWxsAOQlKSsrK60OL3K5HG3atMHo0aNLtC8HBweYmJgUqO09fvy4QK0QAFJTU3H+/HmEh4fj008/BZA3HlEIAZlMhgMHDqBTp04FtjMzM9NK1EWRcBwgEZFRKVUCXL9+PQDA09MTX375ZYmbOwsjl8vRsmVLhIaGol+/fpry0NBQ9OnTp8D61tbWuHLlilbZsmXLcOjQIWzfvh1eXl46x0JERMZHp2EQJe2A8jJBQUH48MMP4efnB39/f6xatQpRUVEIDAwEkNd8+fDhQ/z444+QSqVo3Lix1vZOTk4wNzcvUF4a+Z1geA+QiMi46JQAAWD79u346aefEBUVhZycHK1lFy5cKNE+BgwYgMTERMycOROxsbFo3Lgx9u7dCw8PDwBAbGwsoqKidA2RiIioSDr1Al20aBGGDx8OJycnhIeHo1WrVrC3t8fdu3fRvXv3Uu1rzJgxuHfvHrKzsxEWFqY1hjAkJARHjhwpctvp06eXagxgYfIHwrMCSERkXHRKgMuWLcOqVauwZMkSyOVyTJo0CaGhoRg3bhySk5P1HSMREZHe6ZQAo6KiNMMdFAqFZkb4Dz/8EFu2bNFfdBXgn3uArAMSERkTnRJgjRo1kJiYCCBvDsAzZ84AACIjI6HDk9WIiIgqnE4JsFOnTvj1118BACNHjsSECRPQpUsXDBgwQGtIQ2XAdE1EZJx06gW6atUqqNVqAEBgYCDs7Oxw4sQJ9OrVSzOEgYiI6FWmUwKUSqWQSv+pPL733nt47733AAAPHz6Em5ubfqKrAPlNtrwFSERkXHRqAi1MXFwcPvvsM9SpU0dfuyQiIio3pUqASUlJGDx4MBwdHeHq6opFixZBrVZj2rRpqF27Ns6cOYN169aVV6zlIv8eIGuARETGpVRNoP/3f/+HY8eOYejQodi/fz8mTJiA/fv3IysrC/v27UOHDh3KK04iIiK9KlUC/P3337F+/Xp07twZY8aMQZ06deDj44MFCxaUU3jlTzMOkM+CISIyKqVqAo2JiUHDhg0BALVr14a5uTlGjRpVLoERERGVp1IlQLVaDVNTU817ExOTMk2J9GpgL1AiImNUqiZQIYTWTPBZWVkIDAwskAR37typvwiJiIjKQakS4NChQ7Xef/DBB3oNxhD+uQdIRETGRKcZ4YmIiCo7vQ2Er6z+GQfIOiARkTEx+gRIRETGiQnwGdb/iIiMi9EnQE5fSERknIw+AWqwCkhEZFR0ToAbN25Eu3bt4Orqivv37wMAFixYgF9++UVvwVUEzmBPRGScdEqAy5cvR1BQEHr06IGkpCSoVCoAgK2tbaV9LigrgERExkWnBLh48WKsXr0aU6dOhYmJiabcz88PV65c0VtwFYH1PyIi46RTAoyMjISvr2+BcjMzM6Snp5c5KEPgOEAiIuOiUwL08vLCxYsXC5Tv27dPM1tEZcFbgERExqlUj0LLN3HiRIwdOxZZWVkQQuDs2bPYsmUL5s6dizVr1ug7xgrB+h8RkXHRKQEOHz4cSqUSkyZNQkZGBgYNGgQ3NzcsXLgQAwcO1HeM5UrwLiARkVHSKQECwOjRozF69GgkJCRArVbDyclJn3FVON4CJCIyLjrdA5wxYwbu3LkDAHBwcKjcyY8VQCIio6RTAtyxYwd8fHzQpk0bLFmyBPHx8fqOq8JJeBeQiMio6JQAL1++jMuXL6NTp06YN28e3Nzc0KNHD2zevBkZGRn6jrFcsQJIRGScdH4UWqNGjTBnzhzcvXsXhw8fhpeXF8aPH48aNWroM74Kw3uARETGRS8Pw7a0tIRCoYBcLkdubq4+dllhOA6QiMg46ZwAIyMjMXv2bDRs2BB+fn64cOECpk+fjri4OH3GR0REVC50Ggbh7++Ps2fPokmTJhg+fLhmHGBlxHGARETGSacE2LFjR6xZswaNGjXSdzwGw2eBEhEZF50S4Jw5c/Qdh8E8zci7Z8l5AYmIjEuJE2BQUBC++eYbWFpaIigoqNh1582bV+bAKorCNG86p5uPUg0cCRERVaQSJ8Dw8HBND8/w8PByC6iiqdR5Nb8WtaobOBIiIqpIJU6Ahw8fLvTnyi6/6VPKW4BEREZFp2EQI0aMQGpqwSbD9PR0jBgxosxBVSSVJgEyAxIRGROdEuCGDRuQmZlZoDwzMxM//vhjmYOqSPlNoCasAhIRGZVS9QJNSUmBEAJCCKSmpsLc3FyzTKVSYe/evZVuZgi1YAIkIjJGpUqAtra2kEgkkEgk8PHxKbBcIpFgxowZeguuIqjUef9yHCARkXEpVQI8fPgwhBDo1KkTduzYATs7O80yuVwODw8PuLq66j3I8qTObwJl/iMiMiqlSoAdOnQAkPcc0Fq1alWJWlP007zpm9gESkRkXEqcAC9fvozGjRtDKpUiOTkZV65cKXLdpk2b6iW4imBvKQfAgfBERMamxAmwefPmiIuLg5OTE5o3bw6JRFLo48MkEglUKpVegyxPz1pA0dydA+GJiIxJiRNgZGQkHB0dNT9XFZpeoGwBJSIyKiVOgB4eHoX+XNnlV2I5EJ6IyLjoPBD+999/17yfNGkSbG1t0bZtW9y/f19vwVWE/BpgVejQQ0REJadTApwzZw4UCgUA4PTp01iyZAm+++47ODg4YMKECXoNsLypNTVAw8ZBREQVS6f5AKOjo1GnTh0AwO7du/Huu+/io48+Qrt27fDGG2/oM75yp+azQImIjJJONcBq1aohMTERAHDgwAF07twZAGBubl7oM0JfZfkD4aU6nQkiIqqsdKoBdunSBaNGjYKvry9u3bqFnj17AgCuXbsGT09PfcZX7vKbQHkPkIjIuOhU71m6dCn8/f0RHx+PHTt2wN7eHgAQFhaG999/X68Bljc15wMkIjJKOtUAbW1tsWTJkgLlle1B2MDzE+IyAxIRGROdEiAAJCUlYe3atbh+/TokEgkaNGiAkSNHwsbGRp/xlbtbj9IAMAESERkbnZpAz58/D29vb8yfPx9PnjxBQkIC5s+fD29vb1y4cEHfMZarmtXzhnPcS0w3cCRERFSRdKoBTpgwAb1798bq1ashk+XtQqlUYtSoURg/fjyOHTum1yDLU34nmIYu1oYNhIiIKpROCfD8+fNayQ8AZDIZJk2aBD8/P70FVxE4DpCIyDjp1ARqbW2NqKioAuXR0dGwsrIq1b6WLVsGLy8vmJubo2XLljh+/HiR6+7cuRNdunSBo6MjrK2t4e/vjz/++KPU8T9PkwDZDZSIyKjolAAHDBiAkSNHYtu2bYiOjsaDBw+wdetWjBo1qlTDILZt24bx48dj6tSpCA8PR/v27dG9e/dCkysAHDt2DF26dMHevXsRFhaGjh07olevXggPD9flMAAAKjWHQRARGSOJKGxSv5fIycnBxIkTsWLFCiiVSgCAqakpPvnkE3z77bcwMzMr0X5at26NFi1aYPny5ZqyBg0aoG/fvpg7d26J9tGoUSMMGDAA06ZNK9H6KSkpsLGxQXJyMqytrTFl5xVsORuFL7r44LM365ZoH0REZDgvXsd1pVMNUC6XY+HChXj69CkuXryI8PBwPHnyBPPnzy9x8svJyUFYWBi6du2qVd61a1ecOnWqRPtQq9VITU2FnZ1dqY8hn2ATKBGRUSpVAszIyMDYsWPh5uYGJycnjBo1Ci4uLmjatCksLCxK9cEJCQlQqVRwdnbWKnd2dkZcXFyJ9vHDDz8gPT0d7733XpHrZGdnIyUlRev1vPwmUPaBISIyLqVKgMHBwQgJCUHPnj0xcOBAhIaG4pNPPilTAC8+g1MIUaLncm7ZsgXTp0/Htm3b4OTkVOR6c+fOhY2Njebl7u6utTx/GIQJMyARkVEp1TCInTt3Yu3atRg4cCAA4IMPPkC7du2gUqlgYmJSqg92cHCAiYlJgdre48ePC9QKX7Rt2zaMHDkSP//8s2YmiqJMmTIFQUFBmvcpKSlaSfBGXF6NkMMgiIiMS6lqgNHR0Wjfvr3mfatWrSCTyRATE1PqD5bL5WjZsiVCQ0O1ykNDQ9G2bdsit9uyZQuGDRuGzZs3a2ahKI6ZmRmsra21Xs9zsTEHAMSnZZf6GIiIqPIqVQ1QpVJBLpdr70Am0/QELa2goCB8+OGH8PPzg7+/P1atWoWoqCgEBgYCyKu9PXz4ED/++COAvOQ3ZMgQLFy4EG3atNHUHhUKhc7PIM2v+bnble4eJhERVW6lSoBCCAwbNkyrp2dWVhYCAwNhaWmpKdu5c2eJ9jdgwAAkJiZi5syZiI2NRePGjbF37154eHgAAGJjY7XGBK5cuRJKpRJjx47F2LFjNeVDhw5FSEhIaQ5FI38gvCl7gRIRGZVSJcChQ4cWKPvggw/KFMCYMWMwZsyYQpe9mNSOHDlSps8qjGYgPBMgEZFRKVUCXL9+fXnFYTAq9gIlIjJKOg2Er0rUz2qAJqwBEhEZFSZAwYHwRETGyOgToIo1QCIio2T0CTA8OgkA7wESERkbo0+A3o7VAADpOSoDR0JERBVJ5wS4ceNGtGvXDq6urrh//z4AYMGCBfjll1/0FlxFyK/3OVqVbBYLIiKqGnRKgMuXL0dQUBB69OiBpKQkqFR5tSdbW1ssWLBAn/GVu/xOMGwCJSIyLjolwMWLF2P16tWYOnWq1kOw/fz8cOXKFb0FVxE4IzwRkXHSKQFGRkbC19e3QLmZmRnS09PLHFRFUnFCXCIio6RTAvTy8sLFixcLlO/btw8NGzYsa0wVSuQ/CYYJkIjIqJTqUWj5Jk6ciLFjxyIrKwtCCJw9exZbtmzB3LlzsWbNGn3HWK7+aQJlAiQiMiY6JcDhw4dDqVRi0qRJyMjIwKBBg+Dm5oaFCxdqJsutLDgQnojIOOmUAAFg9OjRGD16NBISEqBWq+Hk5KTPuCrMw6RMAOwFSkRkbHROgPkcHBz0EYfBmJtKkZWr1nSGISIi46BTAvTy8oKkmBrT3bt3dQ6oolnIZcjKzYGl3OTlKxMRUZWhUwIcP3681vvc3FyEh4dj//79mDhxoj7iqjCCNT8iIqOkUwL8/PPPCy1funQpzp8/X6aADIW3AImIjIteH4bdvXt37NixQ5+7LHes/xERGSe9JsDt27fDzs5On7usQKwCEhEZE52aQH19fbU6wQghEBcXh/j4eCxbtkxvwVUE3gIkIjJOOiXAvn37ar2XSqVwdHTEG2+8gfr16+sjrgrHe4BERMal1AlQqVTC09MTAQEBqFGjRnnEVKHYC5SIyDiV+h6gTCbDJ598guzs7PKIx2BYASQiMi46dYJp3bo1wsPD9R2LQbD+R0RknHS6BzhmzBh88cUXePDgAVq2bAlLS0ut5U2bNtVLcBWpuCfbEBFR1VOqBDhixAgsWLAAAwYMAACMGzdOs0wikUAIAYlEApVKpd8oyxOrgERERqlUCXDDhg349ttvERkZWV7xGAzrf0RExqVUCTC/x6SHh0e5BGMIrAASERmnUneCqar3yqroYRERURFK3QnGx8fnpUnwyZMnOgdU0TgOkIjIOJU6Ac6YMQM2NjblEYtBSXgXkIjIqJQ6AQ4cOBBOTk7lEYtBsP5HRGScSnUPsKre/wN4D5CIyNiUKgFWxftlVfCQiIioBErVBKpWq8srDiIiogql1wlxKyPBu4BEREZJp2eBVkW8B1g2KpUKubm5hg6DiKoAExMTyGSycu93YvQJkPcAyy4tLQ0PHjyokveIicgwLCws4OLiArlcXm6fYfQJMF9V7uFanlQqFR48eAALCws4OjryPBJRmQghkJOTg/j4eERGRqJu3bqQSsvnbp3RJ0DWWcomNzcXQgg4OjpCoVAYOhwiqgIUCgVMTU1x//595OTkwNzcvFw+x+g7weRjvaVsWPMjIn0qr1qf1meU+ye86lgFJCIySkyAz7ACQ/rm6emJBQsW6Lx9SEgIbG1t9RZPVfLGG29g/PjxFfJZX3/9NT766KMK+Sxj8e6772LevHmGDoMJkOMAjdOwYcPQt2/fcv2Mc+fOlfjCWViyHDBgAG7duqXz54eEhEAikWhezs7O6NWrF65du6bzPl8VO3fuxDfffFPun/Po0SMsXLgQ//d//1dg2alTp2BiYoJu3boVWHbkyBFIJBIkJSUVWNa8eXNMnz5dqyw8PBz9+/eHs7MzzM3N4ePjg9GjR5fp+y+JZcuWwcvLC+bm5mjZsiWOHz/+0m2WLl2KBg0aQKFQoF69evjxxx8LrLNgwQLUq1cPCoUC7u7umDBhArKysjTLp02bhtmzZyMlJUWvx1NaRp8A83E2CNI3R0dHWFhY6Ly9QqEo84Pnra2tERsbi5iYGPz+++9IT09Hz549kZOTU6b9vkx5jwm1s7ODlZVVuX4GAKxduxb+/v7w9PQssGzdunX47LPPcOLECURFRen8Gb/99hvatGmD7OxsbNq0CdevX8fGjRthY2ODr7/+ugzRF2/btm0YP348pk6divDwcLRv3x7du3cv9liWL1+OKVOmYPr06bh27RpmzJiBsWPH4tdff9Wss2nTJkyePBnBwcG4fv061q5di23btmHKlCmadZo2bQpPT09s2rSp3I6vRISRSU5OFgBEcnKyEEII7ym/C4+vfhOxSZkGjqxyyszMFBERESIzs3Kdv6FDh4o+ffoUufzIkSPitddeE3K5XNSoUUN89dVXIjc3V7M8JSVFDBo0SFhYWIgaNWqIefPmiQ4dOojPP/9cs46Hh4eYP3++5n1wcLBwd3cXcrlcuLi4iM8++0wIIUSHDh0E8u5Ga15CCLF+/XphY2OjFdcvv/wiWrZsKczMzIS9vb3o169fkcdQ2PZ79uwRAMTly5c1ZSdPnhTt27cX5ubmombNmuKzzz4TaWlpmuUxMTGiR48ewtzcXHh6eopNmzYVODYAYvny5aJ3797CwsJCTJs2TfN5LVq0EGZmZsLLy0tMnz5d6zwWdU6EEGLp0qWiTp06wszMTDg5OYl33nlHs+zFc/3kyRPx4YcfCltbW6FQKES3bt3ErVu3CpyL/fv3i/r16wtLS0sREBAgYmJiijx/QgjRpEkTsWTJkgLlaWlpwsrKSty4cUMMGDBAzJgxQ2v54cOHBQDx9OnTAts2a9ZMBAcHCyGESE9PFw4ODqJv376Ffn5h2+tLq1atRGBgoFZZ/fr1xeTJk4vcxt/fX3z55ZdaZZ9//rlo166d5v3YsWNFp06dtNYJCgoS//rXv7TKpk+fLtq3b1/kZxV3bXnxOq4r1gCf4T1A/RBCICNHaZCX0NNA/IcPH6JHjx547bXXcOnSJSxfvhxr167FrFmzNOsEBQXh5MmT2LNnD0JDQ3H8+HFcuHChyH1u374d8+fPx8qVK3H79m3s3r0bTZo0AZDXnFezZk3MnDkTsbGxiI2NLXQfv//+O95++2307NkT4eHh+PPPP+Hn51fi40pKSsLmzZsBAKampgCAK1euICAgAG+//TYuX76Mbdu24cSJE/j000812w0ZMgQxMTE4cuQIduzYgVWrVuHx48cF9h8cHIw+ffrgypUrGDFiBP744w988MEHGDduHCIiIrBy5UqEhIRg9uzZLz0n58+fx7hx4zBz5kzcvHkT+/fvx+uvv17ksQ0bNgznz5/Hnj17cPr0aQgh0KNHD62aaEZGBv773/9i48aNOHbsGKKiovDll18Wuc+nT5/i6tWrhZ7jbdu2oV69eqhXrx4++OADrF+/Xqffvz/++AMJCQmYNGlSocuLuwccGBiIatWqFfsqqjaXk5ODsLAwdO3aVau8a9euOHXqVJGfmZ2dXWBIgkKhwNmzZzXn+l//+hfCwsJw9uxZAMDdu3exd+9e9OzZU2u7Vq1a4ezZs8jOzi7y88obxwEaOoAqJjNXhYbT/jDIZ0fMDICFvOy/0suWLYO7uzuWLFkCiUSC+vXrIyYmBl999RWmTZuG9PR0bNiwAZs3b8abb74JAFi/fj1cXV2L3GdUVBRq1KiBzp07w9TUFLVq1UKrVq0A5DXnmZiYwMrKCjVq1ChyH7Nnz8bAgQMxY8YMTVmzZs2KPZbk5GRUq1Yt7w+TjAwAQO/evVG/fn0AwPfff49BgwZpOpTUrVsXixYtQocOHbB8+XLcu3cPBw8exLlz5zSJYM2aNahbt26Bzxo0aBBGjBihef/hhx9i8uTJGDp0KACgdu3a+OabbzBp0iQEBwcXe06ioqJgaWmJt956C1ZWVvDw8ICvr2+hx3j79m3s2bMHJ0+eRNu2bQHkNcO5u7tj9+7d6N+/P4C8ZtkVK1bA29sbAPDpp59i5syZRZ67+/fvQwhR6Pe6du1afPDBBwCAbt26IS0tDX/++Sc6d+5c5P6Kih2A5vsojZkzZxabwAEU+TuZkJAAlUoFZ2dnrXJnZ2fExcUVub+AgACsWbMGffv2RYsWLRAWFoZ169YhNzcXCQkJcHFxwcCBAxEfH49//etfEEJAqVTik08+weTJk7X25ebmhuzsbMTFxcHDw6OER61fRp8A87ECSPmuX78Of39/rbGN7dq10zzy7enTp8jNzdVcrAHAxsYG9erVK3Kf/fv3x4IFC1C7dm1069YNPXr0QK9evSCTlfy/4MWLFzF69OhSHYuVlRUuXLgApVKJo0eP4vvvv8eKFSs0y8PCwvD3339r3YsRQkCtViMyMhK3bt2CTCZDixYtNMvr1KmD6tWrF/isF2tKYWFhOHfunKbGB+Q9OSgrKwsZGRnFnpMuXbrAw8NDs6xbt27o169fofdUr1+/DplMhtatW2vK7O3tUa9ePVy/fl1TZmFhoUl+AODi4lJoTTZfZmYmABSo8dy8eRNnz57Fzp07AQAymQwDBgzAunXrSp0Ay9Jq4eTkVOZ7xC+O3xVCFDum9+uvv0ZcXBzatGkDIQScnZ0xbNgwfPfddzAxMQGQ1wFo9uzZWLZsGVq3bo2///4bn3/+OVxcXLTuaeY/OCP/DzNDMPoEqK9mM8qjMDVBxMwAg322PhR2Ecj/PZFIJFo/F7ZOYdzd3XHz5k2Ehobi4MGDGDNmDL7//nscPXpU0xz5Mro8aUcqlaJOnToA8moZcXFxGDBgAI4dOwYgb4qzjz/+GOPGjSuwba1atXDz5s1C91vYsVpaWmq9V6vVmDFjBt5+++0C65qbmxd7TvIT95EjR3DgwAFMmzYN06dPx7lz5wo0CxZ13l/8Hl88z89/l4VxcHAAkNcU6ujoqClfu3YtlEol3NzctD7L1NQUT58+RfXq1WFtbQ0grwb+YrxJSUmwsbEBAPj4+AAAbty4AX9//yJjKUxgYCD+97//FbtOREQEatWqVeixmZiYFKjtPX78uECt8HkKhQLr1q3DypUr8ejRI7i4uGDVqlWwsrLSnK+vv/4aH374IUaNGgUAaNKkCdLT0/HRRx9h6tSpmgHuT548AQCtc1vReA8wH6uAeiGRSGAhlxnkpa+n0TRs2BCnTp3SujieOnUKVlZWcHNzg7e3N0xNTTX3OAAgJSVF05xVFIVCgd69e2PRokU4cuQITp8+jStXrgAA5HI5VCpVsds3bdoUf/75ZxmODJgwYQIuXbqEXbt2AQBatGiBa9euoU6dOgVecrkc9evXh1KpRHh4uGYff//9d6Hd+1/UokUL3Lx5s9B9518EizsnMpkMnTt3xnfffYfLly/j3r17OHToUIHPadiwIZRKJf766y9NWWJiIm7duoUGDRrofK68vb1hbW2NiIgITZlSqcSPP/6IH374ARcvXtS8Ll26BA8PD01NOv/5lefOndPaZ2xsLB4+fKhpLejatSscHBzw3XffFRpDced55syZWjEU9iqqCVQul6Nly5YIDQ3VKg8NDdU0IxfH1NQUNWvWhImJCbZu3Yq33npL851mZGQUeIqLiYkJhBBa/6euXr2KmjVrahKnIbAGaOgAyGCSk5Nx8eJFrTI7OzuMGTMGCxYswGeffYZPP/0UN2/eRHBwMIKCgiCVSmFlZYWhQ4di4sSJsLOzg5OTE4KDgyGVSotMwiEhIVCpVGjdujUsLCywceNGKBQKzb0PT09PHDt2DAMHDoSZmVmhF4Xg4GC8+eab8Pb2xsCBA6FUKrFv374iO1AUxtraGqNGjUJwcDD69u2Lr776Cm3atMHYsWMxevRoWFpa4vr16wgNDcXixYtRv359dO7cGR999BGWL18OU1NTfPHFF1AoFC/9g2PatGl466234O7ujv79+0MqleLy5cu4cuUKZs2aVew5+e2333D37l28/vrrqF69Ovbu3Qu1Wl1oM3PdunXRp08fjB49GitXroSVlRUmT54MNzc39OnTp8Tn5kVSqRSdO3fGiRMnNGNGf/vtNzx9+hQjR47U1OLyvfvuu1i7di0+/fRTWFlZ4eOPP8YXX3wBmUyGZs2aISYmBlOnTkWDBg00nU8sLS2xZs0a9O/fH71798a4ceNQp04dJCQk4KeffkJUVBS2bt1aaHxlbQINCgrChx9+CD8/P/j7+2PVqlWIiopCYGCgZp0pU6bg4cOHmrF+t27dwtmzZ9G6dWs8ffoU8+bNw9WrV7FhwwbNNr169cK8efPg6+uraQL9+uuv0bt3b00zKQAcP368QCecClemPqSV0IvdZz0n/yY8vvpNPE7JMnBklVNlHgaBF4YeABBDhw4VQug2DKJVq1ZaXcifHyqwa9cu0bp1a2FtbS0sLS1FmzZtxMGDBzXrnj59WjRt2lSYmZkVOwxix44donnz5kIulwsHBwfx9ttvF3mMhW0vhBD3798XMplMbNu2TQghxNmzZ0WXLl1EtWrVhKWlpWjatKmYPXu2Zv2YmBjRvXt3YWZmJjw8PMTmzZuFk5OTWLFihWYdAGLXrl0FPmv//v2ibdu2QqFQCGtra9GqVSuxatWql56T48ePiw4dOojq1asLhUIhmjZtqolXiKKHQdjY2AiFQiECAgIKHQbxvF27domXXQL3798v3NzchEqlEkII8dZbb4kePXoUum5YWJgAIMLCwoQQQmRlZYmZM2eKBg0aCIVCITw8PMSwYcNEbGxsgW3PnTsn3n77beHo6CjMzMxEnTp1xEcffSRu375dbHxltXTpUuHh4SHkcrlo0aKFOHr0qNbyoUOHig4dOmjeR0REiObNm2u+zz59+ogbN25obZObmyumT58uvL29hbm5uXB3dxdjxozRGtKRmZkprK2txenTp4uMrSKGQUiEMK6bYCkpKbCxsUFycjKsra3hOfl3AMC5qZ3haGVm4Ogqn6ysLERGRmqeJmGs0tPT4ebmhh9++AEjR440dDjl6sGDB3B3d8fBgwc1vWCrKiEE2rRpg/Hjx+P99983dDhVxtKlS/HLL7/gwIEDRa5T3LXlxeu4roy+CTQfxwFSaYSHh+PGjRto1aoVkpOTNd3py9Lk9qo6dOgQ0tLS0KRJE8TGxmLSpEnw9PQsdlxeVSGRSLBq1SpcvnzZ0KFUKaampli8eLGhw2ACJNLVf//7X9y8eVPToeD48eMGvaFfXnJzc/F///d/uHv3LqysrNC2bVts2rSpxL1XK7tmzZq9dLwllc6r8nBxJsBnWAGk0vD19UVYWJihw6gQAQEBCAgwzNAWovLEYRBERGSUjDoBGln/HyIieo5RJ8Dn6WsQtbHiHxNEpE8VcU0x6gTIa3bZ5Q9sLe/55YjIuOQ/I7Q8O1sZvBPMsmXL8P333yM2NhaNGjXCggUL0L59+yLXP3r0KIKCgnDt2jW4urpi0qRJWk8u0BXrf7qRyWSwsLBAfHw8TE1NCzwCiYioNMSzmUseP34MW1tbrafH6JtBE2D+jMTLli1Du3btsHLlSnTv3r3IB7hGRkaiR48eGD16NP73v//h5MmTGDNmDBwdHfHOO++U+vNZASw7iUQCFxcXREZG4v79+4YOh4iqCFtb22KnB9MHgz4JpnXr1mjRogWWL1+uKWvQoAH69u2LuXPnFlj/q6++wp49e7SmOAkMDMSlS5dw+vTpEn3m808QsKxmBe//2wsAuDitC2wt5GU8IuOlVqvZDEpEemFqalpsza/SPwkmf0biFydJLG5G4tOnTxd4eGpAQADWrl2L3NzcQtuKs7OztWYcTklJ0fzMjhv6I5VKjfpRaERU+Rjsho0uMxLHxcUVur5SqURCQkKh28ydOxc2Njaal7u7e6HrSXgXkIjIqBi8x0JpZyQubqLSwkyZMgXJycmaV3R0tGaZiVSCoxPfwNGJb6CaucH7AxERUQUy2FVflxmJa9SoUej6MpkM9vb2hW5jZmYGM7PCZ3mQSCTwsLcsdBkREVVtBkuAz89I3K9fP015aGhokU/U9/f3x6+//qpVduDAAfj5+ZV4rEh+jfH5e4FERFR55F+/y9yPo0yzCZbR1q1bhampqVi7dq2IiIgQ48ePF5aWluLevXtCCCEmT54sPvzwQ836d+/eFRYWFmLChAkiIiJCrF27Vpiamort27eX+DOjo6MLnQiVL7744ouvyvWKjo4uUw4y6I2vAQMGIDExETNnzkRsbCwaN26MvXv3wsPDAwAQGxuLqKgozfpeXl7Yu3cvJkyYgKVLl8LV1RWLFi0q1RhAV1dXREdHw8rKChKJBCkpKXB3d0d0dHSZutNWVTw/L8dzVDyen5fjOSrei+dHCIHU1FS4urqWab9GNyP8i/Q1nqSq4vl5OZ6j4vH8vBzPUfHK6/wYvBcoERGRITABEhGRUTL6BGhmZobg4OAih0oYO56fl+M5Kh7Pz8vxHBWvvM6P0d8DJCIi42T0NUAiIjJOTIBERGSUmACJiMgoMQESEZFRMooEuGzZMnh5ecHc3BwtW7bE8ePHi13/6NGjaNmyJczNzVG7dm2sWLGigiI1jNKcn507d6JLly5wdHSEtbU1/P398ccff1RgtIZR2t+hfCdPnoRMJkPz5s3LN0ADK+35yc7OxtSpU+Hh4QEzMzN4e3tj3bp1FRStYZT2HG3atAnNmjWDhYUFXFxcMHz4cCQmJlZQtBXr2LFj6NWrF1xdXSGRSLB79+6XbqOX63SZHqRWCeQ/b3T16tUiIiJCfP7558LS0lLcv3+/0PXznzf6+eefi4iICLF69epSP2+0Mint+fn888/Ff/7zH3H27Flx69YtMWXKFGFqaiouXLhQwZFXnNKeo3xJSUmidu3aomvXrqJZs2YVE6wB6HJ+evfuLVq3bi1CQ0NFZGSk+Ouvv8TJkycrMOqKVdpzdPz4cSGVSsXChQvF3bt3xfHjx0WjRo1E3759KzjyirF3714xdepUsWPHDgFA7Nq1q9j19XWdrvIJsFWrViIwMFCrrH79+mLy5MmFrj9p0iRRv359rbKPP/5YtGnTptxiNKTSnp/CNGzYUMyYMUPfob0ydD1HAwYMEP/+979FcHBwlU6ApT0/+/btEzY2NiIxMbEiwnsllPYcff/996J27dpaZYsWLRI1a9YstxhfFSVJgPq6TlfpJtCcnByEhYWha9euWuVdu3bFqVOnCt3m9OnTBdYPCAjA+fPnkZubW26xGoIu5+dFarUaqampsLOzK48QDU7Xc7R+/XrcuXMHwcHB5R2iQelyfvbs2QM/Pz989913cHNzg4+PD7788ktkZmZWRMgVTpdz1LZtWzx48AB79+6FEAKPHj3C9u3b0bNnz4oI+ZWnr+t0lZ4GPSEhASqVqsAEu87OzgUm1s0XFxdX6PpKpRIJCQlwcXEpt3grmi7n50U//PAD0tPT8d5775VHiAanyzm6ffs2Jk+ejOPHj0Mmq9L/xXQ6P3fv3sWJEydgbm6OXbt2ISEhAWPGjMGTJ0+q5H1AXc5R27ZtsWnTJgwYMABZWVlQKpXo3bs3Fi9eXBEhv/L0dZ2u0jXAfBKJROu9EKJA2cvWL6y8qijt+cm3ZcsWTJ8+Hdu2bYOTk1N5hfdKKOk5UqlUGDRoEGbMmAEfH5+KCs/gSvM7pFarIZFIsGnTJrRq1Qo9evTAvHnzEBISUmVrgUDpzlFERATGjRuHadOmISwsDPv370dkZCQCAwMrItRKQR/X6Sr956mDgwNMTEwK/JX1+PHjAn895KtRo0ah68tkMtjb25dbrIagy/nJt23bNowcORI///wzOnfuXJ5hGlRpz1FqairOnz+P8PBwfPrppwDyLvhCCMhkMhw4cACdOnWqkNgrgi6/Qy4uLnBzc4ONjY2mrEGDBhBC4MGDB6hbt265xlzRdDlHc+fORbt27TBx4kQAQNOmTWFpaYn27dtj1qxZVaolShf6uk5X6RqgXC5Hy5YtERoaqlUeGhqKtm3bFrqNv79/gfUPHDgAPz8/mJqallushqDL+QHyan7Dhg3D5s2bq/w9idKeI2tra1y5cgUXL17UvAIDA1GvXj1cvHgRrVu3rqjQK4Quv0Pt2rVDTEwM0tLSNGW3bt2CVCpFzZo1yzVeQ9DlHGVkZEAq1b48m5iYAPinpmPM9HadLlWXmUoov/vx2rVrRUREhBg/frywtLQU9+7dE0IIMXnyZPHhhx9q1s/vXjthwgQREREh1q5daxTDIEp6fjZv3ixkMplYunSpiI2N1bySkpIMdQjlrrTn6EVVvRdoac9PamqqqFmzpnj33XfFtWvXxNGjR0XdunXFqFGjDHUI5a6052j9+vVCJpOJZcuWiTt37ogTJ04IPz8/0apVK0MdQrlKTU0V4eHhIjw8XAAQ8+bNE+Hh4ZphIuV1na7yCVAIIZYuXSo8PDyEXC4XLVq0EEePHtUsGzp0qOjQoYPW+keOHBG+vr5CLpcLT09PsXz58gqOuGKV5vx06NBBACjwGjp0aMUHXoFK+zv0vKqeAIUo/fm5fv266Ny5s1AoFKJmzZoiKChIZGRkVHDUFau052jRokWiYcOGQqFQCBcXFzF48GDx4MGDCo66Yhw+fLjY60p5Xac5HRIRERmlKn0PkIiIqChMgEREZJSYAImIyCgxARIRkVFiAiQiIqPEBEhEREaJCZCIiIwSEyARERklJsBKKiQkBLa2toYOQ2eenp5YsGBBsetMnz4dzZs3r5B4XjWHDh1C/fr1oVarK+TzXpXvQ5fPkEgk2L17d5k+d9iwYejbt2+Z9qEPpT3+VatWwd3dHVKpFAsWLNDLd3Tv3j1IJBJcvHgRAHDlyhXUrFkT6enpZdrvK6nMz7AhnQ0dOrTQx//cvn37pduuX79e2NjYlFts69ev14qpRo0aon///uLu3bt62f/jx49Fenq65j0KmQU6NTVVJCQk6OXzivLicTo5OYm33npLXL16tdT70ef30bJlS/Hjjz8WGWdV/T50eWxcYbGW1tChQ0WfPn3KtI/SKus5Tk5OFqampmLx4sUiJiZGpKen6+U7ioyMFABEeHi4pqxfv37im2++KdN+X0WsARpYt27dEBsbq/Xy8vIydFgA8mY2iI2NRUxMDDZv3oyLFy+id+/eUKlUZd63o6MjLCwsil2nWrVqFTIF1fPH+fvvvyM9PR09e/ZETk5OuX92YU6dOoXbt2+jf//+RcZZlb8PY1aacxwVFYXc3Fz07NkTLi4usLCwKLfvaPjw4Vi+fLleftdeJUyABmZmZoYaNWpovUxMTDBv3jw0adIElpaWcHd3x5gxY7Smj3nRpUuX0LFjR1hZWcHa2hotW7bE+fPnNctPnTqF119/HQqFAu7u7hg3btxLmzQkEglq1KgBFxcXdOzYEcHBwbh69Sr+/vtvAMDy5cvh7e0NuVyOevXqYePGjVrbT58+HbVq1YKZmRlcXV0xbtw4zbLnm9w8PT0BAP369YNEItG8f745548//oC5uTmSkpK0PmPcuHHo0KGD3o7Tz88PEyZMwP3793Hz5k3NOsV9H0eOHMHw4cORnJwMiUQCiUSC6dOnAwBycnIwadIkuLm5wdLSEq1bt8aRI0eKjWfr1q3o2rUrzM3Ni4yzKn8fzzt37hy6dOkCBwcH2NjYoEOHDrhw4UKB9WJjY9G9e3coFAp4eXnh559/1lr+8OFDDBgwANWrV4e9vT369OmDe/fulTiOwmzfvh1NmjSBQqGAvb09OnfurDm2l8VdknMM5P1utWrVCpaWlrC1tUW7du1w//59hISEoEmTJgCA2rVrQyKR4N69e4U2ga5fvx4NGjSAubk56tevj2XLlmktP3v2LHx9fWFubg4/Pz+Eh4cXONaAgAAkJibi6NGjZTpnrxomwFeUVCrFokWLcPXqVWzYsAGHDh3CpEmTilx/8ODBqFmzJs6dO4ewsDBMnjxZMy/WlStXEBAQgLfffhuXL1/Gtm3bcOLECc2ErSWlUCgAALm5udi1axc+//xzfPHFF7h69So+/vhjDB8+HIcPHwaQd3GYP38+Vq5cidu3b2P37t2a/7AvOnfuHIC8/6ixsbGa98/r3LkzbG1tsWPHDk2ZSqXCTz/9hMGDB+vtOJOSkrB582YA0JpXrLjvo23btliwYIGmhhYbG4svv/wSQN5fzidPnsTWrVtx+fJl9O/fH926dcPt27eLjOHYsWPw8/N7aazG8H2kpqZi6NChOH78OM6cOYO6deuiR48eSE1N1Vrv66+/xjvvvINLly7hgw8+wPvvv4/r168DyJtbr2PHjqhWrRqOHTuGEydOoFq1aujWrVuRtfyQkJBiZxaPjY3F+++/jxEjRuD69es4cuQI3n77bc1cfS+LuyTnWKlUom/fvujQoQMuX76M06dP46OPPoJEIsGAAQNw8OBBAHkJLDY2Fu7u7gX2sXr1akydOhWzZ8/G9evXMWfOHHz99dfYsGEDACA9PR1vvfUW6tWrh7CwMEyfPl3zu/s8uVyOZs2a4fjx40Wek0rJ0G2wxmzo0KHCxMREWFpaal7vvvtuoev+9NNPwt7eXvP+xXtOVlZWIiQkpNBtP/zwQ/HRRx9plR0/flxIpVKRmZlZ6DYv7j86Olq0adNG1KxZU2RnZ4u2bduK0aNHa23Tv39/0aNHDyGEED/88IPw8fEROTk5he7fw8NDzJ8/X/MehdwPefF+0Lhx40SnTp007//44w8hl8vFkydPynScAISlpaWwsLDQ3GPr3bt3oevne9n3IYQQf//9t5BIJOLhw4da5W+++aaYMmVKkfu2sbHRuv9X2P6r6vfxsnuASqVSWFlZiV9//VUr1sDAQK31WrduLT755BMhhBBr164V9erVE2q1WrM8OztbKBQK8ccffwghCt4D3Llzp6hXr16RcYSFhQkAmvn8XqaouIs7x4mJiQKAOHLkSKH7zJ87LzIystDthRDC3d1dbN68WWu7b775Rvj7+wshhFi5cqWws7PTuv+7fPnyAvcAhci7Dzhs2LASHW9lwRqggXXs2FFr9vBFixYBAA4fPowuXbrAzc0NVlZWGDJkCBITE4tsPgoKCsKoUaPQuXNnfPvtt7hz545mWVhYGEJCQlCtWjXNKyAgAGq1GpGRkUXGlpycjGrVqmma/XJycrBz507I5XJcv34d7dq101q/Xbt2mr+6+/fvj8zMTNSuXRujR4/Grl27oFQqy3SuBg8ejCNHjiAmJgYAsGnTJvTo0QPVq1cv03FaWVnh4sWLCAsLw4oVK+Dt7Y0VK1ZorVPa7wMALly4ACEEfHx8tGI6evSo1vfzoszMzALNn4DxfB/Pe/z4MQIDA+Hj4wMbGxvY2NggLS0NUVFRWuv5+/sXeJ9/7GFhYfj7779hZWWlicPOzg5ZWVlFfg/9+vXDjRs3ioyrWbNmePPNN9GkSRP0798fq1evxtOnT0sdd3Hs7OwwbNgwBAQEoFevXli4cCFiY2NLvH18fDyio6MxcuRIre9g1qxZmuO+fv06mjVrpnX/98VzmU+hUCAjI6PEn18ZyAwdgLGztLREnTp1tMru37+PHj16IDAwEN988w3s7Oxw4sQJjBw5Erm5uYXuZ/r06Rg0aBB+//137Nu3D8HBwdi6dSv69esHtVqNjz/+WOueT75atWoVGZuVlRUuXLgAqVQKZ2dnWFpaai1/sYlICKEpc3d3x82bNxEaGoqDBw9izJgx+P7773H06FGtpsXSaNWqFby9vbF161Z88skn2LVrF9avX69ZrutxSqVSzXdQv359xMXFYcCAATh27BgA3b6P/HhMTEwQFhYGExMTrWXVqlUrcjsHBweti2k+Y/k+njds2DDEx8djwYIF8PDwgJmZGfz9/UvUQSn/2NVqNVq2bIlNmzYVWMfR0bFEcbzIxMQEoaGhOHXqFA4cOIDFixdj6tSp+Ouvv+Dl5VWmuJ+3fv16jBs3Dvv378e2bdvw73//G6GhoWjTps1Lt80fQrN69Wq0bt26QPwANE22JfHkyRN4e3uXIvpXHxPgK+j8+fNQKpX44YcfIJXmVdJ/+umnl27n4+MDHx8fTJgwAe+//z7Wr1+Pfv36oUWLFrh27VqBRPsyzyeGFzVo0AAnTpzAkCFDNGWnTp1CgwYNNO8VCgV69+6N3r17Y+zYsahfvz6uXLmCFi1aFNifqalpiXqYDRo0CJs2bULNmjUhlUrRs2dPzTJdj/NFEyZMwLx587Br1y7069evRN+HXC4vEL+vry9UKhUeP36M9u3bl/jzfX19ERERUaDcGL+P48ePY9myZejRowcAIDo6GgkJCQXWO3PmjNaxnzlzBr6+vpo4tm3bBicnJ1hbW+scy4skEgnatWuHdu3aYdq0afDw8MCuXbsQFBRUorhLeo59fX3h6+uLKVOmwN/fH5s3by5RAnR2doabmxvu3r2ruS/7ooYNG2Ljxo3IzMzU3FM+c+ZMoetevXoV77777ks/tzJhE+gryNvbG0qlEosXL8bdu3excePGAk1yz8vMzMSnn36KI0eO4P79+zh58iTOnTunufh99dVXOH36NMaOHYuLFy/i9u3b2LNnDz777DOdY5w4cSJCQkKwYsUK3L59G/PmzcPOnTs1N9BDQkKwdu1aXL16VXMMCoUCHh4ehe7P09MTf/75J+Li4gqt/eQbPHgwLly4gNmzZ+Pdd9/VairU13FaW1tj1KhRCA4OhhCiRN+Hp6cn0tLS8OeffyIhIQEZGRnw8fHB4MGDMWTIEOzcuRORkZE4d+4c/vOf/2Dv3r1Ffn5AQABOnDhRqpir6vdRp04dbNy4EdevX8dff/2FwYMHay7Uz/v555+xbt063Lp1C8HBwTh79qyms83gwYPh4OCAPn364Pjx44iMjMTRo0fx+eef48GDB4V+7q5du1C/fv0i4/rrr78wZ84cnD9/HlFRUdi5cyfi4+M1/+dKEvfLznFkZCSmTJmC06dP4/79+zhw4ABu3bql9UfNy0yfPh1z587FwoULcevWLVy5cgXr16/HvHnzAOT9ASOVSjFy5EhERERg7969+O9//1tgP/fu3cPDhw/RuXPnEn92pWDQO5BGrrjBt/PmzRMuLi5CoVCIgIAA8eOPPwoA4unTp0II7U4R2dnZYuDAgcLd3V3I5XLh6uoqPv30U62OBmfPnhVdunQR1apVE5aWlqJp06Zi9uzZRcZWkoHdy5YtE7Vr1xampqbCx8dHq+PGrl27ROvWrYW1tbWwtLQUbdq0EQcPHtQsf7HTxZ49e0SdOnWETCYTHh4eQoiiO0S89tprAoA4dOhQgWX6Os779+8LmUwmtm3bJoR4+fchhBCBgYHC3t5eABDBwcFCCCFycnLEtGnThKenpzA1NRU1atQQ/fr1E5cvXy4ypidPngiFQiFu3Ljx0jifVxW+jxc/48KFC8LPz0+YmZmJunXrip9//rnQDjtLly4VXbp0EWZmZsLDw0Ns2bJFa7+xsbFiyJAhwsHBQZiZmYnatWuL0aNHi+TkZCFEwf+L+Z2jihIRESECAgKEo6OjMDMzEz4+PmLx4sWlivtl5zguLk707dtXuLi4CLlcLjw8PMS0adOESqUSQpSsE4wQQmzatEk0b95cyOVyUb16dfH666+LnTt3apafPn1aNGvWTMjlctG8eXOxY8eOAp1g5syZIwICAoo8H5WVRIhSNAITUYWYNGkSkpOTsXLlSkOHQkYuOzsbdevWxZYtWwp0tKrs2ARK9AqaOnUqPDw8qtyTN6jyuX//PqZOnVrlkh8AsAZIRERGiTVAIiIySkyARERklJgAiYjIKDEBEhGRUWICJCIio8QESERERokJkIiIjBITIBERGSUmQCIiMkr/D1EkjIEhipxWAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvXElEQVR4nO3deVxUVf8H8M8szDDsCoKACLjgkhuKC5qZppKampVL7nukZsqTpo8lai7VU2bmngvmT81yy8qNcl9KRcx9SVFQIUVlX2fm/P5AJkcWZ4aBceDzfr3mJXPuvWe+945yv557FokQQoCIiIionJBaOgAiIiIic2JyQ0REROUKkxsiIiIqV5jcEBERUbnC5IaIiIjKFSY3REREVK4wuSEiIqJyhckNERERlStMboiIiKhcYXJDRMWKiIiARCLRveRyOTw9PdGvXz9cu3at0GNyc3OxdOlSBAcHw9nZGSqVCvXq1cOUKVPw4MGDQo/RarVYt24dOnbsCDc3N9jY2MDd3R2vvfYafv75Z2i12mfGmp2djUWLFuHFF19EpUqVoFAo4O3tjT59+uDgwYMlug5EZD2Y3BCRQdasWYPjx4/jt99+w7hx47Bjxw68+OKLePTokd5+GRkZ6NSpE9577z0EBgZi48aN2LlzJwYNGoQVK1YgMDAQV65c0TsmKysLXbt2xZAhQ+Du7o6lS5di3759WLZsGby8vNC7d2/8/PPPxcaXmJiINm3aICwsDA0aNEBERAR+//13fPnll5DJZHjllVfw119/mf26ENFzSBARFWPNmjUCgDh58qRe+cyZMwUAsXr1ar3y0aNHCwDi+++/L1DXlStXhLOzs3jhhReEWq3Wlb/77rsCgFi7dm2hMVy9elX89ddfxcbZpUsXIZfLxe+//17o9hMnTohbt24VW4ehMjIyzFIPEZUOttwQkUmCgoIAAP/884+uLCEhAatXr0ZISAj69u1b4JiAgAB8+OGHuHDhArZv3647ZuXKlQgJCcHgwYML/azatWujUaNGRcYSFRWFXbt2YcSIEejQoUOh+zRv3hzVq1cHAMyYMQMSiaTAPvmP4G7evKkr8/Pzw2uvvYatW7ciMDAQtra2mDlzJgIDA9G2bdsCdWg0Gnh7e+ONN97QleXk5GD27NmoW7culEolqlSpgmHDhuH+/ftFnhMRmY7JDRGZJCYmBkBewpJv//79UKvVeP3114s8Ln9bZGSk7pjc3Nxij3mWvXv36tVtbqdPn8akSZMwfvx47N69G2+++SaGDRuGI0eOFOh3tHfvXty9exfDhg0DkNeXqGfPnvj000/Rv39//Prrr/j0008RGRmJl19+GZmZmaUSM1FFJrd0AERkHTQaDdRqNbKysnD06FHMnj0bL730Enr06KHbJzY2FgDg7+9fZD352/L3NeSYZzFHHcW5d+8eLl68qJfI1ahRA5MmTUJERATmzJmjK4+IiICHhwe6dOkCAPjhhx+we/dubNmyRa81p3HjxmjevDkiIiLw7rvvlkrcRBUVW26IyCCtWrWCjY0NHB0d8eqrr6JSpUr46aefIJeb9n+kwh4LPa8aNWqkl9gAgKurK7p37461a9fqRnI9evQIP/30EwYPHqy7Lr/88gtcXFzQvXt3qNVq3atJkyaoWrUqDhw4UNanQ1TuMbkhIoN89913OHnyJPbt24d33nkHly5dwttvv623T36flvxHVoXJ3+bj42PwMc9ijjqK4+npWWj58OHDcefOHd0jto0bNyI7OxtDhw7V7fPPP/8gKSkJCoUCNjY2eq+EhAQkJiaWSsxEFRmTGyIySL169RAUFIT27dtj2bJlGDlyJHbv3o3Nmzfr9mnfvj3kcrmus3Bh8rd16tRJd4yNjU2xxzxLSEiIXt3PYmtrCyBvXpwnFZVoFNXKFBISAi8vL6xZswZA3nD5li1bon79+rp93Nzc4OrqipMnTxb6WrJkiUExE5HhmNwQkUk+//xzVKpUCdOnT9c9lqlatSqGDx+OPXv2YNOmTQWOuXr1Kj777DO88MILus6/VatWxciRI7Fnzx589913hX7W9evXcfbs2SJjadq0Kbp06YJVq1Zh3759he5z6tQpXd8cPz8/AChQ57Pm0nmaTCbDoEGDsH37dhw+fBinTp3C8OHD9fZ57bXX8ODBA2g0GgQFBRV41alTx6jPJCIDWHosOhE934qa50YIIT7//HMBQKxbt05XlpaWJtq1ayfkcrkYM2aM2LVrl9i3b5+YO3euqFy5sqhWrZq4fPmyXj2ZmZkiJCRESCQS0b9/f/Hjjz+KQ4cOia1bt4p3331X2Nraiu3btxcb5/3790WzZs2EQqEQoaGh4qeffhKHDh0SmzZtEgMHDhQymUycOXNGCCFEcnKyqFy5smjYsKHYtm2b+Pnnn8Wbb74p/P39BQARExOjq9fX11d069atyM+9cuWKACCqVasmVCqVSEpK0tuuVqtFly5dROXKlcXMmTPFrl27xG+//SYiIiLEkCFDxNatW4s9LyIyHpMbIipWcclNZmamqF69uqhdu7bepHw5OTli8eLFomXLlsLBwUEolUpRp04dMXnyZJGYmFjo56jVarF27VrRoUMHUblyZSGXy0WVKlVEly5dxIYNG4RGo3lmrJmZmWLhwoUiODhYODk5CblcLry8vMQbb7whfv31V719T5w4IVq3bi3s7e2Ft7e3CA8PFytXrjQ6uRFCiNatWwsAYsCAAYVuz83NFV988YVo3LixsLW1FQ4ODqJu3brinXfeEdeuXXvmeRGRcSRCCGHBhiMiIiIis2KfGyIiIipXmNwQERFRucLkhoiIiMoVJjdERERUrjC5ISIionKFyQ0RERGVKxVuVXCtVou7d+/C0dHRqhbuIyIiqsiEEEhNTYWXlxek0uLbZipccnP37l3dgn1ERERkXeLi4lCtWrVi96lwyY2joyOAvIvj5ORk4WiIiIjIECkpKfDx8dHdx4tT4ZKb/EdRTk5OTG6IiIisjCFdStihmIiIiMoVJjdERERUrjC5ISIionKFyQ0RERGVK0xuiIiIqFxhckNERETlCpMbIiIiKleY3BAREVG5wuSGiIiIyhUmN0RERFSuWDS5OXToELp37w4vLy9IJBJs3779mcccPHgQzZo1g62tLWrUqIFly5aVfqBERERkNSya3KSnp6Nx48ZYtGiRQfvHxMSga9euaNu2LaKjo/Hf//4X48ePx5YtW0o5UiIiIrIWFl04s0uXLujSpYvB+y9btgzVq1fHggULAAD16tXDqVOn8MUXX+DNN98spSiJiIj0CSEe//lEWWHb9cry9xMFymDgfsV9hhBAdq4GeHJdyafqL+TjCsQgntqr0BgL1KFfIpNK4OmsKuTTyoZVrQp+/PhxdO7cWa8sJCQEq1atQm5uLmxsbAock52djezsbN37lJSUUo+TiKyfViuQpdYgVy2Qo9EiM0eDHI0WgIAQgFbk3QS02rw/hci7CQiIvG0i709AQKMFkjNzoZRLoRX5x+dtz3uff0ze+wdp2ZBJJZBKJdBohd7r2r00eDnb6o7997OerC/vz8sJqfB2UUEiASDybkhPbhfIO1Y8cdyTZWfiklDL3QH5izDnb8978+95P36rd7PVuxkXWv7EsUL/+PyyK/+koqqTLRRyqf411sX+xLXX1f3UeeDfY9RagYwcDWxkEgBPxaj73KKTEjKcu6MSJ6Z1tNjnW1Vyk5CQAA8PD70yDw8PqNVqJCYmwtPTs8Ax8+bNw8yZM8sqRCIqRP7NW63VIiM7L0nIztUiOTM3ryxHg6SMXORoNMjI0SDuYSacVHLkqLW4cDcF3i4qaEXezV0r8hIPzeMb+sXH2yUSQP04AVBrBM7EJcHX1Q4SieTf/R//qdEK3H6Uicr2irw6nyjXCoFcDe9m+R7EPLTo5yekZJm9zorw/Uol+u8lEkmBfQqWAE/vJilsLwOKlDaWHa9kVckNUPALys+yC/viAGDq1KkICwvTvU9JSYGPj0/pBUhkRYTIa5VIy1IjS61FUkYO1BqBbLUW/6RkQSaV4Mb9NDgo5cjVCGTmanD9fhrcHZXI1QiotVqcu50MLxcVDl9LhE9lO1yKT4FEAqhsZFA/ThzU2tK9mVxOSDWqPN/D9ByDP0MulUCtFXCxs4EEgFQigUSS97tHgrybglT3s+Tf94//fJSRgxy1Fv5u9pBKJJA+Plb6ePuT+0qlQOzDDFSvbAdnlQ2kEglk0ryXBBLEPcpAfU+nJ47J/6wn68ur/05SJmq5O+jKAf24ijoHqUQCSIBH6TnwdFHptgN5N7x/f84vzyt4fNjjnyX6x0meuFlKoLtW+vX8W78EQJZaA2eVDYB/z0nyRF1P1q07nyeOz4/tybgUcinkUqnuuH+jh96bJ2/she33ZOxP76d3vKTgdkPrKSwGFLOfjUxS5P2wIrGq5KZq1apISEjQK7t37x7kcjlcXV0LPUapVEKpVJZFeESlQqMVSM3KRY5Gi1yNwMO0HNxJygSQ1/ogk0qgFUCuRovr99LgYmeT10qi0eLqP2mQyySQSyW4kpAKiUSC+2nZkEkkUGu1Zvsf7F+3kwEAl+LzHvsKAWTkaIrcXyrJu8Fk5WphayNFtUp2cLSVw0Eph0KW9+gmKTMX9TydoJBJcTcpE3WrOkLyxE0+/wYuk+adk7+rPWRSCeQyCWRSKWQSCTJy1HB3soXsccIge3y8VCqB7PGN0E4hz6szfx/dNgnslTIoZNK8pII3DCKrYVXJTXBwMH7++We9sr179yIoKKjQ/jZEzxMhBJIzc5Geo0FWrgZ/30vD3/fSIJdKkKvR4sCV+1ApZPgrLglOKhvcfpQJpVyKbLW2TOJTyKSP+5QA/m72yNXkPS56wcsJsQ8z0LR6JV1fhYfpuQjwcIBcJoVCJsGjjFzUreoIAPB1tYdcJkEVByWk0rzESip5/KdUAjuFDDYyTrFFRKXHoslNWloa/v77b937mJgYnDlzBpUrV0b16tUxdepU3LlzB9999x0AIDQ0FIsWLUJYWBhGjRqF48ePY9WqVdi4caOlToEqoBy1FjmavP4iV/9JRXauFrcfZUAqkSApMxeJadm4kpCKmMR0SCVAYloObG3yWikMlZKlBoACiY1CLoV43CfE0VaOxtVccPtRBgI8HOFoawMbWd5jiHqeTrCVSyGXSZGWrUa1Sio4q2ygFQKeziq42ivgYCuHjUwKG6kUDrZ5rRdEROWBRZObU6dOoX379rr3+X1jhgwZgoiICMTHxyM2Nla33d/fHzt37sTEiROxePFieHl5YeHChRwGTmaTkpWLC3dSkJmrxoO0HDxIz0FCchbO3k7C6dgkk+t9MrFRyKRQ2kiRnZuXJNWt6ogmPi5QyKVIz9YgsLoLKtsrUK2SCo62NnCylcPBNu9xDR+NEBE9m0Q8PTi9nEtJSYGzszOSk5Ph5ORk6XCoDOSotbiXmoVstRYpmblIy1bjZMxDpOdosPt8AhLTsuHmoHzcj8V4fq528K6kwt2kLAT6uKCqsy3cHZVwc1TCWWWje9kp5HC0lcPWRmbmMyQiKv+MuX9bVZ8bIgBIzcrFo/RcXPknFWnZubifmo2tp+9AKZciNVuNrBzN42G9QGJa9rMrBApNbFr4VUYVJyVc7RXwcLJFJTsFGno7w8vFFvbKvEc6fJRDRPT8YXJDz5UctRaPMnJwMzEdCSlZuP0oEzcT05GUmYvIi/+UqG4HpRy2NlIkpuWguV8lAEBwDVdoBdDMrxI8nW3h5qCEmwNH1xERWTMmN1SmHqXn4NydZJy/m4wDV+5DLpXgZmI6bBUy3LifblRdns62SM9Wo4W/K6pVUiFHo0Xrmq7wqWSnGy4sk0qgspGhWiUV+6sQEVUQTG7IrIQQ+CclG7EPM3D+TjKibj1CVq4G99OyceN+OtKy1UbVV9/TCc4qG1S2V6CBtzMa+zijcTUX2Cv5V5eIiArHOwSZLCE5C6djH2H/5Xv4Meo23BwUSEwzfMbXJj4u8K6kQkv/ynBzUKKKoxLujkp4u6gg5zwoRERkIiY3ZLDr99Pw/YlYbDoZh4wcTYEp9Z9MbDyclPCpZAd7pRxOKhs08XFBc79K8HOzh5MtJ1wkIqLSw+SGCnU3KRNH/k7EiZiHSEzLxoEr9wvdz9PZFl4uKlSvbIcXvJzQuX5VuDspOdyZiIgshskNQa3R4uTNR7hwNxm/nI3H+TvJxS506OagxH+71sUr9TweL2hHRET0/GByU0GpNVpsOX0bEcdu6RY7LEzNKvZwd7RF+7pV0LOJNzycbMswSiIiIuMxualAhBD47vgtrDkagwfpOUjN0h+55O2iQnO/SvB1tUcL/8poU8vNQpESERGZjslNBbH/8j0MizhZoLy+pxN6BXpjcGtfKOXsJ0NERNaPyU05JoTA8RsP8FXkVZy8+UhX7qCU44POAXi7ZXUmNEREVO4wuSmHctRa/HfbOWyOuq1XLpUAv7zXFvW9uGAoERGVXyYlN9nZ2Thx4gRu3ryJjIwMVKlSBYGBgfD39zd3fGSEbLUGSw9cx9bTdxD7MENv2zsv1cDkV+tyoUciIir3jEpujh07hm+++Qbbt29HTk4OXFxcoFKp8PDhQ2RnZ6NGjRoYPXo0QkND4ejoWFoxUyF2n09A6P9F6ZW9064GxrSrBWc7DtcmIqKKw+A57nv27Im33noL3t7e2LNnD1JTU/HgwQPcvn0bGRkZuHbtGj766CP8/vvvCAgIQGRkZGnGTcjrU/P9iVj0WHREL7HxdbXDtjGtMbVLPSY2RERU4RjcctO5c2f8+OOPUCgUhW6vUaMGatSogSFDhuDChQu4e/eu2YKkgh6l5+C1b47gTlKmrqxjPQ98EBKAulXZp4aIiCouiRCi6Kloy6GUlBQ4OzsjOTkZTk7WmQQIIdAgfA/SczQAgMbVnDGnV0M08Ha2cGRERESlw5j7N0dLWRkhBHovO65LbLo18sTi/k0tHBUREdHzw+DkplKlSpBIDBtp8/DhQ5MDoqKlZ6vx4mf78CgjFwAwKaQOxravZeGoiIiIni8GJzcLFizQ/fzgwQPMnj0bISEhCA4OBgAcP34ce/bswccff2z2ICmvxebVrw/pEpuRL/ozsSEiIiqESX1u3nzzTbRv3x7jxo3TK1+0aBF+++03bN++3VzxmZ019rkRQmDw6hM4fC0RAPDxa/Ux4kXOKURERBWHMfdvg4eCP2nPnj149dVXC5SHhITgt99+M6VKKsao707pEpsJHWszsSEiIiqGScmNq6srtm3bVqB8+/btcHV1LXFQ9K8df93Fb5fuAQDef6U2JnQMsHBEREREzzeTRkvNnDkTI0aMwIEDB3R9bv744w/s3r0bK1euNGuAFdnha/cxfmO07v3ETkxsiIiInsWk5Gbo0KGoV68eFi5ciK1bt0IIgfr16+Po0aNo2bKluWOskPZeSMDodf/OOvzX9M4WjIaIiMh6cBK/59D91Gw0n/Nv36WfxrZBYx8XywVERERkYaXeoRgArl+/jo8++gj9+/fHvXt5fUJ2796NCxcumFolPTZ0zQndz3snvsTEhoiIyAgmJTcHDx5Ew4YN8eeff2LLli1IS0sDAJw9exbh4eFmDbCiOX8nGRfupgAA3gj0RoAHV1cnIiIyhknJzZQpUzB79mxERkbqLaTZvn17HD9+3GzBVTQ37qehx6Ijuvdf9mlswWiIiIisk0nJzblz59CrV68C5VWqVMGDBw9KHFRFlJWrQYcvD0IrAJlUgkOT2hu83AURERH9y6TkxsXFBfHx8QXKo6Oj4e3tXeKgKqL/7bmi+/n/RrREdVc7C0ZDRERkvUxKbvr3748PP/wQCQkJkEgk0Gq1OHr0KD744AMMHjzY3DGWe0IIrDoSAwB4wcsJwTU5ESIREZGpTEpu5syZg+rVq8Pb2xtpaWmoX78+XnrpJbRu3RofffSRuWMs91YcuqH7OWJYCwtGQkREZP1KNM/N9evXER0dDa1Wi8DAQNSuXducsZWK53GeG78pvwIA2tRyxfqRrSwcDRER0fPHmPu3STMU56tZsyZq1qxZkioqvMPX7ut+Xtgv0IKREBERlQ8GJzdhYWH45JNPYG9vj7CwsGL3nT9/fokDqyjm7bys+9nVQWnBSIiIiMoHg5Ob6Oho5ObmAgBOnz5d5DBlDl823JWEVFyMz5uwb2aPFywcDRERUflgcHLz9ddf655xHThwoLTiqVD6f/uH7udBrXwtGAkREVH5YfBoqcDAQCQmJgIAatSowcn6SigxLRsP0nMAALN6vgCplC1eRERE5mBwcuPi4oKYmLy5WG7evAmtVltqQVUEH207r/t5YEu22hAREZmLwY+l3nzzTbRr1w6enp6QSCQICgqCTCYrdN8bN24UWk7/OvR4lFSn+h5stSEiIjIjg5ObFStW4I033sDff/+N8ePHY9SoUXB05IrVpniYnoOMHA0AIKxTgIWjISIiKl+Mmufm1VdfBQBERUXh/fffZ3Jjot3nE3Q/1/N8PiYSJCIiKi9MWn5hzZo1eolNSkoKtm/fjkuXLpktsPLs0NW8R1INvJnYEBERmZtJyU2fPn2waNEiAEBmZiaCgoLQp08fNGrUCFu2bDFrgOVNtlqD3RfyWm56NuYK6kREROZmUnJz6NAhtG3bFgCwbds2CCGQlJSEhQsXYvbs2WYNsLz579Z/R0m91ayaBSMhIiIqn0xKbpKTk1G5cmUAwO7du/Hmm2/Czs4O3bp1w7Vr18waYHmzNfo2AKBrw6qoZK+wcDRERETlj0nJjY+PD44fP4709HTs3r0bnTt3BgA8evQItra2Zg2wPDl/Jxn5a7DPe6ORZYMhIiIqp0xaFXzChAkYMGAAHBwc4Ovri5dffhlA3uOqhg0bmjO+cmXZwesAgEp2NnBW2Vg4GiIiovLJpORmzJgxaNGiBeLi4tCpUydIpXkNQDVq1GCfm2Lsu3wPAPByHXcLR0JERFR+mZTcAEBQUBCCgoL0yrp161bigMortUarm7hvWBs/ywZDRERUjhmc3ISFheGTTz6Bvb09wsLCit13/vz5JQ6svNl/5b7u5/qcuI+IiKjUGJzcREdHIzc3V/czGefLvVcAAI19XCCXmdSPm4iIiAxgcHKzf//+Qn8mw1xOSAUAvPNSDQtHQkREVL6Z1IQwfPhwpKamFihPT0/H8OHDSxxUeXP+TrLu5yDfShaMhIiIqPwzKblZu3YtMjMzC5RnZmbiu+++M6quJUuWwN/fH7a2tmjWrBkOHz5c7P7r169H48aNYWdnB09PTwwbNgwPHjww6jPL2tG/E3U/uztxHiAiIqLSZFRyk5KSguTkZAghkJqaipSUFN3r0aNH2LlzJ9zdDR/mvGnTJkyYMAHTpk1DdHQ02rZtiy5duiA2NrbQ/Y8cOYLBgwdjxIgRuHDhAn788UecPHkSI0eONOY0ylzkxX8AAB3qcgg4ERFRaTNqKLiLiwskEgkkEgkCAgIKbJdIJJg5c6bB9c2fPx8jRozQJScLFizAnj17sHTpUsybN6/A/n/88Qf8/Pwwfvx4AIC/vz/eeecdfP7558acRpm7di8NAFDL3cHCkRAREZV/RiU3+/fvhxACHTp0wJYtW3TrSwGAQqGAr68vvLy8DKorJycHUVFRmDJlil55586dcezYsUKPad26NaZNm4adO3eiS5cuuHfvHjZv3lzs/DrZ2dnIzs7WvU9JSTEoPnNRa7RIzswbZdaomnOZfjYREVFFZFRy065dOwBATEwMfHx8dDMTmyIxMREajQYeHh565R4eHkhISCj0mNatW2P9+vXo27cvsrKyoFar0aNHD3zzzTdFfs68efOMak0ytyNP9LfhzMRERESlz6TsxNfXF1KpFBkZGbh8+TLOnj2r9zKGRCLRey+EKFCW7+LFixg/fjymT5+OqKgo7N69GzExMQgNDS2y/qlTpyI5OVn3iouLMyq+kvoz5iEAoKG3MxyUJk8ITURERAYy6W57//59DBs2DLt27Sp0u0ajeWYdbm5ukMlkBVpp7t27V6A1J9+8efPQpk0bTJo0CQDQqFEj2Nvbo23btpg9ezY8PT0LHKNUKqFUKp8ZT2nJHwb+Ym03i8VARERUkZjUcjNhwgQ8evQIf/zxB1QqFXbv3o21a9eidu3a2LFjh0F1KBQKNGvWDJGRkXrlkZGRaN26daHHZGRkFHgUJpPJAOS1+DyPEpKzAAC2cpmFIyEiIqoYTGq52bdvH3766Sc0b94cUqkUvr6+6NSpE5ycnDBv3jyDF9AMCwvDoEGDEBQUhODgYKxYsQKxsbG6x0xTp07FnTt3dHPndO/eHaNGjcLSpUsREhKC+Ph4TJgwAS1atDC4I3NZ+/t+3kipVjUqP2NPIiIiMgeTkpv09HTdfDaVK1fG/fv3ERAQgIYNG+L06dMG19O3b188ePAAs2bNQnx8PBo0aICdO3fC19cXABAfH683583QoUORmpqKRYsW4T//+Q9cXFzQoUMHfPbZZ6acRqnLUWuR36BUk8PAiYiIyoRJyU2dOnVw5coV+Pn5oUmTJli+fDn8/PywbNmyQvu9FGfMmDEYM2ZModsiIiIKlL333nt47733TAm7zMU9ytD97GqvsGAkREREFYdJyc2ECRMQHx8PAAgPD0dISAjWr18PhUJRaEJSUV1N+Hf9raJGgBEREZF5mZTcDBgwQPdzYGAgbt68icuXL6N69epwc+OooHzHb+StefVaI+Nas4iIiMh0ps/C9wSlUgmpVKobuUR5Tsc+AgDUcLO3cCREREQVh8lDwVetWgUgb06bl156CU2bNoWPjw8OHDhgzvis2vk7eUs9BFR1tHAkREREFYdJyc3mzZvRuHFjAMDPP/+seyyVv8I3QbeeFAC0rVXFgpEQERFVLCYlN4mJiahatSoAYOfOnejduzcCAgIwYsQInDt3zqwBWqtr//zbmdjZzsaCkRAREVUsJiU3Hh4euHjxIjQaDXbv3o2OHTsCyJtBmP1u8ty4nw4AsLUxS7cmIiIiMpBJo6WGDRuGPn36wNPTExKJBJ06dQIA/Pnnn6hbt65ZA7RWAnmz93GxTCIiorJl0p13xowZaNCgAeLi4tC7d2/dwpQymQxTpkwxa4DW6s6jTABAm1ocGk9ERFSWTG5WeOuttwqUDRkypETBlCfRcUkAgKpOtpYNhIiIqIJhh5BScvFu3jBwGxkvMRERUVninbeUKOV5l9bX1c7CkRAREVUsTG5KyaOMvHlualTh7MRERERliclNKdGIvNFSHuxzQ0REVKaY3JQCIQRy1FoAgK0N5/0hIiIqSyYnN+3bt8fQoUP1yoYMGYIOHTqUNCarl5mr0f2c3/eGiIiIyobJQ8H9/Pzg6empV+bt7Q2plDfzeynZup85iR8REVHZMvnOu2bNmgJlc+fOLVEw5UVMYt7SC36udpBIJBaOhoiIqGJhM0spuP0oAwBQrRKHgRMREZU1g1tuFi5caHCl48ePNymY8iJHkzdSytVBYeFIiIiIKh6Dk5uvvvrKoP0kEkmFT25yNXkjpTg7MRERUdkzOLmJiYkpzTjKlUvx+UsvsL8NERFRWStR00JOTg6uXLkCtVptrnjKhfyU5n5qjkXjICIiqohMSm4yMjIwYsQI2NnZ4YUXXkBsbCyAvL42n376qVkDtEb/PB4KXt/LycKREBERVTwmJTdTp07FX3/9hQMHDsDW9t/lBTp27IhNmzaZLThrdeWfVACAvYKzExMREZU1k+a52b59OzZt2oRWrVrpzeNSv359XL9+3WzBWauH6XmPo6o6c10pIiKismZSy839+/fh7u5eoDw9PZ2T1gFwfDwrsbeLysKREBERVTwmJTfNmzfHr7/+qnufn9B8++23CA4ONk9kVkoIgdTsvA7WXBGciIio7Jn0WGrevHl49dVXcfHiRajVanz99de4cOECjh8/joMHD5o7RquS/Xg1cABwsrWxYCREREQVk0ktN61bt8bRo0eRkZGBmjVrYu/evfDw8MDx48fRrFkzc8doVdRaoftZacNJ/IiIiMqayQtnNmzYEGvXrjVnLOWCWvNvy41cyv5HREREZc3k5Eaj0WDbtm24dOkSJBIJ6tWrh549e0IuN7nKciFX82/LjYzJDRERUZkzKRM5f/48evbsiYSEBNSpUwcAcPXqVVSpUgU7duxAw4YNzRqkNcnK1QDIa7XhyDEiIqKyZ1KnkJEjR+KFF17A7du3cfr0aZw+fRpxcXFo1KgRRo8ebe4YrUp6Tt5IqSf73hAREVHZManl5q+//sKpU6dQqVIlXVmlSpUwZ84cNG/e3GzBWaO7SZkAOMcNERGRpZjUclOnTh38888/Bcrv3buHWrVqlTgoa5aQnLeuVP4sxURERFS2DE5uUlJSdK+5c+di/Pjx2Lx5M27fvo3bt29j8+bNmDBhAj777LPSjPe5pxF5j6PcHBUWjoSIiKhiMvixlIuLi14HWSEE+vTpoysTj2/q3bt3h0ajMXOY1kPzeCh4bXdHC0dCRERUMRmc3Ozfv7804yg3ch4nNy4qzk5MRERkCQYnN+3atSvNOMqNy/GpAAC5jMPAiYiILKFEM+5lZGQgNjYWOTn6nWcbNWpUoqCsmYdz3mKZd5OyLBwJERFRxWRScnP//n0MGzYMu3btKnR7he5z83h+m/peThaOhIiIqGIyaSj4hAkT8OjRI/zxxx9QqVTYvXs31q5di9q1a2PHjh3mjtGq5Cc3Us5OTEREZBEmtdzs27cPP/30E5o3bw6pVApfX1906tQJTk5OmDdvHrp162buOK1GfnLDRTOJiIgsw6SWm/T0dLi7uwMAKleujPv37wPIWyn89OnT5ovOCulabpjcEBERWYTJMxRfuXIFANCkSRMsX74cd+7cwbJly+Dp6WnWAK1N/vILbLkhIiKyDJMeS02YMAHx8fEAgPDwcISEhGD9+vVQKBSIiIgwZ3xWJ/dxy016ttrCkRAREVVMJiU3AwYM0P0cGBiImzdv4vLly6hevTrc3NzMFpw1crLNu6QqhczCkRAREVVMJZrnJp+dnR2aNm1qjqqsXn6fG1d7ri1FRERkCQYnN2FhYQZXOn/+fJOCKQ/Uj5MbmdSk7kxERERUQgYnN9HR0QbtJ6ng87twKDgREZFlceFMM3uYnrcUhYzJDRERkUXw2YmZJSTnrSmV34JDREREZYvJjZl5ueQtnMmWGyIiIstgcmNm+Q02ziobywZCRERUQTG5MTMh8pdfsHAgREREFZTFb8FLliyBv78/bG1t0axZMxw+fLjY/bOzszFt2jT4+vpCqVSiZs2aWL16dRlF+2yax8lNRR81RkREZCkmJzfr1q1DmzZt4OXlhVu3bgEAFixYgJ9++sngOjZt2oQJEyZg2rRpiI6ORtu2bdGlSxfExsYWeUyfPn3w+++/Y9WqVbhy5Qo2btyIunXrmnoaZqfV5v0pY3JDRERkESYlN0uXLkVYWBi6du2KpKQkaDQaAICLiwsWLFhgcD3z58/HiBEjMHLkSNSrVw8LFiyAj48Pli5dWuj+u3fvxsGDB7Fz50507NgRfn5+aNGiBVq3bm3KaZQKbf5jKSY3REREFmFScvPNN9/g22+/xbRp0yCT/buGUlBQEM6dO2dQHTk5OYiKikLnzp31yjt37oxjx44VesyOHTsQFBSEzz//HN7e3ggICMAHH3yAzMzMIj8nOzsbKSkpeq/SpGWfGyIiIosyaW2pmJgYBAYGFihXKpVIT083qI7ExERoNBp4eHjolXt4eCAhIaHQY27cuIEjR47A1tYW27ZtQ2JiIsaMGYOHDx8W2e9m3rx5mDlzpkExmUP+aCm23BAREVmGSe0L/v7+OHPmTIHyXbt2oX79+kbV9XTHWyFEkZ1xtVotJBIJ1q9fjxYtWqBr166YP38+IiIiimy9mTp1KpKTk3WvuLg4o+IzVmJaNgAmN0RERJZiUsvNpEmTMHbsWGRlZUEIgRMnTmDjxo2YN28eVq5caVAdbm5ukMlkBVpp7t27V6A1J5+npye8vb3h7OysK6tXrx6EELh9+zZq165d4BilUgmlUmnE2ZVMUkYuAM5QTEREZCkmJTfDhg2DWq3G5MmTkZGRgf79+8Pb2xtff/01+vXrZ1AdCoUCzZo1Q2RkJHr16qUrj4yMRM+ePQs9pk2bNvjxxx+RlpYGBwcHAMDVq1chlUpRrVo1U07F7Ko62SIhJQt2CtmzdyYiIiKzM7nb66hRo3Dr1i3cu3cPCQkJiIuLw4gRI4yqIywsDCtXrsTq1atx6dIlTJw4EbGxsQgNDQWQ90hp8ODBuv379+8PV1dXDBs2DBcvXsShQ4cwadIkDB8+HCqVytRTMSuBvBYbLr9ARERkGSa13MycORMDBw5EzZo14ebmZvKH9+3bFw8ePMCsWbMQHx+PBg0aYOfOnfD19QUAxMfH68154+DggMjISLz33nsICgqCq6sr+vTpg9mzZ5scg7k9HiwFdrkhIiKyDInIXy/ACI0aNcKFCxfQvHlzDBw4EH379kWVKlVKIz6zS0lJgbOzM5KTk+Hk5GT2+lvM+Q33UrOxc3xb1Pcyf/1EREQVkTH3b5MeS509exZnz55Fhw4dMH/+fHh7e6Nr167YsGEDMjIyTAq6vGA3YiIiIssyuc/NCy+8gLlz5+LGjRvYv38//P39MWHCBFStWtWc8VkdPpYiIiKyLLPMo2tvbw+VSgWFQoHc3FxzVElERERkEpOTm5iYGMyZMwf169dHUFAQTp8+jRkzZhQ5u3DFkb8quIXDICIiqqBMGi0VHByMEydOoGHDhhg2bJhunht64rEUmN0QERFZgknJTfv27bFy5Uq88MIL5o6HiIiIqERMSm7mzp1r7jjKjfzRUnwsRUREZBkGJzdhYWH45JNPYG9vj7CwsGL3nT9/fokDs1b50wYxtyEiIrIMg5Ob6Oho3Uio6OjoUguIiIiIqCQMTm72799f6M+kj4+liIiILMukoeDDhw9HampqgfL09HQMHz68xEFZM+MXsyAiIiJzMim5Wbt2LTIzMwuUZ2Zm4rvvvitxUOUDm26IiIgswajRUikpKRBCQAiB1NRU2Nra6rZpNBrs3LkT7u7uZg/Smug6FDO3ISIisgijkhsXFxdIJBJIJBIEBAQU2C6RSDBz5kyzBWeN+FSKiIjIsoxKbvbv3w8hBDp06IAtW7agcuXKum0KhQK+vr7w8vIye5DWiA03RERElmFUctOuXTsAeetKVa9eHRI+eylItyo4rw0REZElGJzcnD17Fg0aNIBUKkVycjLOnTtX5L6NGjUyS3BERERExjI4uWnSpAkSEhLg7u6OJk2aQCKR6DrPPkkikUCj0Zg1SGuim+fGolEQERFVXAYnNzExMahSpYruZyocR0sRERFZlsHJja+vb6E/ExERET1PTJ7E79dff9W9nzx5MlxcXNC6dWvcunXLbMFZo38fS7HphoiIyBJMSm7mzp0LlUoFADh+/DgWLVqEzz//HG5ubpg4caJZA7Q2XH6BiIjIsowaCp4vLi4OtWrVAgBs374db731FkaPHo02bdrg5ZdfNmd8Vot9boiIiCzDpJYbBwcHPHjwAACwd+9edOzYEQBga2tb6JpTFYngHMVEREQWZVLLTadOnTBy5EgEBgbi6tWr6NatGwDgwoUL8PPzM2d8VoePpYiIiCzLpJabxYsXIzg4GPfv38eWLVvg6uoKAIiKisLbb79t1gCtFR9LERERWYZJLTcuLi5YtGhRgfKKvmgm8MRoKWY3REREFmFScgMASUlJWLVqFS5dugSJRIJ69ephxIgRcHZ2Nmd81oePpYiIiCzKpMdSp06dQs2aNfHVV1/h4cOHSExMxFdffYWaNWvi9OnT5o7RKrHdhoiIyDJMarmZOHEievTogW+//RZyeV4VarUaI0eOxIQJE3Do0CGzBmlNOFqKiIjIskxKbk6dOqWX2ACAXC7H5MmTERQUZLbgrFH+aCl2uSEiIrIMkx5LOTk5ITY2tkB5XFwcHB0dSxyUNVNrHy+cyQdTREREFmFSctO3b1+MGDECmzZtQlxcHG7fvo3vv/8eI0eOrNBDwTXafx9JSU26skRERFRSJj2W+uKLLyCRSDB48GCo1WoAgI2NDd599118+umnZg3QmognZvBTyJjdEBERWYJJyY1CocDXX3+NefPm4fr16xBCoFatWrCzszN3fFaFXYmJiIgsz6jmhYyMDIwdOxbe3t5wd3fHyJEj4enpiUaNGlX4xOZp7HNDRERkGUYlN+Hh4YiIiEC3bt3Qr18/REZG4t133y2t2IiIiIiMZtRjqa1bt2LVqlXo168fAGDgwIFo06YNNBoNZDJZqQRoTbhoJhERkeUZ1XITFxeHtm3b6t63aNECcrkcd+/eNXtgVo9PpYiIiCzCqORGo9FAoVDolcnlct2IqYqOsxMTERFZnlGPpYQQGDp0KJRKpa4sKysLoaGhsLe315Vt3brVfBFaKc5QTEREZBlGJTdDhgwpUDZw4ECzBUNERERUUkYlN2vWrCmtOMqFJzsUs+GGiIjIMjiNLhEREZUrBic3oaGhiIuLM2jfTZs2Yf369SYHRURERGQqgx9LValSBQ0aNEDr1q3Ro0cPBAUFwcvLC7a2tnj06BEuXryII0eO4Pvvv4e3tzdWrFhRmnE/9yTsUUxERGQRBic3n3zyCd577z2sWrUKy5Ytw/nz5/W2Ozo6omPHjli5ciU6d+5s9kCJiIiIDGFUh2J3d3dMnToVU6dORVJSEm7duoXMzEy4ubmhZs2aFb61gh2KiYiILM+kVcEBwMXFBS4uLmYMhYiIiKjkOFrKjDhDMRERkeUxuSklFfwJHRERkcUwuSEiIqJyhcmNGel3KGbTDRERkSWYnNyo1Wr89ttvWL58OVJTUwEAd+/eRVpamtmCIyIiIjKWSaOlbt26hVdffRWxsbHIzs5Gp06d4OjoiM8//xxZWVlYtmyZueO0Ck92J2afGyIiIsswqeXm/fffR1BQEB49egSVSqUr79WrF37//XezBUdERERkLJOSmyNHjuCjjz6CQqHQK/f19cWdO3eMqmvJkiXw9/eHra0tmjVrhsOHDxt03NGjRyGXy9GkSROjPo+IiIjKN5OSG61WC41GU6D89u3bcHR0NLieTZs2YcKECZg2bRqio6PRtm1bdOnSBbGxscUel5ycjMGDB+OVV14xOvbSJATnuSEiIrI0k5KbTp06YcGCBbr3EokEaWlpCA8PR9euXQ2uZ/78+RgxYgRGjhyJevXqYcGCBfDx8cHSpUuLPe6dd95B//79ERwcbEr4REREVI6ZlNx89dVXOHjwIOrXr4+srCz0798ffn5+uHPnDj777DOD6sjJyUFUVFSBRTY7d+6MY8eOFXncmjVrcP36dYSHh5sSeqlih2IiIiLLM2m0lJeXF86cOYPvv/8eUVFR0Gq1GDFiBAYMGKDXwbg4iYmJ0Gg08PDw0Cv38PBAQkJCocdcu3YNU6ZMweHDhyGXGxZ6dnY2srOzde9TUlIMOo6IiIisk0nJzaFDh9C6dWsMGzYMw4YN05Wr1WocOnQIL730ksF1Pb2SuBCi0NXFNRoN+vfvj5kzZyIgIMDg+ufNm4eZM2cavD8RERFZN5MeS7Vv3x4PHz4sUJ6cnIz27dsbVIebmxtkMlmBVpp79+4VaM0BgNTUVJw6dQrjxo2DXC6HXC7HrFmz8Ndff0Eul2Pfvn2Ffs7UqVORnJyse8XFxRkUnyk4QzEREZHlmdRyU1TryoMHD2Bvb29QHQqFAs2aNUNkZCR69eqlK4+MjETPnj0L7O/k5IRz587plS1ZsgT79u3D5s2b4e/vX+jnKJVKKJVKg2IiIiIi62dUcvPGG28AyHuUNHToUL2kQaPR4OzZs2jdurXB9YWFhWHQoEEICgpCcHAwVqxYgdjYWISGhgLIa3W5c+cOvvvuO0ilUjRo0EDveHd3d9ja2hYot5gnW27YcENERGQRRiU3zs7OAPJabhwdHfU6DysUCrRq1QqjRo0yuL6+ffviwYMHmDVrFuLj49GgQQPs3LkTvr6+AID4+PhnznlDRERE9CSJMGHmuZkzZ+KDDz4w+BHU8yQlJQXOzs5ITk6Gk5OTWetOzshF41l7AQDX5nSBjYyLrhMREZmDMfdvk/rcPI9zzDwPxBPPpfhUioiIyDJMSm4AYPPmzfjhhx8QGxuLnJwcvW2nT58ucWBEREREpjDpucnChQsxbNgwuLu7Izo6Gi1atICrqytu3LiBLl26mDtGq1TYaDIiIiIqfSYlN0uWLMGKFSuwaNEiKBQKTJ48GZGRkRg/fjySk5PNHaPV4LqZRERElmdSchMbG6sb8q1SqZCamgoAGDRoEDZu3Gi+6KwY222IiIgsw6TkpmrVqnjw4AEAwNfXF3/88QcAICYmBiYMvio3Ku6ZExERPT9MSm46dOiAn3/+GQAwYsQITJw4EZ06dULfvn31ZhsmIiIiKmsmjZZasWIFtFotACA0NBSVK1fGkSNH0L17d93swhUd+xMTERFZhknJjVQqhVT6b6NPnz590KdPHwDAnTt34O3tbZ7orExFfiRHRET0vDDbFLoJCQl47733UKtWLXNVadU4FJyIiMgyjEpukpKSMGDAAFSpUgVeXl5YuHAhtFotpk+fjho1auCPP/7A6tWrSyvW5x7bbYiIiCzPqMdS//3vf3Ho0CEMGTIEu3fvxsSJE7F7925kZWVh165daNeuXWnFSURERGQQo5KbX3/9FWvWrEHHjh0xZswY1KpVCwEBAViwYEEphUdERERkHKMeS929exf169cHANSoUQO2trYYOXJkqQRmjdifmIiIyPKMSm60Wi1sbGx072UyGezt7c0elLVjX2IiIiLLMeqxlBACQ4cOhVKpBABkZWUhNDS0QIKzdetW80VoRQS7FBMREVmcUcnNkCFD9N4PHDjQrMGUF2y4ISIishyjkps1a9aUVhxEREREZmG2SfwInOiGiIjoOcDkphRwdmIiIiLLYXJjRmy4ISIisjwmN6WA7TZERESWw+TGjLScxY+IiMjiTE5u1q1bhzZt2sDLywu3bt0CACxYsAA//fST2YKzNlm5WgCAWsskh4iIyFJMSm6WLl2KsLAwdO3aFUlJSdBoNAAAFxcXrjMFQCFjgxgREZGlmHQX/uabb/Dtt99i2rRpkMlkuvKgoCCcO3fObMFZm/zHUrY2TG6IiIgsxaS7cExMDAIDAwuUK5VKpKenlzgoa5Xf5UYqZZdiIiIiSzEpufH398eZM2cKlO/atUu3anhFJB5nN1LOc0NERGQxRi2/kG/SpEkYO3YssrKyIITAiRMnsHHjRsybNw8rV640d4xWI78fMVMbIiIiyzEpuRk2bBjUajUmT56MjIwM9O/fH97e3vj666/Rr18/c8doNfJXBecMxURERJZjUnIDAKNGjcKoUaOQmJgIrVYLd3d3c8ZllbR5I8HBLjdERESWY1Kfm5kzZ+L69esAADc3NyY2j+WPlmLDDRERkeWYlNxs2bIFAQEBaNWqFRYtWoT79++bOy6rxg7FRERElmNScnP27FmcPXsWHTp0wPz58+Ht7Y2uXbtiw4YNyMjIMHeMVkPL0VJEREQWZ/Jscy+88ALmzp2LGzduYP/+/fD398eECRNQtWpVc8ZnVbjqAhERkeWZZSpde3t7qFQqKBQK5ObmmqNKq6Sb54YTFBMREVmMybfhmJgYzJkzB/Xr10dQUBBOnz6NGTNmICEhwZzxWZVcDR9LERERWZpJQ8GDg4Nx4sQJNGzYEMOGDdPNc1PRpWXntVolJGdZOBIiIqKKy6Tkpn379li5ciVeeOEFc8dj1eSPn0fZK02ePoiIiIhKyKS78Ny5c80dR7mgedznxsvF1sKREBERVVwGJzdhYWH45JNPYG9vj7CwsGL3nT9/fokDs0ZcOJOIiMjyDE5uoqOjdSOhoqOjSy0ga6bRLb/A5IaIiMhSDE5u9u/fX+jP9C+NNr/lxsKBEBERVWAmDQUfPnw4UlNTC5Snp6dj+PDhJQ7KWuU/lpIxuyEiIrIYk5KbtWvXIjMzs0B5ZmYmvvvuuxIHZa00uoUzmdwQERFZilGjpVJSUiCEgBACqampsLX9d1SQRqPBzp07K/QK4UkZeX2SZExuiIiILMao5MbFxQUSiQQSiQQBAQEFtkskEsycOdNswVkb9eMexf+kcBI/IiIiSzEqudm/fz+EEOjQoQO2bNmCypUr67YpFAr4+vrCy8vL7EFaC4VcBgCoZK+wcCREREQVl1HJTbt27QDkrStVvXp19i15Sn6fGzcHJjdERESWYnByc/bsWTRo0ABSqRTJyck4d+5ckfs2atTILMFZG62Wo6WIiIgszeDkpkmTJkhISIC7uzuaNGkCiUSiG/r8JIlEAo1GY9YgrYWWMxQTERFZnMHJTUxMDKpUqaL7mQrSsOWGiIjI4gxObnx9fQv9mf6V33LDoeBERESWY/Ikfr/++qvu/eTJk+Hi4oLWrVvj1q1bZgvO2mTk5D2Ok7LlhoiIyGJMSm7mzp0LlUoFADh+/DgWLVqEzz//HG5ubpg4caJZA7QmCcl589vkqLUWjoSIiKjiMmooeL64uDjUqlULALB9+3a89dZbGD16NNq0aYOXX37ZnPFZFTcHJQAgJSvXwpEQERFVXCa13Dg4OODBgwcAgL1796Jjx44AAFtb20LXnCrOkiVL4O/vD1tbWzRr1gyHDx8uct+tW7eiU6dOqFKlCpycnBAcHIw9e/aYcgqlIn+emxpuDhaOhIiIqOIyKbnp1KkTRo4ciZEjR+Lq1avo1q0bAODChQvw8/MzuJ5NmzZhwoQJmDZtGqKjo9G2bVt06dIFsbGxhe5/6NAhdOrUCTt37kRUVBTat2+P7t27Izo62pTTMDtdh2KTrioRERGZg0m34cWLFyM4OBj379/Hli1b4OrqCgCIiorC22+/bXA98+fPx4gRIzBy5EjUq1cPCxYsgI+PD5YuXVro/gsWLMDkyZPRvHlz1K5dG3PnzkXt2rXx888/m3IaZpc/iR/nuSEiIrIck/rcuLi4YNGiRQXKjVk0MycnB1FRUZgyZYpeeefOnXHs2DGD6tBqtUhNTdVb48qSHq+bydFSREREFmRScgMASUlJWLVqFS5dugSJRIJ69ephxIgRcHZ2Nuj4xMREaDQaeHh46JV7eHggISHBoDq+/PJLpKeno0+fPkXuk52djezsbN37lJQUg+o2Bee5ISIisjyTHkudOnUKNWvWxFdffYWHDx8iMTERX331FWrWrInTp08bVdfTi28KIQxakHPjxo2YMWMGNm3aBHd39yL3mzdvHpydnXUvHx8fo+Izxr/LL5TaRxAREdEzmJTcTJw4ET169MDNmzexdetWbNu2DTExMXjttdcwYcIEg+pwc3ODTCYr0Epz7969Aq05T9u0aRNGjBiBH374QTdSqyhTp05FcnKy7hUXF2dQfKZIy1YD4GMpIiIiSzK55ebDDz+EXP7vUy25XI7Jkyfj1KlTBtWhUCjQrFkzREZG6pVHRkaidevWRR63ceNGDB06FBs2bNCN0iqOUqmEk5OT3qu0xD3MAPDvGlNERERU9kxKbpycnAodrh0XFwdHR0eD6wkLC8PKlSuxevVqXLp0CRMnTkRsbCxCQ0MB5LW6DB48WLf/xo0bMXjwYHz55Zdo1aoVEhISkJCQgOTkZFNOw+y8XPJmbc7MqZirohMRET0PTOpQ3LdvX4wYMQJffPEFWrduDYlEgiNHjmDSpElGDQXv27cvHjx4gFmzZiE+Ph4NGjTAzp07dQtzxsfH6yVRy5cvh1qtxtixYzF27Fhd+ZAhQxAREWHKqZhVfotNtUoqC0dCRERUcZmU3HzxxReQSCQYPHgw1Oq8fiY2NjZ499138emnnxpV15gxYzBmzJhCtz2dsBw4cMCUcMtMfnIjY58bIiIiizEpuVEoFPj6668xb948XL9+HUII1KpVC3Z2duaOz6qodckNpygmIiKyFKPuwhkZGRg7diy8vb3h7u6OkSNHwtPTE40aNarwiQ3w7wzFcrbcEBERWYxRyU14eDgiIiLQrVs39OvXD5GRkXj33XdLKzar89ftvI7NHApORERkOUY9ltq6dStWrVqFfv36AQAGDhyINm3aQKPRQCaTlUqA1qRaJRUS07KRmpVr6VCIiIgqLKNabuLi4tC2bVvd+xYtWkAul+Pu3btmD8wa5TfYeDrbWjYQIiKiCsyo5Eaj0UChUOiVyeVy3Yipik7zeO4+digmIiKyHKMeSwkhMHToUCiVSl1ZVlYWQkNDYW9vryvbunWr+SK0IlrdaCkLB0JERFSBGZXcDBkypEDZwIEDzRaMtcuf50bKVcGJiIgsxqjkZs2aNaUVR7mQvyo4J/EjIiKyHD5AMSPdDMVsuSEiIrIYJjdmdO1eGgDOc0NERGRJTG7MiEPAiYiILI/JjRnlP5ZysrWxcCREREQVF5MbM8pPbuQyPpYiIiKyFJOTm3Xr1qFNmzbw8vLCrVu3AAALFizATz/9ZLbgrM2/q4IzuSEiIrIUk5KbpUuXIiwsDF27dkVSUhI0Gg0AwMXFBQsWLDBnfFZFw1XBiYiILM6k5Oabb77Bt99+i2nTpuktmBkUFIRz586ZLThrk5adtwwFW26IiIgsx6TkJiYmBoGBgQXKlUol0tPTSxyUNRKPJ/ADABuuv0BERGQxJt2F/f39cebMmQLlu3btQv369Usak9VjckNERGQ5Ri2/kG/SpEkYO3YssrKyIITAiRMnsHHjRsybNw8rV640d4xW4YmGGyIiIrIgk5KbYcOGQa1WY/LkycjIyED//v3h7e2Nr7/+Gv369TN3jFbhydyGPW6IiIgsx6TkBgBGjRqFUaNGITExEVqtFu7u7uaMy6pxaSkiIiLLMTm5yefm5maOOKye4HMpIiKi54JJyY2/vz8kxTRP3Lhxw+SAygMJH0wRERFZjEnJzYQJE/Te5+bmIjo6Grt378akSZPMEZfVYbsNERHR88Gk5Ob9998vtHzx4sU4depUiQIqF9hwQ0REZDFmnZClS5cu2LJlizmrtBrsckNERPR8MGtys3nzZlSuXNmcVVoljpYiIiKyHJMeSwUGBup1KBZCICEhAffv38eSJUvMFpw1Eex1Q0RE9FwwKbl5/fXX9d5LpVJUqVIFL7/8MurWrWuOuKwaG26IiIgsx+jkRq1Ww8/PDyEhIahatWppxGSV2OeGiIjo+WB0nxu5XI53330X2dnZpRFPuVDcHEBERERUukzqUNyyZUtER0ebOxYiIiKiEjOpz82YMWPwn//8B7dv30azZs1gb2+vt71Ro0ZmCc6aPPlYiu02RERElmNUcjN8+HAsWLAAffv2BQCMHz9et00ikUAIAYlEAo1GY94oiYiIiAxkVHKzdu1afPrpp4iJiSmteKzWk0PB2eWGiIjIcoxKbvJXvvb19S2VYMoLLpxJRERkOUZ3KOZIoMJxKDgREdHzwegOxQEBAc9McB4+fGhyQOUB8z8iIiLLMTq5mTlzJpydnUsjFqvGhhsiIqLng9HJTb9+/eDu7l4asRARERGVmFF9btjfpmiCnW6IiIieC0YlN7yBG4Y5IBERkeUY9VhKq9WWVhxWj2kfERHR88GktaWoeJznhoiIyHJMWluKCuITO6qIhBBQq9VccoWIzMLGxgYymazE9TC5KQXsc0MVQU5ODuLj45GRkWHpUIionJBIJKhWrRocHBxKVA+TG3Nhyw1VIFqtFjExMZDJZPDy8oJCoeBoSiIqESEE7t+/j9u3b6N27dolasFhcmMmegtnWjAOorKQk5MDrVYLHx8f2NnZWTocIionqlSpgps3byI3N7dEyQ07FJcC/g+WKgqplL9CiMh8zHX/5G8mM2GHYiIioucDk5tSwHYboorNz88PCxYsMPn4iIgIuLi4mC2e8uTll1/GhAkTyuSzPv74Y4wePbpMPquieOuttzB//vxS/xwmN2bChhsi6zB06FC8/vrrpfoZJ0+eNPimWFgi1LdvX1y9etXkz4+IiIBEItG9PDw80L17d1y4cMHkOp8XW7duxSeffFLqn/PPP//g66+/xn//+98C244dOwaZTIZXX321wLYDBw5AIpEgKSmpwLYmTZpgxowZemXR0dHo3bs3PDw8YGtri4CAAIwaNapE378hlixZAn9/f9ja2qJZs2Y4fPjwM49ZvHgx6tWrB5VKhTp16uC7774rsM+CBQtQp04dqFQq+Pj4YOLEicjKytJtnz59OubMmYOUlBSzns/TmNyUAna5IarYqlSpUqKO1iqVqsQLFDs5OSE+Ph53797Fr7/+ivT0dHTr1g05OTklqvdZcnNzS7X+ypUrw9HRsVQ/AwBWrVqF4OBg+Pn5Fdi2evVqvPfeezhy5AhiY2NN/oxffvkFrVq1QnZ2NtavX49Lly5h3bp1cHZ2xscff1yC6Iu3adMmTJgwAdOmTUN0dDTatm2LLl26FHsuS5cuxdSpUzFjxgxcuHABM2fOxNixY/Hzzz/r9lm/fj2mTJmC8PBwXLp0CatWrcKmTZswdepU3T6NGjWCn58f1q9fX2rnBwAQFUxycrIAIJKTk81ab2JqlvD98Bfh++EvQqvVmrVuoudNZmamuHjxosjMzLR0KEYbMmSI6NmzZ5HbDxw4IJo3by4UCoWoWrWq+PDDD0Vubq5ue0pKiujfv7+ws7MTVatWFfPnzxft2rUT77//vm4fX19f8dVXX+neh4eHCx8fH6FQKISnp6d47733hBBCtGvXTiCv4Vf3EkKINWvWCGdnZ724fvrpJ9GsWTOhVCqFq6ur6NWrV5HnUNjxO3bsEADE2bNndWVHjx4Vbdu2Fba2tqJatWrivffeE2lpabrtd+/eFV27dhW2trbCz89PrF+/vsC5ARBLly4VPXr0EHZ2dmL69Om6z2vatKlQKpXC399fzJgxQ+86FnVNhBBi8eLFolatWkKpVAp3d3fx5ptv6rY9fa0fPnwoBg0aJFxcXIRKpRKvvvqquHr1aoFrsXv3blG3bl1hb28vQkJCxN27d4u8fkII0bBhQ7Fo0aIC5WlpacLR0VFcvnxZ9O3bV8ycOVNv+/79+wUA8ejRowLHNm7cWISHhwshhEhPTxdubm7i9ddfL/TzCzveXFq0aCFCQ0P1yurWrSumTJlS5DHBwcHigw8+0Ct7//33RZs2bXTvx44dKzp06KC3T1hYmHjxxRf1ymbMmCHatm1b6OcU97vFmPs3W25KAUdLUUUkhEBGjrrMX8KMvfnv3LmDrl27onnz5vjrr7+wdOlSrFq1CrNnz9btExYWhqNHj2LHjh2IjIzE4cOHcfr06SLr3Lx5M7766issX74c165dw/bt29GwYUMAeY9YqlWrhlmzZiE+Ph7x8fGF1vHrr7/ijTfeQLdu3RAdHY3ff/8dQUFBBp9XUlISNmzYACBvBlgAOHfuHEJCQvDGG2/g7Nmz2LRpE44cOYJx48bpjhs8eDDu3r2LAwcOYMuWLVixYgXu3btXoP7w8HD07NkT586dw/Dhw7Fnzx4MHDgQ48ePx8WLF7F8+XJERERgzpw5z7wmp06dwvjx4zFr1ixcuXIFu3fvxksvvVTkuQ0dOhSnTp3Cjh07cPz4cQgh0LVrV70WpIyMDHzxxRdYt24dDh06hNjYWHzwwQdF1vno0SOcP3++0Gu8adMm1KlTB3Xq1MHAgQOxZs0ak/4O7tmzB4mJiZg8eXKh24vrcxUaGgoHB4diX0W1wuTk5CAqKgqdO3fWK+/cuTOOHTtW5GdmZ2fD1tZWr0ylUuHEiRO6a/3iiy8iKioKJ06cAADcuHEDO3fuRLdu3fSOa9GiBU6cOIHs7OwiP6+kOM+NmbDPDVV0mbka1J++p8w/9+KsENgpzPOrbMmSJfDx8cGiRYsgkUhQt25d3L17Fx9++CGmT5+O9PR0rF27Fhs2bMArr7wCAFizZg28vLyKrDM2NhZVq1ZFx44dYWNjg+rVq6NFixYA8h6xyGQyODo6omrVqkXWMWfOHPTr1w8zZ87UlTVu3LjYc0lOToaDg0Ne0vl4FukePXqgbt26AID//e9/6N+/v65zbu3atbFw4UK0a9cOS5cuxc2bN/Hbb7/h5MmTupv8ypUrUbt27QKf1b9/fwwfPlz3ftCgQZgyZQqGDBkCAKhRowY++eQTTJ48GeHh4cVek9jYWNjb2+O1116Do6MjfH19ERgYWOg5Xrt2DTt27MDRo0fRunVrAHmPRnx8fLB9+3b07t0bQN6jsmXLlqFmzZoAgHHjxmHWrFlFXrtbt25BCFHo97pq1SoMHDgQAPDqq68iLS0Nv//+Ozp27FhkfUXFDkD3fRhj1qxZxSZnAIr8O5mYmAiNRgMPDw+9cg8PDyQkJBRZX0hICFauXInXX38dTZs2RVRUFFavXo3c3FwkJibC09MT/fr1w/379/Hiiy/qlmZ59913MWXKFL26vL29kZ2djYSEBPj6+hp41saxeMuNsZ2aDh48iGbNmsHW1hY1atTAsmXLyihSIirvLl26hODgYL3W1zZt2iAtLQ23b9/GjRs3kJubq7sRA4CzszPq1KlTZJ29e/dGZmYmatSogVGjRmHbtm1Qq9VGxXXmzBldMmUoR0dHnDlzBlFRUbob+5O/L6OiohAREaH3v/2QkBDd7NNXrlyBXC5H06ZNdcfUqlULlSpVKvBZT7dwREVFYdasWXp1jxo1SrdcR3HXpFOnTvD19UWNGjUwaNAgrF+/vsglPi5dugS5XI6WLVvqylxdXVGnTh1cunRJV2ZnZ6dLbADA09Oz0BaofJmZmQBQoKXiypUrOHHiBPr16wcAkMvl6Nu3L1avXl1kXUUpSYuju7s7atWqVexLLi8+4X/6CYMQotinDh9//DG6dOmCVq1awcbGBj179sTQoUMBQDfZ3oEDBzBnzhwsWbIEp0+fxtatW/HLL78U6ACuUqkAoFSXbrFoy01+p6YlS5agTZs2WL58Obp06YKLFy+ievXqBfaPiYlB165dMWrUKPzf//0fjh49ijFjxqBKlSp48803LXAG/+I8N1TRqWxkuDgrxCKfay6F/YLPvwlJJBK9nwvbpzA+Pj64cuUKIiMj8dtvv2HMmDH43//+h4MHD+oeET1L/s3AGFKpFLVq1QKQ1zqQkJCAvn374tChQwDyltB45513MH78+ALHVq9eHVeuXCm03sLO1d7eXu+9VqvFzJkz8cYbbxTY19bWtthr4ujoiNOnT+PAgQPYu3cvpk+fjhkzZuDkyZMFHtUUdd2f/h6fvs5PfpeFcXNzA5D3eKpKlSq68lWrVkGtVsPb21vvs2xsbPDo0SNUqlQJTk5OAPJazp6ONykpCc7OzgCAgIAAAMDly5cRHBxcZCyFCQ0Nxf/93/8Vu09R91E3NzfIZLICrTT37t0r0JrzJJVKhdWrV2P58uX4559/4OnpiRUrVsDR0VF3vT7++GMMGjQII0eOBAA0bNgQ6enpGD16NKZNm6ab9PPhw4cAoHdtzc2iLTfz58/HiBEjMHLkSNSrVw8LFiyAj48Pli5dWuj+y5YtQ/Xq1bFgwQLUq1cPI0eOxPDhw/HFF1+UceRFY3cbqqgkEgnsFPIyf5mzj1v9+vVx7NgxvRvfsWPH4OjoCG9vb9SsWRM2Nja6PgUAkJKSonvEUBSVSoUePXpg4cKFOHDgAI4fP45z584BABQKxTNXVW/UqBF+//33EpwZMHHiRPz111/Ytm0bAKBp06a4cOFCof/rVygUqFu3LtRqNaKjo3V1/P3334UOcX5a06ZNceXKlULrzr/BFXdN5HI5OnbsiM8//xxnz57FzZs3sW/fvgKfU79+fajVavz555+6sgcPHuDq1auoV6+eydeqZs2acHJywsWLF3VlarUa3333Hb788kucOXNG9/rrr7/g6+urG/1Tu3ZtSKVSnDx5Uq/O+Ph43LlzR9fK17lzZ7i5ueHzzz8vNIbirvOsWbP0YijsVdRjKYVCgWbNmiEyMlKvPDIyUvdorzg2NjaoVq0aZDIZvv/+e7z22mu67zQjI6PArOUymQxCCL1/U+fPn0e1atV0SVFpsFjLTX6npqefxRXXqen48eMFOkGFhIRg1apVyM3NLfR/QdnZ2XqdlkprbL1grxsiq5GcnIwzZ87olVWuXBljxozBggUL8N5772HcuHG4cuUKwsPDERYWBqlUCkdHRwwZMgSTJk1C5cqV4e7ujvDwcEil0iKTrIiICGg0GrRs2RJ2dnZYt24dVCqVrq+Bn58fDh06hH79+kGpVBb6Cz88PByvvPIKatasiX79+kGtVmPXrl1FdkYtjJOTE0aOHInw8HC8/vrr+PDDD9GqVSuMHTsWo0aNgr29PS5duoTIyEh88803qFu3Ljp27IjRo0dj6dKlsLGxwX/+8x+oVKpnJpTTp0/Ha6+9Bh8fH/Tu3RtSqRRnz57FuXPnMHv27GKvyS+//IIbN27gpZdeQqVKlbBz505otdpCH/3Vrl0bPXv2xKhRo7B8+XI4OjpiypQp8Pb2Rs+ePQ2+Nk+TSqXo2LEjjhw5opsT6ZdffsGjR48wYsQIXetLvrfeegurVq3CuHHj4OjoiHfeeQf/+c9/IJfL0bhxY9y9exfTpk1DvXr1dPcwe3t7rFy5Er1790aPHj0wfvx41KpVC4mJifjhhx8QGxuL77//vtD43N3dSzRVQFhYGAYNGoSgoCAEBwdjxYoViI2NRWhoqG6fqVOn4s6dO7q5bK5evYoTJ06gZcuWePToEebPn4/z589j7dq1umO6d++O+fPnIzAwEC1btsTff/+Njz/+GD169NBbJ+rw4cMF7uVm98zxVKXkzp07AoA4evSoXvmcOXNEQEBAocfUrl1bzJkzR6/s6NGjAkCRw/rCw8MLDLVEKQwF/yclU9T5aKeo9/Eus9ZL9Dyy9qHghf1OGDJkiBDCtKHgLVq00BtG++Rw6W3btomWLVsKJycnYW9vL1q1aiV+++033b7Hjx8XjRo1Ekqlstih4Fu2bBFNmjQRCoVCuLm5iTfeeKPIcyzseCGEuHXrlpDL5WLTpk1CCCFOnDghOnXqJBwcHIS9vb1o1KiR3u/Yu3fvii5dugilUil8fX3Fhg0bhLu7u1i2bJluHwBi27ZtBT5r9+7donXr1kKlUgknJyfRokULsWLFimdek8OHD4t27dqJSpUqCZVKJRo1aqSLV4iih4I7OzsLlUolQkJCCh0K/qRt27aJZ93+du/eLby9vYVGoxFCCPHaa6+Jrl27FrpvVFSUACCioqKEEEJkZWWJWbNmiXr16gmVSiV8fX3F0KFDRXx8fIFjT548Kd544w1RpUoVoVQqRa1atcTo0aPFtWvXio2vpBYvXix8fX2FQqEQTZs2FQcPHtTbPmTIENGuXTvd+4sXL4omTZrovs+ePXuKy5cv6x2Tm5srZsyYIWrWrClsbW2Fj4+PGDNmjN6w9szMTOHk5CSOHz9eaFzmGgpu8eTm2LFjeuWzZ88WderUKfSY2rVri7lz5+qVHTlyRAAo9C+NEHl/yZKTk3WvuLi4UkluiCoSa05uzC0tLU04OzuLlStXWjqUUpf/+/PJ5Ky80mq1okWLFmLDhg2WDqVcWbRokejUqVOR282V3FjssZQpnZqqVq1a6P5yuRyurq6FHqNUKqFUKs0TNBFVeNHR0bh8+TJatGiB5ORk3ZDikjwGeV7t27cPaWlpaNiwIeLj4zF58mT4+fkVO+9MeSGRSLBixQqcPXvW0qGUKzY2Nvjmm29K/XMsltw82ampV69euvLIyMgif0kEBwfrTfUMAHv37kVQUJDBow6IiErqiy++wJUrV3S/xw4fPlyqnSMtJTc3F//9739x48YNODo6onXr1li/fn2F+X3buHHjZ84nRMYpq4VILToU/Fmdmp7u0BQaGopFixYhLCwMo0aNwvHjx7Fq1Sps3LjRkqdBRBVIYGAgoqKiLB1GmQgJCUFISNkP7ycqKYsmN3379sWDBw90U483aNAAO3fu1I0iiI+P15tC2t/fHzt37sTEiROxePFieHl5YeHChRaf44aIiIieHxIhKtb0cykpKXB2dkZycrJusiUiMk5WVhZiYmJ0s4sTEZlDcb9bjLl/W3z5BSKyXhXs/0ZEVMrM9TuFyQ0RGS2/Q2lprg1DRBVPTk4OAOhN+mcKrgpOREaTyWRwcXHRLT5oZ2dn1mUQiKji0Wq1uH//Puzs7J658OezMLkhIpNUrVoVAIpdXZmIyBhSqRTVq1cv8X+WmNwQkUkkEgk8PT3h7u6O3NxcS4dDROWAQqEosPimKZjcEFGJyGSyEj8fJyIyJ3YoJiIionKFyQ0RERGVK0xuiIiIqFypcH1u8icISklJsXAkREREZKj8+7YhE/1VuOQmNTUVAODj42PhSIiIiMhYqampcHZ2LnafCre2lFarxd27d+Ho6Gj2ScdSUlLg4+ODuLg4rltVinidywavc9ngdS47vNZlo7SusxACqamp8PLyeuZw8QrXciOVSlGtWrVS/QwnJyf+wykDvM5lg9e5bPA6lx1e67JRGtf5WS02+dihmIiIiMoVJjdERERUrjC5MSOlUonw8HAolUpLh1Ku8TqXDV7nssHrXHZ4rcvG83CdK1yHYiIiIirf2HJDRERE5QqTGyIiIipXmNwQERFRucLkhoiIiMoVJjdGWrJkCfz9/WFra4tmzZrh8OHDxe5/8OBBNGvWDLa2tqhRowaWLVtWRpFaN2Ou89atW9GpUydUqVIFTk5OCA4Oxp49e8owWutl7N/nfEePHoVcLkeTJk1KN8BywtjrnJ2djWnTpsHX1xdKpRI1a9bE6tWryyha62XsdV6/fj0aN24MOzs7eHp6YtiwYXjw4EEZRWudDh06hO7du8PLywsSiQTbt29/5jEWuQ8KMtj3338vbGxsxLfffisuXrwo3n//fWFvby9u3bpV6P43btwQdnZ24v333xcXL14U3377rbCxsRGbN28u48iti7HX+f333xefffaZOHHihLh69aqYOnWqsLGxEadPny7jyK2Lsdc5X1JSkqhRo4bo3LmzaNy4cdkEa8VMuc49evQQLVu2FJGRkSImJkb8+eef4ujRo2UYtfUx9jofPnxYSKVS8fXXX4sbN26Iw4cPixdeeEG8/vrrZRy5ddm5c6eYNm2a2LJliwAgtm3bVuz+lroPMrkxQosWLURoaKheWd26dcWUKVMK3X/y5Mmibt26emXvvPOOaNWqVanFWB4Ye50LU79+fTFz5kxzh1aumHqd+/btKz766CMRHh7O5MYAxl7nXbt2CWdnZ/HgwYOyCK/cMPY6/+9//xM1atTQK1u4cKGoVq1aqcVY3hiS3FjqPsjHUgbKyclBVFQUOnfurFfeuXNnHDt2rNBjjh8/XmD/kJAQnDp1Crm5uaUWqzUz5To/TavVIjU1FZUrVy6NEMsFU6/zmjVrcP36dYSHh5d2iOWCKdd5x44dCAoKwueffw5vb28EBATggw8+QGZmZlmEbJVMuc6tW7fG7du3sXPnTggh8M8//2Dz5s3o1q1bWYRcYVjqPljhFs40VWJiIjQaDTw8PPTKPTw8kJCQUOgxCQkJhe6vVquRmJgIT0/PUovXWplynZ/25ZdfIj09HX369CmNEMsFU67ztWvXMGXKFBw+fBhyOX91GMKU63zjxg0cOXIEtra22LZtGxITEzFmzBg8fPiQ/W6KYMp1bt26NdavX4++ffsiKysLarUaPXr0wDfffFMWIVcYlroPsuXGSBKJRO+9EKJA2bP2L6yc9Bl7nfNt3LgRM2bMwKZNm+Du7l5a4ZUbhl5njUaD/v37Y+bMmQgICCir8MoNY/4+a7VaSCQSrF+/Hi1atEDXrl0xf/58REREsPXmGYy5zhcvXsT48eMxffp0REVFYffu3YiJiUFoaGhZhFqhWOI+yP9+GcjNzQ0ymazA/wLu3btXICvNV7Vq1UL3l8vlcHV1LbVYrZkp1znfpk2bMGLECPz444/o2LFjaYZp9Yy9zqmpqTh16hSio6Mxbtw4AHk3YSEE5HI59u7diw4dOpRJ7NbElL/Pnp6e8Pb2hrOzs66sXr16EELg9u3bqF27dqnGbI1Muc7z5s1DmzZtMGnSJABAo0aNYG9vj7Zt22L27NlsWTcTS90H2XJjIIVCgWbNmiEyMlKvPDIyEq1bty70mODg4AL77927F0FBQbCxsSm1WK2ZKdcZyGuxGTp0KDZs2MBn5gYw9jo7OTnh3LlzOHPmjO4VGhqKOnXq4MyZM2jZsmVZhW5VTPn73KZNG9y9exdpaWm6sqtXr0IqlaJatWqlGq+1MuU6Z2RkQCrVvwXKZDIA/7YsUMlZ7D5Yqt2Vy5n8oYarVq0SFy9eFBMmTBD29vbi5s2bQgghpkyZIgYNGqTbP38I3MSJE8XFixfFqlWrOBTcAMZe5w0bNgi5XC4WL14s4uPjda+kpCRLnYJVMPY6P42jpQxj7HVOTU0V1apVE2+99Za4cOGCOHjwoKhdu7YYOXKkpU7BKhh7ndesWSPkcrlYsmSJuH79ujhy5IgICgoSLVq0sNQpWIXU1FQRHR0toqOjBQAxf/58ER0drRty/7zcB5ncGGnx4sXC19dXKBQK0bRpU3Hw4EHdtiFDhoh27drp7X/gwAERGBgoFAqF8PPzE0uXLi3jiK2TMde5Xbt2AkCB15AhQ8o+cCtj7N/nJzG5MZyx1/nSpUuiY8eOQqVSiWrVqomwsDCRkZFRxlFbH2Ov88KFC0X9+vWFSqUSnp6eYsCAAeL27dtlHLV12b9/f7G/b5+X+6BECLa/ERERUfnBPjdERERUrjC5ISIionKFyQ0RERGVK0xuiIiIqFxhckNERETlCpMbIiIiKleY3BAREVG5wuSGiIiIyhUmN2R1IiIi4OLiYukwTObn54cFCxYUu8+MGTPQpEmTMonnebNv3z7UrVsXWq22TD7vefk+TPkMiUSC7du3l+hzhw4ditdff71EdZiDsee/YsUK+Pj4QCqVYsGCBWb5jm7evAmJRIIzZ84AAM6dO4dq1aohPT29RPVS2WNyQxYxdOhQSCSSAq+///7b0qEhIiJCLyZPT0/06dMHMTExZqn/5MmTGD16tO59YTeoDz74AL///rtZPq8oT5+nh4cHunfvjgsXLhhdjzmTzcmTJ2PatGm6RQ0ryvdRkZT0GqekpGDcuHH48MMPcefOHYwePbpUvqOGDRuiRYsW+Oqrr8xaL5U+JjdkMa+++iri4+P1Xv7+/pYOC0DeKtjx8fG4e/cuNmzYgDNnzqBHjx7QaDQlrrtKlSqws7Mrdh8HBwe4urqW+LOe5cnz/PXXX5Geno5u3bohJyen1D+7MMeOHcO1a9fQu3fvIuMsz99HRWbMNY6NjUVubi66desGT09P2NnZldp3NGzYMCxdutQsf9eo7DC5IYtRKpWoWrWq3ksmk2H+/Plo2LAh7O3t4ePjgzFjxiAtLa3Iev766y+0b98ejo6OcHJyQrNmzXDq1Cnd9mPHjuGll16CSqWCj48Pxo8f/8xmZolEgqpVq8LT0xPt27dHeHg4zp8/r2tZWrp0KWrWrAmFQoE6depg3bp1esfPmDED1atXh1KphJeXF8aPH6/b9uRjED8/PwBAr169IJFIdO+fbGLfs2cPbG1tkZSUpPcZ48ePR7t27cx2nkFBQZg4cSJu3bqFK1eu6PYp7vs4cOAAhg0bhuTkZF3LyowZMwAAOTk5mDx5Mry9vWFvb4+WLVviwIEDxcbz/fffo3PnzrC1tS0yzvL8fTzp5MmT6NSpE9zc3ODs7Ix27drh9OnTBfaLj49Hly5doFKp4O/vjx9//FFv+507d9C3b19UqlQJrq6u6NmzJ27evGlwHIXZvHkzGjZsCJVKBVdXV3Ts2FF3bs+K25BrDOT93WrRogXs7e3h4uKCNm3a4NatW4iIiEDDhg0BADVq1IBEIsHNmzcLfSy1Zs0a1KtXD7a2tqhbty6WLFmit/3EiRMIDAyEra0tgoKCEB0dXeBcQ0JC8ODBAxw8eLBE14zKFpMbeu5IpVIsXLgQ58+fx9q1a7Fv3z5Mnjy5yP0HDBiAatWq4eTJk4iKisKUKVNgY2MDIO+ZeUhICN544w2cPXsWmzZtwpEjRzBu3DijYlKpVACA3NxcbNu2De+//z7+85//4Pz583jnnXcwbNgw7N+/H0DeL/6vvvoKy5cvx7Vr17B9+3bdL+OnnTx5EkDeL+H4+Hjd+yd17NgRLi4u2LJli65Mo9Hghx9+wIABA8x2nklJSdiwYQMA6K4fUPz30bp1ayxYsEDXshIfH48PPvgAQN7/eI8ePYrvv/8eZ8+eRe/evfHqq6/i2rVrRcZw6NAhBAUFPTPWivB9pKamYsiQITh8+DD++OMP1K5dG127dkVqaqrefh9//DHefPNN/PXXXxg4cCDefvttXLp0CQCQkZGB9u3bw8HBAYcOHcKRI0fg4OCAV199tcjWufzHgEWJj4/H22+/jeHDh+PSpUs4cOAA3njjDeSvwfysuA25xmq1Gq+//jratWuHs2fP4vjx4xg9ejQkEgn69u2L3377DUBechIfHw8fH58CdXz77beYNm0a5syZg0uXLmHu3Ln4+OOPsXbtWgBAeno6XnvtNdSpUwdRUVGYMWOG7u/ukxQKBRo3bozDhw8XeU3oOVTq644TFWLIkCFCJpMJe3t73eutt94qdN8ffvhBuLq66t6vWbNGODs76947OjqKiIiIQo8dNGiQGD16tF7Z4cOHhVQqFZmZmYUe83T9cXFxolWrVqJatWoiOztbtG7dWowaNUrvmN69e4uuXbsKIYT48ssvRUBAgMjJySm0fl9fX/HVV1/p3gMQ27Zt09snPDxcNG7cWPd+/PjxokOHDrr3e/bsEQqFQjx8+LBE5wlA2NvbCzs7OwFAABA9evQodP98z/o+hBDi77//FhKJRNy5c0ev/JVXXhFTp04tsm5nZ2fx3XffFYizInwfT3/G09RqtXB0dBQ///yzXqyhoaF6+7Vs2VK8++67QgghVq1aJerUqSO0Wq1ue3Z2tlCpVGLPnj1CiLx/iz179tRt37p1q6hTp06RcURFRQkA4ubNm0XuY0jcxV3jBw8eCADiwIEDhdYZHR0tAIiYmJhCjxdCCB8fH7Fhwwa94z755BMRHBwshBBi+fLlonLlyiI9PV23fenSpQKAiI6O1juuV69eYujQoQadLz0f2HJDFtO+fXucOXNG91q4cCEAYP/+/ejUqRO8vb3h6OiIwYMH48GDB0U26YeFhWHkyJHo2LEjPv30U1y/fl23LSoqChEREXBwcNC9QkJCoNVqi+2QmpycDAcHB92jmJycHGzduhUKhQKXLl1CmzZt9PZv06aN7n/LvXv3RmZmJmrUqIFRo0Zh27ZtUKvVJbpWAwYMwIEDB3D37l0AwPr169G1a1dUqlSpROfp6OiIM2fOICoqCsuWLUPNmjWxbNkyvX2M/T4A4PTp0xBCICAgQC+mgwcP6n0/T8vMzCzwSAqoON/Hk+7du4fQ0FAEBATA2dkZzs7OSEtLQ2xsrN5+wcHBBd7nn3tUVBT+/vtvODo66uKoXLkysrKyivweevXqhcuXLxcZV+PGjfHKK6+gYcOG6N27N7799ls8evTI6LiLU7lyZQwdOhQhISHo3r07vv76a8THxxt8/P379xEXF4cRI0bofQezZ8/WnfelS5fQuHFjvf5WT1/LfCqVChkZGQZ/Plme3NIBUMVlb2+PWrVq6ZXdunULXbt2RWhoKD755BNUrlwZR44cwYgRI5Cbm1toPTNmzED//v3x66+/YteuXQgPD8f333+PXr16QavV4p133tHrY5GvevXqRcbm6OiI06dPQyqVwsPDA/b29nrbn262F0Loynx8fHDlyhVERkbit99+w5gxY/C///0PBw8e1HvcY4wWLVqgZs2a+P777/Huu+9i27ZtWLNmjW67qecplUp130HdunWRkJCAvn374tChQwBM+z7y45HJZIiKioJMJtPb5uDgUORxbm5uejfKfBXl+3jS0KFDcf/+fSxYsAC+vr5QKpUIDg42qLN3/rlrtVo0a9YM69evL7BPlSpVDIrjaTKZDJGRkTh27Bj27t2Lb775BtOmTcOff/4Jf3//EsX9pDVr1mD8+PHYvXs3Nm3ahI8++giRkZFo1arVM4/Nn0bg22+/RcuWLQvED0D3GM0QDx8+RM2aNY2IniyNyQ09V06dOgW1Wo0vv/xSNxT4hx9+eOZxAQEBCAgIwMSJE/H2229jzZo16NWrF5o2bYoLFy4USKKe5cmb/tPq1auHI0eOYPDgwbqyY8eOoV69err3KpUKPXr0QI8ePTB27FjUrVsX586dQ9OmTQvUZ2NjY9BIjP79+2P9+vWoVq0apFIpunXrpttm6nk+beLEiZg/fz62bduGXr16GfR9KBSKAvEHBgZCo9Hg3r17aNu2rcGfHxgYiIsXLxYor4jfx+HDh7FkyRJ07doVABAXF4fExMQC+/3xxx965/7HH38gMDBQF8emTZvg7u4OJycnk2N5mkQiQZs2bdCmTRtMnz4dvr6+2LZtG8LCwgyK29BrHBgYiMDAQEydOhXBwcHYsGGDQcmNh4cHvL29cePGDV0/qKfVr18f69atQ2Zmpq4P1x9//FHovufPn8dbb731zM+l5wcfS9FzpWbNmlCr1fjmm29w48YNrFu3rsBjkidlZmZi3LhxOHDgAG7duoWjR4/i5MmTuhvbhx9+iOPHj2Ps2LE4c+YMrl27hh07duC9994zOcZJkyYhIiICy5Ytw7Vr1zB//nxs3bpV1xkxIiICq1atwvnz53XnoFKp4OvrW2h9fn5++P3335GQkFBoq0W+AQMG4PTp05gzZw7eeustvcc35jpPJycnjBw5EuHh4RBCGPR9+Pn5IS0tDb///jsSExORkZGBgIAADBgwAIMHD8bWrVsRExODkydP4rPPPsPOnTuL/PyQkBAcOXLEqJjL6/dRq1YtrFu3DpcuXcKff/6JAQMG6G7CT/rxxx+xevVqXL16FeHh4Thx4oSu4/KAAQPg5uaGnj174vDhw4iJicHBgwfx/vvv4/bt24V+7rZt21C3bt0i4/rzzz8xd+5cnDp1CrGxsdi6dSvu37+v+zdnSNzPusYxMTGYOnUqjh8/jlu3bmHv3r24evWqXsL6LDNmzMC8efPw9ddf4+rVqzh37hzWrFmD+fPnA8hLTqVSKUaMGIGLFy9i586d+OKLLwrUc/PmTdy5cwcdO3Y0+LPpOWDRHj9UYT3difFJ8+fPF56enkKlUomQkBDx3XffCQDi0aNHQgj9DqbZ2dmiX79+wsfHRygUCuHl5SXGjRun12nzxIkTolOnTsLBwUHY29uLRo0aiTlz5hQZW2EdZJ+2ZMkSUaNGDWFjYyMCAgL0OsFu27ZNtGzZUjg5OQl7e3vRqlUr8dtvv+m2P92BdceOHaJWrVpCLpcLX19fIUTRnUubN28uAIh9+/YV2Gau87x165aQy+Vi06ZNQohnfx9CCBEaGipcXV0FABEeHi6EECInJ0dMnz5d+Pn5CRsbG1G1alXRq1cvcfbs2SJjevjwoVCpVOLy5cvPjPNJ5eH7ePozTp8+LYKCgoRSqRS1a9cWP/74Y6GdnxcvXiw6deoklEql8PX1FRs3btSrNz4+XgwePFi4ubkJpVIpatSoIUaNGiWSk5OFEAX/LeZ3NC/KxYsXRUhIiKhSpYpQKpUiICBAfPPNN0bF/axrnJCQIF5//XXh6ekpFAqF8PX1FdOnTxcajUYIYViHYiGEWL9+vWjSpIlQKBSiUqVK4qWXXhJbt27VbT9+/Lho3LixUCgUokmTJmLLli0FOhTPnTtXhISEFHk96PkkEcKIB49ERKVs8uTJSE5OxvLlyy0dClVw2dnZqF27NjZu3Fig0zo93/hYioieK9OmTYOvry9nhCWLu3XrFqZNm8bExgqx5YaIiIjKFbbcEBERUbnC5IaIiIjKFSY3REREVK4wuSEiIqJyhckNERERlStMboiIiKhcYXJDRERE5QqTGyIiIipXmNwQERFRufL/PCBW3XfworYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2017,7 +1714,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4,