-
Notifications
You must be signed in to change notification settings - Fork 1
/
aicandy_retinanet_test_cliaskyp.py
120 lines (91 loc) · 4.17 KB
/
aicandy_retinanet_test_cliaskyp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
@author: AIcandy
@website: aicandy.vn
"""
import torch
import numpy as np
import time
import os
import csv
import cv2
import argparse
from PIL import Image, ImageDraw, ImageFont
from aicandy_utils_src_obilenxc.model import ResNet, BasicBlock
# python aicandy_retinanet_test_cliaskyp.py --image_path image_test.jpg --model_path 'aicandy_output_ntroyvui/aicandy_model_retina_lgkrymnl.pth' --class_list labels.txt --output_path aicandy_output_ntroyvui/image_out.jpg
def load_labels(label_path):
with open(label_path, 'r') as f:
labels = {int(line.split(": ")[0]): line.split(": ")[1].strip() for line in f}
# print('labels: ', labels)
return labels
# Draws a caption above the box in an image with custom font
def draw_caption(image, box, caption, font):
b = np.array(box).astype(int)
# Convert image to PIL format for font drawing
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
draw.text((b[0], b[1] - 20), caption, font=font, fill=(0, 0, 255, 0)) # red color text
# Convert back to OpenCV format
return np.array(pil_image)
def detect_image(image_path, model_path, class_list, output_path):
labels = load_labels(class_list)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = ResNet(len(labels), BasicBlock, [2, 2, 2, 2]) # Initialize the model architecture
model.load_state_dict(torch.load(model_path, map_location=device)) # Load the model weights
model = model.to(device)
model.training = False
model.eval()
# Load the Arial font
font_path = 'aicandy_utils_src_obilenxc/arial.ttf'
font = ImageFont.truetype(font_path, 16)
print(image_path)
image = cv2.imread(image_path)
image_orig = image.copy()
rows, cols, cns = image.shape
smallest_side = min(rows, cols)
min_side = 608
max_side = 1024
scale = min_side / smallest_side
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
image = new_image.astype(np.float32)
image /= 255
image -= [0.485, 0.456, 0.406]
image /= [0.229, 0.224, 0.225]
image = np.expand_dims(image, 0)
image = np.transpose(image, (0, 3, 1, 2))
with torch.no_grad():
image = torch.from_numpy(image).to(device)
st = time.time()
print(image.shape, image_orig.shape, scale)
scores, classification, transformed_anchors = model(image.float())
print('Elapsed time: {}'.format(time.time() - st))
idxs = np.where(scores.cpu() > 0.5)
for j in range(idxs[0].shape[0]):
bbox = transformed_anchors[idxs[0][j], :]
x1 = int(bbox[0] / scale)
y1 = int(bbox[1] / scale)
x2 = int(bbox[2] / scale)
y2 = int(bbox[3] / scale)
label_name = labels[int(classification[idxs[0][j]])]
print(bbox, classification.shape)
score = scores[j]
caption = '{} {:.3f}'.format(label_name, score)
image_orig = draw_caption(image_orig, (x1, y1, x2, y2), caption, font)
cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)
cv2.imwrite(output_path, image_orig)
print(f'Saved image to {output_path}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='AIcandy.vn')
parser.add_argument('--image_path', help='Path to directory containing images')
parser.add_argument('--model_path', help='Path to model')
parser.add_argument('--class_list', type=str, default='labels.txt', help='Path to file listing class names')
parser.add_argument('--output_path', type=str, default='aicandy_output_ntroyvui/image_out.jpg', help='Image file path to save')
parser = parser.parse_args()
detect_image(parser.image_path, parser.model_path, parser.class_list, parser.output_path)