This repository has been archived by the owner on Jun 27, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tarjan.cpp
342 lines (300 loc) · 8.18 KB
/
tarjan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*************************************************************
* > Description : 连通分量系列模板
* > File Name : tarjan.cpp
* > Author : Tony_Wong
* > Created Time : 2019/09/02 12:57:56
* > Copyright (C) 2019 Tony_Wong
**************************************************************/
#include <bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0; int f = 1; char ch = getchar();
while (!isdigit(ch)) {if (ch == '-') f = -1; ch = getchar();}
while (isdigit(ch)) {x = x * 10 + ch - 48; ch = getchar();}
return x * f;
}
const int maxn = 10010;
struct Edge {
int from, to;
Edge(int u, int v): from(u), to(v) {}
};
vector<Edge> edges;
vector<int> G[maxn];
void add(int u, int v) {
edges.push_back(Edge(u, v));
int mm = edges.size();
G[u].push_back(mm - 1);
}
namespace Bridge {
int dfn[maxn], low[maxn], n, m, num;
bool bridge[maxn << 1];
void tarjan(int x, int in_edge) {
dfn[x] = low[x] = ++num;
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (!dfn[e.to]) {
tarjan(e.to, i);
low[x] = min(low[x], low[e.to]);
if (low[e.to] > dfn[x]) {
bridge[i] = bridge[i ^ 1] = true;
}
} else if (i != (in_edge ^ 1)) {
low[x] = min(low[x], dfn[e.to]);
}
}
}
int main() {
n = read(); m = read();
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
add(u, v); add(v, u);
}
for (int i = 1; i <= n; ++i) {
if (!dfn[i]) {
tarjan(i, 0);
}
}
for (int i = 0; i < edges.size(); i += 2) {
if (bridge[i]) {
/* ... */
}
}
return 0;
}
}
namespace CutPoint {
int dfn[maxn], low[maxn], n, m, num, root;
bool cut[maxn];
void tarjan(int x) {
dfn[x] = low[x] = ++num;
int flag = 0;
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (!dfn[e.to]) {
tarjan(e.to);
low[x] = min(low[x], low[e.to]);
if (low[e.to] >= dfn[x]) {
flag++;
if (x != root || flag > 1) cut[x] = true;
}
} else {
low[x] = min(low[x], dfn[e.to]);
}
}
}
int main() {
n = read(); m = read();
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
add(u, v); add(v, u);
}
for (int i = 1; i <= n; ++i) {
if (!dfn[i]) {
root = i;
tarjan(i);
}
}
for (int i = 1; i <= n; ++i) {
if (cut[i]) {
/* ... */
}
}
return 0;
}
}
namespace e_DCC {
using namespace Bridge;
int c[maxn], dcc;
void dfs(int x) {
c[x] = dcc;
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (c[e.to] || bridge[i]) continue;
dfs(e.to);
}
}
int main() {
n = read(); m = read();
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
add(u, v); add(v, u);
}
for (int i = 1; i <= n; ++i) {
if (!dfn[i]) {
tarjan(i, 0);
}
}
for (int i = 1; i <= n; ++i) {
if (!c[i]) {
++dcc;
dfs(i);
}
}
/**
* 共dcc个边双连通分量
* 点x属于第c[x]个边双连通分量
**/
return 0;
}
}
namespace e_DCC_ShrinkPoint {
using namespace e_DCC;
vector<Edge> nedges;
vector<int> nG[maxn];
void nadd(int u, int v) {
nedges.push_back(Edge(u, v));
int mm = nedges.size();
nG[u].push_back(mm - 1);
}
int ShrinkPoint() {
for (int i = 0; i < edges.size(); ++i) {
Edge& e1 = edges[i];
Edge& e2 = edges[i ^ 1];
if (c[e1.to] == c[e2.to]) continue;
nadd(c[e1.to], c[e2.to]);
}
}
}
namespace v_DCC {
bool cut[maxn];
int dfn[maxn], low[maxn], n, m, num, root;
vector<int> dcc[maxn]; int cnt;
stack<int> s;
void tarjan(int x) {
dfn[x] = low[x] = ++num; s.push(x);
if (x == root && G[x].empty()) {
dcc[++cnt].push_back(x);
return;
}
int flag = 0;
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (!dfn[e.to]) {
tarjan(e.to);
low[x] = min(low[x], low[e.to]);
if (low[e.to] >= dfn[x]) {
flag++; cnt++; int z;
if (x != root || flag > 1) cut[x] = true;
do {
z = s.top(); s.pop();
dcc[cnt].push_back(z);
} while (z != e.to);
dcc[cnt].push_back(x);
}
} else {
low[x] = min(low[x], dfn[e.to]);
}
}
}
int main() {
n = read(); m = read();
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
add(u, v); add(v, u);
}
for (int i = 1; i <= n; ++i) {
if (!dfn[i]) {
root = i;
tarjan(i);
}
}
/**
* 共cnt个点双连通分量
* 每个v-DCC存储在dcc[i]中
**/
return 0;
}
}
namespace v_DCC_ShrinkPoint {
using namespace v_DCC;
vector<Edge> nedges;
vector<int> nG[maxn];
void nadd(int u, int v) {
nedges.push_back(Edge(u, v));
int mm = nedges.size();
nG[u].push_back(mm - 1);
}
int new_id[maxn], c[maxn];
int ShrinkPoint() {
num = cnt;
for (int i = 1; i <= n; ++i) {
if (cut[i]) {
new_id[i] = ++num;
}
}
for (int i = 1; i <= cnt; ++i) {
for (int j = 0; j < dcc[i].size(); ++j) {
int x = dcc[i][j];
if (cut[x]) {
nadd(i, new_id[x]);
nadd(new_id[x], i);
} else {
c[x] = i;
}
}
}
}
}
namespace SCC {
int dfn[maxn], low[maxn], c[maxn];
int val[maxn], sum[maxn], n, m, num, cnt;
stack<int> s; bool ins[maxn];
vector<int> scc[maxn];
void tarjan(int x) {
dfn[x] = low[x] = ++num; s.push(x); ins[x] = true;
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (!dfn[e.to]) {
tarjan(e.to);
low[x] = min(low[x], low[e.to]);
} else if (ins[e.to]) {
low[x] = min(low[x], dfn[e.to]);
}
}
if (dfn[x] == low[x]) {
cnt++; int y;
do {
y = s.top(); s.pop(); ins[y] = false;
c[y] = cnt; scc[cnt].push_back(y);
sum[cnt] += val[y];
} while (x != y);
}
}
int main() {
n = read(); m = read();
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
add(u, v);
}
for (int i = 1; i <= n; ++i) {
if (!dfn[i]) {
tarjan(i);
}
}
/**
* 共cnt个强连通分量
* x所在的SCC编号为c[x]
* 编号为i的强连通分量所有点为scc[i]
**/
return 0;
}
}
namespace SCC_ShrinkPoint {
using namespace SCC;
vector<Edge> nedges;
vector<int> nG[maxn];
void nadd(int u, int v) {
nedges.push_back(Edge(u, v));
int mm = nedges.size();
nG[u].push_back(mm - 1);
}
int ShrinkPoint() {
for (int x = 1; x <= n; ++x) {
for (int i = 0; i < G[x].size(); ++i) {
Edge& e = edges[G[x][i]];
if (c[x] == c[e.to]) continue;
nadd(c[x], c[e.to]);
}
}
}
}