Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs, tests, fix: fit fibonacci_fast to contributing guidelines #2893

Merged
merged 12 commits into from
Nov 24, 2024
177 changes: 149 additions & 28 deletions math/fibonacci_fast.cpp
Original file line number Diff line number Diff line change
@@ -1,57 +1,178 @@
/**

Check notice on line 1 in math/fibonacci_fast.cpp

View workflow job for this annotation

GitHub Actions / Code Formatter

Run clang-format on math/fibonacci_fast.cpp

File math/fibonacci_fast.cpp does not conform to Custom style guidelines. (lines 12, 18, 45, 46, 49, 52, 163)
* @file
* @brief Faster computation of Fibonacci series
* @brief Faster computation of Fibonacci series.
*
* @details
* An efficient way to calculate nth fibonacci number faster and simpler than
* \f$O(n\log n)\f$ method of matrix exponentiation This works by using both
* recursion and dynamic programming. as 93rd fibonacci exceeds 19 digits, which
* \f$O(n\log n)\f$ method of matrix exponentiation. This works by using both
* recursion and dynamic programming. As 93rd fibonacci exceeds 19 digits, which
* cannot be stored in a single long long variable, we can only use it till 92nd
* fibonacci we can use it for 10000th fibonacci etc, if we implement
* bigintegers. This algorithm works with the fact that nth fibonacci can easily
* found if we have already found n/2th or (n+1)/2th fibonacci It is a property
* found if we have already found \f$n/2\f$th or \f$(n+1)/2\f$th fibonacci. It is a property
* of fibonacci similar to matrix exponentiation.
*
* \author [Krishna Vedala](https://github.com/kvedala)
* @author [Krishna Vedala](https://github.com/kvedala)
* @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp
*/

#include <cinttypes>
#include <cstdio>
#include <iostream>
#include <cinttypes> /// for uint64_t
#include <cstdio> /// for standard IO
#include <iostream> /// for IO operations
#include <cassert> /// for assert
#include <string> /// for std::to_string
#include <stdexcept> /// for std::invalid_argument

/**
* maximum number that can be computed - The result after 93 cannot be stored
* in a `uint64_t` data type.
* @brief Maximum Fibonacci number that can be computed
*
* @details
* The result after 93 cannot be stored in a `uint64_t` data type.
*/
constexpr uint64_t MAX = 93;

#define MAX 93

/** Algorithm */
/**
* @brief Function to compute the nth Fibonacci number
* @param n The index of the Fibonacci number to compute
* @return uint64_t The nth Fibonacci number
*/
uint64_t fib(uint64_t n) {
static uint64_t f1 = 1,
f2 = 1; // using static keyword will retain the values of
// f1 and f2 for the next function call.
// Using static keyword will retain the values of
// f1 and f2 for the next function call.
static uint64_t f1 = 1, f2 = 1;

if (n <= 2)
if (n <= 2) {
return f2;
if (n >= 93) {
std::cerr
<< "Cannot compute for n>93 due to limit of 64-bit integers\n";
} if (n >= MAX) {
throw std::invalid_argument("Cannot compute for n>=" + std::to_string(MAX) +
" due to limit of 64-bit integers");
return 0;
setbit123 marked this conversation as resolved.
Show resolved Hide resolved
}

uint64_t temp = f2; // we do not need temp to be static

// We do not need temp to be static.
uint64_t temp = f2;
f2 += f1;
f1 = temp;

return f2;
}

/** Main function */
int main() {
// Main Function
for (uint64_t i = 1; i < 93; i++) {
std::cout << i << " th fibonacci number is " << fib(i) << std::endl;
/**
* @brief Function to test the Fibonacci computation
* @returns void
*/
static void test() {
// Test for valid Fibonacci numbers
assert(fib(1) == 1);
assert(fib(2) == 1);
assert(fib(3) == 2);
assert(fib(4) == 3);
assert(fib(5) == 5);
assert(fib(6) == 8);
assert(fib(7) == 13);
assert(fib(8) == 21);
assert(fib(9) == 34);
assert(fib(10) == 55);
assert(fib(11) == 89);
assert(fib(12) == 144);
assert(fib(13) == 233);
assert(fib(14) == 377);
assert(fib(15) == 610);
assert(fib(16) == 987);
assert(fib(17) == 1597);
assert(fib(18) == 2584);
assert(fib(19) == 4181);
assert(fib(20) == 6765);
assert(fib(21) == 10946);
assert(fib(22) == 17711);
assert(fib(23) == 28657);
assert(fib(24) == 46368);
assert(fib(25) == 75025);
assert(fib(26) == 121393);
assert(fib(27) == 196418);
assert(fib(28) == 317811);
assert(fib(29) == 514229);
assert(fib(30) == 832040);
assert(fib(31) == 1346269);
assert(fib(32) == 2178309);
assert(fib(33) == 3524578);
assert(fib(34) == 5702887);
assert(fib(35) == 9227465);
assert(fib(36) == 14930352);
assert(fib(37) == 24157817);
assert(fib(38) == 39088169);
assert(fib(39) == 63245986);
assert(fib(40) == 102334155);
assert(fib(41) == 165580141);
assert(fib(42) == 267914296);
assert(fib(43) == 433494437);
assert(fib(44) == 701408733);
assert(fib(45) == 1134903170);
assert(fib(46) == 1836311903);
assert(fib(47) == 2971215073);
assert(fib(48) == 4807526976);
assert(fib(49) == 7778742049);
assert(fib(50) == 12586269025);
assert(fib(51) == 20365011074);
assert(fib(52) == 32951280099);
assert(fib(53) == 53316291173);
assert(fib(54) == 86267571272);
assert(fib(55) == 139583862445);
assert(fib(56) == 225851433717);
assert(fib(57) == 365435296162);
assert(fib(58) == 591286729879);
assert(fib(59) == 956722026041);
assert(fib(60) == 1548008755920);
assert(fib(61) == 2504730781961);
assert(fib(62) == 4052739537881);
assert(fib(63) == 6557470319842);
assert(fib(64) == 10610209857723);
assert(fib(65) == 17167680177565);
assert(fib(66) == 27777890035288);
assert(fib(67) == 44945570212853);
assert(fib(68) == 72723460248141);
assert(fib(69) == 117669030460994);
assert(fib(70) == 190392490709135);
assert(fib(71) == 308061521170129);
assert(fib(72) == 498454011879264);
assert(fib(73) == 806515533049393);
assert(fib(74) == 1304969544928657);
assert(fib(75) == 2111485077978050);
assert(fib(76) == 3416454622906707);
assert(fib(77) == 5527939700884757);
assert(fib(78) == 8944394323791464);
assert(fib(79) == 14472334024676221);
assert(fib(80) == 23416728348467685);
assert(fib(81) == 37889062373143906);
assert(fib(82) == 61305790721611591);
assert(fib(83) == 99194853094755497);
assert(fib(84) == 160500643816367088);
assert(fib(85) == 259695496911122585);
assert(fib(86) == 420196140727489673);
assert(fib(87) == 679891637638612258);
assert(fib(88) == 1100087778366101931);
assert(fib(89) == 1779979416004714189);
assert(fib(90) == 2880067194370816120);
assert(fib(91) == 4660046610375530309);
assert(fib(92) == 7540113804746346429);
setbit123 marked this conversation as resolved.
Show resolved Hide resolved

// Test for invalid Fibonacci numbers
try {
fib(MAX + 1);
assert(false && "Expected an invalid_argument exception to be thrown");
} catch (const std::invalid_argument& e) {
const std::string expected_message = "Cannot compute for n>=" + std::to_string(MAX) +
" due to limit of 64-bit integers";
assert(e.what() == expected_message);
}

std::cout << "All Fibonacci tests have successfully passed!\n";
}

/**
* @brief Main Function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}
Loading