Skip to content

Commit

Permalink
docs, tests, fix: fit fibonacci_fast to contributing guidelines (#2893)
Browse files Browse the repository at this point in the history
* Update fibonacci_fast.cpp

Modify the fibonacci_fast.cpp to fit the project style requirements.

* Update fibonacci_fast.cpp to meet the revision suggestions.

* Update fibonacci_fast.cpp to try to pass some CI test

* Update fibonacci_fast.cpp

* Update fibonacci_fast.cpp to meet the coding style requirements

* Update fibonacci_fast.cpp

* Update fibonacci_fast.cpp

---------

Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
  • Loading branch information
setbit123 and realstealthninja authored Nov 24, 2024
1 parent c851590 commit 77b9f39
Showing 1 changed file with 149 additions and 28 deletions.
177 changes: 149 additions & 28 deletions math/fibonacci_fast.cpp
Original file line number Diff line number Diff line change
@@ -1,57 +1,178 @@
/**

Check notice on line 1 in math/fibonacci_fast.cpp

View workflow job for this annotation

GitHub Actions / Code Formatter

Run clang-format on math/fibonacci_fast.cpp

File math/fibonacci_fast.cpp does not conform to Custom style guidelines. (lines 12, 18, 45, 46, 49, 52, 163)
* @file
* @brief Faster computation of Fibonacci series
* @brief Faster computation of Fibonacci series.
*
* @details
* An efficient way to calculate nth fibonacci number faster and simpler than
* \f$O(n\log n)\f$ method of matrix exponentiation This works by using both
* recursion and dynamic programming. as 93rd fibonacci exceeds 19 digits, which
* \f$O(n\log n)\f$ method of matrix exponentiation. This works by using both
* recursion and dynamic programming. As 93rd fibonacci exceeds 19 digits, which
* cannot be stored in a single long long variable, we can only use it till 92nd
* fibonacci we can use it for 10000th fibonacci etc, if we implement
* bigintegers. This algorithm works with the fact that nth fibonacci can easily
* found if we have already found n/2th or (n+1)/2th fibonacci It is a property
* found if we have already found \f$n/2\f$th or \f$(n+1)/2\f$th fibonacci. It is a property
* of fibonacci similar to matrix exponentiation.
*
* \author [Krishna Vedala](https://github.com/kvedala)
* @author [Krishna Vedala](https://github.com/kvedala)
* @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp
*/

#include <cinttypes>
#include <cstdio>
#include <iostream>
#include <cinttypes> /// for uint64_t
#include <cstdio> /// for standard IO
#include <iostream> /// for IO operations
#include <cassert> /// for assert
#include <string> /// for std::to_string
#include <stdexcept> /// for std::invalid_argument

/**
* maximum number that can be computed - The result after 93 cannot be stored
* in a `uint64_t` data type.
* @brief Maximum Fibonacci number that can be computed
*
* @details
* The result after 93 cannot be stored in a `uint64_t` data type.
*/
constexpr uint64_t MAX = 93;

#define MAX 93

/** Algorithm */
/**
* @brief Function to compute the nth Fibonacci number
* @param n The index of the Fibonacci number to compute
* @return uint64_t The nth Fibonacci number
*/
uint64_t fib(uint64_t n) {
static uint64_t f1 = 1,
f2 = 1; // using static keyword will retain the values of
// f1 and f2 for the next function call.
// Using static keyword will retain the values of
// f1 and f2 for the next function call.
static uint64_t f1 = 1, f2 = 1;

if (n <= 2)
if (n <= 2) {
return f2;
if (n >= 93) {
std::cerr
<< "Cannot compute for n>93 due to limit of 64-bit integers\n";
} if (n >= MAX) {
throw std::invalid_argument("Cannot compute for n>=" + std::to_string(MAX) +
" due to limit of 64-bit integers");
return 0;
}

uint64_t temp = f2; // we do not need temp to be static

// We do not need temp to be static.
uint64_t temp = f2;
f2 += f1;
f1 = temp;

return f2;
}

/** Main function */
int main() {
// Main Function
for (uint64_t i = 1; i < 93; i++) {
std::cout << i << " th fibonacci number is " << fib(i) << std::endl;
/**
* @brief Function to test the Fibonacci computation
* @returns void
*/
static void test() {
// Test for valid Fibonacci numbers
assert(fib(1) == 1);
assert(fib(2) == 1);
assert(fib(3) == 2);
assert(fib(4) == 3);
assert(fib(5) == 5);
assert(fib(6) == 8);
assert(fib(7) == 13);
assert(fib(8) == 21);
assert(fib(9) == 34);
assert(fib(10) == 55);
assert(fib(11) == 89);
assert(fib(12) == 144);
assert(fib(13) == 233);
assert(fib(14) == 377);
assert(fib(15) == 610);
assert(fib(16) == 987);
assert(fib(17) == 1597);
assert(fib(18) == 2584);
assert(fib(19) == 4181);
assert(fib(20) == 6765);
assert(fib(21) == 10946);
assert(fib(22) == 17711);
assert(fib(23) == 28657);
assert(fib(24) == 46368);
assert(fib(25) == 75025);
assert(fib(26) == 121393);
assert(fib(27) == 196418);
assert(fib(28) == 317811);
assert(fib(29) == 514229);
assert(fib(30) == 832040);
assert(fib(31) == 1346269);
assert(fib(32) == 2178309);
assert(fib(33) == 3524578);
assert(fib(34) == 5702887);
assert(fib(35) == 9227465);
assert(fib(36) == 14930352);
assert(fib(37) == 24157817);
assert(fib(38) == 39088169);
assert(fib(39) == 63245986);
assert(fib(40) == 102334155);
assert(fib(41) == 165580141);
assert(fib(42) == 267914296);
assert(fib(43) == 433494437);
assert(fib(44) == 701408733);
assert(fib(45) == 1134903170);
assert(fib(46) == 1836311903);
assert(fib(47) == 2971215073);
assert(fib(48) == 4807526976);
assert(fib(49) == 7778742049);
assert(fib(50) == 12586269025);
assert(fib(51) == 20365011074);
assert(fib(52) == 32951280099);
assert(fib(53) == 53316291173);
assert(fib(54) == 86267571272);
assert(fib(55) == 139583862445);
assert(fib(56) == 225851433717);
assert(fib(57) == 365435296162);
assert(fib(58) == 591286729879);
assert(fib(59) == 956722026041);
assert(fib(60) == 1548008755920);
assert(fib(61) == 2504730781961);
assert(fib(62) == 4052739537881);
assert(fib(63) == 6557470319842);
assert(fib(64) == 10610209857723);
assert(fib(65) == 17167680177565);
assert(fib(66) == 27777890035288);
assert(fib(67) == 44945570212853);
assert(fib(68) == 72723460248141);
assert(fib(69) == 117669030460994);
assert(fib(70) == 190392490709135);
assert(fib(71) == 308061521170129);
assert(fib(72) == 498454011879264);
assert(fib(73) == 806515533049393);
assert(fib(74) == 1304969544928657);
assert(fib(75) == 2111485077978050);
assert(fib(76) == 3416454622906707);
assert(fib(77) == 5527939700884757);
assert(fib(78) == 8944394323791464);
assert(fib(79) == 14472334024676221);
assert(fib(80) == 23416728348467685);
assert(fib(81) == 37889062373143906);
assert(fib(82) == 61305790721611591);
assert(fib(83) == 99194853094755497);
assert(fib(84) == 160500643816367088);
assert(fib(85) == 259695496911122585);
assert(fib(86) == 420196140727489673);
assert(fib(87) == 679891637638612258);
assert(fib(88) == 1100087778366101931);
assert(fib(89) == 1779979416004714189);
assert(fib(90) == 2880067194370816120);
assert(fib(91) == 4660046610375530309);
assert(fib(92) == 7540113804746346429);

// Test for invalid Fibonacci numbers
try {
fib(MAX + 1);
assert(false && "Expected an invalid_argument exception to be thrown");
} catch (const std::invalid_argument& e) {
const std::string expected_message = "Cannot compute for n>=" + std::to_string(MAX) +
" due to limit of 64-bit integers";
assert(e.what() == expected_message);
}

std::cout << "All Fibonacci tests have successfully passed!\n";
}

/**
* @brief Main Function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}

0 comments on commit 77b9f39

Please sign in to comment.