-
Notifications
You must be signed in to change notification settings - Fork 2
/
lilypad_sarsa.py
142 lines (105 loc) · 3.69 KB
/
lilypad_sarsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys
import os
import numpy as np
import json
import pickle
# If no arguments were passed via -i input, default to 5
grid_size = int(sys.argv[1]) if len(sys.argv) > 1 else 5
from enum import Enum
class Action(Enum):
UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3
class GridWorld:
def __init__(self, size=5):
self.size = size
self.reward = np.zeros((size, size))
# Set goal to bottom-right corner of the grid
self.goal = (size - 1, size - 1)
self.state = None
self.reset()
def get_reward(self, state):
if state == self.goal:
return 1
return 0
def reset(self):
self.state = (0, 0)
return self.state
def step(self, action):
row, col = self.state
if action == Action.RIGHT.value:
col = min(col + 1, self.size - 1)
elif action == Action.LEFT.value:
col = max(col - 1, 0)
elif action == Action.DOWN.value:
row = min(row + 1, self.size - 1)
elif action == Action.UP.value:
row = max(row - 1, 0)
self.state = (row, col)
reward_value = self.get_reward(self.state)
done = self.state == self.goal
return self.state, reward_value, done, {}
class QTable:
def __init__(self, row, col, num_actions):
self.values = np.zeros((row, col, num_actions))
def get_best_action(self, row, col):
return np.argmax(self.values[row][col])
def get_value(self, row, col, action):
return self.values[row][col][action]
class SarsaAgent:
def __init__(self, num_actions, alpha=0.1, gamma=0.99, epsilon=0.1):
self.num_actions = num_actions
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.last_state = None
self.last_action = None
def set_q_table(self, q_table):
self.q_table = q_table
def choose_action(self, state):
if np.random.uniform(0, 1) < self.epsilon:
return np.random.randint(self.num_actions)
else:
row, col = state
return self.q_table.get_best_action(row, col)
def learn(self, state, action, reward, next_state, next_action):
next_row, next_col = next_state
if self.last_state is not None:
current_q = self.q_table.get_value(next_row, next_col, next_action)
last_q = self.q_table.values[self.last_state][self.last_action]
update = self.alpha * (reward + self.gamma * current_q - last_q)
self.q_table.values[self.last_state][self.last_action] += update
self.last_state = next_state
self.last_action = next_action
def reset(self):
self.last_state = None
self.last_action = None
def train_agent(env, agent, num_episodes=100):
for episode in range(1, num_episodes + 1):
state = env.reset()
action = agent.choose_action(state)
agent.reset()
done = False
while not done:
next_state, reward, done, _ = env.step(action)
next_action = agent.choose_action(next_state)
agent.learn(state, action, reward, next_state, next_action)
state = next_state
action = next_action
# Define environment and agent
env = GridWorld(grid_size)
if len(sys.argv) != 2:
print(pickle.dumps(QTable(5, 5, 4).values))
exit(0)
q_table_json = sys.argv[1]
ns = grid_size * grid_size
na = len(list(Action))
q = QTable(grid_size, grid_size, na)
q.values = pickle.loads(q_table_json)
agent = SarsaAgent(na)
agent.set_q_table(q)
train_agent(env, agent, 1)
# Convert the entire output to a JSON formatted string
# Print the final JSON output
print(json.dumps(agent.q_table.values))