-
Notifications
You must be signed in to change notification settings - Fork 2
/
setup.py
163 lines (139 loc) · 4.14 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
TakeLab Podium is an open source library for natural language processing.
Podium accelerates data loading, preprocessing & batching to enable faster development of NLP models.
See http://takelab.fer.hr/podium/ for complete documentation.
"""
import re
from pathlib import Path
from setuptools import find_packages, setup
def _get_version():
with open(Path(__file__).parent / "podium" / "__init__.py", "r", encoding="utf-8") as f:
version = re.search(r'__version__ = \"(.*)\"', f.read()).group(1)
return version
DISTNAME = 'podium-nlp'
VERSION = _get_version()
DOCLINES = __doc__.split('\n')
INSTALL_REQUIRES = [
# for numericalization in batching
"numpy;python_version>='3.7'",
"numpy<=1.19;python_version<'3.7'",
# for improved dataset pickling
"dill",
# for tokenization and data encoded in tree structure
"nltk>=3.0,<3.6",
# for improved csv parsing
"pandas;python_version>='3.7'",
"pandas<1.2.0;python_version<'3.7'",
# for downloading datasets over HTTP
"paramiko",
"requests",
# for models and model selection
"scikit-learn",
# for sparse storage
"scipy;python_version>='3.7'",
"scipy<1.6.0;python_version<'3.7'",
# progress bar in download and model selection
"tqdm",
# for nodes in HierarhicalDataset
"dataclasses;python_version<'3.7'",
]
TESTS_REQUIRE = [
"pytest",
"pytest-cov",
"pytest-mock",
"urllib3",
# for preprocessing (tokenization, hooks, etc.)
"spacy",
"spacy-lookups-data"
]
QUALITY_REQUIRE = [
"black",
"flake8",
"isort",
"docformatter",
]
DATASETS_REQUIRE = [
# to transform CONLL-U datasets to our dataset type
"conllu",
# to support HF Datasets conversion
"datasets",
# to support saving/loading datasets from a disk
"pyarrow>=1.0.0",
# to tokenize the input in the IMDB dataset
"spacy",
]
PREPROC_REQUIRE = [
# for normalization and tokenization
"sacremoses",
# for text cleanup (url removal, currency removal, etc.)
"clean-text",
# for truecasing
"truecase",
# for keyword extraction
"rake-nltk",
]
DOCS_REQUIRE = [
'sphinx',
'sphinx_rtd_theme',
'sphinx-copybutton',
'recommonmark',
'nbformat',
'datasets',
]
EXTRAS_REQUIRE = {
# for training and evaluation of PyTorch models
"torch": ["torch"],
# dependencies for all dataset implementations (including the ones in dataload)
"datasets": DATASETS_REQUIRE,
"docs": DOCS_REQUIRE,
"quality": QUALITY_REQUIRE,
"tests": TESTS_REQUIRE + DATASETS_REQUIRE + PREPROC_REQUIRE,
}
EXTRAS_REQUIRE["dev"] = EXTRAS_REQUIRE["tests"] + QUALITY_REQUIRE
setup(
name=DISTNAME,
version=VERSION,
description=DOCLINES[0],
long_description='\n'.join(DOCLINES),
author="TakeLab",
author_email="takelab@fer.hr",
url="https://github.com/TakeLab/podium",
download_url="https://github.com/TakeLab/podium/tags",
license="BSD-3",
packages=find_packages(
exclude=[
"*.tests",
"*.tests.*",
"tests",
"tests.*",
"examples",
"examples.*",
]
),
package_data={"podium": ["py.typed"]},
install_requires=INSTALL_REQUIRES,
extras_require=EXTRAS_REQUIRE,
python_requires=">=3.6",
classifiers=[
# maturity level
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: BSD License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Text Processing",
],
keywords="podium nlp natural-language-processing machine learning",
zip_safe=False,
)