Skip to content

Latest commit

 

History

History
371 lines (300 loc) · 9.09 KB

dataset.md

File metadata and controls

371 lines (300 loc) · 9.09 KB

Dataset ATCO 4H JSON remake version

UP

This file describes the format of the JSON objects

Utterance object:

{
    filename: "RADAR_PRAHA_5mhz_10031892",
    nearbyCallsigns: ["BLA1RK", "BRU861", ...],
    segments: [SegmentObj],
    trueCallsigns: ["BRU861"]
}

Segment

  • tags: array of tags for each token in the sentence. Each tag is either 0 or 1. 0 means that the token is not a callsign, 1 means that the token is a callsign.
  • possible more tags in the future
{
    text: ["oscar kilo foxtrot charlie alpha you be leave tma praha"],
    tags: [1,1,1,1,1,0,0,0,0,0],
    textCnet: [CnetObject, ...],
    speaker: "A",
    start: 0,
    end: 3.48,
}

CNET object

Object created from each line of the .cnet file which was created using ASR.

This object represents one word from the sentence.

Specifically it contains array of pairs (t,p). t is the token recognised by the ASR and p is the probability of the token in the place of the current word.

[
    {
        t: "<eps>", 
        p: 0.9999633 
    },
    {
        t: "go",
        p: 1.297652e-05
    },
    {
        t: "it",
        p: 6.019365e-06
    },
    {
        t: "two",
        p: 5.743921e-06
    },
    {
        t: "to",
        p: 5.034454e-06
    }
]

Nearby callsign object

These objects are extracted from the .info file and have the following structure:

DEPRECATED - now using only short form

{
    callsign: "AFR58MK",
    long: "Air France Five Eight Mike Kilo"
}
    "AFR58MK"

Calculating posterior probability

Notes

TODO

  • refactor testerCore.js
    • getSegments 2 times in the files - similar behavior
  • DATASET
-->
  • 2 tasks:
  • charts:
    • Human SOLID, Cnet DOTTED
    • Naive Orange, BERT(or combined) Blue
    • each chart has 4 lines
  • Task 1: Get the SPAN
    • Naive & BERT
    • Chart All
  • Task 2: Get the ICAO
    • Naive & Combined
  • plan:
    • Generate JSONs with the thresholded data for each task and airport
    • Plot after that

check cases

Human correct but CNET wrong:

  • LSGS_SION_Tower_118_3MHz_20210503_152021
  • LSGS_SION_Tower_118_3MHz_20210503_145725
  • LSGS_SION_Tower_118_3MHz_20210503_145432

both incorrect:

  • LSGS_SION_Tower_118_3MHz_20210503_150138
  • LSGS_SION_Tower_118_3MHz_20210503_145725

CNET wrong Human correct (new):

  • YSSY_SYDNEY_Tower_120_5MHz_20210604_214945
    • text: Rex Six Seven Sixty two
    • cnet: rex six seven qatari three
    • true callsign RXA6762 (score .81)
      • score is normalised by 5
    • detected callsign RXA6117 (score .86)
      • this callsign has a variation where seventeen is one token and therefore the number of tokens is lower
      • therefore score is normalised by 4
    • Solution: aditional denormalisation based on length of the detected variation
  • YSSY_SYDNEY_Tower_120_5MHz_20210604_200316
    • cnet text empty
    • Solution: remove files (or segments) where there is no cnet transcript available
    • same problem:
      • YSSY_SYDNEY_Tower_120_5MHz_20210604_113755

Verifikace

  • roc krivka

RESULTS

ALL - 1172

WER 0.38968050769799273

ICAO

Naive

  • AUC Human 0.9517522457280021
  • AUC Cnet 0.4771841689383993

SPAN

Naive

  • AUC Human 0.9097380731256094
  • AUC Cnet 0.44705291869997527

BERT AUC Human 0.8916034874756622 AUC Cnet 0.3997592629077808

LKPR - 66

WER 0.2101033590514311

alt text alt text

ICAO

Naive

  • AUC Human 0.9761904761904762
  • AUC Cnet 0.7206007998608852

SPAN

BERT

  • AUC Human 0.5592529529876917
  • AUC Cnet 0.5755590698265426

Naive

  • AUC Human 0.9268353174603174
  • AUC Cnet 0.6879572943077298

LSGS - 104

WER 0.3268911284233094

ICAO

Naive

  • AUC Human 0.9287227032537697
  • AUC Cnet 0.7319040229285058

SPAN

BERT

  • AUC Human 0.8150569199554409
  • AUC Cnet 0.6804041577231494

Naive

  • AUC Human 0.8914828464257134
  • AUC Cnet 0.68345370052336

LSZ - 228

WER 0.29790151820727184

ICAO

Naive

  • AUC Human 0.876266674916576
  • AUC Cnet 0.711667280998883

SPAN

BERT

  • AUC Human 0.9286464600211768
  • AUC Cnet 0.7419057166524715

Naive

  • AUC Human 0.846518555585525
  • AUC Cnet 0.669373474702547

LSZB - 43

WER 0.28667964879883445

LSZH - 185

WER 0.30050984461031405

LZIB - 62

WER: 0.1834896008323603

ICAO

  • AUC Human 0.9152857681534152
  • AUC Cnet 0.7854670532848176

SPAN

BERT

  • AUC Human 0.5573936760512216
  • AUC Cnet 0.6539098114900969

Naive

  • AUC Human 0.6367394958401111
  • AUC Cnet 0.6669259333990194

YSSY - 708

WER: 0.46415723337914

ICAO

  • AUC Human 0.9861187690643256
  • AUC Cnet 0.25715760094205553

SPAN

BERT

  • AUC Human 0.5525061677380345
  • AUC Cnet 0.11432009683725904

Naive

  • AUC Human 0.68299622419411
  • AUC Cnet 0.2434591663644502

Results various similarity algorithms for CSG detection

Jaro Winkler

Human accuracy: 0.9057093425605537 Human precision: 0.9057093425605537 Cnet segments: 1156 Cnet correct: 677 Cnet no detection: 56 Cnet false positive: 423 Cnet accuracy: 0.5856401384083045 Cnet precision: 0.6154545454545455

Jaro Winkler Join

Human accuracy: 0.8529411764705882 Human precision: 0.8529411764705882 Cnet segments: 1156 Cnet correct: 537 Cnet no detection: 45 Cnet false positive: 574 Cnet accuracy: 0.46453287197231835 Cnet precision: 0.48334833483348333

Levenshtein

Human accuracy: 0.8693771626297578 Human precision: 0.8701298701298701 Cnet segments: 1156 Cnet correct: 523 Cnet no detection: 44 Cnet false positive: 589 Cnet accuracy: 0.4524221453287197 Cnet precision: 0.47032374100719426

Levenshtein Join

Human accuracy: 0.835820895522388 Human precision: 0.835820895522388 Cnet segments: 938 Cnet correct: 515 Cnet no detection: 25 Cnet false positive: 398 Cnet accuracy: 0.5490405117270789 Cnet precision: 0.5640744797371303

Jaccard

Human accuracy: 0.7517301038062284 Human precision: 0.7517301038062284 Cnet segments: 1156 Cnet correct: 445 Cnet no detection: 38 Cnet false positive: 673 Cnet accuracy: 0.38494809688581316 Cnet precision: 0.39803220035778175