-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
59 lines (47 loc) · 1.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
train_dir = 'data/train'
val_dir = 'data/test'
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (48,48),
batch_size = 64,
color_mode = "grayscale",
class_mode = 'categorical'
)
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size = (48,48),
batch_size = 64,
color_mode = "grayscale",
class_mode = 'categorical'
)
emotion_model = Sequential()
emotion_model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape = (48,48,1)))
emotion_model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2,2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Conv2D(128, kernel_size=(3,3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2,2)))
emotion_model.add(Conv2D(128, kernel_size=(3,3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2,2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))
emotion_model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.0001, decay=1e-6),metrics=['accuracy'])
emotion_model_info = emotion_model.fit_generator(
train_generator,
steps_per_epoch = 28709 // 64,
epochs=75,
validation_data = val_generator,
validation_steps = 7178 // 64
)
emotion_model.save_weights('model.h5')