-
Notifications
You must be signed in to change notification settings - Fork 1
/
crypto_predict.py
89 lines (51 loc) · 2.43 KB
/
crypto_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pandas_datareader as web
import datetime as dt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout,LSTM
def predict_crypto(crypto, world, start_date, end_date, days):
crypto_currency = crypto
world_currency = world
start = start_date
end = end_date
data = web.DataReader(f'{crypto_currency}-{world_currency}', 'yahoo', start, end)
scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1))
prediction_days = days
x_train, y_train = [], []
for x in range(prediction_days, len(scaled_data)):
x_train.append(scaled_data[x-prediction_days:x, 0])
y_train.append(scaled_data[x, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences = True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, epochs=25, batch_size=32)
year, month, day = map(int, start.split('-'))
year2,month2, day2 = map(int, end.split('-'))
test_start = dt.datetime(year,month,day)
test_end = dt.datetime(year2,month2,day2)
test_data = data = web.DataReader(f'{crypto_currency}-{world_currency}', 'yahoo', test_start, test_end)
actual_prices = test_data['Close'].values
total_dataset = pd.concat((data['Close'], test_data['Close']), axis=0)
model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:].values
model_inputs = model_inputs.reshape(-1,1)
model_inputs = scaler.fit_transform(model_inputs)
x_test = []
for x in range(prediction_days, len(model_inputs)):
x_test.append(model_inputs[x-prediction_days:x,0])
x_test = np.array(x_test)
x_test = np.reshape(x_test,(x_test.shape[0], x_test.shape[1], 1))
prediction_prices = model.predict(x_test)
prediction_prices = scaler.inverse_transform(prediction_prices)
return prediction_prices[0][0]