-
Notifications
You must be signed in to change notification settings - Fork 2
/
Theta_D_F_H.py2.py
508 lines (426 loc) · 21.5 KB
/
Theta_D_F_H.py2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# -*- coding: utf-8 -*-
#####################################################################################################
## By: Pan Yuwen, 05/2021
## Contact: panyuwen.x@gmail.com
#####################################################################################################
import numpy as np
import pandas
import gzip
import re
from functools import reduce
import math
from math import sqrt
import argparse
import sys
import socket
import os
import time
import gc
from scipy import integrate
from scipy.special import gamma
#from rpy2.robjects.packages import importr
#from rpy2.robjects.vectors import FloatVector
#stats = importr('stats')
## 1993-Statistical tests of neutrality of mutations
## under the neutral model
## E(s) = an * theta;
## E(pi) = theta
## E(η) = n/(n-1) * theta
## FU & Li's D: K vs. singleton
## FU & Li's F: pi vs. singleton
## Fay & Wu's H: pi vs. sum(#mutant^2)
## Tajima's D: pi vs. K
## Fu and Li's D, with or without outgroup
## #singletons may overestimate the #mutations in the external branches without outgroup
def calculate_Dfuli_outgroup(s,n,m):
## s: num of segregating sites
## n: num of DNA sequences
## m: num of derived singletons
an = reduce(lambda x,y: x+1.0/y, range(1,n))
bn = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
if n==2:
cn = 1
else:
cn = 2.0 * (n*an - 2.0*(n-1.0)) / ((n-1.0)*(n-2.0))
v = 1.0 + (pow(an,2) / (bn+pow(an,2))) * (cn - (n+1.0)/(n-1.0))
u = an - 1.0 - v
D = (s - m*an) / sqrt(u*s + v*pow(s,2))
return D
def calculate_Dfuli_no_outgroup(s,n,m):
## s: num of segregating sites
## n: num of DNA sequences
## m: num of singletons
an = reduce(lambda x,y: x+1.0/y, range(1,n))
an1 = an + 1.0/n
bn = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
if n==2:
cn = 1
else:
cn = 2.0 * (n*an - 2.0*(n-1.0)) / ((n-1.0)*(n-2.0))
dn = cn + (n-2.0)/pow(n-1.0,2) + 2.0/(n-1.0)*(3.0/2-(2.0*an1-3.0)/(n-2.0)-1.0/n)
v = (pow(n*1.0/(n-1.0),2)*bn + pow(an,2)*dn - 2.0*n*an*(an+1.0)/pow(n-1,2)) / (pow(an,2)+bn)
u = n*1.0/(n-1.0) * (an-n*1.0/(n-1.0)) - v
D = (s*n*1.0 / (n-1.0) - an*m) / sqrt(u*s + v*pow(s,2))
return D
def calculate_Ffuli_outgroup(s,n,m,pi):
## s: num of segregating sites
## n: num of DNA sequences
## m: num of derived singletons
an = reduce(lambda x,y: x+1.0/y, range(1,n))
an1 = an + 1.0/n
bn = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
if n==2:
cn = 1
else:
cn = 2.0 * (n*an - 2.0*(n-1.0)) / ((n-1.0)*(n-2.0))
v = (cn+2.0*(pow(n,2)+n+3.0)/(9.0*n*(n-1.0))-2.0/(n-1.0)) / (pow(an,2)+bn)
u = (1.0 + (n+1.0)/(3.0*(n-1.0)) - 4.0*(n+1.0)/pow(n-1,2)*(an1-2.0*n/(n+1.0))) / an - v
F = (pi - m) / sqrt(u*s + v*pow(s,2))
return F
## 1995-Properties of Statistical Tests of Neutrality for DNA Polymorphism Data
def calculate_Ffuli_no_outgroup(s,n,m,pi):
## s: num of segregating sites
## n: num of DNA sequences
## m: num of singletons
an = reduce(lambda x,y: x+1.0/y, range(1,n))
an1 = an + 1.0/n
bn = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
#v = (dn + 2.0*(pow(n,2)+n+3.0)/(9.0*n*(n-1.0)) - 2.0/(n-1.0)*(4.0*bn-6.0+8.0/n)) / (pow(an,2) + bn)
#u = (n*1.0/(n-1.0)+(n+1.0)/(3.0*(n-1.0))-4.0/(n*(n-1.0))+2.0*(n+1.0)/pow(n-1,2)*(an1-2.0*n/(n+1.0))) / an -v
v = ((2.0*pow(n,3)+110.0*pow(n,2)-255.0*n+153.0) / (9.0*pow(n,2)*(n-1.0)) + 2.0*(n-1.0)*an/pow(n,2) - 8.0*bn/n) / (pow(an,2) + bn)
u = (4.0*pow(n,2)+19.0*n+3.0-12.0*(n+1.0)*an1) / (3.0*n*(n-1)) / an - v
F = (pi - m*1.0*(n-1.0)/n) / sqrt(u*s + v*pow(s,2))
return F
## ancestral stat required
## 2000-Hitchhiking Under Positive Darwinian Selection
## 2006-Statistical Tests for Detecting Positive Selection by Utilizing High-Frequency Variants, (8, 11, 12)
def calculate_Hfaywu(s,n,pi,hapcount):
## s: num of segregating sites
## n: num of DNA sequences
## original Fay and Wu's H
#count = pandas.value_counts(hapcount['1'])
#thetaH = 2.0*(count.values * np.power(np.array(count.index),2)).sum() / (n*(n-1))
thetaH = 2.0 * np.power(hapcount['1'].values,2).sum() / (n*(n-1.0))
H = pi - thetaH
## normalized Fay and Wu's H
thetaL = hapcount['1'].sum()*1.0 / (n-1.0)
an = reduce(lambda x,y: x+1.0/y, range(1,n))
bn = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
bn1 = bn + 1.0/pow(n,2)
thetaW = s*1.0 / an
theta_squre = s*1.0*(s-1.0) / (pow(an,2)+bn)
var = thetaW*(n-2.0)/(6.0*(n-1.0)) + theta_squre * (18.0*pow(n,2)*(3.0*n+2.0)*bn1 - (88.0*pow(n,3)+9.0*pow(n,2)-13.0*n+6.0)) / (9.0*n*pow(n-1,2))
normH = (pi - thetaL)*1.0 / sqrt(var)
return H, normH
## 1989-Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism
def calculate_Dtajima(s,n,pi):
## s: num of segregating sites
## n: num of DNA sequences
## Tajima's D
a1 = reduce(lambda x,y: x+1.0/y, range(1,n)); a2 = reduce(lambda x,y: x+1.0/pow(y,2), range(1,n))
b1 = (n+1.0)/(3.0*n-3.0); b2 = 2.0*(pow(n,2)+n+3.0)/(9.0*n*(n-1.0))
c1 = b1-1.0/a1; c2 = b2-(n+2.0)/(a1*n)+a2/pow(a1,2)
e1 = c1/a1; e2 = c2/(pow(a1,2)+a2)
D = (pi-s/a1)/sqrt(e1*s+e2*s*(s-1.0))
## P value for Tajima's D, assuming that D follows the beta distribution
if n%2 == 0:
Dmax = (n/(2.0*(n-1))-1.0/a1)/sqrt(e2)
else:
Dmax = ((n+1.0)/(2.0*n)-1.0/a1)/sqrt(e2)
Dmin = (2.0/n-1.0/a1)/sqrt(e2)
a = Dmin; b = Dmax
alpha = -(1.0+a*b)*b/(b-a); beta = (1.0+a*b)*a/(b-a)
func = lambda d: gamma(alpha+beta)*pow(b-d,alpha-1.0)*pow(d-a,beta-1.0)/(gamma(alpha)*gamma(beta)*pow(b-a,alpha+beta-1.0))
pvalue = 2*min(integrate.quad(func, Dmin, D)[0], integrate.quad(func, D, Dmax)[0])
#pvalue = np.nan
return D, pvalue
## Nei, M., and Li, W.H. (1979). MATHEMATICAL-MODEL FOR STUDYING GENETIC-VARIATION IN TERMS OF RESTRICTION ENDONUCLEASES. Proc Natl Acad Sci U S A 76, 5269-5273
def theta_pi_k(hapcount,s,n):
pi = (hapcount['0'].values * hapcount['1'].values).sum() * 1.0/(n*(n-1.0)/2.0)
k = s * 1.0 / reduce(lambda x,y: x+1.0/y, range(1,n))
return pi, k
## Nei, M., and Tajima, F. (1981). DNA POLYMORPHISM DETECTABLE BY RESTRICTION ENDONUCLEASES. Genetics 97, 145-163
def haplotype_diversity(haps):
## Haplotype Diversity (H), H = N/(N-1) * (1-sigma(x^2))
## x is the haplotype frequency of each haplotype
## N is the sample size (haplotypes)
## This measure of gene diversity is analogous to the heterozygosity at a single locus
haplist = haps.apply(lambda x: "".join(list(x)),axis=0) # assemble each hap to string
nsample = haps.shape[1]
sigmax2 = reduce(lambda x,y: x+pow(y,2), [0]+[z*1.0/nsample for z in list(haplist.value_counts())])
nhap = len(set(haplist))
H = nsample*1.0/(nsample-1.0)*(1.0-sigmax2)
return nhap, H
def calculate_one_region_stat(hap_df,hapcount_df,nseq,chromid,start,end,outgroup):
## info in the given region
haps = hap_df[(hap_df['#CHROM']==str(chromid)) & (hap_df['POS']>=int(start)) & (hap_df['POS']<=int(end))].copy()
hapcount = hapcount_df[(hapcount_df['#CHROM']==str(chromid)) & (hapcount_df['POS']>=int(start)) & (hapcount_df['POS']<=int(end))].copy()
if haps.empty:
nmarker = 0; sigtn = 0; thetaPI = 0; thetaK = 0; seg = 0; nhap = 0; H = 0;
Dtajima = np.nan; DtajimaP = np.nan;
Hfaywu = np.nan; normHfaywu = np.nan;
Ffuli = np.nan; Dfuli = np.nan
return nmarker, sigtn, thetaPI, thetaK, seg, nhap, H, Hfaywu, normHfaywu, Ffuli, Dfuli, Dtajima, DtajimaP
else:
nmarker = hapcount.shape[0]
haps.drop(['#CHROM','POS'],axis=1,inplace=True); hapcount.drop(['#CHROM','POS'],axis=1,inplace=True)
## check non-biallelic (or missing) sites + homozygotes
site2rm = list(hapcount[((hapcount['0']+hapcount['1']) <nseq) | (hapcount['1']==0) | (hapcount['0']==0)].index)
if len(site2rm) == nmarker:
sigtn = 0; thetaPI = 0; thetaK = 0; seg = 0; nhap = 0; H = 0;
Dtajima = np.nan; DtajimaP = np.nan;
Hfaywu = np.nan; normHfaywu = np.nan;
Ffuli = np.nan; Dfuli = np.nan
return nmarker, sigtn, thetaPI, thetaK, seg, nhap, H, Hfaywu, normHfaywu, Ffuli, Dfuli, Dtajima, DtajimaP
else:
if len(site2rm) >0:
haps.drop(site2rm,inplace=True)
hapcount.drop(site2rm,inplace=True)
else:
pass
seg = hapcount.shape[0] ## num of segregating site
thetaPI, thetaK = theta_pi_k(hapcount,seg,nseq)
nhap, H = haplotype_diversity(haps)
Dtajima, DtajimaP = calculate_Dtajima(seg,nseq,thetaPI)
if outgroup == 'Y':
sigtn = hapcount[(hapcount['1']==1)].shape[0] ## num of derived singleton
Hfaywu, normHfaywu = calculate_Hfaywu(seg,nseq,thetaPI,hapcount)
Ffuli = calculate_Ffuli_outgroup(seg,nseq,sigtn,thetaPI)
Dfuli = calculate_Dfuli_outgroup(seg,nseq,sigtn)
else:
sigtn = hapcount[(hapcount['0']==1) | (hapcount['1']==1)].shape[0] ## num of singleton
Hfaywu, normHfaywu = np.nan, np.nan
Ffuli = calculate_Ffuli_no_outgroup(seg,nseq,sigtn,thetaPI)
Dfuli = calculate_Dfuli_no_outgroup(seg,nseq,sigtn)
return nmarker, sigtn, thetaPI, thetaK, seg, nhap, H, Hfaywu, normHfaywu, Ffuli, Dfuli, Dtajima, DtajimaP
## remain required geno data
## convert to ped format
## count alleles
def convert_vcf(vcf,regionfile,window_shift,info,haplist):
if window_shift == 'target_region':
windowsize = 5000
else:
windowsize = int(window_shift.split('@')[0])
region = pandas.read_csv(regionfile,sep='\s+',header=None,usecols=[0,1,2,3],names=['regionID','chr','start','end'])
region['chr'] = region['chr'].astype(str)
region['start'] = region['start'] - windowsize
region['end'] = region['end'] + windowsize
region.sort_values(by=['chr','start','end'],ascending=True,inplace=True)
region.reset_index(inplace=True,drop=True)
## merge regions
if region.shape[0] == 1:
pass
else:
for index in list(region.index)[:-1]:
chrom1, start1, end1 = list(region.loc[index])[1:]
chrom2, start2, end2 = list(region.loc[index+1])[1:]
if ((chrom2 == chrom1) & (start2 <= end1+1)):
new_end = max(end1,end2)
region.loc[index+1,'start'] = start1
region.loc[index+1,'end'] = new_end
region.drop(index,inplace=True)
else:
pass
## extract vcf, and convert format
geno = pandas.concat(list(region.apply(lambda x: vcf[(vcf['#CHROM']==x['chr']) & (vcf['POS']>=x['start']) & (vcf['POS']<=x['end'])].copy(), axis=1)),ignore_index=True)
if geno.empty:
haps = pandas.DataFrame()
hapcount = pandas.DataFrame()
nseq = 0
return haps, hapcount, nseq
else:
slist = list(geno.columns)[2:]
mlist = [s for s in slist if info[s]==1]
## convert format, for male individuals
if ((len(mlist) >0) & (('X' in list(geno['#CHROM'].unique())) | ('chrX' in list(geno['#CHROM'].unique())))):
geno[mlist] = geno[mlist].applymap(lambda x: x[0]).astype('category')
hapnames = []
for s in slist:
if info[s] == 1:
hapnames += [s+'_1']
else:
hapnames += [s+'_1',s+'_2']
else:
hapnames = [s+'_'+i for s in slist for i in ['1','2']]
## to ped format, as type of category
haps = pandas.DataFrame(geno.apply(lambda x: '|'.join(x[2:]).split('|'),axis=1).tolist(),columns=hapnames).astype('category')
if (len(set(hapnames) & set(haplist)) < len(hapnames)):
hapnames = [h for h in hapnames if h in haplist]
haps = haps[hapnames]
else:
pass
nseq = len(hapnames)
haps.columns = ['hap'+str(x) for x in range(1,nseq+1)]
#haps = pandas.DataFrame(geno.apply(lambda x: list(''.join(x[2:]).replace('|','')),axis=1).tolist(),columns=['hap'+str(x) for x in range(1,nseq+1)]).astype('category')
## allele count, using bool types to speed up (the same as summing up numbers)
#hapcount = haps.apply(pandas.value_counts,axis=1) # Matrix[#site number, 2]
count1 = (haps=='1').apply(sum,axis=1); count0 = (haps=='0').apply(sum,axis=1)
hapcount = pandas.concat([count0, count1],axis=1).astype('int64')
hapcount.rename(columns=lambda x: str(x),inplace=True)
haps['#CHROM'] = hapcount['#CHROM'] = geno['#CHROM'].values
haps['POS'] = hapcount['POS'] = geno['POS'].values
## compress
haps = haps.astype({'#CHROM':'category','POS':'int32'})
hapcount = hapcount.astype({'#CHROM':'category','POS':'int32'})
return haps, hapcount, nseq
def split_window(regionID,chromID,start,end,window_shift):
windowsize = int(window_shift.split('@')[0])
stepsize = int(window_shift.split('@')[1])
overlapsize = windowsize - stepsize
length = end - start + 1
bin_num = max(int(math.ceil((length - overlapsize)*1.0 / stepsize)),1)
ex_len = bin_num * stepsize + overlapsize
ex_start = int(max(start-(ex_len-length)/2.0, 1.0))
ex_end = int(end + (ex_len-length)/2.0)
region = pandas.DataFrame(columns=['regionID','chr','start','end'])
region['regionID'] = [regionID] * bin_num
region['chr'] = chromID
region['start'] = [ex_start + num*stepsize for num in range(bin_num)]
region['end'] = region['start'] + windowsize - 1
return region
def make_regions(regionfile,window_shift):
region = pandas.read_csv(regionfile,sep='\s+',header=None,usecols=[0,1,2,3],names=['regionID','chr','start','end'])
region['chr'] = region['chr'].astype(str)
if window_shift == 'target_region':
pass
else:
region['tmp'] = region.apply(lambda x: split_window(x['regionID'],x['chr'],x['start'],x['end'],window_shift),axis=1)
region = pandas.concat(list(region['tmp']),ignore_index=True)
region.sort_values(by=['chr','start','end'],ascending=True,inplace=True)
return region
def fdr(pvaluelist):
## numpy.array format
## should be sorted, decreasing order (ascending Pvalues)
n = len(pvaluelist)
pvalues = pvaluelist[~np.isnan(pvaluelist)]
if len(pvalues) <= 1:
return list(pvaluelist)
else:
num = len(pvalues)
adj_pvalues = pvalues * num / range(1,num+1)
if adj_pvalues[-1] > 1.0:
adj_pvalues[-1] = 1.0
for i in range(num-2,-1,-1):
adj_pvalues[i] = min(adj_pvalues[i+1],adj_pvalues[i])
adj_pvalues = list(adj_pvalues) + [np.nan] * (n-num)
return adj_pvalues
def make_sample_hap(samplefile, hapfile, allsamplelist):
if samplefile == 'all':
sampleinfo = pandas.DataFrame(columns=[0,1])
sampleinfo[0] = allsamplelist
sampleinfo[1] = 2
else:
sampleinfo = pandas.read_csv(samplefile,header=None,sep='\s+')
if sampleinfo.shape[1] == 1:
sampleinfo[1] = 2
else:
pass
sampleinfo[1] = sampleinfo[1].astype(int)
if len(set([1,2]) | set(sampleinfo[1])) == 2:
pass
else:
print('something wrong with the genders. only accept 1 and 2.')
exit()
if hapfile == 'all':
hapinfo = pandas.DataFrame(columns=[0,1])
hapinfo[0] = allsamplelist + allsamplelist
hapinfo[1] = [1]*len(allsamplelist) + [2]*len(allsamplelist)
else:
hapinfo = pandas.read_csv(hapfile,header=None,sep='\s+')
hapinfo[1] = hapinfo[1].astype(int)
if len(set([1,2]) | set(hapinfo[1])) == 2:
pass
else:
print('something wrong with the hap index. only accept 1 and 2.')
exit()
s2r = list(set(sampleinfo[0]) & set(hapinfo[0]) & set(allsamplelist))
if len(s2r) == 0:
print('NO sample included.')
exit()
else:
pass
samplelist = [s for s in allsamplelist if s in s2r]
sampleinfo = sampleinfo[sampleinfo[0].isin(s2r)]
sampleinfo = dict(zip(list(sampleinfo[0]), list(sampleinfo[1])))
hapinfo = hapinfo[hapinfo[0].isin(s2r)]
haplist = list(hapinfo.apply(lambda x: '{}_{}'.format(x[0],x[1]), axis=1))
haplist = [s+'_'+i for s in samplelist for i in ['1','2'] if s+'_'+i in haplist]
return samplelist, sampleinfo, haplist
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--gzvcf", type=str, required = True, \
help="/path/to/phased.vcf.gz, format:GT, do not combine autosome and X chromosome")
parser.add_argument("--samples", type=str, required = False, default='all', \
help="/included/sample/ID/list, 1 or 2 column: <sample ID> <gender 1/2, optional>, no header")
parser.add_argument("--haps", type=str, required = False, default='all', \
help="/included/sample-hap_index, 2 column: <sample ID> <haplotype index, 1/2, first/second hap>, no header")
parser.add_argument("--region", type=str, required = True, \
help="/path/to/region/file, 4 columns: <region ID> <chrom ID> <start pos> <end pos>, no header line, tab or space sperated")
parser.add_argument("--window_shift", type=str, required = False, default='target_region', \
help="windowsize@increment, for example, 50000@10000.")
parser.add_argument("--outgroup",type=str, required = False, choices=['Y','N'], default='N', \
help="whether the state of ancestral/derived allele is determined, required for FU&Li's and Fay&Wu's tests")
parser.add_argument("--out", type=str, required = False, default='out.txt', \
help="/out/file/name")
args = parser.parse_args()
## log
with open(args.out+'.logfile','w') as log:
log.write('python {}\n'.format(sys.argv[0]))
log.write('{}--gzvcf {}\n'.format(' '*8, args.gzvcf))
log.write('{}--samples {}\n'.format(' '*8, args.samples))
log.write('{}--haps {}\n'.format(' '*8, args.haps))
log.write('{}--region {}\n'.format(' '*8, args.region))
log.write('{}--window_shift {}\n'.format(' '*8, args.window_shift))
log.write('{}--outgroup {}\n'.format(' '*8, args.outgroup))
log.write('{}--out {}\n\n'.format(' '*8, args.out))
log.write('Hostname: '+socket.gethostname()+'\n')
log.write('Working directory: '+os.getcwd()+'\n')
log.write('Start time: '+time.strftime("%Y-%m-%d %X",time.localtime())+'\n\n')
## sample info
with gzip.open(args.gzvcf) as f:
headerline = 0
line = f.readline()
while line[:2] == "##":
headerline += 1
line = f.readline()
allsamplelist = line.strip().split('\t')[9:]
samplelist, sampleinfo, haplist = make_sample_hap(args.samples, args.haps, allsamplelist) ## gender not consider for haplist
if ((len(samplelist) <=1) | (len(haplist) <=3)):
print('No enough sequences, at least 4 sequences are required.')
exit()
else:
pass
## input
## read str using Categorical dtypes, to save memory
datatype = dict(zip(['#CHROM','POS']+samplelist, ['category','int32']+['category']*len(samplelist)))
vcfdata = pandas.read_csv(args.gzvcf,sep='\t',skiprows=range(headerline),usecols=['#CHROM','POS']+samplelist,dtype=datatype)
if ((vcfdata.shape[0] <=1) | (vcfdata.shape[1] <=4)):
print('There may be something wrong with the input data.')
print('Plz check the #sites and #samples.')
else:
pass
## convert
hapdata, hapcountdata, nseq = convert_vcf(vcfdata, args.region, args.window_shift, sampleinfo, haplist)
if nseq <=3:
print('No enough sequences, at least 4 sequences are required.')
exit()
else:
pass
## get output
result = make_regions(args.region, args.window_shift)
result['#sequence'] = nseq
result['tmp'] = result.apply(lambda x: calculate_one_region_stat(hapdata,hapcountdata,nseq, x['chr'],x['start'],x['end'],args.outgroup),axis=1)
result = pandas.concat([result[['regionID','chr','start','end','#sequence']], pandas.DataFrame(result['tmp'].tolist(),columns=['#marker','#singleton','ThetaPI','ThetaK','#segregating','#haplotype','Hap_diversity',"Hfaywu","norm_Hfaywu","Ffuli","Dfuli","Dtajima",'Dtajima_P'], index=list(result.index))],axis=1)
result.sort_values(by='Dtajima_P',ascending=True,inplace=True)
#result['Dtajima_adj.P'] = stats.p_adjust(FloatVector(result['Dtajima_P']), method='BH')
result['Dtajima_adj.P'] = fdr(result['Dtajima_P'].values)
result.sort_values(by=['chr','start','end'],ascending=True,inplace=True)
result.to_csv(args.out+'.gz',sep='\t',index=None,compression='gzip',na_rep='NA')
with open(args.out+'.logfile','a') as log:
log.write("Done.\n")
log.write("Output "+args.out+'.gz\n')
log.write('End time: '+time.strftime("%Y-%m-%d %X",time.localtime())+'\n\n')
print('Done.')
print('Have a Nice Day!')
if __name__ == '__main__':
main()