Skip to content

Secured Cheng and Church Algorithm performs encrypted computations such as sum, or matrix multiplication in Python for biclustering algorithm

License

Notifications You must be signed in to change notification settings

ShokofehVS/SeCCA

Repository files navigation

SeCCA

SeCCA: Secured Cheng and Church Algorithm: privacy-preserving gene expression data analysis by biclustering algorithm -- Cheng and Church algorithm -- over yeast Saccharomyces cerevisiae cell cycle performing Homomorphic Encryption operations such as sum, or matrix multiplication in Python under the MIT license. We apply Pyfhel as a python wrapper for the Microsoft SEAL library.

Installation

First you need to ensure that all packages have been installed.

  • See requirements.txt
  • numpy>=1.22.3
  • setuptools>=60.2.0
  • pandas>=1.4.2
  • scikit-learn>=1.0.2
  • Pyfhel>=2.3.1
  • Bottleneck>=1.3.4
  • matplotlib>=3.5.2
  • scipy>=1.8.0
  • munkres>=1.1.4

You can clone this repository:

   > git clone https://github.com/ShokofehVS/SeCCA.git

If you miss something you can simply type:

   > pip install -r requirements.txt

If you have all dependencies installed:

   > python setup.py install

To install Pyfhel, on Linux,gcc6 for Python (3.5+) should be installed. (more information regarding installation of Pyfhel )

   > apt install gcc 

Biclustering Algorithm

Biclustering or simultaneous clustering of both genes and conditions as a new paradigm was introduced by Cheng and Church's Algorithm (CCA). The concept of bicluster refers to a subset of genes and a subset of conditions with a high similarity score, which measures the coherence of the genes and conditions in the bicluster. It also returns the list of biclusters for the given data set.

Gene Expression Data Set

Our input data is yeast Saccharomyces cerevisiae cell cycle taken from Tavazoie et al. (1999) which was used in the orginal study by Cheng and Church;

External Evaluation Measure

To measure the similarity of encrypted biclusters with non-encrypted version, we use Clustering Error (CE) as an external evaluation measure that was proposed by Patrikainen and Meila (2006);

Example of Cheng and Church Algorithm (CCA)

To run the sample implementation of Cheng and Church algorithm:

   > python3 cheng_church_yeast.py 
import time
from biclustlib.algorithms import ChengChurchAlgorithm
from biclustlib.datasets import load_yeast_tavazoie
import numpy as np

m0 = time.perf_counter()

# load yeast data used in the original Cheng and Church's paper
data = load_yeast_tavazoie().values

# missing value imputation suggested by Cheng and Church
missing = np.where(data < 0.0)
data[missing] = np.random.randint(low=0, high=800, size=len(missing[0]))

# creating an instance of the ChengChurchAlgorithm class and running with the parameters
cca = ChengChurchAlgorithm(num_biclusters=5, msr_threshold=300.0, multiple_node_deletion_threshold=1.2)
biclustering = cca.run(data)
print(biclustering)

m1 = time.perf_counter()
print("Time Performance in Original Algorithm: ", round(m1 - m0, 5), "Seconds")

Example of Secured Cheng and Church Algorithm (SeCCA)

To run the sample implementation of Secured version of Cheng and Church algorithm:

   > python3 secured_cheng_church_yeast.py  
import time
from biclustlib.algorithms import SecuredChengChurchAlgorithm
from biclustlib.datasets import load_yeast_tavazoie
import numpy as np

m0 = time.perf_counter()

# load yeast data used in the original Cheng and Church's paper
data = load_yeast_tavazoie().values

# missing value imputation suggested by Cheng and Church
missing = np.where(data < 0.0)
data[missing] = np.random.randint(low=0, high=800, size=len(missing[0]))

# creating an instance of the SecuredChengChurchAlgorithm class and running with the parameters
secca = SecuredChengChurchAlgorithm(num_biclusters=5, msr_threshold=300.0, multiple_node_deletion_threshold=1.2)
biclustering = secca.run(data)
print(biclustering)

m1 = time.perf_counter()
print("Time Performance in Calculating Homomorphically: ", round(m1 - m0, 5), "Seconds")

About

Secured Cheng and Church Algorithm performs encrypted computations such as sum, or matrix multiplication in Python for biclustering algorithm

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages