Skip to content

Latest commit

 

History

History
71 lines (52 loc) · 3.9 KB

File metadata and controls

71 lines (52 loc) · 3.9 KB

You Only Look At CoefficienTs

[ALGORITHM]

    ██╗   ██╗ ██████╗ ██╗      █████╗  ██████╗████████╗
    ╚██╗ ██╔╝██╔═══██╗██║     ██╔══██╗██╔════╝╚══██╔══╝
     ╚████╔╝ ██║   ██║██║     ███████║██║        ██║
      ╚██╔╝  ██║   ██║██║     ██╔══██║██║        ██║
       ██║   ╚██████╔╝███████╗██║  ██║╚██████╗   ██║
       ╚═╝    ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═════╝   ╚═╝

A simple, fully convolutional model for real-time instance segmentation. This is the code for our paper:

For a real-time demo, check out our ICCV video: IMAGE ALT TEXT HERE

Evaluation

Here are our YOLACT models along with their FPS on a Titan Xp and mAP on COCO's val:

Image Size GPU x BS Backbone *FPS mAP Weights Configs Download
550 1x8 Resnet50-FPN 42.5 29.0 config model
550 8x8 Resnet50-FPN 42.5 28.4 config model
550 1x8 Resnet101-FPN 33.5 30.4 config model

*Note: The FPS is evaluated by the original implementation. When calculating FPS, only the model inference time is taken into account. Data loading and post-processing operations such as converting masks to RLE code, generating COCO JSON results, image rendering are not included.

Training

All the aforementioned models are trained with a single GPU. It typically takes ~12GB VRAM when using resnet-101 as the backbone. If you want to try multiple GPUs training, you may have to modify the configuration files accordingly, such as adjusting the training schedule and freezing batch norm.

# Trains using the resnet-101 backbone with a batch size of 8 on a single GPU.
./tools/dist_train.sh configs/yolact/yolact_r101.py 1

Testing

Please refer to mmdetection/docs/getting_started.md.

Citation

If you use YOLACT or this code base in your work, please cite

@inproceedings{yolact-iccv2019,
  author    = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  title     = {YOLACT: {Real-time} Instance Segmentation},
  booktitle = {ICCV},
  year      = {2019},
}