Skip to content

Latest commit

 

History

History
147 lines (100 loc) · 10.2 KB

File metadata and controls

147 lines (100 loc) · 10.2 KB

MoveNet quantized

Use case : Pose estimation

Model description

MoveNet is a single pose estimation model targeted for real-time processing implemented in Tensorflow.

The model is quantized in int8 format using tensorflow lite converter.

Network information

Network information Value
Framework TensorFlow Lite
Quantization int8
Provenance https://www.kaggle.com/models/google/movenet
Paper https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf

Networks inputs / outputs

With an image resolution of NxM with K keypoints to detect :

  • For heatmaps models
Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, W, H, K) FLOAT values Where WXH is the resolution of the output heatmaps and K is the number of keypoints
  • For the other models
Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, Kx3) FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints

Recommended Platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [x] []
STM32MP2 [x] [x]

Performances

Deployment

To deploy your model, you need to configure the user_config.yaml file following the tutorial.

Metrics

Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.

Reference MPU inference time based on COCO Person dataset (see Accuracy for details on dataset)

Model Format Resolution Quantization Board Execution Engine Frequency Inference time (ms) %NPU %GPU %CPU X-LINUX-AI version Framework
ST MoveNet Lightning heatmaps Int8 192x192x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 58.02 ms 3.75 96.25 0 v5.0.0 OpenVX
ST MoveNet Lightning heatmaps Int8 192x192x3 per-tensor STM32MP257F-DK2 NPU/GPU 800 MHz 7.93 ms 84.89 15.11 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 192x192x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 58.17 ms 3.80 96.20 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 192x192x3 per-tensor STM32MP257F-DK2 NPU/GPU 800 MHz 8.00 ms 86.48 13.52 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 224x224x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 81.65 ms 2.77 97.23 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 224x224x3 per-tensor STM32MP257F-DK2 NPU/GPU 800 MHz 11.55 ms 87.04 12.96 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 256x256x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 70.57 ms 3.74 96.26 0 v5.0.0 OpenVX
MoveNet Lightning heatmaps Int8 256x256x3 per-tensor STM32MP257F-DK2 NPU/GPU 800 MHz 12.90 ms 86.33 13.67 0 v5.0.0 OpenVX
MoveNet Lightning Int8 192x192x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 66.97 ms 6.72 93.28 0 v5.0.0 OpenVX
MoveNet Thunder Int8 256x256x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 187.1 ms 3.96 96.04 0 v5.0.0 OpenVX

** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization

OKS on COCO Person dataset

Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287

To build the single pose validation datasets we used this script, following the tutorial.

Model Format Resolution OKS
ST MoveNet Lightning heatmaps per-channel Int8 192x192x3 *51.96 %
ST MoveNet Lightning heatmaps per-tensor Int8 192x192x3 *39.31 %
MoveNet Lightning heatmaps per-channel Int8 192x192x3 53.92 %
MoveNet Lightning heatmaps per-tensor Int8 192x192x3 48.49 %
MoveNet Lightning heatmaps per-channel Int8 224x224x3 56.89 %
MoveNet Lightning heatmaps per-tensor Int8 224x224x3 50.93 %
MoveNet Lightning heatmaps per-channel Int8 256x256x3 58.74 %
MoveNet Lightning heatmaps per-tensor Int8 256x256x3 52.86 %
MoveNet Lightning Int8 192x192x3 54.12%
MoveNet Thunder Int8 256x256x3 64.43%

* keypoints = 13

Demos

Integration in a simple example

Deployments are coming soon for these models !

References

[1] “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. @article{DBLP:journals/corr/LinMBHPRDZ14, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, bibsource = {dblp computer science bibliography, https://dblp.org} }