Use case : Pose estimation
MoveNet is a single pose estimation model targeted for real-time processing implemented in Tensorflow.
The model is quantized in int8 format using tensorflow lite converter.
Network information | Value |
---|---|
Framework | TensorFlow Lite |
Quantization | int8 |
Provenance | https://www.kaggle.com/models/google/movenet |
Paper | https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf |
With an image resolution of NxM with K keypoints to detect :
- For heatmaps models
Input Shape | Description |
---|---|
(1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
Output Shape | Description |
---|---|
(1, W, H, K) | FLOAT values Where WXH is the resolution of the output heatmaps and K is the number of keypoints |
- For the other models
Input Shape | Description |
---|---|
(1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
Output Shape | Description |
---|---|
(1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints |
Platform | Supported | Recommended |
---|---|---|
STM32L0 | [] | [] |
STM32L4 | [] | [] |
STM32U5 | [] | [] |
STM32H7 | [] | [] |
STM32MP1 | [x] | [] |
STM32MP2 | [x] | [x] |
To deploy your model, you need to configure the user_config.yaml file following the tutorial.
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ST MoveNet Lightning heatmaps | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 58.02 ms | 3.75 | 96.25 | 0 | v5.0.0 | OpenVX |
ST MoveNet Lightning heatmaps | Int8 | 192x192x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 7.93 ms | 84.89 | 15.11 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 58.17 ms | 3.80 | 96.20 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 192x192x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 8.00 ms | 86.48 | 13.52 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 81.65 ms | 2.77 | 97.23 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 224x224x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.55 ms | 87.04 | 12.96 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 70.57 ms | 3.74 | 96.26 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning heatmaps | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 12.90 ms | 86.33 | 13.67 | 0 | v5.0.0 | OpenVX |
MoveNet Lightning | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 66.97 ms | 6.72 | 93.28 | 0 | v5.0.0 | OpenVX |
MoveNet Thunder | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 187.1 ms | 3.96 | 96.04 | 0 | v5.0.0 | OpenVX |
** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization
Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287
To build the single pose validation datasets we used this script, following the tutorial.
Model | Format | Resolution | OKS |
---|---|---|---|
ST MoveNet Lightning heatmaps per-channel | Int8 | 192x192x3 | *51.96 % |
ST MoveNet Lightning heatmaps per-tensor | Int8 | 192x192x3 | *39.31 % |
MoveNet Lightning heatmaps per-channel | Int8 | 192x192x3 | 53.92 % |
MoveNet Lightning heatmaps per-tensor | Int8 | 192x192x3 | 48.49 % |
MoveNet Lightning heatmaps per-channel | Int8 | 224x224x3 | 56.89 % |
MoveNet Lightning heatmaps per-tensor | Int8 | 224x224x3 | 50.93 % |
MoveNet Lightning heatmaps per-channel | Int8 | 256x256x3 | 58.74 % |
MoveNet Lightning heatmaps per-tensor | Int8 | 256x256x3 | 52.86 % |
MoveNet Lightning | Int8 | 192x192x3 | 54.12% |
MoveNet Thunder | Int8 | 256x256x3 | 64.43% |
* keypoints = 13
Deployments are coming soon for these models !
[1] “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. @article{DBLP:journals/corr/LinMBHPRDZ14, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, bibsource = {dblp computer science bibliography, https://dblp.org} }