-
Notifications
You must be signed in to change notification settings - Fork 28
/
BatchPreprocess.py
353 lines (256 loc) · 13.7 KB
/
BatchPreprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 3 11:06:49 2019
@author: rain
"""
import os
from multiprocessing import Process, Manager, freeze_support
from scipy import io
import numpy as np
import mayavi.mlab as mlab
import matplotlib.pyplot as plt
from numpy import linalg as LA
from time import time, sleep
from PIL import Image
from Dirs import *
from SphericalRing import *
from Match import *
from Transformations import *
def GetFileList(file_dir):
fileList=[]
if not os.path.exists(file_dir):
print('Wrong path!')
return
# get file list
for root, dirs, files in os.walk(file_dir, topdown=False):
for name in files:
fileFullPath=os.path.join(root, name)
fileList.append(fileFullPath)
return fileList
def BatchProjection(strSequence, Frames, iProc, iThread, flags4MultiProc):
rawDataFolderName = 'velodyne'
TargetFolderName = 'SphericalRing'
rawDataDir = os.path.join(strDataBaseDir, strSequence, rawDataFolderName)
rawDataList = GetFileList(os.path.join(strDataBaseDir, strSequence))
rawDataList = [oneFile for oneFile in rawDataList if oneFile[(len(oneFile)-3):len(oneFile)]=='bin']
nFramesInSequence = len(rawDataList)
nFiles = Frames.shape[0]
for iData in range(nFiles ):
fileName = str(Frames[iData]).zfill(6) + '.bin'
rawFileFullPath = os.path.join(rawDataDir, fileName)
PC = np.fromfile(rawFileFullPath, dtype=np.float32, count=-1).reshape([-1,4])
# process
SphericalRing, GridCounter = ProjectPC2SphericalRing(PC)
baseDir=os.path.dirname(os.path.dirname(rawFileFullPath))
targetDir=os.path.join(baseDir,TargetFolderName)
isFolder = os.path.exists(targetDir)
if not isFolder:
os.makedirs(targetDir)
fileName=os.path.basename(rawFileFullPath)+'.mat'
targetFullPath=os.path.join(targetDir,fileName)
io.savemat(targetFullPath, {'SphericalRing':SphericalRing, 'GridCounter':GridCounter})
print(strSequence, ':', nFramesInSequence, ':', Frames[iData], '\n', targetFullPath)
flags4MultiProc[iThread] = 1
def BatchCorrectPC(strSequence, Frames, iProc, iThread, flags4MultiProc):
oriDataBaseDir = '/media/rain/Win10_H/KITTI_odometry/velodyne/sequences/'
curDataBaseDir = '/media/rain/Win10_F/KITTI_odometry/velodyne/sequences/'
rawDataFolderName = 'velodyne'
oriRawDataDir = os.path.join(oriDataBaseDir, strSequence, rawDataFolderName)
curRawDataDir = os.path.join(curDataBaseDir, strSequence, rawDataFolderName)
nFiles = Frames.shape[0]
for iData in range(nFiles ):
fileName = str(Frames[iData]).zfill(6) + '.bin'
oriRawFileFullPath = os.path.join(oriRawDataDir, fileName)
curRawFileFullPath = os.path.join(curRawDataDir, fileName)
PC = np.fromfile(oriRawFileFullPath, dtype=np.float32, count=-1).reshape([-1,4])
PC_ = CorrectPC(PC[:,0:3])
PC_ = np.c_[PC_, PC[:,3]]
PC_ = PC_.flatten()
with open(curRawFileFullPath, 'wb') as f:
f.write(PC_)
print(strSequence, ':', iProc, ':', iThread, ':', nFiles, ':', iData, ':', '\n', curRawFileFullPath)
flags4MultiProc[iThread] = 1
def GetAllRespondImgs(strSequence, subFrames, RespondLayer):
DataFolderName = 'SphericalRing'
SphericalRingDir = os.path.join(strDataBaseDir, strSequence, DataFolderName)
nFrames = subFrames.shape[0]
# get all spherical rings and grid counters
SphericalRings = np.zeros((nFrames, nLines, ImgW-CropWidth_SphericalRing, len(Channels4AE)), dtype=np.float32)
GridCounters = np.zeros((nFrames, ImgH, ImgW), dtype=np.int8)
for iData in range(nFrames):
fileName = str(subFrames[iData]).zfill(6) + '.bin.mat'
fileFullPath = os.path.join(SphericalRingDir, fileName)
mat = io.loadmat(fileFullPath)
SphericalRing = mat['SphericalRing']
GridCounter = mat['GridCounter']
SphericalRings[iData,:,:,:] = np.array(SphericalRing[0:nLines, 0:ImgW-CropWidth_SphericalRing, Channels4AE], dtype=np.float32)
GridCounters[iData,:,:] = GridCounter
print('finished loading data, predicting...')
# predict
RespondImgs = np.array(RespondLayer.predict(SphericalRings), dtype=np.float32)
print('finished predicting, extracting keyPts...')
RespondsList = []
RespondsList.append(RespondImgs)
return SphericalRings, GridCounters, RespondsList
def BatchGetKeyPts(strSequence, FrameList, SphericalRings, GridCounters, RespondImgs, iProc, iThread, flags4MultiProc):
KeyPtFolderName = 'KeyPts'
FeaturesFolderName = 'Features'
rawDataList = GetFileList(os.path.join(strDataBaseDir, strSequence))
rawDataList = [oneFile for oneFile in rawDataList if oneFile[(len(oneFile)-3):len(oneFile)]=='bin']
nFramesInSequence = len(rawDataList)
nDatas = len(FrameList)
for iData in range(nDatas):
iFrame = FrameList[iData]
SphericalRing = SphericalRings[iData,:,:,:]
GridCounter = GridCounters[iData,:,:]
RespondImg = RespondImgs[iData,:,:,:]
# extract key points
KeyPts, KeyPixels, PlanarPts = GetKeyPtsByAE(SphericalRing, GridCounter, RespondImg)
# extend key points for the final pose refine
ExtendedKeyPts = ExtendKeyPtsInShpericalRing(SphericalRing, GridCounter, KeyPixels)
# save key points
keyPtDir = os.path.join(strDataBaseDir, strSequence, KeyPtFolderName)
isFolder = os.path.exists(keyPtDir)
if not isFolder:
os.makedirs(keyPtDir)
fileName = str(iFrame).zfill(6)+'.bin.mat'
ketPtFullPath = os.path.join(keyPtDir, fileName)
io.savemat(ketPtFullPath, {'KeyPts':KeyPts, 'ExtendedKeyPts':ExtendedKeyPts, 'PlanarPts':PlanarPts})
print(strSequence, ':', nFramesInSequence, ':', iFrame, '\n', ketPtFullPath)
flags4MultiProc[iThread] = 1
def BatchPorcess(iOption):
manager = Manager()
nThreads = 10
if iOption == 2:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))
import keras
from keras.models import load_model
RespondLayer = load_model(strRespondNetModelPath)
for iSequence in range(0, 11, 1):
strSequence=str(iSequence).zfill(2)
dirSequence=os.path.join(strDataBaseDir, strSequence)
rawDataList = GetFileList(dirSequence)
rawDataList = [oneFile for oneFile in rawDataList if oneFile[(len(oneFile)-3):len(oneFile)]=='bin']
nFiles = len(rawDataList)
AllFrames = np.arange(0, nFiles, 1, dtype=np.int32)
# divide the whole frames into several parts
# because going to put a whole part data into memory for opt2
nProcs = 1
if iOption == 2:
nMaxFilesPerProc = 600
nProcs = int(nFiles/nMaxFilesPerProc) + 1
nFilesPerProc = int(nFiles/nProcs)
for iProc in range(nProcs):
iStartProcFrame = iProc*nFilesPerProc
iEndProcFrame = (iProc+1)*nFilesPerProc
if iProc+1 == nProcs:
iEndProcFrame = nFiles
subFrames = AllFrames[slice(iStartProcFrame, iEndProcFrame, 1)]
nSubFrames = subFrames.shape[0]
flags4MultiProc = manager.list([])
FrameLists = []
for iList in range(nThreads):
slices = slice(iList,nSubFrames,nThreads)
FrameLists.append(subFrames[slices])
flags4MultiProc.append(0)
if iOption == 2:
SphericalRings, GridCounters, RespondsList = GetAllRespondImgs(strSequence, subFrames, RespondLayer)
RespondImgs = RespondsList[0]
SphericalRingLists = []
GridCounterLists = []
RespondImgLists = []
for iList in range(nThreads):
slices = slice(iList,nSubFrames,nThreads)
SphericalRingLists.append(SphericalRings[slices,:,:,:])
GridCounterLists.append(GridCounters[slices,:,:])
RespondImgLists.append(RespondImgs[slices,:,:])
# BatchProjection(rawDataLists[0], 0, flags4MultiProc)
for iThread in range(nThreads):
if iOption == 1:
t = Process(target = BatchProjection, args=(strSequence, FrameLists[iThread], iProc, iThread, flags4MultiProc))
if iOption == 2:
t = Process(target = BatchGetKeyPts, args=(strSequence, FrameLists[iThread], SphericalRingLists[iThread], GridCounterLists[iThread],
RespondImgLists[iThread], iProc, iThread, flags4MultiProc))
# BatchGetKeyPts(strSequence, FrameLists[iThread], SphericalRingLists[iThread], GridCounterLists[iThread],
# RespondImgLists[iThread], iProc, iThread, flags4MultiProc)
if iOption == 3:
t = Process(target = BatchCorrectPC, args=(strSequence, FrameLists[iThread], iProc, iThread, flags4MultiProc))
t.start()
while sum(flags4MultiProc)<nThreads:
sleep(1)
del flags4MultiProc
if __name__ == "__main__":
freeze_support()
# for cupy multi-thread processing
import multiprocessing as mp
mp.set_start_method('spawn')
BatchPorcess(2)
#----------------(for test at first) Visualization of Voxelmodel---------------------------------------------
PC = np.fromfile(strDataBaseDir + '/00/velodyne/000500.bin', dtype=np.float32, count=-1)
PC = PC.reshape([-1,4])
t0=time()
SphericalRing, GridCounter = ProjectPC2SphericalRing(PC)
RangeImage = ProjectPC2RangeImage(PC[:,0:3])
t1=time()
print(round(t1-t0, 2), 's')
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import keras
from keras.models import load_model
RespondLayer = load_model(strRespondNetModelPath)
# prediction
SphericalRing_ = SphericalRing[0:nLines, 0:ImgW-CropWidth_SphericalRing, Channels4AE]
SphericalRing_ = SphericalRing_.reshape(1, SphericalRing_.shape[0], SphericalRing_.shape[1], SphericalRing_.shape[2])
RespondImg = RespondLayer.predict(SphericalRing_)
RespondImg = RespondImg.reshape(RespondImg.shape[1],RespondImg.shape[2],RespondImg.shape[3])
t2=time()
print(round(t2-t1, 2), 's')
KeyPts, KeyPixels, PlanarPts = GetKeyPtsByAE(SphericalRing, GridCounter, RespondImg)
RangeImage[KeyPixels[:,0],KeyPixels[:,1]] = np.max(RangeImage)
ExtendedKeyPts = ExtendKeyPtsInShpericalRing(SphericalRing, GridCounter, KeyPixels)
t3=time()
print(round(t3-t2, 2), 's')
print('cntKeyPts =', KeyPts.shape[0])
print('cntExtendedKeyPts =', ExtendedKeyPts.shape[0])
print('cntPlanarPts =', PlanarPts.shape[0])
SingleColor0=np.ones((PC.shape[0],1), dtype=np.float32)*0.0
#SingleColor1=np.ones((PC_.shape[0],1), dtype=np.float32)*0.0
KeyColors=np.ones((KeyPts.shape[0],1), dtype=np.float32)*1.0
ExtendedKeyColors=np.ones((ExtendedKeyPts.shape[0],1), dtype=np.float32)*0.8
PlanarColors=np.ones((PlanarPts.shape[0],1), dtype=np.float32)*0.3
fig = mlab.figure(bgcolor=(0, 0, 0), size=(1640, 1500))
node_VoxelPC=mlab.points3d(PC[:,0], PC[:,1], PC[:,2],
mode="point", figure=fig)
node_VoxelPC.glyph.scale_mode = 'scale_by_vector'
node_VoxelPC.mlab_source.dataset.point_data.scalars = SingleColor0
#node_VoxelPC=mlab.points3d(PC_[:,0], PC_[:,1], PC_[:,2],
# mode="point", figure=fig)
#node_VoxelPC.glyph.scale_mode = 'scale_by_vector'
#node_VoxelPC.mlab_source.dataset.point_data.scalars = colors_
#mlab.title('ScoreMap')
mlab.axes(xlabel='X', ylabel='Y', zlabel='Z')
PtSize = 0.2
node = mlab.points3d(KeyPts[:,0], KeyPts[:,1], KeyPts[:,2], scale_factor=PtSize, figure=fig)
node.glyph.scale_mode = 'scale_by_vector'
node.mlab_source.dataset.point_data.scalars = KeyColors
# PtSize = 0.1
# node = mlab.points3d(ExtendedKeyPts[:,0], ExtendedKeyPts[:,1], ExtendedKeyPts[:,2], scale_factor=PtSize, figure=fig)
# node.glyph.scale_mode = 'scale_by_vector'
# node.mlab_source.dataset.point_data.scalars = ExtendedKeyColors
#PtSize = 0.1
#node = mlab.points3d(PlanarPts[:,0], PlanarPts[:,1], PlanarPts[:,2], scale_factor=PtSize, figure=fig)
#node.glyph.scale_mode = 'scale_by_vector'
#node.mlab_source.dataset.point_data.scalars = PlanarColors
#
#mlab.quiver3d(PlanarPts[:,0], PlanarPts[:,1], PlanarPts[:,2], \
# PlanarPts[:,3], PlanarPts[:,4], PlanarPts[:,5], \
# figure=fig, line_width=0.5, scale_factor=1)
fig = mlab.figure(bgcolor=(0, 0, 0), size=(1640, 500))
mlab.imshow(RangeImage)
mlab.view(270, 0, 1800, [0,0,0])
mlab.show()