Skip to content

SCUT-AILab/BPAI-Net

Repository files navigation

Bidirectional Posture-Appearance Interaction Network for Driver Behavior Recognition

This repo holds the codes and models for the BPAI-Net framework.

Bidirectional Posture-Appearance Interaction Network for Driver Behavior Recognition, Mingkui Tan*, Gengqin Ni*, Xu Liu, Shiliang Zhang, Xiangmiao Wu, Yaowei Wang†, Runhao Zeng†.

Get started

Prerequisites

Install the runtime environment by running

conda env create -f environment.yml

Get the code

Clone this repo with git

git clone  https://github.com/SCUT-AILab/BPAI-Net

Download Datasets

We support experimenting with two publicly available datasets for driver behavior recognition: Drive&Act and PCL-BDB. Here are some steps to download these two datasets.

Drive&Act: you can download it from the Drive&Act website. The skeleton data can be obtained from Baidu cloud (URL: https://pan.baidu.com/s/1Ia3OyVmNL0Ql6VWzIa6h8w password: on7x). When you download and unpack the dataset, you should configure the path of dataset in opts.py file, such as "--root", "--train_split" and so on.

PCL-BDB: We will release PCL-BDB dataset soon.

Results

The recall scores of BPAI-Net with different backbone on Drive&Act.

Model Backbone Recall
BPAI-Net MobileNet V2 64.03
BPAI-Net ResNet50 65.34
BPAI-Net Inception V1 67.83

The recall scores of BPAI-Net with different backbone on PCL-BDB.

Model Backbone Recall
BPAI-Net MobileNet V2 85.92
BPAI-Net ResNet50 85.84

The BPAI-Net checkpoints with different backbone can be get from here.

Training BPAI-Net

Use the following commands to train BPAI-Net

#train BPAI-Net with ResNet50 backbone on Drive&Act

python main_drive.py --arch fusion --arch_cnn resnet50 --num_segments 8  --xyc --first layer2  --dropout 0.8   --shift --mode train --root_model exp/test --root_log exp/test  --tune_from=pretrained/TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth --gcn_pretrained=pretrained/st_gcn.kinetics.pt

#train BPAI-Net with ResNet50 backbone on PCL-BDB

python main_drive.py --dataset pcl --arch fusion --arch_cnn resnet50 --num_class 40 --num_segments 8 --first layer2 --xyc --batch-size 8 --dropout 0.8 --shift --mode train --root_model exp/test --root_log exp/test --root dataset/pcl-bdb/ --skeleton_json dataset/pcl-bdb/video_pose --tune_from=pretrained/TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth --gcn_pretrained=pretrained/st_gcn.kinetics.pt --pcl_anno annotation(2)(1).json

Testing Trained Models

Use the following commands to test BPAI-Net

#test BPAI-Net with ResNet50 backbone on Drive&Act
python test_drive.py --arch fusion --arch_cnn resnet50 --num_segments 8 --xyc --first layer2 --shift --test_crops=1 --batch-size=8 --mode test --model_path tsm_new/exp/test/checkpoint.best.pth --root_log exp/test/

#test BPAI-Net with ResNet50 backbone on PCL-BDB
 python test_drive.py --dataset pcl --arch fusion --arch_cnn resnet50 --num_segments 8 --num_class 40 --first layer2 --xyc --test_crops=1 --batch-size=8 --mode test --model_path exp/test/checkpoint.best.pth --root_log exp/test --pcl_anno annotation(2)(1).json --root dataset/pcl-bdb/ --skeleton_json dataset/pcl-bdb/video_pose

More train and test commands refer to script.sh.

Contact

For any question, please file an issue or contact

Gengqin Ni: 394885025@qq.com or gengqinni@gmail.com
Runhao Zeng: runhaozeng.cs@gmail.com

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published