forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.bazelrc
728 lines (624 loc) · 38 KB
/
.bazelrc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# TensorFlow Bazel configuration file.
# This file tries to group and simplify build options for TensorFlow
#
# ----CONFIG OPTIONS----
# Android options:
# android:
# android_arm:
# android_arm64:
# android_x86:
# android_x86_64:
#
# iOS options:
# ios:
# ios_armv7:
# ios_arm64:
# ios_i386:
# ios_x86_64:
# ios_fat:
#
# Macosx options
# darwin_arm64:
#
# Compiler options:
# cuda_clang: Use clang when building CUDA code.
# c++17: Build with C++17 options (links with libc++)
# c++1z: Build with C++17 options (links with libc++)
# c++17_gcc: Build with C++17 options (links with stdlibc++)
# c++1z_gcc: Build with C++17 options (links with stdlibc++)
# avx_linux: Build with avx instruction set on linux.
# avx2_linux: Build with avx2 instruction set on linux.
# native_arch_linux: Build with instruction sets available to the host machine on linux
# avx_win: Build with avx instruction set on windows
# avx2_win: Build with avx2 instruction set on windows
#
# Other build options:
# short_logs: Only log errors during build, skip warnings.
# verbose_logs: Show all compiler warnings during build.
# monolithic: Build all TF C++ code into a single shared object.
# dynamic_kernels: Try to link all kernels dynamically (experimental).
# libc++: Link against libc++ instead of stdlibc++
# asan: Build with the clang address sanitizer
# msan: Build with the clang memory sanitizer
# ubsan: Build with the clang undefined behavior sanitizer
# dbg: Build with debug info
#
#
# TF version options;
# v1: Build TF V1 (without contrib)
# v2: Build TF v2
#
# Feature and Third party library support options:
# xla: Build TF with XLA
# tpu: Build TF with TPU support
# cuda: Build with full cuda support.
# rocm: Build with AMD GPU support (rocm).
# mkl: Enable full mkl support.
# tensorrt: Enable Tensorrt support.
# numa: Enable numa using hwloc.
# noaws: Disable AWS S3 storage support
# nogcp: Disable GCS support.
# nohdfs: Disable hadoop hdfs support.
# nonccl: Disable nccl support.
#
#
# Remote build execution options (only configured to work with TF team projects for now.)
# rbe: General RBE options shared by all flavors.
# rbe_linux: General RBE options used on all linux builds.
# rbe_win: General RBE options used on all windows builds.
#
# rbe_cpu_linux: RBE options to build with only CPU support.
# rbe_cpu_linux_ml2014: RBE options to build with only CPU support (manylinux2014 compatible).
# rbe_linux_cuda_nvcc_py*: RBE options to build with GPU support using nvcc.
# rbe_linux_cuda_nvcc_py39_ml2014 RBE options to build with GPU support using nvcc (manylinux2014 compatible).
#
# rbe_linux_py3: Linux Python 3 RBE config
# rbe_linux_py3_ml2014: Linux Python 3 RBE config (manylinux2014 compatible)
#
# rbe_win_py37: Windows Python 3.7 RBE config
# rbe_win_py38: Windows Python 3.8 RBE config
# rbe_win_py39: Windows Python 3.9 RBE config
# rbe_win_py310: Windows Python 3.10 RBE config
#
# tensorflow_testing_rbe_linux: RBE options to use RBE with tensorflow-testing project on linux
# tensorflow_testing_rbe_win: RBE options to use RBE with tensorflow-testing project on windows
#
# rbe_lite_linux: RBE options to build TF Lite.
#
# Embedded Linux options (experimental and only tested with TFLite build yet)
# elinux: General Embedded Linux options shared by all flavors.
# elinux_aarch64: Embedded Linux options for aarch64 (ARM64) CPU support.
# elinux_armhf: Embedded Linux options for armhf (ARMv7) CPU support.
#
# Release build options (for all operating systems)
# release_base: Common options for all builds on all operating systems.
# release_gpu_base: Common options for GPU builds on Linux and Windows.
# release_cpu_linux: Toolchain and CUDA options for Linux CPU builds.
# release_cpu_linux_manylinux2014: Toolchain and CUDA options for Linux CPU builds (manylinux2014 compatible).
# release_cpu_macos: Toolchain and CUDA options for MacOS CPU builds.
# release_gpu_linux: Toolchain and CUDA options for Linux GPU builds.
# release_gpu_linux_manylinux2014: Toolchain and CUDA options for Linux GPU builds (manylinux2014 compatible).
# release_cpu_windows: Toolchain and CUDA options for Windows CPU builds.
# release_gpu_windows: Toolchain and CUDA options for Windows GPU builds.
# Default build options. These are applied first and unconditionally.
# For projects which use TensorFlow as part of a Bazel build process, putting
# nothing in a bazelrc will default to a monolithic build. The following line
# opts in to modular op registration support by default.
build --define framework_shared_object=true
build --define=use_fast_cpp_protos=true
build --define=allow_oversize_protos=true
build --spawn_strategy=standalone
build -c opt
# Make Bazel print out all options from rc files.
build --announce_rc
# TODO(mihaimaruseac): Document this option or remove if no longer needed
build --define=grpc_no_ares=true
# See https://github.com/bazelbuild/bazel/issues/7362 for information on what
# --incompatible_remove_legacy_whole_archive flag does.
# This flag is set to true in Bazel 1.0 and newer versions. We tried to migrate
# Tensorflow to the default, however test coverage wasn't enough to catch the
# errors.
# There is ongoing work on Bazel team's side to provide support for transitive
# shared libraries. As part of migrating to transitive shared libraries, we
# hope to provide a better mechanism for control over symbol exporting, and
# then tackle this issue again.
#
# TODO: Remove this line once TF doesn't depend on Bazel wrapping all library
# archives in -whole_archive -no_whole_archive.
build --noincompatible_remove_legacy_whole_archive
# TODO(mihaimaruseac): Document this option or remove if no longer needed
build --enable_platform_specific_config
# Enable XLA support by default.
build --define=with_xla_support=true
# TODO(mihaimaruseac): Document this option or remove if no longer needed
build --config=short_logs
# TODO(mihaimaruseac): Document this option or remove if no longer needed
build --config=v2
# Disable AWS/HDFS support by default
build --define=no_aws_support=true
build --define=no_hdfs_support=true
# TF now has `cc_shared_library` targets, so it needs the experimental flag
# TODO(rostam): Remove when `cc_shared_library` is enabled by default
build --experimental_cc_shared_library
# Default options should come above this line.
# Allow builds using libc++ as a linker library
# This is mostly for OSSFuzz, so we also pass in the flags from environment to clean build file
build:libc++ --action_env=CC
build:libc++ --action_env=CXX
build:libc++ --action_env=CXXFLAGS=-stdlib=libc++
build:libc++ --action_env=PATH
build:libc++ --define force_libcpp=enabled
build:libc++ --linkopt -fuse-ld=lld
# Android configs. Bazel needs to have --cpu and --fat_apk_cpu both set to the
# target CPU to build transient dependencies correctly. See
# https://docs.bazel.build/versions/master/user-manual.html#flag--fat_apk_cpu
build:android --crosstool_top=//external:android/crosstool
build:android --host_crosstool_top=@bazel_tools//tools/cpp:toolchain
build:android_arm --config=android
build:android_arm --cpu=armeabi-v7a
build:android_arm --fat_apk_cpu=armeabi-v7a
build:android_arm64 --config=android
build:android_arm64 --cpu=arm64-v8a
build:android_arm64 --fat_apk_cpu=arm64-v8a
build:android_x86 --config=android
build:android_x86 --cpu=x86
build:android_x86 --fat_apk_cpu=x86
build:android_x86_64 --config=android
build:android_x86_64 --cpu=x86_64
build:android_x86_64 --fat_apk_cpu=x86_64
# Sets the default Apple platform to macOS.
build:macos --apple_platform_type=macos
# gRPC on MacOS requires this #define
build:macos --copt=-DGRPC_BAZEL_BUILD
# Settings for MacOS on ARM CPUs.
build:macos_arm64 --cpu=darwin_arm64
# iOS configs for each architecture and the fat binary builds.
build:ios --apple_platform_type=ios
build:ios --apple_bitcode=embedded --copt=-fembed-bitcode
build:ios --copt=-Wno-c++11-narrowing
build:ios_armv7 --config=ios
build:ios_armv7 --cpu=ios_armv7
build:ios_arm64 --config=ios
build:ios_arm64 --cpu=ios_arm64
build:ios_i386 --config=ios
build:ios_i386 --cpu=ios_i386
build:ios_x86_64 --config=ios
build:ios_x86_64 --cpu=ios_x86_64
build:ios_fat --config=ios
build:ios_fat --ios_multi_cpus=armv7,arm64,i386,x86_64
# Config to use a mostly-static build and disable modular op registration
# support (this will revert to loading TensorFlow with RTLD_GLOBAL in Python).
# By default, TensorFlow will build with a dependence on
# //tensorflow:libtensorflow_framework.so.
build:monolithic --define framework_shared_object=false
# Please note that MKL on MacOS or windows is still not supported.
# If you would like to use a local MKL instead of downloading, please set the
# environment variable "TF_MKL_ROOT" every time before build.
build:mkl --define=build_with_mkl=true --define=enable_mkl=true
build:mkl --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl --define=build_with_openmp=true
build:mkl -c opt
# config to build OneDNN backend with a user specified threadpool.
build:mkl_threadpool --define=build_with_mkl=true --define=enable_mkl=true
build:mkl_threadpool --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl_threadpool --define=build_with_mkl_opensource=true
build:mkl_threadpool -c opt
# Config setting to build oneDNN with Compute Library for the Arm Architecture (ACL).
# This build is for the inference regime only.
build:mkl_aarch64 --define=build_with_mkl_aarch64=true
build:mkl_aarch64 --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl_aarch64 --define=build_with_openmp=true
build:mkl_aarch64 -c opt
# This config refers to building CUDA op kernels with nvcc.
build:cuda --repo_env TF_NEED_CUDA=1
build:cuda --crosstool_top=@local_config_cuda//crosstool:toolchain
build:cuda --@local_config_cuda//:enable_cuda
# This config refers to building CUDA op kernels with clang.
build:cuda_clang --config=cuda
build:cuda_clang --repo_env TF_CUDA_CLANG=1
build:cuda_clang --@local_config_cuda//:cuda_compiler=clang
# Debug config
build:dbg -c dbg
# Only include debug info for files under tensorflow/, excluding kernels, to
# reduce the size of the debug info in the binary. This is because if the debug
# sections in the ELF binary are too large, errors can occur. See
# https://github.com/tensorflow/tensorflow/issues/48919.
# Users can still include debug info for a specific kernel, e.g. with:
# --config=dbg --per_file_copt=+tensorflow/core/kernels/identity_op.*@-g
build:dbg --per_file_copt=+.*,-tensorflow.*@-g0
build:dbg --per_file_copt=+tensorflow/core/kernels.*@-g0
# for now, disable arm_neon. see: https://github.com/tensorflow/tensorflow/issues/33360
build:dbg --cxxopt -DTF_LITE_DISABLE_X86_NEON
# AWS SDK must be compiled in release mode. see: https://github.com/tensorflow/tensorflow/issues/37498
build:dbg --copt -DDEBUG_BUILD
# Config to build TPU backend
build:tpu --define=with_tpu_support=true
build:tensorrt --repo_env TF_NEED_TENSORRT=1
build:rocm --crosstool_top=@local_config_rocm//crosstool:toolchain
build:rocm --define=using_rocm_hipcc=true
build:rocm --define=tensorflow_mkldnn_contraction_kernel=0
build:rocm --repo_env TF_NEED_ROCM=1
# Options extracted from configure script
build:numa --define=with_numa_support=true
# Options to disable default on features
build:noaws --define=no_aws_support=true
build:nogcp --define=no_gcp_support=true
build:nohdfs --define=no_hdfs_support=true
build:nonccl --define=no_nccl_support=true
build:stackdriver_support --define=stackdriver_support=true
# Modular TF build options
build:dynamic_kernels --define=dynamic_loaded_kernels=true
build:dynamic_kernels --copt=-DAUTOLOAD_DYNAMIC_KERNELS
# Build TF with C++ 17 features.
build:c++17 --cxxopt=-std=c++1z
build:c++17 --cxxopt=-stdlib=libc++
build:c++1z --config=c++17
build:c++17_gcc --cxxopt=-std=c++1z
build:c++1z_gcc --config=c++17_gcc
# Don't trigger --config=<host platform> when cross-compiling.
build:android --noenable_platform_specific_config
build:ios --noenable_platform_specific_config
# Suppress C++ compiler warnings, otherwise build logs become 10s of MBs.
build:android --copt=-w
build:ios --copt=-w
build:linux --copt=-w
build:linux --host_copt=-w
build:macos --copt=-w
build:windows --copt=/W0
# Tensorflow uses M_* math constants that only get defined by MSVC headers if
# _USE_MATH_DEFINES is defined.
build:windows --copt=/D_USE_MATH_DEFINES
build:windows --host_copt=/D_USE_MATH_DEFINES
# Default paths for TF_SYSTEM_LIBS
build:linux --define=PREFIX=/usr
build:linux --define=LIBDIR=$(PREFIX)/lib
build:linux --define=INCLUDEDIR=$(PREFIX)/include
build:linux --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include
build:macos --define=PREFIX=/usr
build:macos --define=LIBDIR=$(PREFIX)/lib
build:macos --define=INCLUDEDIR=$(PREFIX)/include
build:macos --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include
# TF_SYSTEM_LIBS do not work on windows.
# By default, build TF in C++ 14 mode.
build:android --cxxopt=-std=c++14
build:android --host_cxxopt=-std=c++14
build:ios --cxxopt=-std=c++14
build:ios --host_cxxopt=-std=c++14
build:linux --cxxopt=-std=c++14
build:linux --host_cxxopt=-std=c++14
build:macos --cxxopt=-std=c++14
build:macos --host_cxxopt=-std=c++14
build:windows --cxxopt=/std:c++14
build:windows --host_cxxopt=/std:c++14
# On windows, we still link everything into a single DLL.
build:windows --config=monolithic
# On linux, we dynamically link small amount of kernels
build:linux --config=dynamic_kernels
# Make sure to include as little of windows.h as possible
build:windows --copt=-DWIN32_LEAN_AND_MEAN
build:windows --host_copt=-DWIN32_LEAN_AND_MEAN
build:windows --copt=-DNOGDI
build:windows --host_copt=-DNOGDI
# MSVC (Windows): Standards-conformant preprocessor mode
# See https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-experimental-overview
build:windows --copt=/experimental:preprocessor
build:windows --host_copt=/experimental:preprocessor
# Misc build options we need for windows.
build:windows --linkopt=/DEBUG
build:windows --host_linkopt=/DEBUG
build:windows --linkopt=/OPT:REF
build:windows --host_linkopt=/OPT:REF
build:windows --linkopt=/OPT:ICF
build:windows --host_linkopt=/OPT:ICF
# Verbose failure logs when something goes wrong
build:windows --verbose_failures
# Work around potential issues with large command lines on windows.
# See: https://github.com/bazelbuild/bazel/issues/5163
build:windows --features=compiler_param_file
# On windows, we never cross compile
build:windows --distinct_host_configuration=false
# On linux, don't cross compile by default
build:linux --distinct_host_configuration=false
# Do not risk cache corruption. See:
# https://github.com/bazelbuild/bazel/issues/3360
build:linux --experimental_guard_against_concurrent_changes
# Configure short or long logs
build:short_logs --output_filter=DONT_MATCH_ANYTHING
build:verbose_logs --output_filter=
# Instruction set optimizations
# TODO(gunan): Create a feature in toolchains for avx/avx2 to
# avoid having to define linux/win separately.
build:avx_linux --copt=-mavx
build:avx_linux --host_copt=-mavx
build:avx2_linux --copt=-mavx2
build:native_arch_linux --copt=-march=native
build:avx_win --copt=/arch=AVX
build:avx2_win --copt=/arch=AVX2
# Options to build TensorFlow 1.x or 2.x.
build:v1 --define=tf_api_version=1 --action_env=TF2_BEHAVIOR=0
build:v2 --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
# Disable XLA on mobile.
build:xla --define=with_xla_support=true # TODO: remove, it's on by default.
build:android --define=with_xla_support=false
build:ios --define=with_xla_support=false
# BEGIN TF REMOTE BUILD EXECUTION OPTIONS
# Options when using remote execution
# WARNING: THESE OPTIONS WONT WORK IF YOU DO NOT HAVE PROPER AUTHENTICATION AND PERMISSIONS
# Flag to enable remote config
common --experimental_repo_remote_exec
build:rbe --repo_env=BAZEL_DO_NOT_DETECT_CPP_TOOLCHAIN=1
build:rbe --google_default_credentials
build:rbe --bes_backend=buildeventservice.googleapis.com
build:rbe --bes_results_url="https://source.cloud.google.com/results/invocations"
build:rbe --bes_timeout=600s
build:rbe --define=EXECUTOR=remote
build:rbe --distinct_host_configuration=false
build:rbe --flaky_test_attempts=3
build:rbe --jobs=200
build:rbe --remote_executor=grpcs://remotebuildexecution.googleapis.com
build:rbe --remote_timeout=3600
build:rbe --spawn_strategy=remote,worker,standalone,local
test:rbe --test_env=USER=anon
# Attempt to minimize the amount of data transfer between bazel and the remote
# workers:
build:rbe --remote_download_toplevel
build:rbe_linux_base --config=rbe
build:rbe_linux_base --action_env=PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin"
build:rbe_linux --config=rbe_linux_base
# Non-rbe settings we should include because we do not run configure
build:rbe_linux --config=avx_linux
# TODO(gunan): Check why we need this specified in rbe, but not in other builds.
build:rbe_linux --linkopt=-lrt
build:rbe_linux --host_linkopt=-lrt
build:rbe_linux --linkopt=-lm
build:rbe_linux --host_linkopt=-lm
# Use the GPU toolchain until the CPU one is ready.
# https://github.com/bazelbuild/bazel/issues/13623
build:rbe_cpu_linux_base --host_crosstool_top="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_cpu_linux_base --crosstool_top="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_cpu_linux_base --extra_toolchains="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain-linux-x86_64"
build:rbe_cpu_linux_base --extra_execution_platforms="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_cpu_linux_base --host_platform="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_cpu_linux_base --platforms="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_cpu_linux --config=rbe_linux
build:rbe_cpu_linux --config=rbe_cpu_linux_base
# rbe config option that uses the manylinux2014 toolchain
build:rbe_cpu_linux_ml2014 --config=rbe_linux
build:rbe_cpu_linux_ml2014 --host_crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_cpu_linux_ml2014 --crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_cpu_linux_ml2014 --extra_toolchains="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain-linux-x86_64"
build:rbe_cpu_linux_ml2014 --extra_execution_platforms="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_cpu_linux_ml2014 --host_platform="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_cpu_linux_ml2014 --platforms="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_lite_linux --config=rbe_linux_base
build:rbe_lite_linux --config=rbe_cpu_linux_base
build:rbe_lite_linux --config=rbe_linux_py3_base
build:rbe_lite_linux --noexperimental_check_desugar_deps
build:rbe_linux_cuda_base --config=rbe_linux
build:rbe_linux_cuda_base --config=cuda
build:rbe_linux_cuda_base --config=tensorrt
build:rbe_linux_cuda_base --action_env=TF_CUDA_VERSION=11
build:rbe_linux_cuda_base --action_env=TF_CUDNN_VERSION=8
build:rbe_linux_cuda_base --repo_env=REMOTE_GPU_TESTING=1
# TensorRT 7 for CUDA 11.1 is compatible with CUDA 11.2, but requires
# libnvrtc.so.11.1. See https://github.com/NVIDIA/TensorRT/issues/1064.
# TODO(b/187962120): Remove when upgrading to TensorRT 8.
test:rbe_linux_cuda_base --test_env=LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda-11.1/lib64"
build:rbe_linux_cuda11.2_nvcc_base --config=rbe_linux_cuda_base
build:rbe_linux_cuda11.2_nvcc_base --host_crosstool_top="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_linux_cuda11.2_nvcc_base --crosstool_top="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_linux_cuda11.2_nvcc_base --extra_toolchains="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain-linux-x86_64"
build:rbe_linux_cuda11.2_nvcc_base --extra_execution_platforms="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda11.2_nvcc_base --host_platform="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda11.2_nvcc_base --platforms="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda11.2_nvcc_base --repo_env=TF_CUDA_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda"
build:rbe_linux_cuda11.2_nvcc_base --repo_env=TF_TENSORRT_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_tensorrt"
build:rbe_linux_cuda11.2_nvcc_base --repo_env=TF_NCCL_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_nccl"
build:rbe_linux_cuda11.2_nvcc_py3.7 --config=rbe_linux_cuda11.2_nvcc_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.7"
build:rbe_linux_cuda11.2_nvcc_py3.8 --config=rbe_linux_cuda11.2_nvcc_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.8"
build:rbe_linux_cuda11.2_nvcc_py3.9 --config=rbe_linux_cuda11.2_nvcc_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.9"
build:rbe_linux_cuda11.2_nvcc_py3.10 --config=rbe_linux_cuda11.2_nvcc_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.10"
# Map default to CUDA 11.2.
build:rbe_linux_cuda_nvcc_py37 --config=rbe_linux_cuda11.2_nvcc_py3.7
build:rbe_linux_cuda_nvcc_py38 --config=rbe_linux_cuda11.2_nvcc_py3.8
build:rbe_linux_cuda_nvcc_py39 --config=rbe_linux_cuda11.2_nvcc_py3.9
build:rbe_linux_cuda_nvcc_py310 --config=rbe_linux_cuda11.2_nvcc_py3.10
# RBE gpu config for manylinux2014
build:rbe_linux_cuda_nvcc_py39_ml2014 --config=rbe_linux_cuda_base
build:rbe_linux_cuda_nvcc_py39_ml2014 --host_crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_linux_cuda_nvcc_py39_ml2014 --crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_linux_cuda_nvcc_py39_ml2014 --extra_toolchains="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain-linux-x86_64"
build:rbe_linux_cuda_nvcc_py39_ml2014 --extra_execution_platforms="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_nvcc_py39_ml2014 --host_platform="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_nvcc_py39_ml2014 --platforms="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_nvcc_py39_ml2014 --repo_env=TF_CUDA_CONFIG_REPO="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda"
build:rbe_linux_cuda_nvcc_py39_ml2014 --repo_env=TF_TENSORRT_CONFIG_REPO="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_tensorrt"
build:rbe_linux_cuda_nvcc_py39_ml2014 --repo_env=TF_NCCL_CONFIG_REPO="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_nccl"
build:rbe_linux_cuda_nvcc_py39_ml2014 --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.9"
# Deprecated configs that people might still use.
build:rbe_linux_cuda_nvcc --config=rbe_linux_cuda_nvcc_py39
build:rbe_gpu_linux --config=rbe_linux_cuda_nvcc
build:rbe_linux_cuda_clang_base --config=rbe_linux_cuda_base
build:rbe_linux_cuda_clang_base --repo_env TF_CUDA_CLANG=1
build:rbe_linux_cuda_clang_base --@local_config_cuda//:cuda_compiler=clang
build:rbe_linux_cuda_clang_base --crosstool_top="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
build:rbe_linux_cuda_clang_base --extra_toolchains="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain-linux-x86_64"
build:rbe_linux_cuda_clang_base --extra_execution_platforms="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_clang_base --host_platform="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_clang_base --platforms="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_platform//:platform"
build:rbe_linux_cuda_clang_base --repo_env=TF_CUDA_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda"
build:rbe_linux_cuda_clang_base --repo_env=TF_TENSORRT_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_tensorrt"
build:rbe_linux_cuda_clang_base --repo_env=TF_NCCL_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_nccl"
build:rbe_linux_cuda_clang_py37 --config=rbe_linux_cuda_clang_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.7"
build:rbe_linux_cuda_clang_py38 --config=rbe_linux_cuda_clang_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.8"
build:rbe_linux_cuda_clang_py39 --config=rbe_linux_cuda_clang_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.9"
build:rbe_linux_cuda_clang_py310 --config=rbe_linux_cuda_clang_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-clang_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.10"
# ROCm
build:rbe_linux_rocm_base --config=rocm
build:rbe_linux_rocm_base --config=rbe_linux
build:rbe_linux_rocm_base --crosstool_top="@ubuntu18.04-gcc7_manylinux2010-rocm_config_rocm//crosstool:toolchain"
build:rbe_linux_rocm_base --extra_toolchains="@ubuntu18.04-gcc7_manylinux2010-rocm_config_rocm//crosstool:toolchain-linux-x86_64"
build:rbe_linux_rocm_base --extra_execution_platforms="@ubuntu18.04-gcc7_manylinux2010-rocm_config_platform//:platform"
build:rbe_linux_rocm_base --host_platform="@ubuntu18.04-gcc7_manylinux2010-rocm_config_platform//:platform"
build:rbe_linux_rocm_base --platforms="@ubuntu18.04-gcc7_manylinux2010-rocm_config_platform//:platform"
build:rbe_linux_rocm_base --action_env=TF_ROCM_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_rocm"
build:rbe_linux_rocm_py3.6 --config=rbe_linux_rocm_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_python3.6"
build:rbe_linux_rocm_py3.7 --config=rbe_linux_rocm_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_python3.7"
build:rbe_linux_rocm_py3.8 --config=rbe_linux_rocm_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_python3.8"
build:rbe_linux_rocm_py3.9 --config=rbe_linux_rocm_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_python3.9"
build:rbe_linux_rocm_py3.10 --config=rbe_linux_rocm_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-rocm_config_python3.10"
# Linux CPU
build:rbe_linux_py3 --config=rbe_linux
build:rbe_linux_py3 --config=rbe_linux_py3_base
build:rbe_linux_py3_base --python_path="/usr/local/bin/python3.9"
build:rbe_linux_py3_base --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.9"
# rbe_linux_py3 with manylinux2014 toolchain
build:rbe_linux_py3_ml2014 --config=rbe_linux_py3
build:rbe_linux_py3_ml2014 --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_python3.9"
build:rbe_win --config=rbe
build:rbe_win --crosstool_top="//tensorflow/tools/toolchains/win/tf_win_02212022:toolchain"
build:rbe_win --extra_toolchains="//tensorflow/tools/toolchains/win/tf_win_02212022:cc-toolchain-x64_windows"
build:rbe_win --extra_execution_platforms="//tensorflow/tools/toolchains/win:rbe_windows_ltsc2019"
build:rbe_win --host_platform="//tensorflow/tools/toolchains/win:rbe_windows_ltsc2019"
build:rbe_win --platforms="//tensorflow/tools/toolchains/win:rbe_windows_ltsc2019"
build:rbe_win --shell_executable=C:\\tools\\msys64\\usr\\bin\\bash.exe
build:rbe_win --experimental_strict_action_env=true
# TODO(gunan): Remove once we use MSVC 2019 with latest patches.
build:rbe_win --define=override_eigen_strong_inline=true
build:rbe_win --jobs=100
# Don't build the python zip archive in the RBE build.
build:rbe_win --remote_download_minimal
build:rbe_win --enable_runfiles
build:rbe_win --nobuild_python_zip
build:rbe_win_py37 --config=rbe
build:rbe_win_py37 --repo_env=TF_PYTHON_CONFIG_REPO="@windows_py37_config_python"
build:rbe_win_py37 --python_path=C:\\Python37\\python.exe
build:rbe_win_py38 --config=rbe
build:rbe_win_py38 --repo_env=PYTHON_BIN_PATH=C:\\Python38\\python.exe
build:rbe_win_py38 --repo_env=PYTHON_LIB_PATH=C:\\Python38\\lib\\site-packages
build:rbe_win_py38 --repo_env=TF_PYTHON_CONFIG_REPO=//tensorflow/tools/toolchains/win_1803/py38
build:rbe_win_py38 --python_path=C:\\Python38\\python.exe
build:rbe_win_py39 --config=rbe
build:rbe_win_py39 --repo_env=PYTHON_BIN_PATH=C:\\Python39\\python.exe
build:rbe_win_py39 --repo_env=PYTHON_LIB_PATH=C:\\Python39\\lib\\site-packages
build:rbe_win_py39 --repo_env=TF_PYTHON_CONFIG_REPO=//tensorflow/tools/toolchains/win_1803/py39
build:rbe_win_py39 --python_path=C:\\Python39\\python.exe
build:rbe_win_py310 --config=rbe
build:rbe_win_py310 --repo_env=PYTHON_BIN_PATH=C:\\Python310\\python.exe
build:rbe_win_py310 --repo_env=PYTHON_LIB_PATH=C:\\Python310\\lib\\site-packages
build:rbe_win_py310 --repo_env=TF_PYTHON_CONFIG_REPO=//tensorflow/tools/toolchains/win_1803/py310
build:rbe_win_py310 --python_path=C:\\Python310\\python.exe
# These you may need to change for your own GCP project.
build:tensorflow_testing_rbe --project_id=tensorflow-testing
common:tensorflow_testing_rbe_linux --remote_instance_name=projects/tensorflow-testing/instances/default_instance
build:tensorflow_testing_rbe_linux --config=tensorflow_testing_rbe
# Build GPU binaries for the RBE test machines (Tesla T4s).
build:tensorflow_testing_rbe_linux --repo_env=TF_CUDA_COMPUTE_CAPABILITIES=sm_75
common:tensorflow_testing_rbe_win --remote_instance_name=projects/tensorflow-testing/instances/windows
build:tensorflow_testing_rbe_win --config=tensorflow_testing_rbe
# TFLite build configs for generic embedded Linux
build:elinux --crosstool_top=@local_config_embedded_arm//:toolchain
build:elinux --host_crosstool_top=@bazel_tools//tools/cpp:toolchain
build:elinux_aarch64 --config=elinux
build:elinux_aarch64 --cpu=aarch64
build:elinux_aarch64 --distinct_host_configuration=true
build:elinux_armhf --config=elinux
build:elinux_armhf --cpu=armhf
build:elinux_armhf --distinct_host_configuration=true
build:elinux_armhf --copt -mfp16-format=ieee
# END TF REMOTE BUILD EXECUTION OPTIONS
# Config-specific options should come above this line.
# Load rc file written by ./configure.
try-import %workspace%/.tf_configure.bazelrc
# Load rc file with user-specific options.
try-import %workspace%/.bazelrc.user
# Here are bazelrc configs for release builds
build:release_base --config=v2
build:release_base --distinct_host_configuration=false
test:release_base --flaky_test_attempts=3
test:release_base --test_size_filters=small,medium
build:release_cpu_linux --config=release_base
build:release_cpu_linux --config=avx_linux
build:release_cpu_linux --crosstool_top="@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
test:release_cpu_linux --test_env=LD_LIBRARY_PATH
# manylinux2014 config for cpu
build:release_cpu_linux_manylinux2014 --config=release_base
build:release_cpu_linux_manylinux2014 --config=avx_linux
build:release_cpu_linux_manylinux2014 --crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
test:release_cpu_linux_manylinux2014 --test_env=LD_LIBRARY_PATH
build:release_cpu_macos --config=release_base
build:release_cpu_macos --config=avx_linux
build:release_gpu_base --config=cuda
build:release_gpu_base --action_env=TF_CUDA_VERSION="11"
build:release_gpu_base --action_env=TF_CUDNN_VERSION="8"
build:release_gpu_base --repo_env=TF_CUDA_COMPUTE_CAPABILITIES="sm_35,sm_50,sm_60,sm_70,sm_75,compute_80"
build:release_gpu_linux --config=release_cpu_linux
build:release_gpu_linux --config=release_gpu_base
build:release_gpu_linux --config=tensorrt
build:release_gpu_linux --action_env=CUDA_TOOLKIT_PATH="/usr/local/cuda-11.2"
build:release_gpu_linux --action_env=LD_LIBRARY_PATH="/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/tensorrt/lib"
build:release_gpu_linux --action_env=GCC_HOST_COMPILER_PATH="/dt7/usr/bin/gcc"
build:release_gpu_linux --crosstool_top=@ubuntu18.04-gcc7_manylinux2010-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain
build:release_gpu_linux_11_4 --config=release_gpu_linux
build:release_gpu_linux_11_4 --action_env CUDA_TOOLKIT_PATH="/usr/local/cuda-11.4"
build:release_gpu_linux_11_4 --action_env=TF_CUDA_VERSION="11.4"
build:release_gpu_linux_11_4 --action_env=TF_CUDNN_VERSION="8.2"
build:release_gpu_linux_11_4 --crosstool_top=@ubuntu18.04-gcc7_manylinux2010-cuda11.4-cudnn8.2-tensorrt7.2_config_cuda//crosstool:toolchain
# manylinux2014 config for gpu
build:release_gpu_linux_manylinux2014 --config=release_gpu_linux
build:release_gpu_linux_manylinux2014 --action_env=GCC_HOST_COMPILER_PATH="/dt9/usr/bin/gcc"
build:release_gpu_linux_manylinux2014 --crosstool_top=@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain
build:release_cpu_windows --config=release_base
build:release_cpu_windows --config=avx_win
build:release_cpu_windows --define=no_tensorflow_py_deps=true
# First available in VS 16.4. Speeds Windows compile times by a lot. See
# https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion
build:release_cpu_windows --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions
build:release_gpu_windows --config=release_cpu_windows
build:release_gpu_windows --config=release_gpu_base
# Address sanitizer
# CC=clang bazel build --config asan
build:asan --strip=never
build:asan --copt -fsanitize=address
build:asan --copt -DADDRESS_SANITIZER
build:asan --copt -g
build:asan --copt -O3
build:asan --copt -fno-omit-frame-pointer
build:asan --linkopt -fsanitize=address
# Memory sanitizer
# CC=clang bazel build --config msan
build:msan --strip=never
build:msan --copt -fsanitize=memory
build:msan --copt -DMEMORY_SANITIZER
build:msan --copt -g
build:msan --copt -O3
build:msan --copt -fno-omit-frame-pointer
build:msan --linkopt -fsanitize=memory
# Undefined Behavior Sanitizer
# CC=clang bazel build --config ubsan
build:ubsan --strip=never
build:ubsan --copt -fsanitize=undefined
build:ubsan --copt -DUNDEFINED_BEHAVIOR_SANITIZER
build:ubsan --copt -g
build:ubsan --copt -O3
build:ubsan --copt -fno-omit-frame-pointer
build:ubsan --linkopt -fsanitize=undefined
build:ubsan --linkopt -lubsan
# Disable TFRT integration for now unless --config=tfrt is specified.
build --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
build:tfrt --deleted_packages=
# Experimental configuration for building XLA GPU lowering to TFRT.
build:experimental_enable_xlir --config=tfrt
build:experimental_enable_xlir --@tf_runtime//:enable_gpu
build:experimental_enable_xlir --@rules_cuda//cuda:cuda_runtime=//tensorflow/compiler/xla/service/gpu:cuda_runtime_for_xlir
build:experimental_enable_xlir --nocheck_visibility
build:experimental_enable_xlir --incompatible_strict_action_env
build:experimental_enable_xlir --config=monolithic
# bazel test --config=experimental_enable_bef_thunk \
# //tensorflow/compiler/xla/service/gpu:bef_thunk_tests
build:experimental_enable_bef_thunk --config=experimental_enable_xlir
test:experimental_enable_bef_thunk --test_env=XLA_FLAGS=--xla_gpu_bef_thunk
# bazel test --config=experimental_enable_bef_executable \
# //tensorflow/compiler/xla/service/gpu:bef_executable_tests
build:experimental_enable_bef_executable --config=experimental_enable_xlir
test:experimental_enable_bef_executable --test_env=XLA_FLAGS=--xla_gpu_bef_executable