-
Notifications
You must be signed in to change notification settings - Fork 6
/
layers_attn.py
510 lines (433 loc) · 23.1 KB
/
layers_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import numpy as np
import tensorflow as tf
tf.keras.backend.set_floatx('float16')
from tensorflow.python.ops import inplace_ops
from tensorflow.keras import activations
from tensorflow.keras import backend as K
from tensorflow.keras import constraints
from tensorflow.keras import initializers
from tensorflow.python.framework import tensor_shape
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Layer
from tensorflow.python.keras.utils import conv_utils, generic_utils, tf_utils
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.ops import array_ops
from tensorflow.python.util import nest
from tensorflow.python.util.tf_export import keras_export
from tensorflow.keras.layers import Conv2D, RNN
"""This script contains code to support the multi-head cross attention operation
"""
class MultiHead2DAttention_v2(Layer):
"""Multihead scaled-dot-product attention with input/output transformations.
Adapted from the Tensor2Tensor attention mechanism
Args:
bias: bias Tensor (see attention_bias())
total_key_depth: an integer
total_value_depth: an integer
output_depth: an integer
num_heads: an integer dividing total_key_depth and total_value_depth
dropout_rate: a floating point number
attn_factor_reduc: an integer indicating the ratio of temporal size
of input to output.
value_conv: dictionary containing params for the convolution operation on
the value precendent
output_conv: dictionary containing params for the convolution operation on
the output precedent
transform_value_antecedent: whether or not to include conv op on value
antecedent
transform_output: whether or not to include conv op on output
max_relative_position: Maximum distance between inputs to generate
unique relation embeddings for. Only relevant
when using "dot_product_relative" attention.
heads_share_relative_embedding: boolean to share relative embeddings
add_relative_to_values: a boolean for whether to add relative component to
values.
name: an optional string.
dropout_broadcast_dims: an optional list of integers less than 4
specifying in which dimensions to broadcast
the dropout decisions. saves memory.
training: indicating if it is in the training mode.
**kwargs (dict): Parameters for the attention function.
#TODO: introduce params below to assist with visualizing attention
image_shapes: optional tuple of integer scalars.
see comments for attention_image_summary()
save_weights_to: an optional dictionary to capture attention weights
for vizualization; the weights tensor will be appended
there under a string key created from the variable scope
(including name).
make_image_summary: Whether to make an attention image summary.
Returns:
The result of the attention transformation. The output shape is
[batch_size, seq_len, h, w, c]
Raises:
ValueError: if the key depth or value depth are not divisible by the
number of attention heads.
"""
def __init__(self, attention_scaling_params,trainable,
bias,
total_key_depth,
total_value_depth,
output_depth,
num_heads,
dropout_rate,
value_dropout,
attn_factor_reduc,
value_conv,
output_conv,
transform_value_antecedent=True,
transform_output=True,
max_relative_position=None,
heads_share_relative_embedding=False,
add_relative_to_values=False,
name="multihead_rel_attention",
dropout_broadcast_dims=None,
training=True,
conv_ops_qk = False,
key_conv = None,
query_conv = None,
**kwargs):
#region --- arguments
self.trainable = trainable
self.bias = bias
self.total_key_depth = total_key_depth
self.total_value_depth = total_value_depth
self.output_depth = output_depth
self.num_heads = num_heads
self.key_depth_per_head = total_key_depth // num_heads
self.dropout_rate = dropout_rate
self.value_dropout = value_dropout #bool indic whether to have dropout on value tensors
self.attn_factor_reduc = attn_factor_reduc
self.transform_value_antecedent = transform_value_antecedent
self.value_conv = value_conv
self.output_conv = output_conv
self.transform_output = transform_output
self.add_relative_to_values = add_relative_to_values
self.max_relative_position = max_relative_position
self.heads_share_relative_embedding = heads_share_relative_embedding
self.conv_ops_qk = conv_ops_qk
self.dropout_broadcast_dims = dropout_broadcast_dims
self.kq_downscale_kernelshape = attention_scaling_params['kq_downscale_kernelshape']
self.kq_downscale_stride = attention_scaling_params['kq_downscale_stride']
# endregion
#region Layer Checks & Prep
super( MultiHead2DAttention_v2, self ).__init__()
assert_op1 = tf.Assert( tf.equal( tf.math.floormod(total_key_depth, num_heads), 0 ), [total_key_depth, tf.constant(num_heads)] )
assert_op2 = tf.Assert( tf.equal( tf.math.floormod(total_value_depth, num_heads), 0 ), [total_value_depth, tf.constant(num_heads)] )
# endregion
#region attention layers
with tf.control_dependencies([assert_op1, assert_op2]):
if self.conv_ops_qk == True:
#model variant - convolution operations on query and key antecedents
self.conv_query = tf.keras.layers.TimeDistributed( tf.keras.layers.Conv2D( **query_conv, name="q" ) )
self.conv_key = tf.keras.layers.TimeDistributed( tf.keras.layers.Conv2D( **key_conv, name="k" ) )
else:
#model variant - dense operations on query and key antecedents
self.dense_query = tf.keras.layers.Dense( total_key_depth, use_bias=False, activation="linear", name="q")
self.dense_key = tf.keras.layers.Dense( total_key_depth, use_bias=False, activation="linear", name="k")
value_dropout_rate = self.dropout_rate if self.value_dropout else 0.0
if self.transform_value_antecedent == True:
#model variant - convolution operation on value antecedent
self.conv_value = tf.keras.layers.TimeDistributed( tf.keras.layers.Conv2D( **self.value_conv ) )
self.do_v1 = tf.keras.layers.TimeDistributed( tf.keras.layers.SpatialDropout2D( value_dropout_rate ) )
if self.transform_output == True:
self.conv_output = tf.keras.layers.TimeDistributed( tf.keras.layers.Conv2D( **output_conv) )
self.do_v2= tf.keras.layers.TimeDistributed( tf.keras.layers.SpatialDropout2D( value_dropout_rate ) )
#Maximum relative attention
if( self.max_relative_position==None ):
self.max_relative_position = tf.constant( int(self.attn_factor_reduc/2 - 1) , dtype=tf.int32 )
embding_size = int( self.attn_factor_reduc ) #int(self.max_relative_position * 2 + 1)
self.embeddings_table_k = tf.Variable( tf.keras.initializers.glorot_uniform()(shape=[embding_size, total_key_depth//num_heads], dtype=self._dtype ), name="embedding_table_k" )
self.embeddings_table_v = tf.Variable( tf.keras.initializers.glorot_uniform()(shape=[embding_size, total_value_depth//num_heads], dtype=self._dtype ), name="embedding_table_v" )
#endregion
def call(self, inputs , k_antecedent, v_antecedent, training=True):
"""Performs the multi-head attention as described in the paper
Args:
inputs : a Tensor with shape (batch_size, 1, h, w, channels); query_antecedent
k_antecedent : a Tensor with shape (batch_size, seq_len, h, w, channels)
v_antecedent : a Tensor with shape (batch_size, seq_len, h, w, channels)
training (bool, optional): whetehr variables should be updated
Returns:
tensor: A Tensor with shape (batch_size, 1, h, w, c)
"""
# region --- calculating q k v #Link To Paper: Equation 2
# Note: In the paper, we explain the methodology used when self.conv_ops_qk == False
output_shape = v_antecedent.shape.as_list()
output_shape[1] = 1 # inputs.shape[1]
if self.conv_ops_qk == False:
#Link To Paper - Equation 2, 3D avg pool operations
q_antecedent = tf.cast( tf.nn.avg_pool3d( tf.cast(inputs,tf.float32), strides=self.kq_downscale_stride,
ksize=self.kq_downscale_kernelshape, padding="SAME"), tf.float16) #( batch_size, seq_len, height/M,width/M, filters_in)
k_antecedent = tf.cast(tf.nn.avg_pool3d( tf.cast(k_antecedent,tf.float32), strides=self.kq_downscale_stride,
ksize=self.kq_downscale_kernelshape, padding="SAME"), tf.float16)
else:
q_antecedent = inputs #(bs, seq_len, h, w, c)
k_antecedent = inputs #(bs, seq_len, h, w, c)
if self.conv_ops_qk == False:
# reshping from 3D to 2D for attention along the temporal dimension
q_antecedent_flat = tf.reshape(q_antecedent, q_antecedent.shape.as_list()[:2] + [-1] ) #( batch_size, seq_len, height*width*filters_in*(M^-2))
k_antecedent_flat = tf.reshape(k_antecedent, k_antecedent.shape.as_list()[:2] + [-1] ) #( batch_size, seq_len, height*width*filters_in*(M^-2))
# Dense operations on reshaped/flattened query and key antecedents
q = self.dense_query(q_antecedent_flat)
k = self.dense_key(k_antecedent_flat)
else:
#Using convolution operations on query and key antecedents
q_antecedent = self.conv_query( q_antecedent, training=training ) #(bs, seq_len, h/M, w/M, c)
k_antecedent = self.conv_key( k_antecedent, training=training )
q_antecedent_flat = tf.reshape(q_antecedent, q_antecedent.shape.as_list()[:2] + [-1] ) #(bs, seq_len, h*w*c)
k_antecedent_flat = tf.reshape(k_antecedent, k_antecedent.shape.as_list()[:2] + [-1] )
q = q_antecedent_flat
k = k_antecedent_flat
# convolution operation on value antecedent
if self.transform_value_antecedent == True:
v = self.conv_value( self.do_v1(v_antecedent, training=training), training=training )
else:
v = v_antecedent
# endregion
# flattening value antecedent for compatibility reasons
v = tf.reshape(v, v.shape.as_list()[:2] + [-1] )
#region Scaled --- Relative Multi-Head Dot-Product Attention
# gathering multiple heads # Link to Paper: Equation
q = split_heads(q, self.num_heads)
k = split_heads(k, self.num_heads) #[batch_size, num_heads, length, hidden_size/num_heads]
v = split_heads(v, self.num_heads)
if self.conv_ops_qk==True or self.value_dropout==True:
q *= tf.cast( k.shape[-1], dtype=q.dtype)**-0.5
else:
q *= tf.cast(self.key_depth_per_head,dtype=q.dtype)**-0.5
# relative positional embeddings for keys and values
q_length = q.shape.as_list()[2]
k_length = k.shape.as_list()[2]
relations_keys = _generate_relative_positions_embeddings( q_length, k_length,
self.max_relative_position, self.embeddings_table_k, self._compute_dtype )
relations_values = _generate_relative_positions_embeddings(q_length, k_length,
self.max_relative_position, self.embeddings_table_v, self._compute_dtype )
# Compute attention w/ relative positional embeddings
logits = _relative_attention_inner(q, k, relations_keys, transpose=True) #Link To Paper: Equations (3) - Score operation
# masking attention logits using bias #In our implementation no bias is used
if self.bias is not None:
bias = cast_like(self.bias, logits)
logits += bias
# If logits are fp16, upcast before softmax
logits = maybe_upcast(logits, self._compute_dtype, self.dtype)
weights = tf.nn.softmax(logits, name="attention_weights") #Link To Paper: Equations (3) - normalizing exp()/sum(exp()) operation
weights = cast_like(weights, q)
# Dropping out attention links for each head.
weights = dropout_with_broadcast_dims(
weights, 1.0 - self.dropout_rate, broadcast_dims=self.dropout_broadcast_dims)
outp = _relative_attention_inner(weights, v, relations_values, False) #Link To Paper: Equations (3) - calculating \hat(A}
#outp = combine_heads(outp)
outp = combine_last_two_dimensions(tf.transpose(outp, [0, 2, 1, 3]))
if self.transform_output == True:
# convolution ops on output precedent \hat{A}
outp.set_shape(outp.shape.as_list()[:-1] + [self.total_value_depth])
outp = tf.reshape( outp, output_shape )
outp = self.conv_output( self.do_v2(outp,training=training), training=training)
#outp = self.dense_output( outp, training=training)
else:
outp = tf.reshape( outp, output_shape )
# endregion
return outp #( batch_size, seq_len, height, width, filters_in)
def get_config(self):
config = {
'trainable':
self.trainable,
'bias':
self.bias,
'total_key_depth':
self.total_key_depth,
'total_value_depth':
self.total_value_depth,
'output_depth':
self.output_depth,
'num_heads':
self.num_heads,
'key_depth_per_head':
self.key_depth_per_head,
'dropout_rate':
self.dropout_rate,
'attn_factor_reduc':
self.attn_factor_reduc,
'trainsform_value_antecedent':
self.transform_value_antecedent,
'value_conv':
self.value_conv,
'output_conv':
self.output_conv,
'transoform_output':
self.transform_output,
'add_relative_to_values':
self.add_relative_to_values,
'max_relative_position':
self.max_relative_position,
'heads_share_relative_embedding':
self.heads_share_relative_embedding
}
return config
def _generate_relative_positions_embeddings( length_q, length_k,
max_relative_position, embeddings_table, dtype):
""" Generates tensor of size [length_q, length_k, depth],
encoding the relative positional embedding
Refer to Self-Attention with Relative Position Representations
Peter Shaw, Jakob Uszkoreit, Ashish Vaswani
"""
if length_q == length_k:
range_vec_q = range_vec_k = tf.range(length_q)
else:
range_vec_k = tf.range(length_k)
range_vec_q = range_vec_k[-length_q:]
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = tf.clip_by_value( distance_mat, -max_relative_position,
max_relative_position )
# Shift values to be >= 0. Each integer still uniquely identifies a relative
# position difference.
relative_positions_matrix = distance_mat_clipped + max_relative_position
embeddings = tf.gather(embeddings_table, relative_positions_matrix)
return tf.cast(embeddings,dtype)
def _relative_attention_inner(x, y, z, transpose):
"""Relative position-aware dot-product attention inner calculation.
This batches matrix multiply calculations to avoid unnecessary broadcasting.
Args:
x: Tensor with shape [batch_size, heads, length or 1, length or depth].
y: Tensor with shape [batch_size, heads, length or 1, depth].
z: Tensor with shape [length or 1, length, depth].
transpose: Whether to transpose inner matrices of y and z. Should be true if
last dimension of x is depth, not length.
Returns:
A Tensor with shape [batch_size, heads, length, length or depth].
"""
batch_size = tf.shape(x)[0]
heads = x.get_shape().as_list()[1]
length = tf.shape(x)[2]
# xy_matmul is [batch_size, heads, length or 1, length or depth]
xy_matmul = tf.matmul(x, y, transpose_b=transpose)
# x_t is [length or 1, batch_size, heads, length or depth]
x_t = tf.transpose(x, [2, 0, 1, 3])
# x_t_r is [length or 1, batch_size * heads, length or depth]
x_t_r = tf.reshape(x_t, [length, heads * batch_size, -1])
# x_tz_matmul is [length or 1, batch_size * heads, length or depth]
x_tz_matmul = tf.matmul(x_t_r, z, transpose_b=transpose)
# x_tz_matmul_r is [length or 1, batch_size, heads, length or depth]
x_tz_matmul_r = tf.reshape(x_tz_matmul, [length, batch_size, heads, -1])
# x_tz_matmul_r_t is [batch_size, heads, length or 1, length or depth]
x_tz_matmul_r_t = tf.transpose(x_tz_matmul_r, [1, 2, 0, 3])
return xy_matmul + x_tz_matmul_r_t
def attn_shape_adjust(inputs, attn_factor_reduc, reverse=False):
""" Used to adjust the size of the time dimension,
This is ideal when passing multiple 3D tensors to an RNN cell which only accepts one input
- input data must be reshaped so time dim t -> 1 and channel dim c -> c*t
if(reverse=False):
:param tnsr inputs: (bs, tss, h, w, c)
return outputs : (bs, tss/seq_len_factor_reduc, h, w, c*seq_len_factor_reduc )
if(reverse=True):
:param tnsr inputs: (bs, h, w, c )
return outputs : (bs, seq_len_factor_reduc, h, w, c//seq_len_factor_reduc)
"""
if reverse==False:
shape = inputs.shape
outp = tf.reshape(inputs, shape[:1]+shape[1]//attn_factor_reduc+shape[2:4]+shape[4]*attn_factor_reduc )
else:
shape = tf.expand_dims(inputs, axis=1).shape
outp = tf.reshape(inputs, shape[:1]+shape[1]*attn_factor_reduc+shape[2:4]+shape[4]//attn_factor_reduc )
return outp
def split_heads(x, num_heads):
"""Split channels (dimension 2) into multiple heads (becomes dimension 1).
Args:
x: a Tensor with shape [batch, length, channels]
num_heads: an integer
Returns:
a Tensor with shape [batch, num_heads, length, channels / num_heads]
"""
return tf.transpose(split_last_dimension(x, num_heads), [0, 2, 1, 3])
def split_last_dimension(x, n):
"""Reshape x so that the last dimension becomes two dimensions.
The first of these two dimensions is n.
Args:
x: a Tensor with shape [..., m]
n: an integer.
Returns:
a Tensor with shape [..., n, m/n]
"""
x_shape = shape_list(x)
m = x_shape[-1]
if isinstance(m, int) and isinstance(n, int):
assert m % n == 0
return tf.reshape(x, x_shape[:-1] + [n, m // n])
def shape_list(x):
"""Return list of dims, statically where possible."""
x = tf.convert_to_tensor(x)
# If unknown rank, return dynamic shape
if x.get_shape().dims is None:
return tf.shape(x)
static = x.get_shape().as_list()
shape = tf.shape(x)
ret = []
for i, dim in enumerate(static):
if dim is None:
dim = shape[i]
ret.append(dim)
return ret
def cast_like(x, y):
"""Cast x to y's dtype, if necessary."""
x = tf.convert_to_tensor(x)
y = tf.convert_to_tensor(y)
if x.dtype.base_dtype == y.dtype.base_dtype:
return x
cast_x = tf.cast(x, y.dtype)
if cast_x.device != x.device:
x_name = "(eager Tensor)"
try:
x_name = x.name
except AttributeError:
pass
#tf.logging.warning("Cast for %s may induce copy from '%s' to '%s'", x_name,
# x.device, cast_x.device)
return cast_x
def maybe_upcast(logits,
activation_dtype=None, weight_dtype=None, hparams=None):
if mixed_precision_is_enabled(activation_dtype, weight_dtype, hparams):
return tf.cast(logits, tf.float32)
return logits
def mixed_precision_is_enabled(
activation_dtype=None, weight_dtype=None, hparams=None):
assert not (hparams and (activation_dtype or weight_dtype)), (
"Provide only hparams or activation_dtype and weight_dtype")
if (hparams and hasattr(hparams, "activation_dtype") and
hasattr(hparams, "weight_dtype")):
activation_dtype = hparams.activation_dtype
weight_dtype = hparams.weight_dtype
return activation_dtype == tf.float16 and weight_dtype == tf.float32
def dropout_with_broadcast_dims(x, keep_prob, broadcast_dims=None, **kwargs):
"""Like tf.nn.dropout but takes broadcast_dims instead of noise_shape.
Instead of specifying noise_shape, this function takes broadcast_dims -
a list of dimension numbers in which noise_shape should be 1. The random
keep/drop tensor has dimensionality 1 along these dimensions.
Args:
x: a floating point tensor.
keep_prob: A scalar Tensor with the same type as x.
The probability that each element is kept.
broadcast_dims: an optional list of integers
the dimensions along which to broadcast the keep/drop flags.
**kwargs: keyword arguments to tf.nn.dropout other than "noise_shape".
Returns:
Tensor of the same shape as x.
"""
assert "noise_shape" not in kwargs
if broadcast_dims:
shape = tf.shape(x)
ndims = len(x.get_shape())
# Allow dimensions like "-1" as well.
broadcast_dims = [dim + ndims if dim < 0 else dim for dim in broadcast_dims]
kwargs["noise_shape"] = [
1 if i in broadcast_dims else shape[i] for i in range(ndims)
]
return tf.nn.dropout(x, keep_prob, **kwargs)
def combine_last_two_dimensions(x):
"""Reshape x so that the last two dimension become one.
Args:
x: a Tensor with shape [..., a, b]
Returns:
a Tensor with shape [..., ab]
"""
x_shape = shape_list(x)
a, b = x_shape[-2:]
return tf.reshape(x, x_shape[:-2] + [a * b])