-
Notifications
You must be signed in to change notification settings - Fork 2
/
hybrid_case.pl
164 lines (143 loc) · 8.85 KB
/
hybrid_case.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
% =================================
% = Hybrid grammar =
% =================================
% This grammar is a variant of hybrid_grammar.pl differing only in the addition of case to the noun phrases.
% Like the original hybrid_grammar.pl, this grammar contains many examples from the following articles.
%
% Yusuke Kubota and Robert Levine (2012) Gapping as Like-Category Coordination, in Denis Bechet and
% Alexander Dikovsky (eds), Logical Aspects of Computational Linguistics 2012, Springer Lecture Notes
% in Computer Science 7351, pp. 135-150.
%
% Yusuke Kubota and Robert Levine (2013) Determiner Gapping as Higher-Order Discontinuous Constituency
% in Glyn Morrill and Mark-Jan Nederhof (eds), Formal Grammar 2013, Springer Lecture Notes in Computer
% Science 8036, pp. 225-241.
% define operators to allow for easier specification of
% hybrid type-logical grammar lexical entries.
%
% WARNING: in case of doubt, use parentheses to disambiguate!
% I have deliberately not changed the definitions of standard
% mathematical and logical operations of Prolog, notably |
% (alternative of ; for use in DCG), / and *.
%
% This means for example that:
% c/d*b/c = ((c/d)*b)/c
% which corresponds to a left-to-right evaluation of the
% mathematical functions of division and multiplication.
%
% It also means that (s|s|np) = (s|(s|np))
%
% However, we do have the familiar a/b/c = (a/b)/c and
% c\b\a = (c\(b\a) and even a\b/c = (a\b)/c.
%
% For lambda terms, X^M is short for lambda(X,M) and M@N
% is short for appl(M,N). As expected, X^Y^Z^X@Y@Z is
% short for lambda(X,lambda(Y,lambda(Z,appl(appl(X,Y),Z))))
% though be warned that X@Y+V@Z corresponds to (X@Y)+(V@Z)
:- op(400, xfy, \).
:- op(190, yfx, @).
:- abolish(lex/3), abolish(lex/4), abolish(test/1), abolish(atomic_formula/3), abolish(atomic_formula/1), abolish(macro/2).
% = define np as a (non-propositional) atomic formula with a single case argument
atomic_formula(np(_)).
test(1) :-
parse([someone,talked,to,everyone,yesterday], s).
test(2) :-
parse([leslie,bought,a,cd,and1,robin,a,book], s1).
test(3) :-
parse([leslie,bought,a,cd,and,robin,a,book], s).
test(4) :-
parse([robin,must,discover,a,solution], s).
test(5) :-
parse([john,cant,eat,steak,and1,mary,pizza], s1).
test(6) :-
parse([john,cant,eat,steak,and,mary,pizza], s).
% split scope
test(7) :-
parse([no2,neg,fish,walks], s).
test(8) :-
parse([no2,neg,dog,eats,whiskas,or2,neg,cat,alpo], s).
% comparative subdeletion
test(9) :-
parse([john,ate,more,donuts,than,mary,bought,bagels], s).
test(b) :-
parse([john,ate,more2,donuts,than2,mary,bought,bagels], s).
test(10) :-
parse([no,fish,walks], s).
% NOTE: The next two examples illustrate the improvement of the dancing links algorithm over the naive algorith rather spectacularly!
test(11) :-
/* first-found axioms */
/* 3,142,516 axioms ! */
/* 5,808,425,093 inferences, 2014.396 CPU in 2139.522 seconds (94% CPU, 2883458 Lips) */
/* with first dancing links version */
/* 28,640 axioms */
/* 65,938,819 inferences, 9.097 CPU in 9.842 seconds (92% CPU, 7248058 Lips) */
parse([no,dog,eats,whiskas,or,cat,alpo], s).
test(12) :-
/* first-found */
/* 4,215,069,209 axioms performed */
/* 3,014,184,930,660 inferences, 375241.334 CPU in 375357.875 seconds (100% CPU, 8032657 Lips) */
/* = 4d8h14m01.334s */
/* 59 proofs */
/* with first dancing links version */
/* 24,757,440 axioms */
/* 78,463,497,676 inferences, 10008.709 CPU in 10097.414 seconds (99% CPU, 7839522 Lips) */
/* = 2h46m48.709s */
/* 42 proofs (why this difference?) */
parse([no,dog,eats,more,whiskas2,than,leslie,buys,donuts,or,cat,alpo], s).
test_and :-
exhaustive_test('and.pl', and, ((((s| np)| np)| (s| np)| np)| (s| np)| np), lambda(M, lambda(J, lambda(K, lambda(L, bool(appl(appl(J, K), L), &, appl(appl(M, K), L)))))), [and], (((np\s)/np)\((np\s)/np))/((np\s)/np)).
% =======================
% = Lexicon =
% =======================
% = lex(+Word, +Formula, +ProsodicTerm, +SemanticTerm)
%
% ProsodicTerm must be a linear lambda term containing exactly one occurrence of Word
lex(leslie, np(_), leslie, l).
lex(robin, np(_), robin, r).
lex(john, np(_), john, j).
lex(mary, np(_), mary, m).
lex(bought, tv_c, bought, buy).
lex(buys, tv_c, buys, buy).
lex(eats, tv_c, eats, eat).
lex(ate, tv_c, ate, eat).
lex(talked, (np(nom)\s)/pp, talked, talk).
lex(discover, tv_c, discover, discover).
lex(discovers, tv_c, discovers, discover).
lex(walks, np(nom)\s, walks, walk).
lex(eat, tv_c, eat, eat).
lex(a, ((s|(s|np(_)))|n), lambda(N,lambda(P,lambda(Z,appl(appl(P,lambda(V,appl(a,appl(N,V)))),Z)))), lambda(X,lambda(Y,quant(exists,Z,bool(appl(X,Z),&,appl(Y,Z)))))).
lex(every, ((s|(s|np(_)))|n), lambda(N, lambda(P,appl(P,every+N))), lambda(X,lambda(Y,quant(forall,Z,bool(appl(X,Z),->,appl(Y,Z)))))).
lex(someone, (s|(s|np(_))), lambda(Pr,lambda(Z,appl(appl(Pr,someone),Z))), lambda(P,quant(exists,X,bool(appl(person,X),&,appl(P,X))))).
lex(everyone, (s|(s|np(_))), lambda(Pr,lambda(Z,appl(appl(Pr,everyone),Z))), lambda(P,quant(forall,X,bool(appl(person,X),->,appl(P,X))))).
lex(yesterday, (np(nom)\s)\(np(nom)\s), yesterday, lambda(X,lambda(Y,appl(yesterday,appl(X,Y))))).
lex(fish, n, fish, fish).
lex(dog, n, dog, dog).
lex(cat, n, cat, cat).
lex(cd, n, cd, cd).
lex(book, n, book, book).
lex(donuts, n, donuts, donuts).
lex(bagels, n, bagels, bagels).
lex(solution, n, solution, solution).
lex(steak, np(_), steak, steak).
lex(pizza, np(_), pizza, pizza).
lex(whiskas, np(_), whiskas, whiskas).
lex(alpo, np(_), alpo, alpo).
lex(whiskas2, n, whiskas2, whiskas).
lex(alpo2, n, alpo2, alpo).
lex(to, pp/np(acc), to, lambda(X,X)).
% = uses s1 as final category to avoid quantifier scope outside of the individual conjuncts
lex(and1, (((s1|tv_c)|(s|tv_c))|(s|tv_c)), lambda(STV2,lambda(STV1,lambda(TV,lambda(V,appl(appl(STV1,TV),appl(and1,appl(appl(STV2,lambda(W,W)),V))))))), lambda(S2,lambda(S1,lambda(T,bool(appl(S1,T),&,appl(S2,T)))))).
lex(and, (((s|tv_c)|(s|tv_c))|(s|tv_c)), lambda(STV2,lambda(STV1,lambda(TV,lambda(V,appl(appl(STV1,TV),appl(and,appl(appl(STV2,lambda(W,W)),V))))))), lambda(S2,lambda(S1,lambda(T,bool(appl(S1,T),&,appl(S2,T)))))).
lex(must, (s|(s|(vp_c/vp_c))), lambda(SVP,lambda(Z,appl(appl(SVP,must),Z))), lambda(F,necessary(appl(F,lambda(Y,Y))))).
lex(cant, (s|(s|(vp_c/vp_c))), lambda(SVP,lambda(Z,appl(appl(SVP,cant),Z))), lambda(F,neg(possible(appl(F,lambda(Y,Y)))))).
lex(no, (s|(s|h_det_c)), lambda(Rho,lambda(Z,appl(appl(Rho,lambda(Phi,lambda(Sigma,lambda(V,appl(appl(Sigma,lambda(W,appl(no,appl(Phi,W)))),V))))),Z))), lambda(P,neg(appl(P,lambda(Q,lambda(R,quant(exists,X,bool(appl(Q,X),&,appl(R,X))))))))).
lex(than, than, than, lambda(X,X)).
lex(more, (((s|(s|h_det_c))|(s|h_det_c))|than), lambda(Than,lambda(Rho1,lambda(Rho2,lambda(Z,appl(appl(Rho2,lambda(Phi,lambda(Sigma,appl(Sigma,lambda(V,appl(more,appl(Phi,V))))))),appl(Than,appl(appl(Rho1,lambda(Phi2,lambda(Sigma2,lambda(W,appl(appl(Sigma2,Phi2),W))))),Z))))))), lambda(_,lambda(F,lambda(G,bool(number_of(appl(G,lambda(P,lambda(Q,lambda(X,bool(appl(P,X),&,appl(Q,X))))))),gneq,number_of(appl(F,lambda(P2,lambda(Q2,lambda(Y,bool(appl(P2,Y),&,appl(Q2,Y)))))))))))).
lex(or, ((((s|h_det_c)|tv_c)|((s|h_det_c)|tv_c))|((s|h_det_c)|tv_c)), lambda(Rho2,lambda(Rho1,lambda(Phi,lambda(Tau,lambda(Z,appl(appl(appl(Rho1,Phi),Tau),appl(or,appl(appl(appl(Rho2,lambda(V,V)),lambda(Phi2,lambda(Sigma2,lambda(W,appl(appl(Sigma2,Phi2),W))))),Z)))))))), lambda(SDTV2,lambda(SDTV1,lambda(TV,lambda(Det,bool(appl(appl(SDTV1,TV),Det),\/,appl(appl(SDTV2,TV),Det))))))).
%lex(more_d, (s/<d_q)\<(s/(^(cp/<d_q))), lambda(X,lambda(Y,bool(number_of(lambda(Z,appl(X,lambda(P,lambda(Q,bool(appl(P,Z),&,appl(Q,Z))))))),gneq,number_of(lambda(Z1,appl(Y,lambda(P1,lambda(Q1,bool(appl(P1,Z1),&,appl(Q1,Z1))))))))))).
% lexical entries for "split scope"
lex(no2, (s|sneg), lambda(S,lambda(Z,appl(appl(S,no2),Z))), neg).
lex(or2, (((sneg|tv_c)|(sneg|tv_c))|(sneg|tv_c)), lambda(Sigma2,lambda(Sigma1,lambda(Phi1,lambda(Phi2,lambda(Z,appl(appl(appl(Sigma1,Phi1),Phi2),appl(or2,appl(appl(appl(Sigma2,lambda(V,V)),lambda(W,W)),Z)))))))), lambda(V1,lambda(W1,lambda(TV,bool(appl(W1,TV),\/,appl(V1,TV)))))).
lex(neg, ((sneg|(s|np(_)))|n), lambda(Phi1,lambda(Sigma,lambda(Phi2,lambda(W,appl(appl(Sigma,lambda(V,appl(Phi2,appl(neg,appl(Phi1,V))))),W))))), lambda(X,lambda(Y,quant(exists,Z,bool(appl(X,Z),&,appl(Y,Z)))))).
% attempt to recreate the Morrill e.a. analysis
lex(than2, cp/s, than2, lambda(X,X)).
lex(more2, ((s|(cp|h_det))|(s|h_det)), lambda(Rho1,lambda(Rho2,lambda(Z,appl(appl(Rho2,lambda(Phi,lambda(Sigma,appl(Sigma,lambda(V,appl(more2,appl(Phi,V))))))),appl(appl(Rho1,lambda(Phi2,lambda(Sigma2,lambda(W,appl(appl(Sigma2,Phi2),W))))),Z))))), lambda(F,lambda(G,bool(number_of(appl(G,lambda(P,lambda(Q,lambda(X,bool(appl(P,X),&,appl(Q,X))))))),gneq,number_of(appl(F,lambda(P2,lambda(Q2,lambda(Y,bool(appl(P2,Y),&,appl(Q2,Y))))))))))).