Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Encounter issue while attempting to train Nanodet-plus-m_320 #563

Open
AlphaIkaros2 opened this issue Apr 21, 2024 · 0 comments
Open

Encounter issue while attempting to train Nanodet-plus-m_320 #563

AlphaIkaros2 opened this issue Apr 21, 2024 · 0 comments

Comments

@AlphaIkaros2
Copy link

AlphaIkaros2 commented Apr 21, 2024

My configuration file:
#nanodet-plus-m_320
#COCO mAP(0.5:0.95) = 0.270
#AP_50 = 0.418
#AP_75 = 0.281
#AP_small = 0.083
#AP_m = 0.278
#AP_l = 0.451
save_dir: workspace/nanodet-plus-m_320
model:
weight_averager:
name: ExpMovingAverager
decay: 0.9998
arch:
name: NanoDetPlus
detach_epoch: 10
backbone:
name: ShuffleNetV2
model_size: 1.0x
out_stages: [2,3,4]
activation: LeakyReLU
fpn:
name: GhostPAN
in_channels: [116, 232, 464]
out_channels: 96
kernel_size: 5
num_extra_level: 1
use_depthwise: True
activation: LeakyReLU
head:
name: NanoDetPlusHead
num_classes: 15
input_channel: 96
feat_channels: 96
stacked_convs: 2
kernel_size: 5
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
norm_cfg:
type: BN
loss:
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
#Auxiliary head, only use in training time.
aux_head:
name: SimpleConvHead
num_classes: 15
input_channel: 192
feat_channels: 192
stacked_convs: 4
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
data:
train:
name: CocoDataset
img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train
ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train/_annotations.coco.json
input_size: [320,320] #[w,h]
keep_ratio: False
pipeline:
perspective: 0.0
scale: [0.6, 1.4]
stretch: [[0.8, 1.2], [0.8, 1.2]]
rotation: 0
shear: 0
translate: 0.2
flip: 0.5
brightness: 0.2
contrast: [0.6, 1.4]
saturation: [0.5, 1.2]
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
val:
name: CocoDataset
img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid
ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid/_annotations.coco.json
input_size: [320,320] #[w,h]
keep_ratio: False
pipeline:
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
device:
gpu_ids: [0] # Set like [0, 1, 2, 3] if you have multi-GPUs
workers_per_gpu: 10
batchsize_per_gpu: 96
precision: 32 # set to 16 to use AMP training
schedule:
#resume:
#load_model:
optimizer:
name: AdamW
lr: 0.001
weight_decay: 0.05
warmup:
name: linear
steps: 500
ratio: 0.0001
total_epochs: 50
lr_schedule:
name: CosineAnnealingLR
T_max: 300
eta_min: 0.00005
val_intervals: 10
grad_clip: 35
evaluator:
name: CocoDetectionEvaluator
save_key: mAP
log:
interval: 50

class_names: ['car','crosswalk','highway_entry'
,'highway_exit'
,'intersection'
,'no_entry'
,'onewayroad'
,'parking'
,'pedestrian'
,'priority'
,'roundabout'
,'stop'
,'trafficlight_green'
,'trafficlight_red'
,'trafficlight_yellow',]

Output:
../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [0,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant