We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
My configuration file: #nanodet-plus-m_320 #COCO mAP(0.5:0.95) = 0.270 #AP_50 = 0.418 #AP_75 = 0.281 #AP_small = 0.083 #AP_m = 0.278 #AP_l = 0.451 save_dir: workspace/nanodet-plus-m_320 model: weight_averager: name: ExpMovingAverager decay: 0.9998 arch: name: NanoDetPlus detach_epoch: 10 backbone: name: ShuffleNetV2 model_size: 1.0x out_stages: [2,3,4] activation: LeakyReLU fpn: name: GhostPAN in_channels: [116, 232, 464] out_channels: 96 kernel_size: 5 num_extra_level: 1 use_depthwise: True activation: LeakyReLU head: name: NanoDetPlusHead num_classes: 15 input_channel: 96 feat_channels: 96 stacked_convs: 2 kernel_size: 5 strides: [8, 16, 32, 64] activation: LeakyReLU reg_max: 7 norm_cfg: type: BN loss: loss_qfl: name: QualityFocalLoss use_sigmoid: True beta: 2.0 loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.25 loss_bbox: name: GIoULoss loss_weight: 2.0 #Auxiliary head, only use in training time. aux_head: name: SimpleConvHead num_classes: 15 input_channel: 192 feat_channels: 192 stacked_convs: 4 strides: [8, 16, 32, 64] activation: LeakyReLU reg_max: 7 data: train: name: CocoDataset img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train/_annotations.coco.json input_size: [320,320] #[w,h] keep_ratio: False pipeline: perspective: 0.0 scale: [0.6, 1.4] stretch: [[0.8, 1.2], [0.8, 1.2]] rotation: 0 shear: 0 translate: 0.2 flip: 0.5 brightness: 0.2 contrast: [0.6, 1.4] saturation: [0.5, 1.2] normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]] val: name: CocoDataset img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid/_annotations.coco.json input_size: [320,320] #[w,h] keep_ratio: False pipeline: normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]] device: gpu_ids: [0] # Set like [0, 1, 2, 3] if you have multi-GPUs workers_per_gpu: 10 batchsize_per_gpu: 96 precision: 32 # set to 16 to use AMP training schedule: #resume: #load_model: optimizer: name: AdamW lr: 0.001 weight_decay: 0.05 warmup: name: linear steps: 500 ratio: 0.0001 total_epochs: 50 lr_schedule: name: CosineAnnealingLR T_max: 300 eta_min: 0.00005 val_intervals: 10 grad_clip: 35 evaluator: name: CocoDetectionEvaluator save_key: mAP log: interval: 50
class_names: ['car','crosswalk','highway_entry' ,'highway_exit' ,'intersection' ,'no_entry' ,'onewayroad' ,'parking' ,'pedestrian' ,'priority' ,'roundabout' ,'stop' ,'trafficlight_green' ,'trafficlight_red' ,'trafficlight_yellow',]
Output: ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [0,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed.
idx_dim >= 0 && idx_dim < index_size && "index out of bounds"
The text was updated successfully, but these errors were encountered:
No branches or pull requests
My configuration file:
#nanodet-plus-m_320
#COCO mAP(0.5:0.95) = 0.270
#AP_50 = 0.418
#AP_75 = 0.281
#AP_small = 0.083
#AP_m = 0.278
#AP_l = 0.451
save_dir: workspace/nanodet-plus-m_320
model:
weight_averager:
name: ExpMovingAverager
decay: 0.9998
arch:
name: NanoDetPlus
detach_epoch: 10
backbone:
name: ShuffleNetV2
model_size: 1.0x
out_stages: [2,3,4]
activation: LeakyReLU
fpn:
name: GhostPAN
in_channels: [116, 232, 464]
out_channels: 96
kernel_size: 5
num_extra_level: 1
use_depthwise: True
activation: LeakyReLU
head:
name: NanoDetPlusHead
num_classes: 15
input_channel: 96
feat_channels: 96
stacked_convs: 2
kernel_size: 5
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
norm_cfg:
type: BN
loss:
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
#Auxiliary head, only use in training time.
aux_head:
name: SimpleConvHead
num_classes: 15
input_channel: 192
feat_channels: 192
stacked_convs: 4
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
data:
train:
name: CocoDataset
img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train
ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/train/_annotations.coco.json
input_size: [320,320] #[w,h]
keep_ratio: False
pipeline:
perspective: 0.0
scale: [0.6, 1.4]
stretch: [[0.8, 1.2], [0.8, 1.2]]
rotation: 0
shear: 0
translate: 0.2
flip: 0.5
brightness: 0.2
contrast: [0.6, 1.4]
saturation: [0.5, 1.2]
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
val:
name: CocoDataset
img_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid
ann_path: /content/drive/MyDrive/Nanodet/BFMC2024_2-3/valid/_annotations.coco.json
input_size: [320,320] #[w,h]
keep_ratio: False
pipeline:
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
device:
gpu_ids: [0] # Set like [0, 1, 2, 3] if you have multi-GPUs
workers_per_gpu: 10
batchsize_per_gpu: 96
precision: 32 # set to 16 to use AMP training
schedule:
#resume:
#load_model:
optimizer:
name: AdamW
lr: 0.001
weight_decay: 0.05
warmup:
name: linear
steps: 500
ratio: 0.0001
total_epochs: 50
lr_schedule:
name: CosineAnnealingLR
T_max: 300
eta_min: 0.00005
val_intervals: 10
grad_clip: 35
evaluator:
name: CocoDetectionEvaluator
save_key: mAP
log:
interval: 50
class_names: ['car','crosswalk','highway_entry'
,'highway_exit'
,'intersection'
,'no_entry'
,'onewayroad'
,'parking'
,'pedestrian'
,'priority'
,'roundabout'
,'stop'
,'trafficlight_green'
,'trafficlight_red'
,'trafficlight_yellow',]
Output:
../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [0,0,0] Assertion
idx_dim >= 0 && idx_dim < index_size && "index out of bounds"
failed.The text was updated successfully, but these errors were encountered: