-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
121 lines (88 loc) · 5.16 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col, monotonically_increasing_id
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format, dayofweek
from pyspark.sql.types import *
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID'] = config['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY'] = config['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
"""
Description:
Process the songs data files and create extract songs table and artist table data from it.
:param spark: a spark session instance
:param input_data: input file path
:param output_data: output file path
"""
# get filepath to song data file
song_data = input_data + "song_data/*/*/*/*"
# read song data file
df = spark.read.json(song_data, mode='PERMISSIVE', columnNameOfCorruptRecord='corrupt_record').drop_duplicates()
# extract columns to create songs table
songs_table = df.select("song_id","title","artist_id","year","duration").drop_duplicates()
# write songs table to parquet files partitioned by year and artist
songs_table.write.parquet(output_data + "songs/", mode="overwrite", partitionBy=["year","artist_id"])
# extract columns to create artists table
artists_table = df.select("artist_id","artist_name","artist_location","artist_latitude","artist_longitude").drop_duplicates()
# write artists table to parquet files
artists_table.write.parquet(output_data + "artists/", mode="overwrite")
def process_log_data(spark, input_data, output_data):
"""
Description:
Process the event log file and extract data for table time, users and songplays from it.
:param spark: a spark session instance
:param input_data: input file path
:param output_data: output file path
"""
# get filepath to log data file
log_data = os.path.join(input_data, "log-data/")
# read log data file
df = spark.read.json(log_data, mode='PERMISSIVE', columnNameOfCorruptRecord='corrupt_record').drop_duplicates()
# filter by actions for song plays
df = df.filter(df.page == "NextSong")
# extract columns for users table
users_table = df.select("userId","firstName","lastName","gender","level").drop_duplicates()
# write users table to parquet files
users_table.write.parquet(os.path.join(output_data, "users/") , mode="overwrite")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x : datetime.utcfromtimestamp(int(x)/1000), TimestampType())
df = df.withColumn("start_time", get_timestamp("ts"))
# extract columns to create time table
time_table = df.withColumn("hour",hour("start_time"))\
.withColumn("day",dayofmonth("start_time"))\
.withColumn("week",weekofyear("start_time"))\
.withColumn("month",month("start_time"))\
.withColumn("year",year("start_time"))\
.withColumn("weekday",dayofweek("start_time"))\
.select("ts","start_time","hour", "day", "week", "month", "year", "weekday").drop_duplicates()
# write time table to parquet files partitioned by year and month
time_table.write.parquet(os.path.join(output_data, "time_table/"), mode='overwrite', partitionBy=["year","month"])
# read in song data to use for songplays table
song_df = spark.read\
.format("parquet")\
.option("basePath", os.path.join(output_data, "songs/"))\
.load(os.path.join(output_data, "songs/*/*/"))
# extract columns from joined song and log datasets to create songplays table
songplays_table = df.join(song_df, df.song == song_df.title, how='inner')\
.select(monotonically_increasing_id().alias("songplay_id"),col("start_time"),col("userId").alias("user_id"),"level","song_id","artist_id", col("sessionId").alias("session_id"), "location", col("userAgent").alias("user_agent"))
songplays_table = songplays_table.join(time_table, songplays_table.start_time == time_table.start_time, how="inner")\
.select("songplay_id", songplays_table.start_time, "user_id", "level", "song_id", "artist_id", "session_id", "location", "user_agent", "year", "month")
# write songplays table to parquet files partitioned by year and month
songplays_table.drop_duplicates().write.parquet(os.path.join(output_data, "songplays/"), mode="overwrite", partitionBy=["year","month"])
def main():
spark = create_spark_session()
input_data = "s3://udacity-spark-project/"
output_data = "s3://udacity-spark-project/output/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
if __name__ == "__main__":
main()