-
Notifications
You must be signed in to change notification settings - Fork 0
/
hello_world_tracking_control_inverse_kinematics.py
392 lines (287 loc) · 11.7 KB
/
hello_world_tracking_control_inverse_kinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import time
import mujoco
import mujoco.viewer
import mediapy as media
import matplotlib.pyplot as plt
import numpy as np
import pickle
import math
model= mujoco.MjModel.from_xml_path("world.xml")
data = mujoco.MjData(model)
# target = np.array(
# [ 0.13356409 ,0.01067754, -0.01287296, -0.0694974 , -0.00348183, 0.46568362,
# -0.06095309])
q_track = []
dq_max =[]
ddq_max = []
'''
Alignment gains
'''
k_p_follower_align = np.array([45,45,45,45,18,11,5]) # Given in the teleop_joint_pd_example_controller.h
k_d_follower_align = np.array([4.5,4.5,4.5,4.5,1.5,1.5,1]) # Given in the teleop_joint_pd_example_controller.h
'''
Max vel and Max acc for alignment
'''
dq_max_align = np.array([0.1,0.1,0.1,0.1,0.1,0.1,0.1])
ddq_max_align = np.array([0.5,0.5,0.5,0.5,0.5,0.5,0.5])
'''
Defining maximum lower and upper velocities and accelerations for each joint of the follower arm.
The velocities and accelerations vary depending on the ramp parameter for eachh joint
'''
dq_max_lower_ = np.array([0.8, 0.8, 0.8, 0.8, 2.5,2.5,2.5])
dq_max_upper_ = np.array([2,2,2,2,2.5,2.5,2.5])
ddq_max_lower_ = np.array([0.8, 0.8, 0.8, 0.8, 10.0, 10.0, 10.0]) # [rad/s^2]
ddq_max_upper_ = np.array([6.0, 6.0, 6.0, 6.0, 15.0, 20.0, 20.0]) # [rad/s^2]
'''
Drift Compensation Gains for the follower arm
'''
k_dq_= np.array([4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3])
print(dq_max_upper_[0])
'''
p and d gains for the follower arm for PD control
'''
k_p_follower = np.array([900,900,900,900,375,225,100])
k_d_follower = np.array([45,45,45,45,15,15,10])
def rampParameter(x, neg_x_asymptote , pos_x_asymptote , shift_along_x , increase_factor):
ramp = 0.5 * (pos_x_asymptote + neg_x_asymptote -
(pos_x_asymptote - neg_x_asymptote) * np.tanh(increase_factor * (x - shift_along_x)))
return ramp
def saturateAndlimit(x_calc , x_last , x_max, dx_max , del_t):
x_limited = []
for i in range(7):
del_x_max = dx_max[i] + del_t
diff = x_calc[i] - x_last[i]
print("Diff \t",diff)
x_saturated = x_last[i] + max(min(diff, del_x_max), -del_x_max)
xlimited = max(min(x_saturated,x_max[i]), -x_max[i])
x_limited.append(xlimited)
return x_limited
'''
q_leader file recorded from hello_world.py
'''
# with open('q_leader.pkl', 'rb') as file:
# # Call load method to deserialze
# myvar = pickle.load(file)
# # print(myvar[0])
# joint_values = [data[0] for data in myvar]
# timestamps = [data[1] for data in myvar]
# q_leader_init = joint_values[0]
# q_leader = joint_values
# # print("Leader\t",q_leader)
'''
q_inverse_kinematics file recorded from hello_world_inverse_kinematics.py PINK
'''
with open('q_inverse_kinematics.pkl', 'rb') as file:
# Call load method to deserialze
myvar = pickle.load(file)
# print(myvar[0])
joint_values = [data[0] for data in myvar]
timestamps = [data[1] for data in myvar]
# print("Length of Joint values",len(joint_values))
q_leader_init = joint_values[0]
q_leader = joint_values
# print("Leader\t",q_leader)
'''
dq_leader file recorded from hello_world.py
'''
# with open('dq_leader.pkl', 'rb') as file:
# # Call load method to deserialze
# myvar = pickle.load(file)
# # print(myvar[0])
# jointVel_values = [data[0] for data in myvar]
# # timestamps = [data[1] for data in myvar]
# dq_leader = jointVel_values
'''
dq_inverse_kinematics file recorded from hello_world_inverse_kinematics.py PINK
'''
with open('dq_inverse_kinematics.pkl', 'rb') as file:
# Call load method to deserialze
myvar = pickle.load(file)
# print(myvar[0])
jointVel_values = [data[0] for data in myvar]
# timestamps = [data[1] for data in myvar]
dq_leader = jointVel_values
with mujoco.viewer.launch_passive(model, data) as viewer:
# Close the viewer automatically after 30 wall-seconds.
start = time.time()
viewer.sync()
render = True
viewer.cam.distance = 3.0
viewer.cam.azimuth = 90
viewer.cam.elevation = -45
viewer.cam.lookat[:] = np.array([0.0, -0.25, 0.824])
model.opt.gravity[2] =0
kTolerance = 1e-2
velocity_ramp_shift_= 0.25 # Given in the teleop_joint_pd_example_controller.h
velocity_ramp_increase_ = 20 # Given in the teleop_joint_pd_example_controller.h
follower_stiffness_scaling = 0.2
dq_target_last_ = [0,0,0,0,0,0,0]
iter = 0
start = time.time()
data.qpos[:7] = np.array([-2.3093, -1.5133, -2.4937, -2.7478, -2.48, 0.8521, -2.6895])
# while viewer.is_running() and time.time() - start < 20:
while viewer.is_running() and iter < len(joint_values):
step_start = time.time()
viewer.sync()
q_follower = data.qpos[:7].copy()
# print(q_follower)
# break
dq_follower = data.qvel[:7].copy()
q_track.append([q_follower,time.time()-start])
# print("Leader\t",q_leader_init)
# print("Follower\t",q_follower)
kNorm = np.abs(q_leader_init - q_follower)
print("kNorm",kNorm)
q_target_last_ = q_follower
'''
Determining deviation between each joint of both the arms every timestamp to track errors
'''
q_deviation = np.abs(q_target_last_ - q_leader[iter])
# print(q_deviation[6])
alignment_error_ = q_leader[iter] - q_follower
if np.any(kNorm) > kTolerance:
print("ROBOTS ARE NOT ALIGNED\t")
print("GOING TO ALIGN MODE\t")
'''
Computing dq_unsaturated_ when NOT ALIGNED
'''
# target = q_leader_init
# while np.all(kNorm) > kTolerance:
# error = target - q_follower
# print("Error\t",error)
# tau = Kp * error + Kd * (0 - dq_follower)
# data.ctrl[:7] = tau
# kNorm = np.abs(target - q_follower)
# time.sleep(2e-5)
# mujoco.mj_step(model, data)
# q_follower = data.qpos[:7].copy()
dq_max = dq_max_align
ddq_max = ddq_max_align
prev_alignment_error = alignment_error_
alignment_error_ = q_leader[iter] - q_follower
dalignment_error = (alignment_error_ - prev_alignment_error) / (time.time() - start)
dq_unsaturated_ = np.diag(k_p_follower_align) @ alignment_error_ + np.diag(k_d_follower_align) @ dalignment_error
else:
print("ROBOTS ARE ALIGNED")
for i in range(7):
# print(i)
dqmax = rampParameter(q_deviation[i], dq_max_lower_[i], dq_max_upper_[i],
velocity_ramp_shift_ ,velocity_ramp_increase_)
dq_max.append(dqmax)
# print(dq_max)
ddqmax = rampParameter(q_deviation[i], ddq_max_lower_[i], ddq_max_upper_[i],
velocity_ramp_shift_, velocity_ramp_increase_)
ddq_max.append(ddqmax)
print("iter \t", iter)
print("q_leader \t",q_leader[iter])
dq_unsaturated_ = np.diag(k_dq_) @ (q_leader[iter]- q_target_last_) + dq_leader[iter]
# print(np.diag(k_dq_))
# print("q_leader - q_target",(q_leader[iter]- q_target_last_))
# print(k_dq_.shape)
# print(dq_unsaturated_.shape)
print(dq_unsaturated_ ,"x_calc \t")
print(dq_target_last_, "x_last \t")
print(dq_max, "x_max \t")
print(ddq_max ,"dx_max \t")
'''
Calculate target pose and vel for follower arm
'''
dq_target_ = saturateAndlimit(dq_unsaturated_, dq_target_last_, dq_max, ddq_max, time.time()-start)
dq_target_last_ = dq_target_
q_target_ = q_target_last_ + [dq_target*(time.time()-start) for dq_target in dq_target_]
q_target_last_ = q_target_
'''
PD control for the follower arm to track the leader's motions
'''
tau_follower = (follower_stiffness_scaling * np.diag(k_p_follower)) @ (q_target_ - q_follower) + (math.sqrt(follower_stiffness_scaling) * np.diag(k_d_follower)) @ (dq_target_ - dq_follower)
print(tau_follower)
data.ctrl[:7] = tau_follower
time.sleep(2e-5)
iter+=1
print("iter", iter)
# print(len(dq_max))
if len(dq_max) == 7 and len(ddq_max) ==7:
dq_max = []
ddq_max = []
mujoco.mj_step(model, data)
with open('q_follower.pkl', 'wb') as file:
pickle.dump(q_track, file)
with open('q_follower.pkl', 'rb') as file:
# Call load method to deserialze
myvar = pickle.load(file)
# print(myvar[0])
# print(myvar[len(myvar)-1])
# Extracting joint values and timestamps
joint_values = [data[0] for data in myvar]
timestamps = [data[1] for data in myvar]
print(joint_values[0], timestamps[0])
# Plot each joint value against its corresponding timestamp
for i in range(len(joint_values[0])):
joint_values_i = [joints[i] for joints in joint_values]
# q_leader_i = [qleader[i] for qleader in q_leader ]
plt.plot(timestamps, joint_values_i, label=f'Joint {i}')
# plt.plot(timestamps, [joint_values_i - q_leader_i], label=f'Joint {i+1}')
# Adding labels and legend
plt.xlabel('Timestamp')
plt.ylabel('Joint Value')
plt.title('Joint Values vs. Timestamp')
plt.legend()
plt.grid(True)
# Show the plot
plt.show()
for i in range(len(joint_values[0])):
joint_values_i = [joints[i] for joints in joint_values]
x = len(joint_values_i)
joint_values_i = np.array(joint_values_i)
q_leader_i = [qleader[i] for qleader in q_leader ]
q_leader_i = np.array(q_leader_i[:x])
error = np.subtract(joint_values_i , q_leader_i)
err_list = error.tolist()
plt.plot(timestamps, err_list, label=f'Joint {i}')
# plt.plot(timestamps, [joint_values_i - q_leader_i], label=f'Joint {i+1}')
# Adding labels and legend
plt.xlabel('Timestamp')
plt.ylabel('Error Value')
plt.title('Error Values vs. Timestamp')
plt.legend()
plt.grid(True)
# Show the plot
plt.show()
# print("Error \t" , error)
# # error_norm = np.linalg.norm(error)
# # mj_step can be replaced with code that also evaluates
# # a policy and applies a control signal before stepping the physics.
# mujoco.mj_step(model, data)
# # # Pick up changes to the physics state, apply perturbations, update options from GUI.
# viewer.sync()
# # print(data.qpos[:7])
# tau = Kp * error + Kd * (0 - dq)
# data.ctrl[:7] = tau
# time.sleep(2e-5)
# pose = data.qpos[:7].copy()
# q_track.append([pose,time.time()-start])
# # print(q_track)
# with open('q_track.pkl', 'wb') as file:
# pickle.dump(q_track, file)
# with open('q_track.pkl', 'rb') as file:
# # Call load method to deserialze
# myvar = pickle.load(file)
# # print(myvar[0][0])
# # plt.plot(myvar[])
# # print(myvar[len(myvar)-1])
# # Extracting joint values and timestamps
# joint_values = [data[0] for data in myvar]
# timestamps = [data[1] for data in myvar]
# # Plot each joint value against its corresponding timestamp
# for i in range(len(joint_values[0])):
# joint_values_i = [joints[i] for joints in joint_values]
# plt.plot(timestamps, joint_values_i, label=f'Joint {i+1}')
# print(joint_values[len(myvar)-1])
# # Adding labels and legend
# plt.xlabel('Timestamp')
# plt.ylabel('Joint Value')
# plt.title('Joint Values vs. Timestamp')
# plt.legend()
# plt.grid(True)
# # Show the plot
# plt.show()