forked from ucdavis-bioinformatics/assemblathon2-analysis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
assemblathon_stats.pl
executable file
·520 lines (405 loc) · 15.8 KB
/
assemblathon_stats.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#!/usr/bin/perl
#
# assemblathon_stats.pl
#
# A script to calculate a basic set of metrics from a genome assembly
#
# Author: Keith Bradnam, Genome Center, UC Davis
# This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
# This software is provided AS IS, without warranty of any kind.
use strict;
use warnings;
use FAlite;
use Getopt::Long;
use List::Util qw(sum max min);
###############################################
#
# C o m m a n d l i n e o p t i o n s
#
###############################################
my $limit; # limit processing of data to first $limit sequences (for quick testing)
my $graph; # produce some output ready for Excel or R
my $csv; # produce CSV output file of results
my $n_limit; # how many N characters should be used to split scaffolds into contigs
my $genome_size; # estimated or known genome size (will be used for some stats)
GetOptions ("limit=i" => \$limit,
"csv" => \$csv,
"graph" => \$graph,
"n=i" => \$n_limit,
"genome_size=i" => \$genome_size);
# set defaults
$limit = 1000000000 if (!$limit);
$n_limit = 25 if (!$n_limit);
# check we have a suitable input file
my $usage = "Usage: assemblathon_stats.pl <assembly_scaffolds_file>
options:
-limit <int> limit analysis to first <int> sequences (useful for testing)
-csv produce a CSV output file of all results
-graph produce a CSV output file of NG(X) values (NG1 through to NG99), suitable for graphing
-n <int> specify how many consecutive N characters should be used to split scaffolds into contigs
-genome_size <int> estimated or known genome size
";
die "$usage" unless (@ARGV == 1);
my ($file) = @ARGV;
###############################################
#
# S o m e G l o b a l v a r i a b l e s
#
###############################################
my $scaffolded_contigs = 0; # how many contigs that are part of scaffolds (sequences must have $n_limit consecutive Ns)
my $scaffolded_contig_length = 0; # total length of all scaffolded contigs
my $unscaffolded_contigs = 0; # how many 'orphan' contigs, not part of a scaffold
my $unscaffolded_contig_length = 0; # total length of all contigs not part of scaffold
my $w = 60; # formatting width for output
my %data; # data structure to hold all sequence info key is either 'scaffold', 'contig' or intermediate', values are seqs & length arrays
my (@results, @headers); # arrays to store results (for use with -csv option)
# make first loop through file, capture some basic info and add sequences to arrays
process_FASTA($file);
print "\n---------------- Information for assembly \'$file\' ----------------\n\n";
if(defined($genome_size)){
my $mbp_size = sprintf("%.2f", $genome_size / 1000000);
printf "%${w}s %10s\n", "Assumed genome size (Mbp)", $mbp_size;
}
# produce scaffold statistics
sequence_statistics('scaffold');
# produce a couple of intermediate statistics based on scaffolded contigs vs unscaffolded contigs
sequence_statistics('intermediate');
# finish with contig stats
sequence_statistics('contig');
# produce CSV output if required
write_csv($file) if ($csv);
exit(0);
##########################################
#
#
# S U B R O U T I N E S
#
#
##########################################
##########################################
# M A I N loop through FASTA file
##########################################
sub process_FASTA{
my ($seqs) = @_;
my $input;
# if dealing with gzip file, treat differently
if($seqs =~ m/\.gz$/){
open($input, "gunzip -c $seqs |") or die "Can't open a pipe to $seqs\n";
} else{
open($input, "<", "$seqs") or die "Can't open $seqs\n";
}
my $fasta = new FAlite(\*$input);
# want to keep track of various contig + scaffold counts
my $seq_count = 0;
while(my $entry = $fasta->nextEntry){
my $seq = uc($entry->seq);
my $length = length($seq);
$seq_count++;
# everything gets pushed to scaffolds array
push(@{$data{scaffold}{seqs}},$seq);
push(@{$data{scaffold}{lengths}},$length);
# if there are not at least 25 consecutive Ns in the sequence we need to split it into contigs
# otherwise the sequence must be a contig itself and it still needs to be put in @contigs array
if ($seq =~ m/N{$n_limit}/){
# add length to $scaffolded_contig_length
$scaffolded_contig_length += $length;
# loop through all contigs that comprise the scaffold
foreach my $contig (split(/N{25,}/, $seq)){
$scaffolded_contigs++;
my $length = length($contig);
push(@{$data{contig}{seqs}},$contig);
push(@{$data{contig}{lengths}},$length);
}
} else {
# must be here if the scaffold is actually just a contig (or is a scaffold with < 25 Ns)
$unscaffolded_contigs++;
$unscaffolded_contig_length += $length;
push(@{$data{contig}{seqs}},$seq);
push(@{$data{contig}{lengths}},$length);
}
# for testing, just use a few sequences
last if ($seq_count >= $limit);
}
close($input);
}
##########################################
# Calculate basic assembly metrics
##########################################
sub sequence_statistics{
my ($type) = @_;
print "\n";
# need descriptions of each result
my $desc;
# there are just a couple of intermediate level statistics to print
if($type eq 'intermediate'){
my $total_size = sum(@{$data{scaffold}{lengths}});
# now calculate percentage of assembly that is accounted for by scaffolded contigs
my $percent = sprintf("%.1f",($scaffolded_contig_length / $total_size) * 100);
$desc = "Percentage of assembly in scaffolded contigs";
printf "%${w}s %10s\n", $desc, "$percent%";
store_results($desc, $percent) if ($csv);
# now calculate percentage of assembly that is accounted for by unscaffolded contigs
$percent = sprintf("%.1f",($unscaffolded_contig_length / $total_size) * 100);
$desc = "Percentage of assembly in unscaffolded contigs";
printf "%${w}s %10s\n", $desc, "$percent%";
store_results($desc, $percent) if ($csv);
# statistics that describe N regions that join contigs in scaffolds
# get number of breaks
my $contig_count = scalar(@{$data{contig}{lengths}});
my $scaffold_count = scalar(@{$data{scaffold}{lengths}});
my $average_contigs_per_scaffold = sprintf("%.1f",$contig_count / $scaffold_count);
$desc = "Average number of contigs per scaffold";
printf "%${w}s %10s\n", $desc, $average_contigs_per_scaffold;
store_results($desc, $average_contigs_per_scaffold) if ($csv);
# now calculate average length of break between contigs
# just find all runs of Ns in scaffolds (>=25) and calculate average length
my @contig_breaks;
foreach my $scaffold (@{$data{scaffold}{seqs}}){
while($scaffold =~ m/(N{25,})/g){
push(@contig_breaks, length($1));
}
}
# set break size to zero if there are no Ns in scaffolds
my $average_break_length;
if(@contig_breaks == 0){
$average_break_length = 0;
} else{
$average_break_length = sum(@contig_breaks) / @contig_breaks;
}
$desc = "Average length of break (>25 Ns) between contigs in scaffold";
printf "%${w}s %10d\n", $desc, $average_break_length;
store_results($desc, $average_break_length) if ($csv);
return();
}
# n
my $count = scalar(@{$data{$type}{lengths}});
$desc = "Number of ${type}s";
printf "%${w}s %10d\n", $desc, $count;
store_results($desc, $count) if ($csv);
# more contig details (only for contigs)
if ($type eq 'contig'){
$desc = "Number of contigs in scaffolds";
printf "%${w}s %10d\n",$desc, $scaffolded_contigs;
store_results($desc, $scaffolded_contigs) if ($csv);
$desc = "Number of contigs not in scaffolds";
printf "%${w}s %10d\n", $desc,$unscaffolded_contigs;
store_results($desc, $unscaffolded_contigs) if ($csv);
}
# total size of sequences
my $total_size = sum(@{$data{$type}{lengths}});
$desc = "Total size of ${type}s";
printf "%${w}s %10d\n", $desc, $total_size;
store_results($desc, $total_size) if ($csv);
# For scaffold data only, can caluclate the percentage of known genome size
# and also the amount of useful sequence
if ($type eq 'scaffold' && defined($genome_size)){
my $percent = sprintf("%.1f",($total_size / $genome_size) * 100);
$desc = "Total scaffold length as percentage of assumed genome size";
printf "%${w}s %10s\n", $desc, "$percent%";
store_results($desc, $percent) if ($csv);
# Also want to find total fraction of genome (based on estimated size) that is
# in 'non-useful scaffolds', those below average size of vertebrate gene
# (taken to be 25 kbp)
my $useful_length = 25000;
my $sum_useful = 0;
foreach my $length (@{$data{$type}{lengths}}){
($sum_useful += $length) if ($length >= $useful_length);
}
# calculate how much non-useful sequence there was
$desc = "Useful amount of $type sequences (>= 25K nt)";
printf "%${w}s %10d\n", $desc, $sum_useful;
store_results($desc, $sum_useful) if ($csv);
my $percent_useful = sprintf("%.1f",($sum_useful / $genome_size) * 100);
$desc = "% of estimated genome that is useful";
printf "%${w}s %10s\n", $desc, "$percent_useful%";
store_results($desc, $percent_useful) if ($csv);
}
# longest and shortest sequences
my $max = max(@{$data{$type}{lengths}});
$desc = "Longest $type";
printf "%${w}s %10d\n", $desc, $max;
store_results($desc, $max) if ($csv);
my $min = min(@{$data{$type}{lengths}});
$desc = "Shortest $type";
printf "%${w}s %10d\n", $desc, $min;
store_results($desc, $min) if ($csv);
# find number of sequences above certain sizes
my %sizes_to_shorthand = (1000 => '1K',
10000 => '10K',
100000 => '100K',
1000000 => '1M',
10000000 => '10M');
foreach my $size (qw(1000 10000 100000 1000000 10000000)){
my $matches = grep { $_ > $size } @{$data{$type}{lengths}};
my $percent = sprintf("%.1f", ($matches / $count) * 100);
$desc = "Number of ${type}s > $sizes_to_shorthand{$size} nt";
printf "%${w}s %10d %5s%%\n", $desc, $matches, $percent;
store_results($desc, $matches) if ($csv);
$desc = "Percentage of ${type}s > $sizes_to_shorthand{$size} nt";
store_results($desc, $percent) if ($csv);
}
# mean sequence size
my $mean = sprintf("%.0f",$total_size / $count);
$desc = "Mean $type size";
printf "%${w}s %10d\n", $desc, $mean;
store_results($desc, $mean) if ($csv);
# median sequence size
my $median = (sort{$a <=> $b} @{$data{$type}{lengths}})[$count/2];
$desc = "Median $type size";
printf "%${w}s %10d\n", $desc, $median;
store_results($desc, $median) if ($csv);
##################################################################################
#
# N50 values
#
# Includes N(x) values, NG(x) (using assumed genome size)
# and L(x) values (number of sequences larger than or equal to N50 sequence size)
##################################################################################
# keep track of cumulative assembly size (starting from smallest seq)
my $running_total = 0;
# want to store all N50-style values from N1..N100. First target size to pass is N1
my $n_index = 1;
my @n_values;
my $n50_length = 0;
my $i = 0;
my $x = $total_size * 0.5;
# start with longest lengths scaffold/contig
foreach my $length (reverse sort{$a <=> $b} @{$data{$type}{lengths}}){
$i++;
$running_total += $length;
# check the current sequence and all sequences shorter than current one
# to see if they exceed the current NX value
while($running_total > int (($n_index / 100) * $total_size)){
if ($n_index == 50){
$n50_length = $length;
$desc = "N50 $type length";
printf "%${w}s %10d\n", $desc, $length;
store_results($desc, $length) if ($csv);
# L50 = number of scaffolds/contigs that are longer than or equal to the N50 size
$desc = "L50 $type count";
printf "%${w}s %10d\n","L50 $type count", $i;
store_results($desc, $i) if ($csv);
}
$n_values[$n_index] = $length;
$n_index++;
}
}
my @ng_values;
# do we have an estimated/known genome size to work with?
if(defined($genome_size)){
my $ng_index = 1;
my $ng50_length = 0;
$running_total = 0;
$i = 0;
foreach my $length (reverse sort{$a <=> $b} @{$data{$type}{lengths}}){
$i++;
$running_total += $length;
# now do the same for NG values, using assumed genome size
while($running_total > int (($ng_index / 100) * $genome_size)){
if ($ng_index == 50){
$ng50_length = $length;
$desc = "NG50 $type length";
printf "%${w}s %10d\n", $desc, $length;
store_results($desc, $length) if ($csv);
$desc = "LG50 $type count";
printf "%${w}s %10d\n", $desc, $i;
store_results($desc, $i) if ($csv);
}
$ng_values[$ng_index] = $length;
$ng_index++;
}
}
# calculate N50/NG50 difference
my $n50_diff = abs($ng50_length - $n50_length);
$desc = "N50 $type - NG50 $type length difference";
printf "%${w}s %10d\n", $desc, $n50_diff;
store_results($desc, $n50_diff) if ($csv);
}
# add final value to @n_values and @ng_values which will just be the shortest sequence
# $n_values[100] = $min;
# $ng_values[100] = $min;
# base frequencies
my %bases;
my $seq = join('',@{$data{$type}{seqs}});
my $length = length($seq);
# count mononucleotide frequencies
$bases{A} = ($seq =~ tr/A/A/);
$bases{C} = ($seq =~ tr/C/C/);
$bases{G} = ($seq =~ tr/G/G/);
$bases{T} = ($seq =~ tr/T/T/);
$bases{N} = ($seq =~ tr/N/N/);
my $base_count = 0;
foreach my $base (qw(A C G T N)){
my $percent = sprintf("%.2f", ($bases{$base} / $length) * 100);
$desc = "$type %$base";
printf "%${w}s %10s\n", $desc, $percent;
store_results($desc, $percent) if ($csv);
$base_count += $bases{$base};
}
# calculate remainder ('other) in case there are other characters present
my $other = $length - $base_count;
my $percent = sprintf("%.2f", ($other / $length) * 100);
$desc = "$type %non-ACGTN";
printf "%${w}s %10s\n",$desc, $percent;
store_results($desc, $percent) if ($csv);
$desc = "Number of $type non-ACGTN nt";
printf "%${w}s %10d\n",$desc, $other;
store_results($desc, $other) if ($csv);
# anything to dump for graphing?
if($graph){
# create new output file name
my $file_name = $file;
$file_name =~ s/\.gz$//;
$file_name =~ s/\.(fa|fasta)$//;
$file_name .= ".${type}.NG50.csv";
open(my $out, ">", "$file_name") or die "Can't create $file_name\n";
print $out join (',',"Assembly",1..99), "\n";
# make some guesses of what might constitute the unique assembly ID
my $assembly_ID = $file;
($assembly_ID) = $file =~ m/^([A-Z]\d{1,2})_/ if ($file =~ m/^[A-Z]\d{1,2}_/);
($assembly_ID) = $file =~ m/^((bird|snake|fish)_\d+(C|E))_/ if ($file =~ m/^(bird|snake|fish)_\d+C|E_/);
# CSV file, with filename in first column
print $out "$assembly_ID";
for (my $i = 1; $i < 100; $i++){
# higher NG values might not be present if assembly is poor
if (defined $ng_values[$i]){
print $out ",$ng_values[$i]";
} else{
print $out ",0";
}
}
print $out "\n";
close($out);
}
}
# simple routine to add results to a pair of arrays that will be used for printing results later on
# if -csv option is used
sub store_results{
my ($desc, $result) = @_;
push(@headers,$desc);
push(@results,$result);
}
sub write_csv{
my ($file) = @_;
# create new output file name
my $output = $file;
$output =~ s/\.gz$//;
$output =~ s/\.(fa|fasta)$//;
$output .= ".csv";
# make some guesses of what might constitute the unique assembly ID
my $assembly_ID = $file;
($assembly_ID) = $file =~ m/^([A-Z]\d{1,2})_/ if ($file =~ m/^[A-Z]\d{1,2}_/);
($assembly_ID) = $file =~ m/^((bird|snake|fish)_\d+(C|E))_/ if ($file =~ m/^(bird|snake|fish)_\d+C|E_/);
open(my $out, ">", $output) or die "Can't create $output\n";
print $out "Assembly,";
foreach my $header (@headers){
print $out "$header,";
}
print $out "\n";
print $out "$assembly_ID,";
foreach my $result (@results){
print $out "$result,";
}
print $out "\n";
close($out);
}