ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。在 2019 年,facebook 通过弱监督学习研究了该系列网络在 ImageNet 上的精度上限,为了区别之前的 ResNeXt 网络,该系列网络的后缀为 wsl,其中 wsl 是弱监督学习(weakly-supervised-learning)的简称。为了能有更强的特征提取能力,研究者将其网络宽度进一步放大,其中最大的 ResNeXt101_32x48d_wsl 拥有 8 亿个参数,将其在 9.4 亿的弱标签图片下训练并在 ImageNet-1k 上做 finetune,最终在 ImageNet-1k 的 top-1 达到了 85.4%,这也是迄今为止在 ImageNet-1k 的数据集上以 224x224 的分辨率下精度最高的网络。Fix-ResNeXt 中,作者使用了更大的图像分辨率,针对训练图片和验证图片数据预处理不一致的情况下做了专门的 Fix 策略,并使得 ResNeXt101_32x48d_wsl 拥有了更高的精度,由于其用到了 Fix 策略,故命名为 Fix-ResNeXt101_32x48d_wsl。
该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
0.826 | 0.967 | 0.822 | 0.964 | 29.140 | 78.440 |
ResNeXt101_ 32x16d_wsl |
0.842 | 0.973 | 0.842 | 0.972 | 57.550 | 152.660 |
ResNeXt101_ 32x32d_wsl |
0.850 | 0.976 | 0.851 | 0.975 | 115.170 | 303.110 |
ResNeXt101_ 32x48d_wsl |
0.854 | 0.977 | 0.854 | 0.976 | 173.580 | 456.200 |
Fix_ResNeXt101_ 32x48d_wsl |
0.863 | 0.980 | 0.864 | 0.980 | 354.230 | 456.200 |
备注: PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
Models | Size | Latency(ms) bs=1 |
Latency(ms) bs=4 |
Latency(ms) bs=8 |
---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
224 | 15.85 | 23.61 | 35.60 |
ResNeXt101_ 32x16d_wsl |
224 | 20.58 | 37.38 | 66.45 |
ResNeXt101_ 32x32d_wsl |
224 | 49.87 | 86.16 | 120.14 |
ResNeXt101_ 32x48d_wsl |
224 | 69.81 | 121.22 | 205.55 |
Fix_ResNeXt101_ 32x48d_wsl |
320 | 55.01 | 122.63 | 204.66 |
备注: 精度类型为 FP32,推理过程使用 TensorRT-8.0.3.4。
Models | Size | Latency(ms) FP16 bs=1 |
Latency(ms) FP16 bs=4 |
Latency(ms) FP16 bs=8 |
Latency(ms) FP32 bs=1 |
Latency(ms) FP32 bs=4 |
Latency(ms) FP32 bs=8 |
---|---|---|---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
224 | 18.19374 | 21.93529 | 34.67802 | 18.52528 | 34.25319 | 67.2283 |
ResNeXt101_ 32x16d_wsl |
224 | 18.52609 | 36.8288 | 62.79947 | 25.60395 | 71.88384 | 137.62327 |
ResNeXt101_ 32x32d_wsl |
224 | 33.51391 | 70.09682 | 125.81884 | 54.87396 | 160.04337 | 316.17718 |
ResNeXt101_ 32x48d_wsl |
224 | 50.97681 | 137.60926 | 190.82628 | 99.01698256 | 315.91261 | 551.83695 |
Fix_ResNeXt101_ 32x48d_wsl |
320 | 78.62869 | 191.76039 | 317.15436 | 160.0838242 | 595.99296 | 1151.47384 |
备注: 推理过程使用 TensorRT-8.0.3.4。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/ResNeXt/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 完成模型的推理预测。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。