Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方案可以和现有其他优秀模块轻松整合,在不增加计算负载量的情况下,在 ImageNet、CIFAR-100 等数据集上的测试性能超过了 ResNet。Res2Net 结构简单,性能优越,进一步探索了 CNN 在更细粒度级别的多尺度表示能力。Res2Net 揭示了一个新的提升模型精度的维度,即 scale,其是除了深度、宽度和基数的现有维度之外另外一个必不可少的更有效的因素。该网络在其他视觉任务如目标检测、图像分割等也有相当不错的表现。
该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。
目前 PaddleClas 开源的 Res2Net 模型的预训练模型一共有 8 个,其指标如图所示,从图中可以看出,Res2Net 表现较为优秀,相比 ResNeXt 中的 group 操作、SEResNet 中的 SE 结构操作,Res2Net 在相同 FLOPs、Params 和推理速度下往往精度更佳。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
Res2Net50_26w_4s | 0.793 | 0.946 | 0.780 | 0.936 | 8.520 | 25.700 |
Res2Net50_vd_26w_4s | 0.798 | 0.949 | 8.370 | 25.060 | ||
Res2Net50_vd_26w_4s_ssld | 0.831 | 0.966 | 8.370 | 25.060 | ||
Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
Res2Net101_vd_26w_4s | 0.806 | 0.952 | 16.670 | 45.220 | ||
Res2Net101_vd_26w_4s_ssld | 0.839 | 0.971 | 16.670 | 45.220 | ||
Res2Net200_vd_26w_4s | 0.812 | 0.957 | 31.490 | 76.210 | ||
Res2Net200_vd_26w_4s_ssld | 0.851 | 0.974 | 31.490 | 76.210 |
Models | Size | Latency(ms) bs=1 |
Latency(ms) bs=4 |
Latency(ms) bs=8 |
---|---|---|---|---|
Res2Net50_26w_4s | 224 | 3.31 | 5.65 | 8.33 |
Res2Net50_vd_26w_4s | 224 | 3.35 | 5.79 | 8.63 |
Res2Net50_14w_8s | 224 | 4.13 | 6.56 | 9.45 |
Res2Net101_vd_26w_4s | 224 | 5.96 | 10.56 | 15.20 |
Res2Net200_vd_26w_4s | 224 | 10.80 | 19.48 | 27.95 |
Res2Net50_vd_26w_4s_ssld | 224 | 3.35 | 5.79 | 8.63 |
Res2Net101_vd_26w_4s_ssld | 224 | 5.96 | 10.56 | 15.20 |
Res2Net200_vd_26w_4s_ssld | 224 | 10.80 | 19.48 | 27.95 |
备注: 精度类型为 FP32,推理过程使用 TensorRT-8.0.3.4。
Models | Size | Latency(ms) FP16 bs=1 |
Latency(ms) FP16 bs=4 |
Latency(ms) FP16 bs=8 |
Latency(ms) FP32 bs=1 |
Latency(ms) FP32 bs=4 |
Latency(ms) FP32 bs=8 |
---|---|---|---|---|---|---|---|
Res2Net50_26w_4s | 224 | 3.56067 | 6.61827 | 11.41566 | 4.47188 | 9.65722 | 17.54535 |
Res2Net50_vd_26w_4s | 224 | 3.69221 | 6.94419 | 11.92441 | 4.52712 | 9.93247 | 18.16928 |
Res2Net50_14w_8s | 224 | 4.45745 | 7.69847 | 12.30935 | 5.4026 | 10.60273 | 18.01234 |
Res2Net101_vd_26w_4s | 224 | 6.53122 | 10.81895 | 18.94395 | 8.08729 | 17.31208 | 31.95762 |
Res2Net200_vd_26w_4s | 224 | 11.66671 | 18.93953 | 33.19188 | 14.67806 | 32.35032 | 63.65899 |
备注: 推理过程使用 TensorRT-8.0.3.4。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/Res2Net/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。