You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
When using dirty integrated sensors, the order in which the dirty integrated and Loom supported sensors takes measurements matters. For some reason, by messing up the order in which sensor readings are being taken (i.e. the placement of the Loom.measure() and Loom.package() function in relation to the dirty integrated sensor functions) the readings of the dirty integrated sensor gets thrown off. The Dendrometer project encountered this problem while testing their program.
Hardware in Use
AS5311 - Magnetic Sensor
SHT30 - Temp / Humidity Sensor
Hypnos / Feather M0
To Reproduce
Steps to reproduce the behavior:
Upload the Dendrometer SD_Output code onto the hardware
Move the Loom.measure() and Loom.package() function to after the if(button) statement on line 149
Upload and compile code
Check SD and notice the "OCF Error" output
Expected behavior
The measurement should be taken accurately regardless of where Loom.measure() and Loom.package() functions are located. The output for the Dendrometer's case should say "Green" instead of "OCF Error"
Code
Dendrometer SD_Output.ino file:
#define DELAY_IN_SECONDS 0
#define DELAY_IN_MINUTES 15
#include "AS5311.h"
#include "vector"
#include <Loom.h>
#include <stdint.h>
const char *config =
#include "loomconfig.h"
;
#define CS 9
#define CLK A5
#define DO A4
#define LED A2
#define INT_BUT 11
#define RTC_INT_PIN 12
#define HYPNOS3 5 // Hypnos 3V rail
#define HYPNOS5 6 // Hypnos 5V rail
volatile bool flag = false; // Interrupt flag
volatile bool button = false; // Check to see if button was pressed
LoomFactory<
Enable::Internet::Disabled,
Enable::Sensors::Enabled,
Enable::Radios::Disabled,
Enable::Actuators::Enabled,
Enable::Max::Disabled>
ModuleFactory{};
LoomManager Loom{&ModuleFactory};
void ISR_pin12(){
detachInterrupt(RTC_INT_PIN);
flag = true;
}
void ISR_pin11(){
detachInterrupt(INT_BUT);
flag = true;
button = true;
}
// Variables to track overall displacement
uint32_t start = 0;
uint32_t prevTwoSig = 0;
float elapsed = 0;
float prev = 0;
float prevMicro = 0;
void setup() {
// Needs to be done for Hypno Board
pinMode(HYPNOS3, OUTPUT);
digitalWrite(HYPNOS3, LOW); // Sets pin 5, the pin with the 3.3V rail, to output and enables the rail
pinMode(HYPNOS5, OUTPUT);
digitalWrite(HYPNOS5, HIGH); // Sets pin 6, the pin with the 5V rail, to output and enables the rail
delay(20); // Warm up time for AS5311
pinMode(RTC_INT_PIN, INPUT_PULLUP); // Enable waiting for RTC interrupt, MUST use a pullup since signal is active low
pinMode(INT_BUT, INPUT_PULLUP);
//Setup for Loom Factory
Loom.begin_serial(true);
Loom.parse_config(config);
Loom.print_config();
// Pins to communicate with AS5311
pinMode(CS, OUTPUT);
pinMode(CLK, OUTPUT);
pinMode(DO, INPUT_PULLUP);
digitalWrite(CS, HIGH);
digitalWrite(CLK, LOW);
pinMode(LED, OUTPUT);
// LED indicator
uint32_t ledCheck = getErrorBits(CLK, CS, DO); // Tracking magnet position for indicator
while (ledCheck < 16 || ledCheck > 18) {
if (ledCheck == 19)
Loom.Neopixel().set_color(2, 0, 200, 200, 0); // Changes Neopixel to yellow
else
Loom.Neopixel().set_color(2, 0, 0, 200, 0); // Changes Neopixel to red
delay(3000); // Gives user 3 seconds to adjust magnet before next reading
ledCheck = getErrorBits(CLK, CS, DO);
}
// Green light flashes 3 times to indicate the magnet is setup well
for (int i = 0; i < 3; i++) {
Loom.Neopixel().set_color(2, 0, 200, 0, 0); // Changes Neopixel to green
delay(500);
Loom.Neopixel().set_color(2, 0, 0, 0, 0); // Turns off Neopixel
delay(500);
}
// Register an interrupt on the RTC alarm pin
Loom.InterruptManager().register_ISR(RTC_INT_PIN, ISR_pin12, LOW, ISR_Type::IMMEDIATE);
Loom.InterruptManager().register_ISR(INT_BUT, ISR_pin11, LOW, ISR_Type::IMMEDIATE);
// Takes 16 measurements and averages them for the starting Serial value (0-4095 value)
for (int j = 0; j < 16; j++) {
start += getSerialPosition(CLK, CS, DO);
}
start /= 16;
// Save 2 most significant bits of start
prevTwoSig = start & 0xC00;
Loom.Neopixel().set_color(2, 0, 0, 0, 0); // Turns off Neopixel
}
void loop() {
digitalWrite(HYPNOS3, LOW); // Turn on 3.3V rail
digitalWrite(HYPNOS5, HIGH); // Turn on 5V rail
delay(20); // Warm up time for AS5311
// Protocol to turn on SD
pinMode(10, OUTPUT);
pinMode(23, OUTPUT);
pinMode(24, OUTPUT);
// Protocol to turn on AS5311
pinMode(CS, OUTPUT);
pinMode(CLK, OUTPUT);
pinMode(DO, INPUT_PULLUP);
digitalWrite(CS, HIGH);
digitalWrite(CLK, LOW);
// Protocol to turn on Neopixel
pinMode(LED, OUTPUT);
delay(2000); // Warm up time for AS5311
// Serial.println("IN LOOP");
Loom.power_up();
if (button) {
uint32_t ledCheck = getErrorBits(CLK, CS, DO);
if (ledCheck >= 16 && ledCheck <= 18)
Loom.Neopixel().set_color(2, 0, 200, 0, 0); // Green
else if (ledCheck == 19)
Loom.Neopixel().set_color(2, 0, 200, 200, 0); // Yellow
else
Loom.Neopixel().set_color(2, 0, 0, 200, 0); // Red
delay(3000);
Loom.Neopixel().set_color(2, 0, 0, 0, 0);
}
flag = false;
button = false;
// Serial.println("After powerup");
// 16 point average of Serial Position
int average = 0;
for (int j = 0; j < 16; j++) {
average += getSerialPosition(CLK, CS, DO);
}
average /= 16;
// Serial.println("Average Serial Pos: " + String(average));
uint32_t errorBits = getErrorBits(CLK, CS, DO);
// Also updates prevTwoSig to two most significant bits of first param, is being passed by ref
elapsed = computeElapsed(average, prevTwoSig, elapsed);
// Computes total distance in mm and um
float distance = (elapsed + ((2.0 * ((int)average - (int)start)) / 4095.0));
float distanceMicro = (elapsed * 1000) + ((2000 * ((int)average - (int)start)) / 4095.0);
float difference = 0;
float differenceMicro = 0;
// Reads the movement if any, else it sets the changed distance to 0
if (distance != prev)
difference = distance - prev;
if (distanceMicro != prevMicro)
differenceMicro = distanceMicro - prevMicro;
Loom.measure();
Loom.package();
// Loom.display_data();
Loom.add_data("AS5311", "Serial Value", average);
Loom.add_data("Displacement (mm)", "mm", distance);
Loom.add_data("Displacement (um)", "um", distanceMicro);
Loom.add_data("Difference (mm)", "mm", difference);
Loom.add_data("Difference (um)", "um", differenceMicro);
// Logs the status of the magnet position (whether the data is good or not) {Green = Good readings, Red = Bad readings}
// Ignores the parity bit (last bit)
if (errorBits >= 16 && errorBits <= 18) // Error bits: 10000, 10001, 10010
Loom.add_data("Status", "Color", "Green");
else if (errorBits == 19) // Error bits: 10011
Loom.add_data("Status", "Color", "Yellow");
else if (errorBits == 23) // Error bits: 10111
Loom.add_data("Status", "Color", "Red");
else if (errorBits < 16) // If OCF Bit is 0
Loom.add_data("Status", "Color", "OCF Error");
else if (errorBits > 24) // If COF Bit is 1
Loom.add_data("Status", "Color", "COF Error");
else
Loom.add_data("Status", "Color", "Other Error");
JsonObject data_json = Loom.internal_json(false);
Loom.SDCARD().log();
prev = distance;
prevMicro = distanceMicro;
// set the RTC alarm to a specified duration, DELAY_IN_MINUTES and DELAY_IN_SECONDS, with TimeSpan
Loom.InterruptManager().RTC_alarm_duration(TimeSpan(0, 0, DELAY_IN_MINUTES, DELAY_IN_SECONDS));
Loom.InterruptManager().reconnect_interrupt(RTC_INT_PIN);
Loom.InterruptManager().reconnect_interrupt(INT_BUT);
Loom.power_down();
digitalWrite(HYPNOS3, HIGH); // Power down 3.3V rail
digitalWrite(HYPNOS5, LOW); // Power down 5V rail
// Protocol to shut down SD
pinMode(23, INPUT);
pinMode(24, INPUT);
pinMode(10, INPUT);
// Protocol to shut down AS5311
pinMode(CLK, INPUT);
pinMode(DO, INPUT);
pinMode(CS, INPUT);
// Protocol to shut down Neopixel
pinMode(LED, INPUT);
while(!flag) Loom.SleepManager().sleep();
}
AS5311 Dirty Integrated Code:
// Returns the serial output from AS533
uint32_t bitbang(int CLK, int CS, int DO) {
// write clock high to select the angular position data
digitalWrite(CLK, HIGH);
delay(1);
// select the chip
digitalWrite(CS, LOW);
delay(1);
digitalWrite(CLK, LOW);
// read the value in it's entirety
uint32_t value = 0;
for (uint8_t i = 0; i < 18; i++) {
delay(1);
digitalWrite(CLK, HIGH);
if (i < 17) {
delay(1);
digitalWrite(CLK, LOW);
}
delay(1);
auto readval = digitalRead(DO);
if (readval == HIGH)
value |= (1U << i);
}
digitalWrite(CS, HIGH);
digitalWrite(CLK, HIGH);
return value;
}
// Isolates the bottom 12 bits position value to decimal
uint32_t convertBits(uint32_t num) {
uint32_t readval = num & 0xFFF;
uint32_t newval = 0;
// Flips bits order
for (int i = 11; i >= 0; i--)
{
uint32_t exists = (readval & (1 << i)) ? 1 : 0;
newval |= (exists << (11 - i));
}
return newval;
}
uint32_t getSerialPosition(int CLK, int CS, int DO){
return convertBits(bitbang(CLK, CS, DO));
}
// Checks error bits
uint32_t bitCheck(uint32_t num) {
uint32_t readval = num & 0x3FFFF; // Saves entire value; not sure if there's a better way to do this
uint32_t newval = 0;
// Flips bits order
for (int i = 16; i >= 12; i--)
{
uint32_t exists = (readval & (1 << i)) ? 1 : 0;
newval |= (exists << (16 - i));
}
return newval;
}
uint32_t getErrorBits(int CLK, int CS, int DO){
return bitCheck(bitbang(CLK, CS, DO));
}
// Todo: Make more robust than just checking first two bits
float computeElapsed(uint32_t curr, uint32_t &prevTwoSig, float elapsed) {
uint32_t currTwoSig = curr & 0xC00;
if((currTwoSig == 0xC00 && prevTwoSig == 0x0)) {
Serial.println("ROLLOVER UNDERFLOW");
elapsed -= 2.0;
} else if (prevTwoSig == 0xC00 && currTwoSig == 0x0) {
Serial.println("ROLLOVER OVERFLOW");
elapsed += 2.0;
}
prevTwoSig = currTwoSig;
return elapsed;
}
Additional context
The result of the dirty integrated sensor is an 18 bit binary number that tracks the movement of a magnet above it (12 bits for movement and 6 bits for error tracking). The issue will cause the entire binary number to be 0's-- indicating that the sensor isn't working correctly.
The text was updated successfully, but these errors were encountered:
Describe the bug
When using dirty integrated sensors, the order in which the dirty integrated and Loom supported sensors takes measurements matters. For some reason, by messing up the order in which sensor readings are being taken (i.e. the placement of the Loom.measure() and Loom.package() function in relation to the dirty integrated sensor functions) the readings of the dirty integrated sensor gets thrown off. The Dendrometer project encountered this problem while testing their program.
Hardware in Use
AS5311 - Magnetic Sensor
SHT30 - Temp / Humidity Sensor
Hypnos / Feather M0
To Reproduce
Steps to reproduce the behavior:
Expected behavior
The measurement should be taken accurately regardless of where Loom.measure() and Loom.package() functions are located. The output for the Dendrometer's case should say "Green" instead of "OCF Error"
Code
Dendrometer SD_Output.ino file:
AS5311 Dirty Integrated Code:
Config
Additional context
The result of the dirty integrated sensor is an 18 bit binary number that tracks the movement of a magnet above it (12 bits for movement and 6 bits for error tracking). The issue will cause the entire binary number to be 0's-- indicating that the sensor isn't working correctly.
The text was updated successfully, but these errors were encountered: