-
Notifications
You must be signed in to change notification settings - Fork 4
/
script_single_job.py
313 lines (253 loc) · 12.1 KB
/
script_single_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import random
import numpy as np
import pandas as pd
import networkx as nx
import argparse
import os
import json
import sys
from lib.graph_generation import make_ebola_network
from lib.dynamics import SimulationSIR, PriorityQueue
from lib.dynamics import sample_seeds
from lib.settings import DATA_DIR
def update_fl_info(param_dict, sir_obj):
"""
Update the front-loading parameters dict based on the current simulation to match the maximum
"""
assert sir_obj.policy == 'SOC', "`update_fl_info` must be applied on `SOC` policy"
# Extract the maximum value of the control intensity
max_u = sir_obj.max_control_intensity
# Extract the number of treatements
n_treatement = np.sum(sir_obj.is_tre)
# Extract front-loading dict from param_dict
d = param_dict['simulation']['policy_params']['front-loading']
# Update the FL info dict
if d['max_lambda'] is None:
d['max_lambda'] = max_u
d['max_interventions'] = n_treatement
elif n_treatement > d['max_interventions']:
d['max_lambda'] = max_u
d['max_interventions'] = n_treatement
def run(exp_dir, param_filename, output_filename, net_idx, stdout=None, stderr=None, verbose=False):
"""
Run a single SIR simulation based on the parameters in `param_filename` inside directory
`exp_dir` and output a summary into `output_filename`. Uses the random seed at index `net_idx`
to generate a network.
stdout and stderr can be redirected to files `stdout` and `stderr`.
The parameter file is supposed to be a json file with the following format:
```
{
network : { (Network model parameters)
n_nodes : int
Number of nodes desired in the network
p_in : float
Intra-district probability
p_out : dict of float
Inter-district probability per country, keyed by country name, with the additional
key 'inter-country' for between-country edges
seed_list : list. List of random seeds for reproducibility
},
simulation : { (SIR simulation parameters)
start_day_str : str
Starting day of the simulation, formated as 'YYYY-MM-DD'. Used to sample seeds
from the Ebola dataset.
end_day_str : str
Ending day of the simulation.
sir_params : { (Parameters of the SIR model)
beta : float
Infection rate
delta : float
Recovery rate (spontaneous)
gamma : float
Reduction of infectivity under treatement
rho : float
Recovery rate under treatement
},
policy_name : str
Name of the Policy.
policy_params : { (Parameters of the Policy)
(depend on the policy)
}
},
job_type : str (optional)
One the predefined job types. By default, perform a standard simulation following all
the given parameters. Other job types are the following:
- 'stop_after_seeds':
Only perform the simulation on the seeds ego-network and stop once all seeds are
recovered or once their neighbors are all infected. This job is performed to assess
the basic reproduction number of the epidemic given the current parameters.
}
```
The output file contains:
- the intial seed events,
- the infection time of each node,
- the infector of each node,
- the recovery time of each node,
- the district of each node.
"""
if stdout is not None:
sys.stdout = open(stdout, 'w')
if stderr is not None:
sys.stderr = open(stderr, 'w')
# Load parameters from file
param_filename_full = os.path.join(exp_dir, param_filename)
if not os.path.exists(param_filename_full):
raise FileNotFoundError('Input file `{:s}` not found.'.format(param_filename_full))
with open(param_filename_full, 'r') as param_file:
param_dict = json.load(param_file)
print('\nExperiment parameters')
print('=====================')
print(f' exp_dir = {exp_dir:s}')
print(f' param_filename = {param_filename:s}')
print(f'output_filename = {output_filename:s}', flush=True)
# Init output dict
output_dict = {}
output_dict['simulation_list'] = list()
# Generate network of districts
# =============================
print('\nGENERATE NETWORK')
print('================')
# Extract random seed from list
net_seed = param_dict['network']['seed_list'][net_idx]
param_dict['network']['seed'] = net_seed
del param_dict['network']['seed_list']
print('\nNetwork parameters')
print(f" - n_nodes = {param_dict['network']['n_nodes']:d}")
print(f" - p_in = {param_dict['network']['p_in']:.2e}")
print(f" - p_out = {param_dict['network']['p_out']}")
print(f" - seed = {net_seed:d}")
graph = make_ebola_network(**param_dict['network'])
print('\nGraph generated')
print(f" - {graph.number_of_nodes():d} nodes")
print(f" - {graph.number_of_edges():d} edges", flush=True)
# Run simulation
# ==============
print('\nSIMULATION')
print('==========')
start_day_str = param_dict['simulation']['start_day_str']
end_day_str = param_dict['simulation']['end_day_str']
sim_timedelta = pd.to_datetime(end_day_str) - pd.to_datetime(start_day_str)
max_time = sim_timedelta.days
init_seed_method = param_dict['simulation']['init_seed_method']
init_seed_num = param_dict['simulation'].get('n_seeds')
print('\nSimulation parameters')
print(f' - start day: {start_day_str}')
print(f' - end day: {end_day_str}')
print(f' - number of days to simulate: {max_time}')
print(f" - init seed method: {init_seed_method}")
print(f" - init seed num: {init_seed_num}")
print('\nEpidemic parameters')
for key, val in param_dict['simulation']['sir_params'].items():
print(f' - {key:s}: {val:.2e}')
print(f"\nPolicy name: {param_dict['simulation']['policy_name']:s}")
print('\nPolicy parameters')
for key, val in param_dict['simulation']['policy_params'].items():
if key == 'front-loading':
continue
elif isinstance(val, float):
print(f' - {key:s}: {val:.2e}')
else:
print(f' - {key:s}: {val:s}')
# Sample initial infected seeds at time t=0
delta = param_dict['simulation']['sir_params']['delta']
init_event_list = sample_seeds(graph, delta=delta,
method=init_seed_method,
n_seeds=init_seed_num,
max_date=start_day_str,
verbose=verbose)
# Set default stopping criteria
stop_criteria = None
# Modify parameters for special job types
if param_dict.get('job_type') == 'stop_after_seeds':
# Extract ego-network of seeds
seed_node_list = np.array(list(set([event[0] for event, _ in init_event_list])))
seed_neighbs_list = np.hstack([list(graph.neighbors(u)) for u in seed_node_list])
graph = nx.subgraph(graph, np.hstack((seed_node_list, seed_neighbs_list)))
# Define stop_criteria
def stop_criteria(sir_obj):
seed_node_indices = np.array([sir_obj.node_to_idx[u] for u in seed_node_list])
seed_neighbs_indices = np.array([sir_obj.node_to_idx[u] for u in seed_neighbs_list])
all_seeds_rec = np.all(sir_obj.is_rec[seed_node_indices])
all_neighbors_inf = np.all(sir_obj.is_inf[seed_neighbs_indices])
return all_seeds_rec or all_neighbors_inf
print('\nRun a single simulation for each policy:', flush=True)
# Simulate every requested policy
for j, policy in enumerate(param_dict['simulation']['policy_list']):
print(f"=== Policy: {policy:s}...")
# ...for many trials
for i in range(param_dict['simulation']['num_sims']):
print(f" - Simulation {i+1:d}/{param_dict['simulation']['num_sims']}")
# Run SIR simulation
# ------------------
# Reinitialize random seed for simulation
random.seed(None)
seed = random.randint(0, 2**32-1)
random.seed(seed)
print(f' - Random seed: {seed}')
# Add to output dict
sir_obj = SimulationSIR(
graph, **param_dict['simulation']['sir_params'], verbose=verbose)
sir_obj.launch_epidemic(
init_event_list=init_event_list, max_time=max_time,
policy=param_dict['simulation']['policy_name'],
policy_dict=param_dict['simulation']['policy_params'],
stop_criteria=stop_criteria)
# Updat the front-loading parameters for subsequent simulations
if policy == 'SOC':
update_fl_info(param_dict, sir_obj)
print(' - Updated front-loading parameters:',
param_dict['simulation']['policy_params']['front-loading'])
# Post-simulation summarization and set output
# --------------------------------------------
# Init output dict for this simulation
out_sim_dict = {}
# Add seed
out_sim_dict['simulation_seed'] = seed
# Add init_event_list to output dict
# Format init_event_list node names into int to make the object json-able
for i, (e, t) in enumerate(init_event_list):
init_event_list[i] = ((int(e[0]), e[1], int(e[2]) if e[2] is not None else None), float(t))
out_sim_dict['init_event_list'] = init_event_list
# Add other info on the events of each node
out_sim_dict['inf_occured_at'] = sir_obj.inf_occured_at.tolist()
out_sim_dict['rec_occured_at'] = sir_obj.rec_occured_at.tolist()
out_sim_dict['infector'] = sir_obj.infector.tolist()
out_sim_dict['node_idx_pairs'] = [(int(u), u_idx) for u, u_idx in sir_obj.node_to_idx.items()]
country_list = np.zeros(sir_obj.n_nodes, dtype=object)
for u, d in sir_obj.G.nodes(data=True):
country_list[sir_obj.node_to_idx[u]] = d['country']
out_sim_dict['country'] = country_list.tolist()
node_district_arr = np.zeros(sir_obj.n_nodes, dtype='object')
for node, data in sir_obj.G.nodes(data=True):
node_idx = sir_obj.node_to_idx[node]
node_district_arr[node_idx] = data['district']
out_sim_dict['district'] = node_district_arr.tolist()
output_dict['simulation_list'].append(out_sim_dict)
print('\n\nSave results...')
with open(os.path.join(exp_dir, output_filename), 'w') as output_file:
json.dump(output_dict, output_file)
# Log that the run is finished
print('\n\nFinished.')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', dest='dir', type=str,
required=True, help="Working directory")
parser.add_argument('-i', '--netidx', dest='net_idx', type=int,
required=True, help="Network index to use (in parameter file)")
parser.add_argument('-p', '--params', dest='param_filename', type=str,
required=False, default='params.json',
help="Input parameter file (JSON)")
parser.add_argument('-o', '--outfile', dest='output_filename', type=str,
required=False, default='output.json',
help="Output file (JSON)")
parser.add_argument('-v', '--verbose', dest='verbose', action="store_true",
required=False, default=False,
help="Print behavior")
args = parser.parse_args()
run(
exp_dir=args.dir,
param_filename=args.param_filename,
output_filename=args.output_filename,
net_idx=args.net_idx,
verbose=args.verbose
)