-
Notifications
You must be signed in to change notification settings - Fork 0
/
metric_learning.py
384 lines (313 loc) · 14.9 KB
/
metric_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# from https://github.com/ronghuaiyang/arcface-pytorch/blob/master/models/metrics.py
# adacos: https://github.com/4uiiurz1/pytorch-adacos/blob/master/metrics.py
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
from torch.nn import Parameter
import math
class AdaCos(nn.Module):
def __init__(self, in_features, out_features, m=0.50, ls_eps=0, theta_zero=math.pi/4):
super(AdaCos, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.theta_zero = theta_zero
self.s = math.log(out_features - 1) / math.cos(theta_zero)
self.m = m
self.ls_eps = ls_eps # label smoothing
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, input, label):
# normalize features
x = F.normalize(input)
# normalize weights
W = F.normalize(self.weight)
# dot product
logits = F.linear(x, W)
# add margin
theta = torch.acos(torch.clamp(logits, -1.0 + 1e-7, 1.0 - 1e-7))
target_logits = torch.cos(theta + self.m)
one_hot = torch.zeros_like(logits)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
if self.ls_eps > 0:
one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
output = logits * (1 - one_hot) + target_logits * one_hot
# feature re-scale
with torch.no_grad():
B_avg = torch.where(one_hot < 1, torch.exp(self.s * logits), torch.zeros_like(logits))
B_avg = torch.sum(B_avg) / input.size(0)
theta_med = torch.median(theta)
self.s = torch.log(B_avg) / torch.cos(torch.min(self.theta_zero * torch.ones_like(theta_med), theta_med))
output *= self.s
return output
class P2SGrad(torch.autograd.Function):
"""WIP"""
@staticmethod
def forward(ctx, input, weight, label):
ctx.save_for_backward(input, weight, label)
return
@staticmethod
def backward(ctx, grad_output):
# input: NxD, weight: CxD, label: N
input, weight, label = ctx.saved_tensors
eps = 1e-12
norm_input = input.norm(p=2, dim=1, keepdim=True).clamp_min(eps).expand_as(input)
norm_weight = weight.norm(p=2, dim=1, keepdim=True).clamp_min(eps).expand_as(weight)
input_hat, weight_hat = input / norm_input, weight / norm_weight
cosine = F.linear(input_hat, weight_hat) # NxC
one_hot = torch.zeros((input.shape[0], weight.shape[0]), device='cuda')
one_hot.scatter_(1, label.view(-1, 1).long(), 1) # NxC
grad_input = grad_weight = None
if ctx.needs_input_grad[0]:
grad_input = torch.sum(cosine - one_hot, dim=1) * (weight_hat - cosine.mm(input_hat.t())) / norm_input
grad_input = grad_output.t().mm(grad_input)
if ctx.needs_input_grad[1]:
grad_weight = (cosine - one_hot) * (input_hat - cosine.mm(weight_hat.t())) / norm_weight
grad_weight = grad_output.t().mm(grad_weight)
return grad_input, grad_weight, None, None
class P2SGradLoss(nn.Module):
def __init__(self, in_features, out_features):
super(P2SGradLoss, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, input, label):
return P2SGrad().apply(input, self.weight, label)
class ArcMarginProduct(nn.Module):
r"""Implement of large margin arc distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta + m)
"""
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False, ls_eps=0.0):
super(ArcMarginProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.ls_eps = ls_eps # label smoothing
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = easy_margin
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
# --------------------------- convert label to one-hot ---------------------------
# one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
one_hot = torch.zeros(cosine.size(), device='cuda')
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
if self.ls_eps > 0:
one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
# -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
class AddMarginProduct(nn.Module):
r"""Implement of large margin cosine distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta) - m
"""
def __init__(self, in_features, out_features, s=30.0, m=0.40):
super(AddMarginProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
phi = cosine - self.m
# --------------------------- convert label to one-hot ---------------------------
one_hot = torch.zeros(cosine.size(), device='cuda')
# one_hot = one_hot.cuda() if cosine.is_cuda else one_hot
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4
output *= self.s
# print(output)
return output
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'in_features=' + str(self.in_features) \
+ ', out_features=' + str(self.out_features) \
+ ', s=' + str(self.s) \
+ ', m=' + str(self.m) + ')'
class SphereProduct(nn.Module):
r"""Implement of large margin cosine distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
m: margin
cos(m*theta)
"""
def __init__(self, in_features, out_features, m=4):
super(SphereProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.m = m
self.base = 1000.0
self.gamma = 0.12
self.power = 1
self.LambdaMin = 5.0
self.iter = 0
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform(self.weight)
# duplication formula
self.mlambda = [
lambda x: x ** 0,
lambda x: x ** 1,
lambda x: 2 * x ** 2 - 1,
lambda x: 4 * x ** 3 - 3 * x,
lambda x: 8 * x ** 4 - 8 * x ** 2 + 1,
lambda x: 16 * x ** 5 - 20 * x ** 3 + 5 * x
]
def forward(self, input, label):
# lambda = max(lambda_min,base*(1+gamma*iteration)^(-power))
self.iter += 1
self.lamb = max(self.LambdaMin, self.base * (1 + self.gamma * self.iter) ** (-1 * self.power))
# --------------------------- cos(theta) & phi(theta) ---------------------------
cos_theta = F.linear(F.normalize(input), F.normalize(self.weight))
cos_theta = cos_theta.clamp(-1, 1)
cos_m_theta = self.mlambda[self.m](cos_theta)
theta = cos_theta.data.acos()
k = (self.m * theta / 3.14159265).floor()
phi_theta = ((-1.0) ** k) * cos_m_theta - 2 * k
NormOfFeature = torch.norm(input, 2, 1)
# --------------------------- convert label to one-hot ---------------------------
one_hot = torch.zeros(cos_theta.size())
one_hot = one_hot.cuda() if cos_theta.is_cuda else one_hot
one_hot.scatter_(1, label.view(-1, 1), 1)
# --------------------------- Calculate output ---------------------------
output = (one_hot * (phi_theta - cos_theta) / (1 + self.lamb)) + cos_theta
output *= NormOfFeature.view(-1, 1)
return output
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'in_features=' + str(self.in_features) \
+ ', out_features=' + str(self.out_features) \
+ ', m=' + str(self.m) + ')'
class HardTripletLoss(nn.Module):
"""Hard/Hardest Triplet Loss
(pytorch implementation of https://omoindrot.github.io/triplet-loss)
For each anchor, we get the hardest positive and hardest negative to form a triplet.
"""
def __init__(self, margin=0.1, hardest=False, squared=False):
"""
Args:
margin: margin for triplet loss
hardest: If true, loss is considered only hardest triplets.
squared: If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
"""
super(HardTripletLoss, self).__init__()
self.margin = margin
self.hardest = hardest
self.squared = squared
def forward(self, embeddings, labels):
"""
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
pairwise_dist = _pairwise_distance(embeddings, squared=self.squared)
if self.hardest:
# Get the hardest positive pairs
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels).float()
valid_positive_dist = pairwise_dist * mask_anchor_positive
hardest_positive_dist, _ = torch.max(valid_positive_dist, dim=1, keepdim=True)
# Get the hardest negative pairs
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels).float()
max_anchor_negative_dist, _ = torch.max(pairwise_dist, dim=1, keepdim=True)
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (
1.0 - mask_anchor_negative)
hardest_negative_dist, _ = torch.min(anchor_negative_dist, dim=1, keepdim=True)
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = F.relu(hardest_positive_dist - hardest_negative_dist + 0.1)
triplet_loss = torch.mean(triplet_loss)
else:
anc_pos_dist = pairwise_dist.unsqueeze(dim=2)
anc_neg_dist = pairwise_dist.unsqueeze(dim=1)
# Compute a 3D tensor of size (batch_size, batch_size, batch_size)
# triplet_loss[i, j, k] will contain the triplet loss of anc=i, pos=j, neg=k
# Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1)
# and the 2nd (batch_size, 1, batch_size)
loss = anc_pos_dist - anc_neg_dist + self.margin
mask = _get_triplet_mask(labels).float()
triplet_loss = loss * mask
# Remove negative losses (i.e. the easy triplets)
triplet_loss = F.relu(triplet_loss)
# Count number of hard triplets (where triplet_loss > 0)
hard_triplets = torch.gt(triplet_loss, 1e-16).float()
num_hard_triplets = torch.sum(hard_triplets)
triplet_loss = torch.sum(triplet_loss) / (num_hard_triplets + 1e-16)
return triplet_loss
def _pairwise_distance(x, squared=False, eps=1e-16):
# Compute the 2D matrix of distances between all the embeddings.
cor_mat = torch.matmul(x, x.t())
norm_mat = cor_mat.diag()
distances = norm_mat.unsqueeze(1) - 2 * cor_mat + norm_mat.unsqueeze(0)
distances = F.relu(distances)
if not squared:
mask = torch.eq(distances, 0.0).float()
distances = distances + mask * eps
distances = torch.sqrt(distances)
distances = distances * (1.0 - mask)
return distances
def _get_anchor_positive_triplet_mask(labels):
# Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
indices_not_equal = torch.eye(labels.shape[0]).to(device).byte() ^ 1
# Check if labels[i] == labels[j]
labels_equal = torch.unsqueeze(labels, 0) == torch.unsqueeze(labels, 1)
mask = indices_not_equal * labels_equal
return mask
def _get_anchor_negative_triplet_mask(labels):
# Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
# Check if labels[i] != labels[k]
labels_equal = torch.unsqueeze(labels, 0) == torch.unsqueeze(labels, 1)
mask = labels_equal ^ 1
return mask
def _get_triplet_mask(labels):
"""return a 3d mask where mask[a, p, n] is true if the triplet (a, p, n) is valid.
a triplet (i, j, k) is valid if:
- i, j, k are distinct
- labels[i] == labels[j] and labels[i] != labels[k]
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Check that i, j and k are distinct
indices_not_same = torch.eye(labels.shape[0]).to(device).byte() ^ 1
i_not_equal_j = torch.unsqueeze(indices_not_same, 2)
i_not_equal_k = torch.unsqueeze(indices_not_same, 1)
j_not_equal_k = torch.unsqueeze(indices_not_same, 0)
distinct_indices = i_not_equal_j * i_not_equal_k * j_not_equal_k
# Check if labels[i] == labels[j] and labels[i] != labels[k]
label_equal = torch.eq(torch.unsqueeze(labels, 0), torch.unsqueeze(labels, 1))
i_equal_j = torch.unsqueeze(label_equal, 2)
i_equal_k = torch.unsqueeze(label_equal, 1)
valid_labels = i_equal_j * (i_equal_k ^ 1)
mask = distinct_indices * valid_labels # Combine the two masks
return mask