-
Notifications
You must be signed in to change notification settings - Fork 0
/
plt_overfit.py
403 lines (353 loc) · 15.4 KB
/
plt_overfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
plot_overfit
class and assocaited routines that plot an interactive example of overfitting and its solutions
"""
import math
from ipywidgets import Output
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Button, CheckButtons
from sklearn.linear_model import LogisticRegression, Ridge
from lab_utils_common import np, plt, dlc, predict_logistic, plot_data, zscore_normalize_features
def map_one_feature(X1, degree):
"""
Feature mapping function to polynomial features
"""
X1 = np.atleast_1d(X1)
out = []
string = ""
k = 0
for i in range(1, degree+1):
out.append((X1**i))
string = string + f"w_{{{k}}}{munge('x_0',i)} + "
k += 1
string = string + ' b' #add b to text equation, not to data
return np.stack(out, axis=1), string
def map_feature(X1, X2, degree):
"""
Feature mapping function to polynomial features
"""
X1 = np.atleast_1d(X1)
X2 = np.atleast_1d(X2)
out = []
string = ""
k = 0
for i in range(1, degree+1):
for j in range(i + 1):
out.append((X1**(i-j) * (X2**j)))
string = string + f"w_{{{k}}}{munge('x_0',i-j)}{munge('x_1',j)} + "
k += 1
#print(string + 'b')
return np.stack(out, axis=1), string + ' b'
def munge(base, exp):
if exp == 0:
return ''
if exp == 1:
return base
return base + f'^{{{exp}}}'
def plot_decision_boundary(ax, x0r,x1r, predict, w, b, scaler = False, mu=None, sigma=None, degree=None):
"""
Plots a decision boundary
Args:
x0r : (array_like Shape (1,1)) range (min, max) of x0
x1r : (array_like Shape (1,1)) range (min, max) of x1
predict : function to predict z values
scalar : (boolean) scale data or not
"""
h = .01 # step size in the mesh
# create a mesh to plot in
xx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),
np.arange(x1r[0], x1r[1], h))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
points = np.c_[xx.ravel(), yy.ravel()]
Xm,_ = map_feature(points[:, 0], points[:, 1],degree)
if scaler:
Xm = (Xm - mu)/sigma
Z = predict(Xm, w, b)
# Put the result into a color plot
Z = Z.reshape(xx.shape)
contour = ax.contour(xx, yy, Z, levels = [0.5], colors='g')
return contour
# use this to test the above routine
def plot_decision_boundary_sklearn(x0r, x1r, predict, degree, scaler = False):
"""
Plots a decision boundary
Args:
x0r : (array_like Shape (1,1)) range (min, max) of x0
x1r : (array_like Shape (1,1)) range (min, max) of x1
degree: (int) degree of polynomial
predict : function to predict z values
scaler : not sure
"""
h = .01 # step size in the mesh
# create a mesh to plot in
xx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),
np.arange(x1r[0], x1r[1], h))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
points = np.c_[xx.ravel(), yy.ravel()]
Xm = map_feature(points[:, 0], points[:, 1],degree)
if scaler:
Xm = scaler.transform(Xm)
Z = predict(Xm)
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, colors='g')
#plot_data(X_train,y_train)
#for debug, uncomment the #@output statments below for routines you want to get error output from
# In the notebook that will call these routines, import `output`
# from plt_overfit import overfit_example, output
# then, in a cell where the error messages will be the output of..
#display(output)
output = Output() # sends hidden error messages to display when using widgets
class button_manager:
''' Handles some missing features of matplotlib check buttons
on init:
creates button, links to button_click routine,
calls call_on_click with active index and firsttime=True
on click:
maintains single button on state, calls call_on_click
'''
@output.capture() # debug
def __init__(self,fig, dim, labels, init, call_on_click):
'''
dim: (list) [leftbottom_x,bottom_y,width,height]
labels: (list) for example ['1','2','3','4','5','6']
init: (list) for example [True, False, False, False, False, False]
'''
self.fig = fig
self.ax = plt.axes(dim) #lx,by,w,h
self.init_state = init
self.call_on_click = call_on_click
self.button = CheckButtons(self.ax,labels,init)
self.button.on_clicked(self.button_click)
self.status = self.button.get_status()
self.call_on_click(self.status.index(True),firsttime=True)
@output.capture() # debug
def reinit(self):
self.status = self.init_state
self.button.set_active(self.status.index(True)) #turn off old, will trigger update and set to status
@output.capture() # debug
def button_click(self, event):
''' maintains one-on state. If on-button is clicked, will process correctly '''
#new_status = self.button.get_status()
#new = [self.status[i] ^ new_status[i] for i in range(len(self.status))]
#newidx = new.index(True)
self.button.eventson = False
self.button.set_active(self.status.index(True)) #turn off old or reenable if same
self.button.eventson = True
self.status = self.button.get_status()
self.call_on_click(self.status.index(True))
class overfit_example():
""" plot overfit example """
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-many-locals
# pylint: disable=missing-function-docstring
# pylint: disable=attribute-defined-outside-init
def __init__(self, regularize=False):
self.regularize=regularize
self.lambda_=0
fig = plt.figure( figsize=(8,6))
fig.canvas.toolbar_visible = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.set_facecolor('#ffffff') #white
gs = GridSpec(5, 3, figure=fig)
ax0 = fig.add_subplot(gs[0:3, :])
ax1 = fig.add_subplot(gs[-2, :])
ax2 = fig.add_subplot(gs[-1, :])
ax1.set_axis_off()
ax2.set_axis_off()
self.ax = [ax0,ax1,ax2]
self.fig = fig
self.axfitdata = plt.axes([0.26,0.124,0.12,0.1 ]) #lx,by,w,h
self.bfitdata = Button(self.axfitdata , 'fit data', color=dlc['dlblue'])
self.bfitdata.label.set_fontsize(12)
self.bfitdata.on_clicked(self.fitdata_clicked)
#clear data is a future enhancement
#self.axclrdata = plt.axes([0.26,0.06,0.12,0.05 ]) #lx,by,w,h
#self.bclrdata = Button(self.axclrdata , 'clear data', color='white')
#self.bclrdata.label.set_fontsize(12)
#self.bclrdata.on_clicked(self.clrdata_clicked)
self.cid = fig.canvas.mpl_connect('button_press_event', self.add_data)
self.typebut = button_manager(fig, [0.4, 0.07,0.15,0.15], ["Regression", "Categorical"],
[False,True], self.toggle_type)
self.fig.text(0.1, 0.02+0.21, "Degree", fontsize=12)
self.degrbut = button_manager(fig,[0.1,0.02,0.15,0.2 ], ['1','2','3','4','5','6'],
[True, False, False, False, False, False], self.update_equation)
if self.regularize:
self.fig.text(0.6, 0.02+0.21, r"lambda($\lambda$)", fontsize=12)
self.lambut = button_manager(fig,[0.6,0.02,0.15,0.2 ], ['0.0','0.2','0.4','0.6','0.8','1'],
[True, False, False, False, False, False], self.updt_lambda)
#self.regbut = button_manager(fig, [0.8, 0.08,0.24,0.15], ["Regularize"],
# [False], self.toggle_reg)
#self.logistic_data()
def updt_lambda(self, idx, firsttime=False):
# pylint: disable=unused-argument
self.lambda_ = idx * 0.2
def toggle_type(self, idx, firsttime=False):
self.logistic = idx==1
self.ax[0].clear()
if self.logistic:
self.logistic_data()
else:
self.linear_data()
if not firsttime:
self.degrbut.reinit()
@output.capture() # debug
def logistic_data(self,redraw=False):
if not redraw:
m = 50
n = 2
np.random.seed(2)
X_train = 2*(np.random.rand(m,n)-[0.5,0.5])
y_train = X_train[:,1]+0.5 > X_train[:,0]**2 + 0.5*np.random.rand(m) #quadratic + random
y_train = y_train + 0 #convert from boolean to integer
self.X = X_train
self.y = y_train
self.x_ideal = np.sort(X_train[:,0])
self.y_ideal = self.x_ideal**2
self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="ideal", lw=1)
plot_data(self.X, self.y, self.ax[0], s=10, loc='lower right')
self.ax[0].set_title("OverFitting Example: Categorical data set with noise")
self.ax[0].text(0.5,0.93, "Click on plot to add data. Hold [Shift] for blue(y=0) data.",
fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])
self.ax[0].set_xlabel(r"$x_0$")
self.ax[0].set_ylabel(r"$x_1$")
def linear_data(self,redraw=False):
if not redraw:
m = 30
c = 0
x_train = np.arange(0,m,1)
np.random.seed(1)
y_ideal = x_train**2 + c
y_train = y_ideal + 0.7 * y_ideal*(np.random.sample((m,))-0.5)
self.x_ideal = x_train #for redraw when new data included in X
self.X = x_train
self.y = y_train
self.y_ideal = y_ideal
else:
self.ax[0].set_xlim(self.xlim)
self.ax[0].set_ylim(self.ylim)
self.ax[0].scatter(self.X,self.y, label="y")
self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="y_ideal", lw=1)
self.ax[0].set_title("OverFitting Example: Regression Data Set (quadratic with noise)",fontsize = 14)
self.ax[0].set_xlabel("x")
self.ax[0].set_ylabel("y")
self.ax0ledgend = self.ax[0].legend(loc='lower right')
self.ax[0].text(0.5,0.93, "Click on plot to add data",
fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])
if not redraw:
self.xlim = self.ax[0].get_xlim()
self.ylim = self.ax[0].get_ylim()
@output.capture() # debug
def add_data(self, event):
if self.logistic:
self.add_data_logistic(event)
else:
self.add_data_linear(event)
@output.capture() # debug
def add_data_logistic(self, event):
if event.inaxes == self.ax[0]:
x0_coord = event.xdata
x1_coord = event.ydata
if event.key is None: #shift not pressed
self.ax[0].scatter(x0_coord, x1_coord, marker='x', s=10, c = 'red', label="y=1")
self.y = np.append(self.y,1)
else:
self.ax[0].scatter(x0_coord, x1_coord, marker='o', s=10, label="y=0", facecolors='none',
edgecolors=dlc['dlblue'],lw=3)
self.y = np.append(self.y,0)
self.X = np.append(self.X,np.array([[x0_coord, x1_coord]]),axis=0)
self.fig.canvas.draw()
def add_data_linear(self, event):
if event.inaxes == self.ax[0]:
x_coord = event.xdata
y_coord = event.ydata
self.ax[0].scatter(x_coord, y_coord, marker='o', s=10, facecolors='none',
edgecolors=dlc['dlblue'],lw=3)
self.y = np.append(self.y,y_coord)
self.X = np.append(self.X,x_coord)
self.fig.canvas.draw()
#@output.capture() # debug
#def clrdata_clicked(self,event):
# if self.logistic == True:
# self.X = np.
# else:
# self.linear_regression()
@output.capture() # debug
def fitdata_clicked(self,event):
if self.logistic:
self.logistic_regression()
else:
self.linear_regression()
def linear_regression(self):
self.ax[0].clear()
self.fig.canvas.draw()
# create and fit the model using our mapped_X feature set.
self.X_mapped, _ = map_one_feature(self.X, self.degree)
self.X_mapped_scaled, self.X_mu, self.X_sigma = zscore_normalize_features(self.X_mapped)
#linear_model = LinearRegression()
linear_model = Ridge(alpha=self.lambda_, normalize=True, max_iter=10000)
linear_model.fit(self.X_mapped_scaled, self.y )
self.w = linear_model.coef_.reshape(-1,)
self.b = linear_model.intercept_
x = np.linspace(*self.xlim,30) #plot line idependent of data which gets disordered
xm, _ = map_one_feature(x, self.degree)
xms = (xm - self.X_mu)/ self.X_sigma
y_pred = linear_model.predict(xms)
#self.fig.canvas.draw()
self.linear_data(redraw=True)
self.ax0yfit = self.ax[0].plot(x, y_pred, color = "blue", label="y_fit")
self.ax0ledgend = self.ax[0].legend(loc='lower right')
self.fig.canvas.draw()
def logistic_regression(self):
self.ax[0].clear()
self.fig.canvas.draw()
# create and fit the model using our mapped_X feature set.
self.X_mapped, _ = map_feature(self.X[:, 0], self.X[:, 1], self.degree)
self.X_mapped_scaled, self.X_mu, self.X_sigma = zscore_normalize_features(self.X_mapped)
if not self.regularize or self.lambda_ == 0:
lr = LogisticRegression(penalty='none', max_iter=10000)
else:
C = 1/self.lambda_
lr = LogisticRegression(C=C, max_iter=10000)
lr.fit(self.X_mapped_scaled,self.y)
#print(lr.score(self.X_mapped_scaled, self.y))
self.w = lr.coef_.reshape(-1,)
self.b = lr.intercept_
#print(self.w, self.b)
self.logistic_data(redraw=True)
self.contour = plot_decision_boundary(self.ax[0],[-1,1],[-1,1], predict_logistic, self.w, self.b,
scaler=True, mu=self.X_mu, sigma=self.X_sigma, degree=self.degree )
self.fig.canvas.draw()
@output.capture() # debug
def update_equation(self, idx, firsttime=False):
#print(f"Update equation, index = {idx}, firsttime={firsttime}")
self.degree = idx+1
if firsttime:
self.eqtext = []
else:
for artist in self.eqtext:
#print(artist)
artist.remove()
self.eqtext = []
if self.logistic:
_, equation = map_feature(self.X[:, 0], self.X[:, 1], self.degree)
string = 'f_{wb} = sigmoid('
else:
_, equation = map_one_feature(self.X, self.degree)
string = 'f_{wb} = ('
bz = 10
seq = equation.split('+')
blks = math.ceil(len(seq)/bz)
for i in range(blks):
if i == 0:
string = string + '+'.join(seq[bz*i:bz*i+bz])
else:
string = '+'.join(seq[bz*i:bz*i+bz])
string = string + ')' if i == blks-1 else string + '+'
ei = self.ax[1].text(0.01,(0.75-i*0.25), f"${string}$",fontsize=9,
transform = self.ax[1].transAxes, ma='left', va='top' )
self.eqtext.append(ei)
self.fig.canvas.draw()