-
Notifications
You must be signed in to change notification settings - Fork 209
/
datareader.py
613 lines (490 loc) · 20.1 KB
/
datareader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from Utils import *
import json,os,sys
BOP_LIST = ['lmo','tless','ycbv','hb','tudl','icbin','itodd']
BOP_DIR = os.getenv('BOP_DIR')
def get_bop_reader(video_dir, zfar=np.inf):
if 'ycbv' in video_dir or 'YCB' in video_dir:
return YcbVideoReader(video_dir, zfar=zfar)
if 'lmo' in video_dir or 'LINEMOD-O' in video_dir:
return LinemodOcclusionReader(video_dir, zfar=zfar)
if 'tless' in video_dir or 'TLESS' in video_dir:
return TlessReader(video_dir, zfar=zfar)
if 'hb' in video_dir:
return HomebrewedReader(video_dir, zfar=zfar)
if 'tudl' in video_dir:
return TudlReader(video_dir, zfar=zfar)
if 'icbin' in video_dir:
return IcbinReader(video_dir, zfar=zfar)
if 'itodd' in video_dir:
return ItoddReader(video_dir, zfar=zfar)
else:
raise RuntimeError
def get_bop_video_dirs(dataset):
if dataset=='ycbv':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/ycbv/test/*'))
elif dataset=='lmo':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/lmo/lmo_test_bop19/test/*'))
elif dataset=='tless':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/tless/tless_test_primesense_bop19/test_primesense/*'))
elif dataset=='hb':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/hb/hb_test_primesense_bop19/test_primesense/*'))
elif dataset=='tudl':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/tudl/tudl_test_bop19/test/*'))
elif dataset=='icbin':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/icbin/icbin_test_bop19/test/*'))
elif dataset=='itodd':
video_dirs = sorted(glob.glob(f'{BOP_DIR}/itodd/itodd_test_bop19/test/*'))
else:
raise RuntimeError
return video_dirs
class YcbineoatReader:
def __init__(self,video_dir, downscale=1, shorter_side=None, zfar=np.inf):
self.video_dir = video_dir
self.downscale = downscale
self.zfar = zfar
self.color_files = sorted(glob.glob(f"{self.video_dir}/rgb/*.png"))
self.K = np.loadtxt(f'{video_dir}/cam_K.txt').reshape(3,3)
self.id_strs = []
for color_file in self.color_files:
id_str = os.path.basename(color_file).replace('.png','')
self.id_strs.append(id_str)
self.H,self.W = cv2.imread(self.color_files[0]).shape[:2]
if shorter_side is not None:
self.downscale = shorter_side/min(self.H, self.W)
self.H = int(self.H*self.downscale)
self.W = int(self.W*self.downscale)
self.K[:2] *= self.downscale
self.gt_pose_files = sorted(glob.glob(f'{self.video_dir}/annotated_poses/*'))
self.videoname_to_object = {
'bleach0': "021_bleach_cleanser",
'bleach_hard_00_03_chaitanya': "021_bleach_cleanser",
'cracker_box_reorient': '003_cracker_box',
'cracker_box_yalehand0': '003_cracker_box',
'mustard0': '006_mustard_bottle',
'mustard_easy_00_02': '006_mustard_bottle',
'sugar_box1': '004_sugar_box',
'sugar_box_yalehand0': '004_sugar_box',
'tomato_soup_can_yalehand0': '005_tomato_soup_can',
}
def get_video_name(self):
return self.video_dir.split('/')[-1]
def __len__(self):
return len(self.color_files)
def get_gt_pose(self,i):
try:
pose = np.loadtxt(self.gt_pose_files[i]).reshape(4,4)
return pose
except:
logging.info("GT pose not found, return None")
return None
def get_color(self,i):
color = imageio.imread(self.color_files[i])[...,:3]
color = cv2.resize(color, (self.W,self.H), interpolation=cv2.INTER_NEAREST)
return color
def get_mask(self,i):
mask = cv2.imread(self.color_files[i].replace('rgb','masks'),-1)
if len(mask.shape)==3:
for c in range(3):
if mask[...,c].sum()>0:
mask = mask[...,c]
break
mask = cv2.resize(mask, (self.W,self.H), interpolation=cv2.INTER_NEAREST).astype(bool).astype(np.uint8)
return mask
def get_depth(self,i):
depth = cv2.imread(self.color_files[i].replace('rgb','depth'),-1)/1e3
depth = cv2.resize(depth, (self.W,self.H), interpolation=cv2.INTER_NEAREST)
depth[(depth<0.001) | (depth>=self.zfar)] = 0
return depth
def get_xyz_map(self,i):
depth = self.get_depth(i)
xyz_map = depth2xyzmap(depth, self.K)
return xyz_map
def get_occ_mask(self,i):
hand_mask_file = self.color_files[i].replace('rgb','masks_hand')
occ_mask = np.zeros((self.H,self.W), dtype=bool)
if os.path.exists(hand_mask_file):
occ_mask = occ_mask | (cv2.imread(hand_mask_file,-1)>0)
right_hand_mask_file = self.color_files[i].replace('rgb','masks_hand_right')
if os.path.exists(right_hand_mask_file):
occ_mask = occ_mask | (cv2.imread(right_hand_mask_file,-1)>0)
occ_mask = cv2.resize(occ_mask, (self.W,self.H), interpolation=cv2.INTER_NEAREST)
return occ_mask.astype(np.uint8)
def get_gt_mesh(self):
ob_name = self.videoname_to_object[self.get_video_name()]
YCB_VIDEO_DIR = os.getenv('YCB_VIDEO_DIR')
mesh = trimesh.load(f'{YCB_VIDEO_DIR}/models/{ob_name}/textured_simple.obj')
return mesh
class BopBaseReader:
def __init__(self, base_dir, zfar=np.inf, resize=1):
self.base_dir = base_dir
self.resize = resize
self.dataset_name = None
self.color_files = sorted(glob.glob(f"{self.base_dir}/rgb/*"))
if len(self.color_files)==0:
self.color_files = sorted(glob.glob(f"{self.base_dir}/gray/*"))
self.zfar = zfar
self.K_table = {}
with open(f'{self.base_dir}/scene_camera.json','r') as ff:
info = json.load(ff)
for k in info:
self.K_table[f'{int(k):06d}'] = np.array(info[k]['cam_K']).reshape(3,3)
self.bop_depth_scale = info[k]['depth_scale']
if os.path.exists(f'{self.base_dir}/scene_gt.json'):
with open(f'{self.base_dir}/scene_gt.json','r') as ff:
self.scene_gt = json.load(ff)
self.scene_gt = copy.deepcopy(self.scene_gt) # Release file handle to be pickle-able by joblib
assert len(self.scene_gt)==len(self.color_files)
else:
self.scene_gt = None
self.make_id_strs()
def make_scene_ob_ids_dict(self):
with open(f'{BOP_DIR}/{self.dataset_name}/test_targets_bop19.json','r') as ff:
self.scene_ob_ids_dict = {}
data = json.load(ff)
for d in data:
if d['scene_id']==self.get_video_id():
id_str = f"{d['im_id']:06d}"
if id_str not in self.scene_ob_ids_dict:
self.scene_ob_ids_dict[id_str] = []
self.scene_ob_ids_dict[id_str] += [d['obj_id']]*d['inst_count']
def get_K(self, i_frame):
K = self.K_table[self.id_strs[i_frame]]
if self.resize!=1:
K[:2,:2] *= self.resize
return K
def get_video_dir(self):
video_id = int(self.base_dir.rstrip('/').split('/')[-1])
return video_id
def make_id_strs(self):
self.id_strs = []
for i in range(len(self.color_files)):
name = os.path.basename(self.color_files[i]).split('.')[0]
self.id_strs.append(name)
def get_instance_ids_in_image(self, i_frame:int):
ob_ids = []
if self.scene_gt is not None:
name = int(os.path.basename(self.color_files[i_frame]).split('.')[0])
for k in self.scene_gt[str(name)]:
ob_ids.append(k['obj_id'])
elif self.scene_ob_ids_dict is not None:
return np.array(self.scene_ob_ids_dict[self.id_strs[i_frame]])
else:
mask_dir = os.path.dirname(self.color_files[0]).replace('rgb','mask_visib')
id_str = self.id_strs[i_frame]
mask_files = sorted(glob.glob(f'{mask_dir}/{id_str}_*.png'))
ob_ids = []
for mask_file in mask_files:
ob_id = int(os.path.basename(mask_file).split('.')[0].split('_')[1])
ob_ids.append(ob_id)
ob_ids = np.asarray(ob_ids)
return ob_ids
def get_gt_mesh_file(self, ob_id):
raise RuntimeError("You should override this")
def get_color(self,i):
color = imageio.imread(self.color_files[i])
if len(color.shape)==2:
color = np.tile(color[...,None], (1,1,3)) # Gray to RGB
if self.resize!=1:
color = cv2.resize(color, fx=self.resize, fy=self.resize, dsize=None)
return color
def get_depth(self,i, filled=False):
if filled:
depth_file = self.color_files[i].replace('rgb','depth_filled')
depth_file = f'{os.path.dirname(depth_file)}/0{os.path.basename(depth_file)}'
depth = cv2.imread(depth_file,-1)/1e3
else:
depth_file = self.color_files[i].replace('rgb','depth').replace('gray','depth')
depth = cv2.imread(depth_file,-1)*1e-3*self.bop_depth_scale
if self.resize!=1:
depth = cv2.resize(depth, fx=self.resize, fy=self.resize, dsize=None, interpolation=cv2.INTER_NEAREST)
depth[depth<0.001] = 0
depth[depth>self.zfar] = 0
return depth
def get_xyz_map(self,i):
depth = self.get_depth(i)
xyz_map = depth2xyzmap(depth, self.get_K(i))
return xyz_map
def get_mask(self, i_frame:int, ob_id:int, type='mask_visib'):
'''
@type: mask_visib (only visible part) / mask (projected mask from whole model)
'''
pos = 0
name = int(os.path.basename(self.color_files[i_frame]).split('.')[0])
if self.scene_gt is not None:
for k in self.scene_gt[str(name)]:
if k['obj_id']==ob_id:
break
pos += 1
mask_file = f'{self.base_dir}/{type}/{name:06d}_{pos:06d}.png'
if not os.path.exists(mask_file):
logging.info(f'{mask_file} not found')
return None
else:
# mask_dir = os.path.dirname(self.color_files[0]).replace('rgb',type)
# mask_file = f'{mask_dir}/{self.id_strs[i_frame]}_{ob_id:06d}.png'
raise RuntimeError
mask = cv2.imread(mask_file, -1)
if self.resize!=1:
mask = cv2.resize(mask, fx=self.resize, fy=self.resize, dsize=None, interpolation=cv2.INTER_NEAREST)
return mask>0
def get_gt_mesh(self, ob_id:int):
mesh_file = self.get_gt_mesh_file(ob_id)
mesh = trimesh.load(mesh_file)
mesh.vertices *= 1e-3
return mesh
def get_model_diameter(self, ob_id):
dir = os.path.dirname(self.get_gt_mesh_file(self.ob_ids[0]))
info_file = f'{dir}/models_info.json'
with open(info_file,'r') as ff:
info = json.load(ff)
return info[str(ob_id)]['diameter']/1e3
def get_gt_poses(self, i_frame, ob_id):
gt_poses = []
name = int(self.id_strs[i_frame])
for i_k, k in enumerate(self.scene_gt[str(name)]):
if k['obj_id']==ob_id:
cur = np.eye(4)
cur[:3,:3] = np.array(k['cam_R_m2c']).reshape(3,3)
cur[:3,3] = np.array(k['cam_t_m2c'])/1e3
gt_poses.append(cur)
return np.asarray(gt_poses).reshape(-1,4,4)
def get_gt_pose(self, i_frame:int, ob_id, mask=None, use_my_correction=False):
ob_in_cam = np.eye(4)
best_iou = -np.inf
best_gt_mask = None
name = int(self.id_strs[i_frame])
for i_k, k in enumerate(self.scene_gt[str(name)]):
if k['obj_id']==ob_id:
cur = np.eye(4)
cur[:3,:3] = np.array(k['cam_R_m2c']).reshape(3,3)
cur[:3,3] = np.array(k['cam_t_m2c'])/1e3
if mask is not None: # When multi-instance exists, use mask to determine which one
gt_mask = cv2.imread(f'{self.base_dir}/mask_visib/{self.id_strs[i_frame]}_{i_k:06d}.png', -1).astype(bool)
intersect = (gt_mask*mask).astype(bool)
union = (gt_mask+mask).astype(bool)
iou = float(intersect.sum())/union.sum()
if iou>best_iou:
best_iou = iou
best_gt_mask = gt_mask
ob_in_cam = cur
else:
ob_in_cam = cur
break
if use_my_correction:
if 'ycb' in self.base_dir.lower() and 'train_real' in self.color_files[i_frame]:
video_id = self.get_video_id()
if ob_id==1:
if video_id in [12,13,14,17,24]:
ob_in_cam = ob_in_cam@self.symmetry_tfs[ob_id][1]
return ob_in_cam
def load_symmetry_tfs(self):
dir = os.path.dirname(self.get_gt_mesh_file(self.ob_ids[0]))
info_file = f'{dir}/models_info.json'
with open(info_file,'r') as ff:
info = json.load(ff)
self.symmetry_tfs = {}
self.symmetry_info_table = {}
for ob_id in self.ob_ids:
self.symmetry_info_table[ob_id] = info[str(ob_id)]
self.symmetry_tfs[ob_id] = symmetry_tfs_from_info(info[str(ob_id)], rot_angle_discrete=5)
self.geometry_symmetry_info_table = copy.deepcopy(self.symmetry_info_table)
def get_video_id(self):
return int(self.base_dir.split('/')[-1])
class LinemodOcclusionReader(BopBaseReader):
def __init__(self,base_dir='/mnt/9a72c439-d0a7-45e8-8d20-d7a235d02763/DATASET/LINEMOD-O/lmo_test_all/test/000002', zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'lmo'
self.K = list(self.K_table.values())[0]
self.ob_ids = [1,5,6,8,9,10,11,12]
self.ob_id_to_names = {
1: 'ape',
2: 'benchvise',
3: 'bowl',
4: 'camera',
5: 'water_pour',
6: 'cat',
7: 'cup',
8: 'driller',
9: 'duck',
10: 'eggbox',
11: 'glue',
12: 'holepuncher',
13: 'iron',
14: 'lamp',
15: 'phone',
}
self.load_symmetry_tfs()
def get_gt_mesh_file(self, ob_id):
mesh_dir = f'{BOP_DIR}/{self.dataset_name}/models/obj_{ob_id:06d}.ply'
return mesh_dir
class LinemodReader(LinemodOcclusionReader):
def __init__(self, base_dir='/mnt/9a72c439-d0a7-45e8-8d20-d7a235d02763/DATASET/LINEMOD/lm_test_all/test/000001', zfar=np.inf, split=None):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'lm'
if split is not None: # train/test
with open(f'/mnt/9a72c439-d0a7-45e8-8d20-d7a235d02763/DATASET/LINEMOD/Linemod_preprocessed/data/{self.get_video_id():02d}/{split}.txt','r') as ff:
lines = ff.read().splitlines()
self.color_files = []
for line in lines:
id = int(line)
self.color_files.append(f'{self.base_dir}/rgb/{id:06d}.png')
self.make_id_strs()
self.ob_ids = np.setdiff1d(np.arange(1,16), np.array([7,3])).tolist() # Exclude bowl and mug
self.load_symmetry_tfs()
def get_gt_mesh_file(self, ob_id):
root = self.base_dir
while 1:
if os.path.exists(f'{root}/lm_models'):
mesh_dir = f'{root}/lm_models/models/obj_{ob_id:06d}.ply'
break
else:
root = os.path.abspath(f'{root}/../')
return mesh_dir
def get_reconstructed_mesh(self, ob_id, ref_view_dir):
mesh = trimesh.load(os.path.abspath(f'{ref_view_dir}/ob_{ob_id:07d}/model/model.obj'))
return mesh
class YcbVideoReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'ycbv'
self.K = list(self.K_table.values())[0]
self.make_id_strs()
self.ob_ids = np.arange(1,22).astype(int).tolist()
YCB_VIDEO_DIR = os.getenv('YCB_VIDEO_DIR')
names = sorted(os.listdir(f'{YCB_VIDEO_DIR}/models/'))
self.ob_id_to_names = {}
self.name_to_ob_id = {}
for i,ob_id in enumerate(self.ob_ids):
self.ob_id_to_names[ob_id] = names[i]
self.name_to_ob_id[names[i]] = ob_id
if 'BOP' not in self.base_dir:
with open(f'{self.base_dir}/../../keyframe.txt','r') as ff:
self.keyframe_lines = ff.read().splitlines()
self.load_symmetry_tfs()
for ob_id in self.ob_ids:
if ob_id in [1,4,6,18]: # Cylinder
self.geometry_symmetry_info_table[ob_id] = {
'symmetries_continuous': [
{'axis':[0,0,1], 'offset':[0,0,0]},
],
'symmetries_discrete': euler_matrix(0, np.pi, 0).reshape(1,4,4).tolist(),
}
elif ob_id in [13]:
self.geometry_symmetry_info_table[ob_id] = {
'symmetries_continuous': [
{'axis':[0,0,1], 'offset':[0,0,0]},
],
}
elif ob_id in [2,3,9,21]: # Rectangle box
tfs = []
for rz in [0, np.pi]:
for rx in [0,np.pi]:
for ry in [0,np.pi]:
tfs.append(euler_matrix(rx, ry, rz))
self.geometry_symmetry_info_table[ob_id] = {
'symmetries_discrete': np.asarray(tfs).reshape(-1,4,4).tolist(),
}
else:
pass
def get_gt_mesh_file(self, ob_id):
if 'BOP' in self.base_dir:
mesh_file = os.path.abspath(f'{self.base_dir}/../../ycbv_models/models/obj_{ob_id:06d}.ply')
else:
mesh_file = f'{self.base_dir}/../../ycbv_models/models/obj_{ob_id:06d}.ply'
return mesh_file
def get_gt_mesh(self, ob_id:int, get_posecnn_version=False):
if get_posecnn_version:
YCB_VIDEO_DIR = os.getenv('YCB_VIDEO_DIR')
mesh = trimesh.load(f'{YCB_VIDEO_DIR}/models/{self.ob_id_to_names[ob_id]}/textured_simple.obj')
return mesh
mesh_file = self.get_gt_mesh_file(ob_id)
mesh = trimesh.load(mesh_file, process=False)
mesh.vertices *= 1e-3
tex_file = mesh_file.replace('.ply','.png')
if os.path.exists(tex_file):
from PIL import Image
im = Image.open(tex_file)
uv = mesh.visual.uv
material = trimesh.visual.texture.SimpleMaterial(image=im)
color_visuals = trimesh.visual.TextureVisuals(uv=uv, image=im, material=material)
mesh.visual = color_visuals
return mesh
def get_reconstructed_mesh(self, ob_id, ref_view_dir):
mesh = trimesh.load(os.path.abspath(f'{ref_view_dir}/ob_{ob_id:07d}/model/model.obj'))
return mesh
def get_transform_reconstructed_to_gt_model(self, ob_id):
out = np.eye(4)
return out
def get_visible_cloud(self, ob_id):
file = os.path.abspath(f'{self.base_dir}/../../models/{self.ob_id_to_names[ob_id]}/visible_cloud.ply')
pcd = o3d.io.read_point_cloud(file)
return pcd
def is_keyframe(self, i):
color_file = self.color_files[i]
video_id = self.get_video_id()
frame_id = int(os.path.basename(color_file).split('.')[0])
key = f'{video_id:04d}/{frame_id:06d}'
return (key in self.keyframe_lines)
class TlessReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'tless'
self.ob_ids = np.arange(1,31).astype(int).tolist()
self.load_symmetry_tfs()
def get_gt_mesh_file(self, ob_id):
mesh_file = f'{self.base_dir}/../../../models_cad/obj_{ob_id:06d}.ply'
return mesh_file
def get_gt_mesh(self, ob_id):
mesh = trimesh.load(self.get_gt_mesh_file(ob_id))
mesh.vertices *= 1e-3
mesh = trimesh_add_pure_colored_texture(mesh, color=np.ones((3))*200)
return mesh
class HomebrewedReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'hb'
self.ob_ids = np.arange(1,34).astype(int).tolist()
self.load_symmetry_tfs()
self.make_scene_ob_ids_dict()
def get_gt_mesh_file(self, ob_id):
mesh_file = f'{self.base_dir}/../../../hb_models/models/obj_{ob_id:06d}.ply'
return mesh_file
def get_gt_pose(self, i_frame:int, ob_id, use_my_correction=False):
logging.info("WARN HomeBrewed doesn't have GT pose")
return np.eye(4)
class ItoddReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'itodd'
self.make_id_strs()
self.ob_ids = np.arange(1,29).astype(int).tolist()
self.load_symmetry_tfs()
self.make_scene_ob_ids_dict()
def get_gt_mesh_file(self, ob_id):
mesh_file = f'{self.base_dir}/../../../itodd_models/models/obj_{ob_id:06d}.ply'
return mesh_file
class IcbinReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'icbin'
self.ob_ids = np.arange(1,3).astype(int).tolist()
self.load_symmetry_tfs()
def get_gt_mesh_file(self, ob_id):
mesh_file = f'{self.base_dir}/../../../icbin_models/models/obj_{ob_id:06d}.ply'
return mesh_file
class TudlReader(BopBaseReader):
def __init__(self, base_dir, zfar=np.inf):
super().__init__(base_dir, zfar=zfar)
self.dataset_name = 'tudl'
self.ob_ids = np.arange(1,4).astype(int).tolist()
self.load_symmetry_tfs()
def get_gt_mesh_file(self, ob_id):
mesh_file = f'{self.base_dir}/../../../tudl_models/models/obj_{ob_id:06d}.ply'
return mesh_file