diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-basic-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-basic-ndvin-1.png index b4f1d30e..702fae5e 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-basic-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-basic-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-major-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-major-ndvin-1.png index f757b60a..14f5cf48 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-major-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/NDVI-major-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/central-nvdi-vs-tilstand-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/central-nvdi-vs-tilstand-ndvin-1.png index 277b7fef..cc97f9d2 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/central-nvdi-vs-tilstand-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/central-nvdi-vs-tilstand-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/east-nvdi-vs-tilstand-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/east-nvdi-vs-tilstand-ndvin-1.png index 70f77dfe..cbde45e3 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/east-nvdi-vs-tilstand-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/east-nvdi-vs-tilstand-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-condition-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-condition-ndvin-1.png index 9f9c89e6..ae8ad7ef 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-condition-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-condition-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-regions-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-regions-ndvin-1.png index 2cdad6b8..651916ca 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-regions-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/ndvi-regions-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/north-nvdi-vs-tilstand-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/north-nvdi-vs-tilstand-ndvin-1.png index e6fa6434..9f58b690 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/north-nvdi-vs-tilstand-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/north-nvdi-vs-tilstand-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/south-nvdi-vs-tilstand-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/south-nvdi-vs-tilstand-ndvin-1.png index 67ee8f95..ad56a1e4 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/south-nvdi-vs-tilstand-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/south-nvdi-vs-tilstand-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-1.png index 6af4304c..190c6aff 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-1.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-2.png b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-2.png index 653da7ff..bc8f03dd 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-2.png and b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-2.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-3.png b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-3.png index 7e5ffb52..0159ef27 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-3.png and b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-3.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-4.png b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-4.png index d3d3abda..6e87decf 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-4.png and b/_bookdown_files/NDVI_natopen_files/figure-html/unnamed-chunk-17-4.png differ diff --git a/_bookdown_files/NDVI_natopen_files/figure-html/west-nvdi-vs-tilstand-ndvin-1.png b/_bookdown_files/NDVI_natopen_files/figure-html/west-nvdi-vs-tilstand-ndvin-1.png index 77f0471c..ef2d05fe 100644 Binary files a/_bookdown_files/NDVI_natopen_files/figure-html/west-nvdi-vs-tilstand-ndvin-1.png and b/_bookdown_files/NDVI_natopen_files/figure-html/west-nvdi-vs-tilstand-ndvin-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/NDVI-major-basic-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/NDVI-major-basic-ndvis-1.png index 80f83507..f79746bb 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/NDVI-major-basic-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/NDVI-major-basic-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/central-nvdi-vs-tilstand-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/central-nvdi-vs-tilstand-ndvis-1.png index 214b14d7..edbfabb6 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/central-nvdi-vs-tilstand-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/central-nvdi-vs-tilstand-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/east-nvdi-vs-tilstand-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/east-nvdi-vs-tilstand-ndvis-1.png index 5ead6f71..7c201634 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/east-nvdi-vs-tilstand-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/east-nvdi-vs-tilstand-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-1.png index 99dacecc..d54b842a 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-2.png b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-2.png index 4a7f7baa..4f8c058c 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-2.png and b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-2.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-3.png b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-3.png index 6cc9d8f6..3f1e256d 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-3.png and b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-3.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-4.png b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-4.png index 279e193d..d2217e30 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-4.png and b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-4.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-5.png b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-5.png index 81c42550..c7b1a341 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-5.png and b/_bookdown_files/NDVI_seminat_files/figure-html/important-variables-ndvis-5.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-condition-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-condition-ndvis-1.png index 609ea44b..3cbe6809 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-condition-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-condition-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-regions-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-regions-ndvis-1.png index 95c4ed1b..fb05c34c 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-regions-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/ndvi-regions-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/north-nvdi-vs-tilstand-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/north-nvdi-vs-tilstand-ndvis-1.png index e6cb83d6..a644428d 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/north-nvdi-vs-tilstand-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/north-nvdi-vs-tilstand-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/south-nvdi-vs-tilstand-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/south-nvdi-vs-tilstand-ndvis-1.png index 42a2a0f9..b51adcb1 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/south-nvdi-vs-tilstand-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/south-nvdi-vs-tilstand-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_seminat_files/figure-html/west-nvdi-vs-tilstand-ndvis-1.png b/_bookdown_files/NDVI_seminat_files/figure-html/west-nvdi-vs-tilstand-ndvis-1.png index 7b602a0f..1aae3d58 100644 Binary files a/_bookdown_files/NDVI_seminat_files/figure-html/west-nvdi-vs-tilstand-ndvis-1.png and b/_bookdown_files/NDVI_seminat_files/figure-html/west-nvdi-vs-tilstand-ndvis-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/NDVI-major-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/NDVI-major-ndviw-1.png index 4a3ffdcd..ef584e82 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/NDVI-major-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/NDVI-major-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/central-nvdi-vs-tilstand-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/central-nvdi-vs-tilstand-ndviw-1.png index 76a3215f..c17ccb38 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/central-nvdi-vs-tilstand-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/central-nvdi-vs-tilstand-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/east-nvdi-vs-tilstand-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/east-nvdi-vs-tilstand-ndviw-1.png index d0386693..38c3967a 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/east-nvdi-vs-tilstand-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/east-nvdi-vs-tilstand-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv1-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv1-1.png index e8a3d481..aa5a904a 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv1-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv1-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv10-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv10-1.png index ea40851a..ea3fbb0f 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv10-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv10-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv9-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv9-1.png index 8ab44410..3d9091ff 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv9-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/important-variables-ndviwv9-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-condition-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-condition-ndviw-1.png index 48832853..123ce551 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-condition-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-condition-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-regions-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-regions-ndviw-1.png index b330993f..2c3acdd2 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-regions-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/ndvi-regions-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/north-nvdi-vs-tilstand-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/north-nvdi-vs-tilstand-ndviw-1.png index 6ff2b4e9..429fe45f 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/north-nvdi-vs-tilstand-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/north-nvdi-vs-tilstand-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/south-nvdi-vs-tilstand-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/south-nvdi-vs-tilstand-ndviw-1.png index 25496265..61d02013 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/south-nvdi-vs-tilstand-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/south-nvdi-vs-tilstand-ndviw-1.png differ diff --git a/_bookdown_files/NDVI_wetland_files/figure-html/west-nvdi-vs-tilstand-ndviw-1.png b/_bookdown_files/NDVI_wetland_files/figure-html/west-nvdi-vs-tilstand-ndviw-1.png index 6f0b814d..04fa3ff5 100644 Binary files a/_bookdown_files/NDVI_wetland_files/figure-html/west-nvdi-vs-tilstand-ndviw-1.png and b/_bookdown_files/NDVI_wetland_files/figure-html/west-nvdi-vs-tilstand-ndviw-1.png differ diff --git a/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-22-1.png b/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-22-1.png index fb0676a7..e6429654 100644 Binary files a/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-22-1.png and b/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-22-1.png differ diff --git a/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-36-1.png b/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-36-1.png index af485321..4aeafb5b 100644 Binary files a/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-36-1.png and b/_bookdown_files/climate_indicators_explained_files/figure-html/unnamed-chunk-36-1.png differ diff --git a/_bookdown_files/climate_indicators_explained_files/figure-html/withMasking-1.png b/_bookdown_files/climate_indicators_explained_files/figure-html/withMasking-1.png index c413b3b3..ca2a8873 100644 Binary files a/_bookdown_files/climate_indicators_explained_files/figure-html/withMasking-1.png and b/_bookdown_files/climate_indicators_explained_files/figure-html/withMasking-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-1.png new file mode 100644 index 00000000..e8ccdd8b Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-v2-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-v2-1.png new file mode 100644 index 00000000..4f699111 Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/fpiw-plot-maintype-v2-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp-fpiw-1.png new file mode 100644 index 00000000..c694f3f4 Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp2-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp2-fpiw-1.png new file mode 100644 index 00000000..9e720869 Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/n-distcomp2-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/pH-distcomp-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/pH-distcomp-fpiw-1.png new file mode 100644 index 00000000..7dc2dfdb Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/pH-distcomp-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-distcomp2-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-distcomp2-fpiw-1.png new file mode 100644 index 00000000..73cb5521 Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-distcomp2-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-lower-map-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-lower-map-fpiw-1.png new file mode 100644 index 00000000..7a2722da Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-lower-map-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-map-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-map-fpiw-1.png new file mode 100644 index 00000000..1d987e1b Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-map-fpiw-1.png differ diff --git a/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-se-fpiw-1.png b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-se-fpiw-1.png new file mode 100644 index 00000000..df79dbdd Binary files /dev/null and b/_bookdown_files/functional_plant_indicators_wetland_files/figure-html/ph-se-fpiw-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot2-1.png b/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot2-1.png index 7658614c..39ca79cd 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot2-1.png and b/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot2-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot_map-1.png b/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot_map-1.png index a43100d3..23e71e1f 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot_map-1.png and b/_bookdown_files/insectIndicators_files/figure-html/diff_beetle_richness_boot_map-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/map_plot_cutout-1.png b/_bookdown_files/insectIndicators_files/figure-html/map_plot_cutout-1.png index 5ec0c931..7737e072 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/map_plot_cutout-1.png and b/_bookdown_files/insectIndicators_files/figure-html/map_plot_cutout-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/map_plot_whole-1.png b/_bookdown_files/insectIndicators_files/figure-html/map_plot_whole-1.png index 30ff534a..f4caf9c7 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/map_plot_whole-1.png and b/_bookdown_files/insectIndicators_files/figure-html/map_plot_whole-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/poll_richness_boot-1.png b/_bookdown_files/insectIndicators_files/figure-html/poll_richness_boot-1.png index 30f94806..6fb00b5a 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/poll_richness_boot-1.png and b/_bookdown_files/insectIndicators_files/figure-html/poll_richness_boot-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-34-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-34-1.png index da5fb73b..6f790f6e 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-34-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-34-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-46-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-46-1.png index e53f385e..6da43e82 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-46-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-46-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-52-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-52-1.png index 27489432..bb7e8d88 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-52-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-52-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-59-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-59-1.png index a4d4cc88..4a4af347 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-59-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-59-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-65-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-65-1.png index 802056b3..e4194d43 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-65-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-65-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-73-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-73-1.png index 63c28142..15ef242c 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-73-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-73-1.png differ diff --git a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-79-1.png b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-79-1.png index f60f77b3..c96c7004 100644 Binary files a/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-79-1.png and b/_bookdown_files/insectIndicators_files/figure-html/unnamed-chunk-79-1.png differ diff --git a/docs/Functional-plant-indicators-open.html b/docs/Functional-plant-indicators-open.html index 5be9ae9d..aedfaa0d 100644 --- a/docs/Functional-plant-indicators-open.html +++ b/docs/Functional-plant-indicators-open.html @@ -10,7 +10,7 @@ - + @@ -81,8 +81,8 @@

  • 4 Median Summer Temperature
  • 5 Alien species
  • 6 Functional Plant Indicators - Wetlands
  • -
  • 7 Functional Plant Indicators - Semi-Natural Ecosystems
  • -
  • 8 Functional Plant Indicators - Naturally Open Ecosystems
  • +
  • 7 Functional Plant Indicators - Semi-Natural Ecosystems
  • +
  • 8 Functional Plant Indicators - Naturally Open Ecosystems
  • 9 Trophic level biomass ratios
  • 10 Insect indicators
  • R & D
  • @@ -106,9 +106,9 @@

    -
    +

    -8 Functional Plant Indicators - Naturally Open Ecosystems +8 Functional Plant Indicators - Naturally Open Ecosystems


    Norwegian name: Planteindikatorer @@ -156,9 +156,9 @@

    Functional plant indicators can be used to describe the functional signature of plant communities by calculating community-weighted means of plant indicator values for plant communities (Diekmann 2003). The functional signature of plant communities may be indicative of ecosystem identity, depending on which functional plant indicator we look at (cf. Töpper et al. 2018). For instance, using an indicator for moisture one would find a functional signature with higher moisture values for plant communities in mires compared to e.g. grasslands or forests. Deviations in the functional signature of such an indicator beyond a certain range of indicator values (as there of course is natural variation of functional signatures within an ecosystem type) may be related to a reduction in ecological condition. Here, we combine functional plant indicator data with field sampled plant community data from the Norwegian nature monitoring programs ANO (Tingstad et al. 2019) and GRUK (Evju et al. 2020) for naturally open ecosystems below tree line (abbreviated as ‘nat-open’ henceforth). We calculate the functional signature of plant communities in the monitored sites with respect to Grime’s CSR values, light, nitrogen, and soil disturbance. These functional signatures are then compared to reference distributions of functional signature, separately for each nat-open ecosystem type, calculated from ‘generalized species lists’ developed for ecosystem types in the Norwegian categorization system for eco-diversity (Halvorsen et al. 2020). These plant functional condition indicators are developed following the principles and technical protocol of the IBECA framework (Jakobsson et al. 2021, Töpper & Jakobsson 2021). Note that deviations from the reference may occur in both directions, e.g. the nitrogen signature from the testing data may be higher or lower than in the reference. Deviations in these two directions indicate very different environmental phenomena and thus have to be treated separately. Therefore, we develop two condition indicators for each functional plant indicator, a lower one and an upper one (see further down for more details).

    -
    +

    -8.2 About the underlying data +8.2 About the underlying data

    In the ‘functional plant indicator’ project for nat-open ecosystems, we use five sets of data for building indicators for ecological condition:

      @@ -181,9 +181,9 @@

    • The Swedish plant indicator set published by Tyler et al. (2021) contains a large collection of plant indicators based on the Swedish flora, which is well representative of the Norwegian flora as well. From this set, we decided to include indicator data for light, moisture, pH, nitrogen, phosphorus, grazing_mowing, and soil disturbance for semi-natural ecosystems, as these are thought to be subject to potential change due to abandonment, drainage/flooding, pollution, and erosion.

    • Grime’s system of plant strategy scores (Grime 1974) comprises relative (too one another) scores for the competition-, stress-, and disturbance(“ruderality”)-related life strategy of plant species. In the analysis in this document, we use all three variables, C, S and R, as different pressures acting on the ecosystem might change every one of the strategies (e.g. alien species for competition, climate change for stress, land use change for ruderality).

    • -
      +

      -8.2.1 Representativity in time and space +8.2.1 Representativity in time and space

      For nat-open ecosystems, the ANO data in this analysis contain 143 plots in 52 sites, in principle distributed randomly across the country. As nat-open ecosystems occur more often in certain regions of Norway than in others, the amount of plots and sites is not equal among Norway’s five regions. The 143 plots are distributed across regions in the following way:

        @@ -203,9 +203,9 @@

      • Southern Norway: 61
      -
      +

      -8.2.2 Temporal coverage +8.2.2 Temporal coverage

      The ANO evaluation data cover the first three years, 2019-2021, of the first 5-year-cycle in the ANO monitoring scheme. GRUK covers 2020-2022. Thus, there is no actual time series to these data, and the indicator evaluation does therefore not include any temporal analyses.

      @@ -216,13 +216,13 @@

      -
      +

      -8.4 Reference state and values +8.4 Reference state and values

      -
      +

      -8.4.1 Reference state +8.4.1 Reference state

      The reference state is defined via the functional signature of the generalized species lists for NiN ecosystem types (see also Töpper et al. 2018). For the nat-open ecosystem types these lists have been newly prepared by Evju et al. (2023). By bootstrapping the species lists (see details further below) and calculating community-weighted means of functional plant indicators for every re-sampled community, we describe the reference state as a distribution of indicator values for each respective plant functional indicator. These distributions are calculated for minor ecosystem types (“grunntyper” or “kartleggingsenheter” at a 1:5000 mapping scale) within the major ecosystem types (hovedtyper) in NiN. A more extensive discussion on the use of reference communities can be found in Jakobsson et al. (2020).

      @@ -233,15 +233,15 @@

      In this analysis, we derive scaling values from statistical (here, non-parametric) distributions (see Jakobsson et al. 2010). For each ecosystem sub-type and plant functional indicator, the reference value is defined as the median value of the indicator value distribution. As in most cases the distributions naturally are two-sided (but see the Heat-requirement indicator in the mountain assessment for an example of a one-sided functional plant indicator, Framstad et al. 2022), and deviation from the optimal state thus may occur in both direction (e.g. indicating too low or too high pH), we need to define two threshold values for good ecological condition as well as both a minimum and maximum value. In line with previous assessments of ecological condition for Norwegian forests and mountains, we define a lower and an upper threshold value via the 95% confidence interval of the reference distribution, i.e. its 0.025 and 0.975 quantiles. The minimum and maximum values are given by the minimum and maximum of the possible indicator values for each respective plant functional indicator. For details on the scaling principles in IBECA, please see Töpper & Jakobsson (2021).

      -
      +

      -8.5 Uncertainties +8.5 Uncertainties

      We can calculate a mean indicator value (after scaling) for every region (or any other delimited area of interest) as well as its corresponding standard error as a measure of spatial uncertainty for a geographical area.

      -
      +

      -8.6 References +8.6 References

      Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology 4: 493-506, doi:10.1078/1439-1791-00185

      Evju, M., Stabbetorp, O.E., Olsen, S.L., Bratli, H., Often, A. & Bakkestuen, V. 2020. Dry calcareous grasslands in the Oslofjord region. A test of monitoring protocols and results for 2020. NINA Report 1910. Norwegian Institute for Nature Research.

      @@ -279,7 +279,7 @@

      (not shown here, but documented in the code)

    leaving us with the monitoring data including plant indicators (ANO.sp.ind, GRUK.species.ind) and the reference data including plant indicators (NiN.natopen.cov)

    -
    +
     head(ANO.sp.ind)
     #>      Species art_dekning
     #> 1 Abies alba           0
    @@ -536,7 +536,7 @@ 
  • in every bootstrap iteration the abundance of the sampled species can be randomly changed by a limited amount if wished by introducing a re-sampling of abundance values from adjacent abundance steps with a certain probability (var.abun)
  • Running the bootstraps

    -
    +
     colnames(NiN.natopen)
     # 1st column is the species
     # 6th-71st column is the abundances of sp in different ecosystem types
    @@ -555,7 +555,7 @@ 
    natopen.ref.cov[[i]][,j] <- v } }
    -
    +
     head(natopen.ref.cov[[1]])
     #>      T2-C-1     T2-C-2     T2-C-3     T2-C-4    T2-C-5
     #> 1 0.2845850 0.25000000 0.14655172 0.10347682 0.2346319
    @@ -3232,7 +3232,7 @@ 
    #> 3rd Qu.:4.76404 3rd Qu.:4.6944 3rd Qu.:2.500 #> Max. :7.63252 Max. :8.8259 Max. :9.000 #> NA's :192 NA's :192
    -
    +
     head(natopen.ref.cov.val)
     #>        N1 hoved  grunn county region Ind        Rv
     #> 1 natopen    NA T2-C-1    all    all CC1 0.2187255
    @@ -3250,7 +3250,7 @@ 
    #> 6 0.39205879 1

    Once test data (ANO, GRUK) and the scaling values from the reference data are in place, we can calculate community-weighted means (CWM) of the selected indicators for the ANO and GRUK community data and scale them against the scaling values from the reference distribution. Note that we scale each ANO/GRUK plot’s CWM against either the lower threshold value and the min value OR the upper threshold value and the max value based on whether the CWM is smaller or higher than the reference value. Since the scaled values for both sides range between 0 and 1, we generate separate lower and upper condition indicators for each functional plant indicator. An ANO/GRUK plot can only have a scaled value in either the lower or the upper indicator (the other one will be ‘NA’), except for the unlikely event that the CWM exactly matches the reference value, in which case both lower and upper indicator will receive a scaled indicator value of 1.

    Here is the scaling function

    -
    +
     
     #### scaled values ####
     r.s <- 1    # reference value
    @@ -3287,7 +3287,7 @@ 
    }

    We then can prepare a list of data frames to hold the results and perform the scaling according to the principles described in NINA report 1967 (Töpper and Jakobsson 2021) This is done separately for ANO and ASO. First for ANO:

    -
    +
     
     #### calculating scaled and non-truncated values for the indicators based on the dataset ####
     for (i in 1:nrow(ANO.natopen) ) {  #
    @@ -3570,7 +3570,7 @@ 
    results.natopen.ANO[['2-sided']]$Soil_disturbance1[results.natopen.ANO[['2-sided']]$Soil_disturbance1>1] <- NA results.natopen.ANO[['2-sided']]$Soil_disturbance2[results.natopen.ANO[['2-sided']]$Soil_disturbance2>1] <- NA

    and for GRUK:

    -
    +
     
     #### calculating scaled and non-truncated values for the indicators based on the dataset ####
     for (i in 1:nrow(GRUK.natopen) ) {  #
    @@ -3804,7 +3804,7 @@ 
    results.natopen.GRUK[['2-sided']]$Soil_disturbance1[results.natopen.GRUK[['2-sided']]$Soil_disturbance1>1] <- NA results.natopen.GRUK[['2-sided']]$Soil_disturbance2[results.natopen.GRUK[['2-sided']]$Soil_disturbance2>1] <- NA
    -
    +
     head(results.natopen.ANO[['2-sided']])
     #>                                 GlobalID
     #> 1 {A24A765B-A1B4-4AF7-A1B9-A4A3F61F6295}
    @@ -4276,7 +4276,7 @@ 

    8.7.1.2 Scaled value analyses

    In order to visualize the results we need to rearrange the results-objects from wide to long format (note that there is both a lower and an upper condition indicator for each of the functional plant indicators).

    -
    +
     #### plotting scaled values by main ecosystem type ####
     ## continuing with 2-sided
     res.natopen.ANO <- results.natopen.ANO[['2-sided']]
    @@ -4349,15 +4349,15 @@ 

    )

    -
    +

    -8.7.2 Ecosystem sub-types +8.7.2 Ecosystem sub-types

    And we can show the resulting scaled values as Violin plots for each indicator and main ecosystem type The ANO results show a high frequency of too low CSR-R values (CSR-R1) and Soil disturbance while also showing signs of higher than expected competition (CSR-C2), which indicates that a number of naturally open areas are changing in their dominance structure and physical stability. The GRUK data show a generally large spread of scaled values, but the violin plots (the shapes indicate the relative amount of observations across the y-axis) suggest that there is a number of sites with too high nitrogen (Nitrogen2), and some sites with too much disturbance (CSR-R2) and light (Light2). Many GRUK sites are popular outdoor locations with the local population, which could increase disturbance and thus cause deviations towards high CSR-R values (CSR-R2). Increased nitrogen may be an effect of alien species, which the GRUK data records as a major pressure and problem for many monitoring sites.

    -
    +
     colnames(res.natopen.GRUK)[38] <- "fremmedartsdekning"
     ggplot(res.natopen.GRUK[res.natopen.GRUK$fp_ind=="Nitrogen2",], aes(x=fremmedartsdekning, y=scaled_value)) +
       geom_point() +
    @@ -4391,7 +4391,7 @@ 

    #> Projected CRS: ETRS89 / UTM zone 33N

    For GRUK we can zoom in on the area around the Oslofjord…

    -
    +
     boks <- st_bbox(c(xmin = 10.3, xmax = 10.8, ymax = 59.95, ymin = 59.4), crs = st_crs(4326))
     
     tm_shape(regnor,bbox=boks) +
    @@ -4418,7 +4418,7 @@ 

    (ii) both the ANO and the GRUK datasets have a nested structure

    Therefore, we need to (i) use a beta-model, that (ii) can account for the nested structure of the data. Here, we apply the following function using either a glmmTMB null-model with a beta-distribution, logit link, and the nesting as a random intercept, or a simple betareg null-model with logit link if the nesting is not extensive enough for a mixed model.

    -
    +
     
     expit <- function(L) exp(L) / (1+exp(L)) # since the beta-models use a logit link, we need to calculate the estimates back to the identity scale
     
    @@ -4472,7 +4472,7 @@ 

    } }

    -
    +
     # we have to join the ANO and GRUK results spatial objects with the Norway and region mask
     res.natopen.ANO2 = st_join(res.natopen.ANO2, regnor, left = TRUE)
     res.natopen.GRUK2 = st_join(res.natopen.GRUK2, regnor, left = TRUE)
    @@ -4494,7 +4494,7 @@ 

    "0.7 - 0.8", "0.8 - 0.9", "0.9 - 1.0", "NA"), title = "index values")

    -
    +
     # they seem to lie in water
     # all sites but the southernmost one are in Eastern Norway, the remaining one in Southern Norway
     summary(res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),"y"])
    @@ -4585,7 +4585,7 @@ 

    Mean index value by region for the lower CSR-R indicator (i.e. index shows deviations towards less ruderal species) from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.
    -
    +
     # se
     tm_shape(regnor) +
       tm_polygons(col="RR1.ANO.reg.se", title="CSR-R (lower)", style="quantile", palette=(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
    @@ -4594,7 +4594,7 @@ 

    Standard error to the mean index value by region for the lower CSR-R indicator from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.

    And here are the corresponding maps for the upper Nitrogen indicator in the GRUK data:

    -
    +
     ## scaled value maps for Nitrogen2 (upper indicator), ASO
     # mean
     tm_shape(regnor) +
    @@ -4603,7 +4603,7 @@ 

    Mean index value by region for the upper Nitrogen indicator (i.e. index shows deviations towards increased Nitrogen affinity in the plant community) from the GRUK monitoring data. Numbers in grey fields show the number of observations in the respective region.
    -
    +
     # se
     tm_shape(regnor) +
       tm_polygons(col="Nitrogen2.GRUK.reg.se", title="Nitrogen (upper), 2 SE", style="quantile", palette=(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
    @@ -4622,7 +4622,7 @@ 

    We can also compare the unscaled values to the reference distribution in order to identify ecosystem types and functional plant indicators showing a deviation from the expectation. Since CSR-R for ANO and nitrogen for GRUK show some deviations, we exemplify this with these indicators for unscaled values.

    CSR-R, ANO:

    -
    +
     #summary(res.natopen.ANO[!is.na(res.natopen.ANO$original),]$kartleggingsenhet_1m2)
     #sort(unique(res.natopen.ANO$kartleggingsenhet_1m2))
     # 8 NiN-types with data to plot
    @@ -4650,7 +4650,7 @@ 

    legend("topright", legend=c("reference","field data"), pch=c(NULL,1), lty=1, col=c("black","red"),bty="n", cex=1)

    Nitrogen, GRUK

    -
    +
     
     # only two NiN types in GRUK, T2-C-7 and T2-C-8
     par(mfrow=c(1,2))
    @@ -4686,32 +4686,32 @@ 

    -
    +

    -7 Functional Plant Indicators - Semi-Natural Ecosystems +7 Functional Plant Indicators - Semi-Natural Ecosystems


    Norwegian name: Planteindikatorer @@ -154,9 +154,9 @@

    Functional plant indicators can be used to describe the functional signature of plant communities by calculating community-weighted means of plant indicator values for plant communities (Diekmann 2003). The functional signature of plant communities may be indicative of ecosystem identity, depending on which functional plant indicator we look at (cf. Töpper et al. 2018). For instance, using an indicator for moisture one would find a functional signature with higher moisture values for plant communities in mires compared to e.g. grasslands or forests. Deviations in the functional signature of such an indicator beyond a certain range of indicator values (as there of course is natural variation of functional signatures within an ecosystem type) may be related to a reduction in ecological condition. Here, we combine functional plant indicator data with field sampled plant community data from the Norwegian nature monitoring program ANO (Tingstad et al. 2019) for semi-natural ecosystems. We calculate the functional signature of plant communities in the monitored sites with respect to light, moisture, pH, nitrogen, phosphorus, grazing_mowing, and soil disturbance. These functional signatures are then compared to reference distributions of functional signature, separately for each semi-natural ecosystem type, calculated from ‘generalized species lists’ underlying the Norwegian categorization system for eco-diversity (Halvorsen et al. 2020). These plant functional condition indicators are developed following the principles and technical protocol of the IBECA framework (Jakobsson et al. 2021, Töpper & Jakobsson 2021). Note that deviations from the reference may occur in both directions, e.g. the soil disturbance signature from the testing data may be higher or lower than in the reference. Deviations in these two directions indicate very different environmental phenomena and thus have to be treated separately. Therefore, we develop two condition indicators for each functional plant indicator, a lower one and an upper one (see further down for more details).

    -
    +

    -7.2 About the underlying data +7.2 About the underlying data

    In the ‘functional plant indicator’ project for semi-natural ecosystems, we use four sets of data for building indicators for ecological condition:

      @@ -177,9 +177,9 @@

      The generalized species lists underlying the ecosystem categorization in NiN represent expert-compiled species lists based on empirical evidence from the literature and expert knowledge of the systems and their species. In these lists, every species is assigned an abundance value on a 6-step scale, with each step representing a range for the ‘expected combination of frequency and cover’ of occurrence (1: < 1/32, 2: 1/32 - 1/8 , 3: 1/8 - 3/8, 4: 3/8 - 4/5, 5: 3/8 - 4/5 + dominance, 6: > 4/5). For the purpose of this project, these steps are simplified to maximum ‘expected combination of frequency and cover’, whereby steps 4 & 5 are assigned 0.6 and 0.8, respectively, in order to distinguish between them.

    • The Swedish plant indicator set published by Tyler et al. (2021) contains a large collection of plant indicators based on the Swedish flora, which is well representative of the Norwegian flora as well. From this set, we decided to include indicator data for light, moisture, pH, nitrogen, phosphorus, grazing_mowing, and soil disturbance for semi-natural ecosystems as these are thought to be subject to potential change due to abandonment, drainage/flooding, pollution, and erosion.

    • -
      +

      -7.2.1 Representativity in time and space +7.2.1 Representativity in time and space

      For semi-natural ecosystems, the ANO data in this analysis contain 233 plots in 83 sites, in principle distributed randomly across the country. As semi-natural ecosystems occur more often in certain regions of Norway than in others, the amount of plots and sites is not equal among Norway’s five regions. The 233 plots are distributed across regions in the following way:

        @@ -199,9 +199,9 @@

      • Southern Norway: 3
      -
      +

      -7.2.2 Temporal coverage +7.2.2 Temporal coverage

      The ANO evaluation data cover the first three years, 2019-2021, of the first 5-year-cycle in the ANO monitoring scheme, as well as the 2022 ASO-data. Thus there is no actual time series to these data, and the indicator evaluation does therefore not include any temporal analyses.

      @@ -212,13 +212,13 @@

      -
      +

      -7.4 Reference state and values +7.4 Reference state and values

      -
      +

      -7.4.1 Reference state +7.4.1 Reference state

      The reference state is defined via the functional signature of the generalized species lists in NiN (see also Töpper et al. 2018). By bootstrapping the species lists (see details further below) and calculating community-weighted means of functional plant indicators for every re-sampled community, we describe the reference state as a distribution of indicator values for each respective plant functional indicator. These distributions are calculated for minor ecosystem types (“grunntyper” or “kartleggingsenheter” at a 1:5000 mapping scale) within the major ecosystem types (hovedtyper) in NiN. A more extensive discussion on the use of reference communities can be found in Jakobsson et al. (2020).

      @@ -229,15 +229,15 @@

      In this analysis, we derive scaling values from statistical (here, non-parametric) distributions (see Jakobsson et al. 2010). For each ecosystem sub-type and plant functional indicator, the reference value is defined as the median value of the indicator value distribution. As in most cases the distributions naturally are two-sided (but see the Heat-requirement indicator in the mountain assessment for an example of a one-sided functional plant indicator, Fremstad et al. 2022), and deviation from the optimal state thus may occur in both direction (e.g. indicating too low or too high pH), we need to define two threshold values for good ecological condition as well as both a minimum and maximum value. In line with previous assessments of ecological condition for Norwegian forests and mountains, we define a lower and an upper threshold value via the 95% confidence interval of the reference distribution, i.e. its 0.025 and 0.975 quantiles. The minimum and maximum values are given by the minimum and maximum of the possible indicator values for each respective plant functional indicator. For details on the scaling principles in IBECA, please see Töpper & Jakobsson (2021).

      -
      +

      -7.5 Uncertainties +7.5 Uncertainties

      We can calculate a mean indicator value (after scaling) for every region (or any other delimited area of interest) as well as its corresponding standard error as a measure of spatial uncertainty for a geographical area.

      -
      +

      -7.6 References +7.6 References

      Bär, A., Albertsen, E., Bele, B., Daugstad, K., Grenne, S.N., Jakobsson, S., Solbu, E.B., Thorvaldsen, P., Vesterbukt, P., Wehn, S. & Johansen, L. 2021. Utvikling av nasjonal arealrepresentativ overvåking av semi-naturlig eng (ASO). Uttesting, ferdigstilling og utvalg av områder. NIBIO Rapport 7 (7). 84 s.

      Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology 4: 493-506, doi:10.1078/1439-1791-00185

      @@ -274,7 +274,7 @@

      (not shown here, but documented in the code)

    leaving us with the monitoring data including plant indicators (ANO.sp.ind) and the reference data including plant indicators (NiN.wetland.cov)

    -
    +
     head(ANO.sp.ind)
     #>      Species art_dekning
     #> 1 Abies alba           0
    @@ -376,7 +376,7 @@ 
  • in every bootstrap iteration the abundance of the sampled species can be randomly changed by a limited amount if wished by introducing a re-sampling of abundance values from adjacent abundance steps with a certain probability (var.abun)
  • Running the bootstraps

    -
    +
     colnames(NiN.seminat)
     # 1st column is the species
     # 2nd-35th column is the abundances of sp in different ecosystem types
    @@ -396,7 +396,7 @@ 
    seminat.ref.cov[[i]][,j] <- v } }
    -
    +
     head(seminat.ref.cov[[1]])
     #>     T34-C1  T34-C2a  T34-C2b  T34-C2c   T34-C3  T34-C4a
     #> 1 4.495751 4.668869 5.187970 4.913599 4.471859 5.044185
    @@ -1905,7 +1905,7 @@ 
    #> 3rd Qu.: 9 #> Max. :12 #>
    -
    +
     head(seminat.ref.cov.val)
     #>        N1 hoved   grunn county region    Ind       Rv
     #> 1 seminat    NA T34-C-1    all    all Light1 4.455855
    @@ -1923,7 +1923,7 @@ 
    #> 6 5.358364 7

    Once test data (ANO) and the scaling values from the reference data (NiN) are in place, we can calculate CWMs of the selected indicators for the ANO community data and scale them against the scaling values from the reference distribution. Note that we scale each ANO plot’s CWM against either the lower threshold value and the min value OR the upper threshold value and the max value based on whether the CWM is smaller or higher than the reference value. Since the scaled values for both sides range between 0 and 1, we generate separate lower and upper condition indicators for each functional plant indicator. An ANO plot can only have a scaled value in either the lower or the upper indicator (the other one will be ‘NA’), except for the unlikely event that the CWM exactly matches the reference value, in which case both lower and upper indicator will receive a scaled indicator value of 1.

    Here is the scaling function

    -
    +
     
     #### scaled values ####
     r.s <- 1    # reference value
    @@ -1960,7 +1960,7 @@ 
    }

    We then can prepare a list of data frames to hold the results and perform the scaling according to the principles described in NINA report 1967 (Töpper and Jakobsson 2021) This is done separately for ANO and ASO. First for ANO:

    -
    +
     
     #### calculating scaled and non-truncated values for the indicators based on the dataset ####
     for (i in 1:nrow(ANO.seminat) ) {  #
    @@ -2210,7 +2210,7 @@ 
    results.seminat.ANO[['2-sided']]$Soil_disturbance1[results.seminat.ANO[['2-sided']]$Soil_disturbance1>1] <- NA results.seminat.ANO[['2-sided']]$Soil_disturbance2[results.seminat.ANO[['2-sided']]$Soil_disturbance2>1] <- NA

    and for ASO:

    -
    +
     
     #### calculating scaled and non-truncated values for the indicators based on the dataset ####
     for (i in 1:nrow(ASO.geo) ) {  #
    @@ -2455,7 +2455,7 @@ 
    results.seminat.ASO[['2-sided']]$Soil_disturbance1[results.seminat.ASO[['2-sided']]$Soil_disturbance1>1] <- NA results.seminat.ASO[['2-sided']]$Soil_disturbance2[results.seminat.ASO[['2-sided']]$Soil_disturbance2>1] <- NA
    -
    +
     head(results.seminat.ANO[['2-sided']])
     #>                                 GlobalID
     #> 1 {6A82CBAF-BD0F-40EE-9ECD-679D064DA5D2}
    @@ -2976,7 +2976,7 @@ 

    7.7.1.2 Scaled value analyses

    In order to visualize the results we need to rearrange the results-objects from wide to long format (note that there is both a lower and an upper condition indicator for each of the functional plant indicators).

    -
    +
     #### plotting scaled values by main ecosystem type ####
     ## continuing with 2-sided
     res.seminat.ANO <- results.seminat.ANO[['2-sided']]
    @@ -3054,9 +3054,9 @@ 

    )

    -
    +

    -7.7.2 Ecosystem sub-types +7.7.2 Ecosystem sub-types

    And we can show the resulting scaled values as Violin plots for each indicator and main ecosystem type @@ -3095,7 +3095,7 @@

    (ii) both the ANO and the ASO datasets have a nested structure

    Therefore, we need to (i) use a beta-model, that (ii) can account for the nested structure of the data. Here, we apply the following function using either a glmmTMB null-model with a beta-distribution, logit link, and the nesting as a random intercept, or a simple betareg null-model with logit link if the nesting is not extensive enough for a mixed model.

    -
    +
     library(betareg)
     library(glmmTMB)
     
    @@ -3151,7 +3151,7 @@ 

    } }

    -
    +
     
     res.seminat.ANO2 = st_join(res.seminat.ANO2, regnor, left = TRUE)
     res.seminat.ASO2 = st_join(res.seminat.ASO2, regnor, left = TRUE)
    @@ -3210,7 +3210,7 @@ 

    Mean index value by region for the upper Grazing_mowing indicator (i.e. index shows deviations towards less grazing or mowing) from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.
    -
    +
     # se
     tm_shape(regnor) +
       tm_polygons(col="Grazing_mowing1.ANO.reg.se", title="Grazing_mowing (lower), SE", style="quantile", palette=get_brewer_pal(palette="OrRd", n=5, plot=FALSE)) +
    @@ -3219,7 +3219,7 @@ 

    Standard error to the mean index value by region for the lower Grazing_mowing indicator from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.

    And here are the corresponding maps for the upper Nitrogen indicator in the ASO data:

    -
    +
     ## scaled value maps for Nitrogen2 (upper indicator), ASO
     # mean
     tm_shape(regnor) +
    @@ -3228,7 +3228,7 @@ 

    Mean index value by region for the upper Nitrogen indicator (i.e. index shows deviations towards increased Nitrogen availability) from the ASO monitoring data. Numbers in grey fields show the number of observations in the respective region.
    -
    +
     # se
     tm_shape(regnor) +
       tm_polygons(col="Nitrogen2.ASO.reg.se", title="Nitrogen (upper), SE", style="quantile", palette=get_brewer_pal(palette="OrRd", n=5, plot=FALSE)) +
    @@ -3242,7 +3242,7 @@ 

    We can also compare the unscaled values to the reference distribution in order to identify ecosystem types and functional plant indicators showing a deviation from the expectation. Since Grazing_mowing for ANO and nitrogen for ASO show some deviations we exemplify this with these indicators for unscaled values.

    Grazing_mowing, ANO:

    -
    +
     #summary(res.seminat$kartleggingsenhet_1m2)
     #length(unique(res.seminat$kartleggingsenhet_1m2))
     # 19 NiN-types, of which T41-C-1 has 0 observations, and T32 & T34 as main types don't have a reference -> so, 16 NiN-Types to plot
    @@ -3323,7 +3323,7 @@ 

    rep(0,length(res.seminat.ANO[res.seminat.ANO$fp_ind=="Grazing_mowing1" & res.seminat.ANO$kartleggingsenhet_1m2=="T32-C-10",]$original)), col="red")

    -
    +
     
     
     par(mfrow=c(2,4))
    @@ -3408,7 +3408,7 @@ 

    In the ANO data, deviations in the grazing/mowing index occur mainly in semi-natural grasslands (T32) on intermediate soils in terms of limestone (C3, C4, C6, C5 [but the latter is one category higher in limestone than intermediate]). The deviations towards low grazing/mowing values indicate that management and use are too extensive.

    Nitrogen, ASO

    -
    +
     
     #summary(res.seminat.ASO$NiN_grunntype)
     #length(levels(res.seminat.ASO$NiN_grunntype))
    @@ -3530,31 +3530,31 @@