-
Notifications
You must be signed in to change notification settings - Fork 10
/
nrlmsise00.f
2441 lines (2440 loc) · 106 KB
/
nrlmsise00.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C-----------------------------------------------------------------------
SUBROUTINE GTD7(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,D,T)
C
C NRLMSISE-00
C -----------
C Neutral Atmosphere Empirical Model from the surface to lower
C exosphere
C -- Quick Fixes for gfortran compatibility, SCS, 2017
C NEW FEATURES:
C *Extensive satellite drag database used in model generation
C *Revised O2 (and O) in lower thermosphere
C *Additional nonlinear solar activity term
C *"ANOMALOUS OXYGEN" NUMBER DENSITY, OUTPUT D(9)
C At high altitudes (> 500 km), hot atomic oxygen or ionized
C oxygen can become appreciable for some ranges of subroutine
C inputs, thereby affecting drag on satellites and debris. We
C group these species under the term "anomalous oxygen," since
C their individual variations are not presently separable with
C the drag data used to define this model component.
C
C SUBROUTINES FOR SPECIAL OUTPUTS:
C
C HIGH ALTITUDE DRAG: EFFECTIVE TOTAL MASS DENSITY
C (SUBROUTINE GTD7D, OUTPUT D(6))
C For atmospheric drag calculations at altitudes above 500 km,
C call SUBROUTINE GTD7D to compute the "effective total mass
C density" by including contributions from "anomalous oxygen."
C See "NOTES ON OUTPUT VARIABLES" below on D(6).
C
C PRESSURE GRID (SUBROUTINE GHP7)
C See subroutine GHP7 to specify outputs at a pressure level
C rather than at an altitude.
C
C OUTPUT IN M-3 and KG/M3: CALL METERS(.TRUE.)
C
C INPUT VARIABLES:
C IYD - YEAR AND DAY AS YYDDD (day of year from 1 to 365 (or 366))
C (Year ignored in current model)
C SEC - UT(SEC)
C ALT - ALTITUDE(KM)
C GLAT - GEODETIC LATITUDE(DEG)
C GLONG - GEODETIC LONGITUDE(DEG)
C STL - LOCAL APPARENT SOLAR TIME(HRS; see Note below)
C F107A - 81 day AVERAGE OF F10.7 FLUX (centered on day DDD)
C F107 - DAILY F10.7 FLUX FOR PREVIOUS DAY
C AP - MAGNETIC INDEX(DAILY) OR WHEN SW(9)=-1. :
C - ARRAY CONTAINING:
C (1) DAILY AP
C (2) 3 HR AP INDEX FOR CURRENT TIME
C (3) 3 HR AP INDEX FOR 3 HRS BEFORE CURRENT TIME
C (4) 3 HR AP INDEX FOR 6 HRS BEFORE CURRENT TIME
C (5) 3 HR AP INDEX FOR 9 HRS BEFORE CURRENT TIME
C (6) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 12 TO 33 HRS PRIOR
C TO CURRENT TIME
C (7) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 36 TO 57 HRS PRIOR
C TO CURRENT TIME
C MASS - MASS NUMBER (ONLY DENSITY FOR SELECTED GAS IS
C CALCULATED. MASS 0 IS TEMPERATURE. MASS 48 FOR ALL.
C MASS 17 IS Anomalous O ONLY.)
C
C NOTES ON INPUT VARIABLES:
C UT, Local Time, and Longitude are used independently in the
C model and are not of equal importance for every situation.
C For the most physically realistic calculation these three
C variables should be consistent (STL=SEC/3600+GLONG/15).
C The Equation of Time departures from the above formula
C for apparent local time can be included if available but
C are of minor importance.
c
C F107 and F107A values used to generate the model correspond
C to the 10.7 cm radio flux at the actual distance of the Earth
C from the Sun rather than the radio flux at 1 AU. The following
C site provides both classes of values:
C ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/
C
C F107, F107A, and AP effects are neither large nor well
C established below 80 km and these parameters should be set to
C 150., 150., and 4. respectively.
C
C OUTPUT VARIABLES:
C D(1) - HE NUMBER DENSITY(CM-3)
C D(2) - O NUMBER DENSITY(CM-3)
C D(3) - N2 NUMBER DENSITY(CM-3)
C D(4) - O2 NUMBER DENSITY(CM-3)
C D(5) - AR NUMBER DENSITY(CM-3)
C D(6) - TOTAL MASS DENSITY(GM/CM3)
C D(7) - H NUMBER DENSITY(CM-3)
C D(8) - N NUMBER DENSITY(CM-3)
C D(9) - Anomalous oxygen NUMBER DENSITY(CM-3)
C T(1) - EXOSPHERIC TEMPERATURE
C T(2) - TEMPERATURE AT ALT
C
C NOTES ON OUTPUT VARIABLES:
C TO GET OUTPUT IN M-3 and KG/M3: CALL METERS(.TRUE.)
C
C O, H, and N are set to zero below 72.5 km
C
C T(1), Exospheric temperature, is set to global average for
C altitudes below 120 km. The 120 km gradient is left at global
C average value for altitudes below 72 km.
C
C D(6), TOTAL MASS DENSITY, is NOT the same for subroutines GTD7
C and GTD7D
C
C SUBROUTINE GTD7 -- D(6) is the sum of the mass densities of the
C species labeled by indices 1-5 and 7-8 in output variable D.
C This includes He, O, N2, O2, Ar, H, and N but does NOT include
C anomalous oxygen (species index 9).
C
C SUBROUTINE GTD7D -- D(6) is the "effective total mass density
C for drag" and is the sum of the mass densities of all species
C in this model, INCLUDING anomalous oxygen.
C
C SWITCHES: The following is for test and special purposes:
C
C TO TURN ON AND OFF PARTICULAR VARIATIONS CALL TSELEC(SW),
C WHERE SW IS A 25 ELEMENT ARRAY CONTAINING 0. FOR OFF, 1.
C FOR ON, OR 2. FOR MAIN EFFECTS OFF BUT CROSS TERMS ON
C FOR THE FOLLOWING VARIATIONS
C 1 - F10.7 EFFECT ON MEAN 2 - TIME INDEPENDENT
C 3 - SYMMETRICAL ANNUAL 4 - SYMMETRICAL SEMIANNUAL
C 5 - ASYMMETRICAL ANNUAL 6 - ASYMMETRICAL SEMIANNUAL
C 7 - DIURNAL 8 - SEMIDIURNAL
C 9 - DAILY AP 10 - ALL UT/LONG EFFECTS
C 11 - LONGITUDINAL 12 - UT AND MIXED UT/LONG
C 13 - MIXED AP/UT/LONG 14 - TERDIURNAL
C 15 - DEPARTURES FROM DIFFUSIVE EQUILIBRIUM
C 16 - ALL TINF VAR 17 - ALL TLB VAR
C 18 - ALL TN1 VAR 19 - ALL S VAR
C 20 - ALL TN2 VAR 21 - ALL NLB VAR
C 22 - ALL TN3 VAR 23 - TURBO SCALE HEIGHT VAR
C
C To get current values of SW: CALL TRETRV(SW)
C
DIMENSION D(9),T(2),AP(7),DS(9),TS(2)
DIMENSION ZN3(5),ZN2(4),SV(25)
COMMON/GTS3C/TLB,S,DB04,DB16,DB28,DB32,DB40,DB48,DB01,ZA,T0,Z0
& ,G0,RL,DD,DB14,TR12
COMMON/MESO7/TN1(5),TN2(4),TN3(5),TGN1(2),TGN2(2),TGN3(2)
COMMON/LOWER7/PTM(10),PDM(10,8)
COMMON/PARM7/PT(150),PD(150,9),PS(150),PDL(25,2),PTL(100,4),
$ PMA(100,10),SAM(100)
COMMON/DATIM7/ISD(3),IST(2),NAM(2)
COMMON/DATIME/ISDATE(3),ISTIME(2),NAME(2)
COMMON/CSW/SW(25),ISW,SWC(25)
COMMON/MAVG7/PAVGM(10)
COMMON/DMIX/DM04,DM16,DM28,DM32,DM40,DM01,DM14
COMMON/PARMB/GSURF,RE
COMMON/METSEL/IMR
SAVE
EXTERNAL GTD7BK
DATA MN3/5/,ZN3/32.5,20.,15.,10.,0./
DATA MN2/4/,ZN2/72.5,55.,45.,32.5/
DATA ZMIX/62.5/,ALAST/99999./,MSSL/-999/
DATA SV/25*1./
C write(6,*) 'inside gtd7'
c write(6,*) IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,D,T
C write(6,*) f107a,f107
IF(ISW.NE.64999) CALL TSELEC(SV)
C Put identification data into common/datime/
DO 1 I=1,3
ISDATE(I)=ISD(I)
1 CONTINUE
DO 2 I=1,2
ISTIME(I)=IST(I)
NAME(I)=NAM(I)
2 CONTINUE
C
C Test for changed input
V1=VTST7(IYD,SEC,GLAT,GLONG,STL,F107A,F107,AP,1)
C Latitude variation of gravity (none for SW(2)=0)
XLAT=GLAT
IF(SW(2).EQ.0) XLAT=45.
CALL GLATF(XLAT,GSURF,RE)
C
XMM=PDM(5,3)
C
C THERMOSPHERE/MESOSPHERE (above ZN2(1))
ALTT=AMAX1(ALT,ZN2(1))
MSS=MASS
C Only calculate N2 in thermosphere if alt in mixed region
IF(ALT.LT.ZMIX.AND.MASS.GT.0) MSS=28
C Only calculate thermosphere if input parameters changed
C or altitude above ZN2(1) in mesosphere
IF(V1.EQ.1..OR.ALT.GT.ZN2(1).OR.ALAST.GT.ZN2(1).OR.MSS.NE.MSSL)
$ THEN
CALL GTS7(IYD,SEC,ALTT,GLAT,GLONG,STL,F107A,F107,AP,MSS,DS,TS)
DM28M=DM28
C metric adjustment
IF(IMR.EQ.1) DM28M=DM28*1.E6
MSSL=MSS
ENDIF
T(1)=TS(1)
T(2)=TS(2)
IF(ALT.GE.ZN2(1)) THEN
DO 5 J=1,9
D(J)=DS(J)
5 CONTINUE
GOTO 10
ENDIF
C
C LOWER MESOSPHERE/UPPER STRATOSPHERE [between ZN3(1) and ZN2(1)]
C Temperature at nodes and gradients at end nodes
C Inverse temperature a linear function of spherical harmonics
C Only calculate nodes if input changed
IF(V1.EQ.1..OR.ALAST.GE.ZN2(1)) THEN
TGN2(1)=TGN1(2)
TN2(1)=TN1(5)
TN2(2)=PMA(1,1)*PAVGM(1)/(1.-SW(20)*GLOB7S(PMA(1,1)))
TN2(3)=PMA(1,2)*PAVGM(2)/(1.-SW(20)*GLOB7S(PMA(1,2)))
TN2(4)=PMA(1,3)*PAVGM(3)/(1.-SW(20)*SW(22)*GLOB7S(PMA(1,3)))
TGN2(2)=PAVGM(9)*PMA(1,10)*(1.+SW(20)*SW(22)*GLOB7S(PMA(1,10)))
$ *TN2(4)*TN2(4)/(PMA(1,3)*PAVGM(3))**2
TN3(1)=TN2(4)
ENDIF
IF(ALT.GE.ZN3(1)) GOTO 6
C
C LOWER STRATOSPHERE AND TROPOSPHERE [below ZN3(1)]
C Temperature at nodes and gradients at end nodes
C Inverse temperature a linear function of spherical harmonics
C Only calculate nodes if input changed
IF(V1.EQ.1..OR.ALAST.GE.ZN3(1)) THEN
TGN3(1)=TGN2(2)
TN3(2)=PMA(1,4)*PAVGM(4)/(1.-SW(22)*GLOB7S(PMA(1,4)))
TN3(3)=PMA(1,5)*PAVGM(5)/(1.-SW(22)*GLOB7S(PMA(1,5)))
TN3(4)=PMA(1,6)*PAVGM(6)/(1.-SW(22)*GLOB7S(PMA(1,6)))
TN3(5)=PMA(1,7)*PAVGM(7)/(1.-SW(22)*GLOB7S(PMA(1,7)))
TGN3(2)=PMA(1,8)*PAVGM(8)*(1.+SW(22)*GLOB7S(PMA(1,8)))
$ *TN3(5)*TN3(5)/(PMA(1,7)*PAVGM(7))**2
ENDIF
6 CONTINUE
IF(MASS.EQ.0) GOTO 50
C LINEAR TRANSITION TO FULL MIXING BELOW ZN2(1)
DMC=0
IF(ALT.GT.ZMIX) DMC=1.-(ZN2(1)-ALT)/(ZN2(1)-ZMIX)
DZ28=DS(3)
C ***** N2 DENSITY ****
DMR=DS(3)/DM28M-1.
D(3)=DENSM(ALT,DM28M,XMM,TZ,MN3,ZN3,TN3,TGN3,MN2,ZN2,TN2,TGN2)
D(3)=D(3)*(1.+DMR*DMC)
C ***** HE DENSITY ****
D(1)=0
IF(MASS.NE.4.AND.MASS.NE.48) GOTO 204
DMR=DS(1)/(DZ28*PDM(2,1))-1.
D(1)=D(3)*PDM(2,1)*(1.+DMR*DMC)
204 CONTINUE
C **** O DENSITY ****
D(2)=0
D(9)=0
216 CONTINUE
C ***** O2 DENSITY ****
D(4)=0
IF(MASS.NE.32.AND.MASS.NE.48) GOTO 232
DMR=DS(4)/(DZ28*PDM(2,4))-1.
D(4)=D(3)*PDM(2,4)*(1.+DMR*DMC)
232 CONTINUE
C ***** AR DENSITY ****
D(5)=0
IF(MASS.NE.40.AND.MASS.NE.48) GOTO 240
DMR=DS(5)/(DZ28*PDM(2,5))-1.
D(5)=D(3)*PDM(2,5)*(1.+DMR*DMC)
240 CONTINUE
C ***** HYDROGEN DENSITY ****
D(7)=0
C ***** ATOMIC NITROGEN DENSITY ****
D(8)=0
C
C TOTAL MASS DENSITY
C
IF(MASS.EQ.48) THEN
D(6) = 1.66E-24*(4.*D(1)+16.*D(2)+28.*D(3)+32.*D(4)+40.*D(5)+
& D(7)+14.*D(8))
IF(IMR.EQ.1) D(6)=D(6)/1000.
ENDIF
T(2)=TZ
10 CONTINUE
GOTO 90
50 CONTINUE
DD=DENSM(ALT,1.,0.,TZ,MN3,ZN3,TN3,TGN3,MN2,ZN2,TN2,TGN2) ! 0. SCS 2017
T(2)=TZ
90 CONTINUE
ALAST=ALT
RETURN
END
C-----------------------------------------------------------------------
SUBROUTINE GTD7D(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,
$ D,T)
C
C NRLMSISE-00
C -----------
C This subroutine provides Effective Total Mass Density for
C output D(6) which includes contributions from "anomalous
C oxygen" which can affect satellite drag above 500 km. This
C subroutine is part of the distribution package for the
C Neutral Atmosphere Empirical Model from the surface to lower
C exosphere. See subroutine GTD7 for more extensive comments.
C
C INPUT VARIABLES:
C IYD - YEAR AND DAY AS YYDDD (day of year from 1 to 365 (or 366))
C (Year ignored in current model)
C SEC - UT(SEC)
C ALT - ALTITUDE(KM)
C GLAT - GEODETIC LATITUDE(DEG)
C GLONG - GEODETIC LONGITUDE(DEG)
C STL - LOCAL APPARENT SOLAR TIME(HRS; see Note below)
C F107A - 81 day AVERAGE OF F10.7 FLUX (centered on day DDD)
C F107 - DAILY F10.7 FLUX FOR PREVIOUS DAY
C AP - MAGNETIC INDEX(DAILY) OR WHEN SW(9)=-1. :
C - ARRAY CONTAINING:
C (1) DAILY AP
C (2) 3 HR AP INDEX FOR CURRENT TIME
C (3) 3 HR AP INDEX FOR 3 HRS BEFORE CURRENT TIME
C (4) 3 HR AP INDEX FOR 6 HRS BEFORE CURRENT TIME
C (5) 3 HR AP INDEX FOR 9 HRS BEFORE CURRENT TIME
C (6) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 12 TO 33 HRS PRIOR
C TO CURRENT TIME
C (7) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 36 TO 57 HRS PRIOR
C TO CURRENT TIME
C MASS - MASS NUMBER (ONLY DENSITY FOR SELECTED GAS IS
C CALCULATED. MASS 0 IS TEMPERATURE. MASS 48 FOR ALL.
C MASS 17 IS Anomalous O ONLY.)
C
C NOTES ON INPUT VARIABLES:
C UT, Local Time, and Longitude are used independently in the
C model and are not of equal importance for every situation.
C For the most physically realistic calculation these three
C variables should be consistent (STL=SEC/3600+GLONG/15).
C The Equation of Time departures from the above formula
C for apparent local time can be included if available but
C are of minor importance.
c
C F107 and F107A values used to generate the model correspond
C to the 10.7 cm radio flux at the actual distance of the Earth
C from the Sun rather than the radio flux at 1 AU.
C
C OUTPUT VARIABLES:
C D(1) - HE NUMBER DENSITY(CM-3)
C D(2) - O NUMBER DENSITY(CM-3)
C D(3) - N2 NUMBER DENSITY(CM-3)
C D(4) - O2 NUMBER DENSITY(CM-3)
C D(5) - AR NUMBER DENSITY(CM-3)
C D(6) - TOTAL MASS DENSITY(GM/CM3) [includes anomalous oxygen]
C D(7) - H NUMBER DENSITY(CM-3)
C D(8) - N NUMBER DENSITY(CM-3)
C D(9) - Anomalous oxygen NUMBER DENSITY(CM-3)
C T(1) - EXOSPHERIC TEMPERATURE
C T(2) - TEMPERATURE AT ALT
C
DIMENSION D(9),T(2),AP(7),DS(9),TS(2)
COMMON/METSEL/IMR
CALL GTD7(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,D,T)
C TOTAL MASS DENSITY
C
IF(MASS.EQ.48) THEN
D(6) = 1.66E-24*(4.*D(1)+16.*D(2)+28.*D(3)+32.*D(4)+40.*D(5)+
& D(7)+14.*D(8)+16.*D(9))
IF(IMR.EQ.1) D(6)=D(6)/1000.
ENDIF
RETURN
END
C-----------------------------------------------------------------------
SUBROUTINE GHP7(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,
$ D,T,PRESS)
C FIND ALTITUDE OF PRESSURE SURFACE (PRESS) FROM GTD7
C INPUT:
C IYD - YEAR AND DAY AS YYDDD
C SEC - UT(SEC)
C GLAT - GEODETIC LATITUDE(DEG)
C GLONG - GEODETIC LONGITUDE(DEG)
C STL - LOCAL APPARENT SOLAR TIME(HRS)
C F107A - 3 MONTH AVERAGE OF F10.7 FLUX
C F107 - DAILY F10.7 FLUX FOR PREVIOUS DAY
C AP - MAGNETIC INDEX(DAILY) OR WHEN SW(9)=-1. :
C - ARRAY CONTAINING:
C (1) DAILY AP
C (2) 3 HR AP INDEX FOR CURRENT TIME
C (3) 3 HR AP INDEX FOR 3 HRS BEFORE CURRENT TIME
C (4) 3 HR AP INDEX FOR 6 HRS BEFORE CURRENT TIME
C (5) 3 HR AP INDEX FOR 9 HRS BEFORE CURRENT TIME
C (6) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 12 TO 33 HRS PRIOR
C TO CURRENT TIME
C (7) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 36 TO 59 HRS PRIOR
C TO CURRENT TIME
C PRESS - PRESSURE LEVEL(MB)
C OUTPUT:
C ALT - ALTITUDE(KM)
C D(1) - HE NUMBER DENSITY(CM-3)
C D(2) - O NUMBER DENSITY(CM-3)
C D(3) - N2 NUMBER DENSITY(CM-3)
C D(4) - O2 NUMBER DENSITY(CM-3)
C D(5) - AR NUMBER DENSITY(CM-3)
C D(6) - TOTAL MASS DENSITY(GM/CM3)
C D(7) - H NUMBER DENSITY(CM-3)
C D(8) - N NUMBER DENSITY(CM-3)
C D(9) - HOT O NUMBER DENSITY(CM-3)
C T(1) - EXOSPHERIC TEMPERATURE
C T(2) - TEMPERATURE AT ALT
C
COMMON/PARMB/GSURF,RE
COMMON/METSEL/IMR
DIMENSION D(9),T(2),AP(7)
SAVE
DATA BM/1.3806E-19/,RGAS/831.4/
DATA TEST/.00043/,LTEST/12/
PL=ALOG10(PRESS)
C Initial altitude estimate
IF(PL.GE.-5.) THEN
IF(PL.GT.2.5) ZI=18.06*(3.00-PL)
IF(PL.GT..75.AND.PL.LE.2.5) ZI=14.98*(3.08-PL)
IF(PL.GT.-1..AND.PL.LE..75) ZI=17.8*(2.72-PL)
IF(PL.GT.-2..AND.PL.LE.-1.) ZI=14.28*(3.64-PL)
IF(PL.GT.-4..AND.PL.LE.-2.) ZI=12.72*(4.32-PL)
IF(PL.LE.-4.) ZI=25.3*(.11-PL)
IDAY=MOD(IYD,1000)
CL=GLAT/90.
CL2=CL*CL
IF(IDAY.LT.182) CD=1.-IDAY/91.25
IF(IDAY.GE.182) CD=IDAY/91.25-3.
CA=0
IF(PL.GT.-1.11.AND.PL.LE.-.23) CA=1.0
IF(PL.GT.-.23) CA=(2.79-PL)/(2.79+.23)
IF(PL.LE.-1.11.AND.PL.GT.-3.) CA=(-2.93-PL)/(-2.93+1.11)
Z=ZI-4.87*CL*CD*CA-1.64*CL2*CA+.31*CA*CL
ENDIF
IF(PL.LT.-5.) Z=22.*(PL+4.)**2+110
C ITERATION LOOP
L=0
10 CONTINUE
L=L+1
CALL GTD7(IYD,SEC,Z,GLAT,GLONG,STL,F107A,F107,AP,48,D,T)
XN=D(1)+D(2)+D(3)+D(4)+D(5)+D(7)+D(8)
P=BM*XN*T(2)
IF(IMR.EQ.1) P=P*1.E-6
DIFF=PL-ALOG10(P)
IF(ABS(DIFF).LT.TEST .OR. L.EQ.LTEST) GOTO 20
XM=D(6)/XN/1.66E-24
IF(IMR.EQ.1) XM = XM*1.E3
G=GSURF/(1.+Z/RE)**2
SH=RGAS*T(2)/(XM*G)
C New altitude estimate using scale height
IF(L.LT.6) THEN
Z=Z-SH*DIFF*2.302
ELSE
Z=Z-SH*DIFF
ENDIF
GOTO 10
20 CONTINUE
IF(L.EQ.LTEST) WRITE(6,100) PRESS,DIFF
100 FORMAT(1X,29HGHP7 NOT CONVERGING FOR PRESS, 1PE12.2,E12.2)
ALT=Z
RETURN
END
C-----------------------------------------------------------------------
SUBROUTINE GLATF(LAT,GV,REFF)
C CALCULATE LATITUDE VARIABLE GRAVITY (GV) AND EFFECTIVE
C RADIUS (REFF)
REAL LAT
SAVE
DATA DGTR/1.74533E-2/
C2 = COS(2.*DGTR*LAT)
GV = 980.616*(1.-.0026373*C2)
REFF = 2.*GV/(3.085462E-6 + 2.27E-9*C2)*1.E-5
RETURN
END
C-----------------------------------------------------------------------
FUNCTION VTST7(IYD,SEC,GLAT,GLONG,STL,F107A,F107,AP,IC)
C Test if geophysical variables or switches changed and save
C Return 0 if unchanged and 1 if changed
DIMENSION AP(7),IYDL(2),SECL(2),GLATL(2),GLL(2),STLL(2)
DIMENSION FAL(2),FL(2),APL(7,2),SWL(25,2),SWCL(25,2)
COMMON/CSW/SW(25),ISW,SWC(25)
SAVE
DATA IYDL/2*-999/,SECL/2*-999./,GLATL/2*-999./,GLL/2*-999./
DATA STLL/2*-999./,FAL/2*-999./,FL/2*-999./,APL/14*-999./
DATA SWL/50*-999./,SWCL/50*-999./
VTST7=0
IF(IYD.NE.IYDL(IC)) GOTO 10
IF(SEC.NE.SECL(IC)) GOTO 10
IF(GLAT.NE.GLATL(IC)) GOTO 10
IF(GLONG.NE.GLL(IC)) GOTO 10
IF(STL.NE.STLL(IC)) GOTO 10
IF(F107A.NE.FAL(IC)) GOTO 10
IF(F107.NE.FL(IC)) GOTO 10
DO 5 I=1,7
IF(AP(I).NE.APL(I,IC)) GOTO 10
5 CONTINUE
DO 7 I=1,25
IF(SW(I).NE.SWL(I,IC)) GOTO 10
IF(SWC(I).NE.SWCL(I,IC)) GOTO 10
7 CONTINUE
GOTO 20
10 CONTINUE
VTST7=1
IYDL(IC)=IYD
SECL(IC)=SEC
GLATL(IC)=GLAT
GLL(IC)=GLONG
STLL(IC)=STL
FAL(IC)=F107A
FL(IC)=F107
DO 15 I=1,7
APL(I,IC)=AP(I)
15 CONTINUE
DO 16 I=1,25
SWL(I,IC)=SW(I)
SWCL(I,IC)=SWC(I)
16 CONTINUE
20 CONTINUE
RETURN
END
C-----------------------------------------------------------------------
SUBROUTINE GTS7(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,D,T)
C
C Thermospheric portion of NRLMSISE-00
C See GTD7 for more extensive comments
C
C OUTPUT IN M-3 and KG/M3: CALL METERS(.TRUE.)
C
C INPUT VARIABLES:
C IYD - YEAR AND DAY AS YYDDD (day of year from 1 to 365 (or 366))
C (Year ignored in current model)
C SEC - UT(SEC)
C ALT - ALTITUDE(KM) (>72.5 km)
C GLAT - GEODETIC LATITUDE(DEG)
C GLONG - GEODETIC LONGITUDE(DEG)
C STL - LOCAL APPARENT SOLAR TIME(HRS; see Note below)
C F107A - 81 day AVERAGE OF F10.7 FLUX (centered on day DDD)
C F107 - DAILY F10.7 FLUX FOR PREVIOUS DAY
C AP - MAGNETIC INDEX(DAILY) OR WHEN SW(9)=-1. :
C - ARRAY CONTAINING:
C (1) DAILY AP
C (2) 3 HR AP INDEX FOR CURRENT TIME
C (3) 3 HR AP INDEX FOR 3 HRS BEFORE CURRENT TIME
C (4) 3 HR AP INDEX FOR 6 HRS BEFORE CURRENT TIME
C (5) 3 HR AP INDEX FOR 9 HRS BEFORE CURRENT TIME
C (6) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 12 TO 33 HRS PRIOR
C TO CURRENT TIME
C (7) AVERAGE OF EIGHT 3 HR AP INDICIES FROM 36 TO 57 HRS PRIOR
C TO CURRENT TIME
C MASS - MASS NUMBER (ONLY DENSITY FOR SELECTED GAS IS
C CALCULATED. MASS 0 IS TEMPERATURE. MASS 48 FOR ALL.
C MASS 17 IS Anomalous O ONLY.)
C
C NOTES ON INPUT VARIABLES:
C UT, Local Time, and Longitude are used independently in the
C model and are not of equal importance for every situation.
C For the most physically realistic calculation these three
C variables should be consistent (STL=SEC/3600+GLONG/15).
C The Equation of Time departures from the above formula
C for apparent local time can be included if available but
C are of minor importance.
c
C F107 and F107A values used to generate the model correspond
C to the 10.7 cm radio flux at the actual distance of the Earth
C from the Sun rather than the radio flux at 1 AU. The following
C site provides both classes of values:
C ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/
C
C F107, F107A, and AP effects are neither large nor well
C established below 80 km and these parameters should be set to
C 150., 150., and 4. respectively.
C
C OUTPUT VARIABLES:
C D(1) - HE NUMBER DENSITY(CM-3)
C D(2) - O NUMBER DENSITY(CM-3)
C D(3) - N2 NUMBER DENSITY(CM-3)
C D(4) - O2 NUMBER DENSITY(CM-3)
C D(5) - AR NUMBER DENSITY(CM-3)
C D(6) - TOTAL MASS DENSITY(GM/CM3) [Anomalous O NOT included]
C D(7) - H NUMBER DENSITY(CM-3)
C D(8) - N NUMBER DENSITY(CM-3)
C D(9) - Anomalous oxygen NUMBER DENSITY(CM-3)
C T(1) - EXOSPHERIC TEMPERATURE
C T(2) - TEMPERATURE AT ALT
C
DIMENSION ZN1(5),ALPHA(9)
COMMON/GTS3C/TLB,S,DB04,DB16,DB28,DB32,DB40,DB48,DB01,ZA,T0,Z0
& ,G0,RL,DD,DB14,TR12
COMMON/MESO7/TN1(5),TN2(4),TN3(5),TGN1(2),TGN2(2),TGN3(2)
DIMENSION D(9),T(2),MT(11),AP(1),ALTL(8)
COMMON/LOWER7/PTM(10),PDM(10,8)
COMMON/PARM7/PT(150),PD(150,9),PS(150),PDL(25,2),PTL(100,4),
$ PMA(100,10),SAM(100)
COMMON/CSW/SW(25),ISW,SWC(25)
COMMON/TTEST/TINFG,GB,ROUT,TT(15)
COMMON/DMIX/DM04,DM16,DM28,DM32,DM40,DM01,DM14
COMMON/METSEL/IMR
SAVE
DATA MT/48,0,4,16,28,32,40,1,49,14,17/
DATA ALTL/200.,300.,160.,250.,240.,450.,320.,450./
DATA MN1/5/,ZN1/120.,110.,100.,90.,72.5/
DATA DGTR/1.74533E-2/,DR/1.72142E-2/,ALAST/-999./
DATA ALPHA/-0.38,0.,0.,0.,0.17,0.,-0.38,0.,0./
C Test for changed input
V2=VTST7(IYD,SEC,GLAT,GLONG,STL,F107A,F107,AP,2)
C
YRD=IYD
ZA=PDL(16,2)
ZN1(1)=ZA
DO 2 J=1,9
D(J)=0.
2 CONTINUE
C TINF VARIATIONS NOT IMPORTANT BELOW ZA OR ZN1(1)
IF(ALT.GT.ZN1(1)) THEN
IF(V2.EQ.1..OR.ALAST.LE.ZN1(1)) TINF=PTM(1)*PT(1)
$ *(1.+SW(16)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PT))
ELSE
TINF=PTM(1)*PT(1)
ENDIF
T(1)=TINF
C GRADIENT VARIATIONS NOT IMPORTANT BELOW ZN1(5)
IF(ALT.GT.ZN1(5)) THEN
IF(V2.EQ.1.OR.ALAST.LE.ZN1(5)) G0=PTM(4)*PS(1)
$ *(1.+SW(19)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PS))
ELSE
G0=PTM(4)*PS(1)
ENDIF
C Calculate these temperatures only if input changed
IF(V2.EQ.1. .OR. ALT.LT.300.)
$ TLB=PTM(2)*(1.+SW(17)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,
$ F107A,F107,AP,PD(1,4)))*PD(1,4)
S=G0/(TINF-TLB)
C Lower thermosphere temp variations not significant for
C density above 300 km
IF(ALT.LT.300.) THEN
IF(V2.EQ.1..OR.ALAST.GE.300.) THEN
TN1(2)=PTM(7)*PTL(1,1)/(1.-SW(18)*GLOB7S(PTL(1,1)))
TN1(3)=PTM(3)*PTL(1,2)/(1.-SW(18)*GLOB7S(PTL(1,2)))
TN1(4)=PTM(8)*PTL(1,3)/(1.-SW(18)*GLOB7S(PTL(1,3)))
TN1(5)=PTM(5)*PTL(1,4)/(1.-SW(18)*SW(20)*GLOB7S(PTL(1,4)))
TGN1(2)=PTM(9)*PMA(1,9)*(1.+SW(18)*SW(20)*GLOB7S(PMA(1,9)))
$ *TN1(5)*TN1(5)/(PTM(5)*PTL(1,4))**2
ENDIF
ELSE
TN1(2)=PTM(7)*PTL(1,1)
TN1(3)=PTM(3)*PTL(1,2)
TN1(4)=PTM(8)*PTL(1,3)
TN1(5)=PTM(5)*PTL(1,4)
TGN1(2)=PTM(9)*PMA(1,9)
$ *TN1(5)*TN1(5)/(PTM(5)*PTL(1,4))**2
ENDIF
C
Z0=ZN1(4)
T0=TN1(4)
TR12=1.
C
IF(MASS.EQ.0) GO TO 50
C N2 variation factor at Zlb
G28=SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,
& AP,PD(1,3))
DAY=AMOD(YRD,1000.)
C VARIATION OF TURBOPAUSE HEIGHT
ZHF=PDL(25,2)
$ *(1.+SW(5)*PDL(25,1)*SIN(DGTR*GLAT)*COS(DR*(DAY-PT(14))))
YRD=IYD
T(1)=TINF
XMM=PDM(5,3)
Z=ALT
C
DO 10 J = 1,11
IF(MASS.EQ.MT(J)) GO TO 15
10 CONTINUE
WRITE(6,100) MASS
GO TO 90
15 IF(Z.GT.ALTL(6).AND.MASS.NE.28.AND.MASS.NE.48) GO TO 17
C
C **** N2 DENSITY ****
C
C Diffusive density at Zlb
DB28 = PDM(1,3)*EXP(G28)*PD(1,3)
C Diffusive density at Alt
D(3)=DENSU(Z,DB28,TINF,TLB, 28.,ALPHA(3),T(2),PTM(6),S,MN1,ZN1,
& TN1,TGN1)
DD=D(3)
C Turbopause
ZH28=PDM(3,3)*ZHF
ZHM28=PDM(4,3)*PDL(6,2)
XMD=28.-XMM
C Mixed density at Zlb
B28=DENSU(ZH28,DB28,TINF,TLB,XMD,ALPHA(3)-1.,TZ,PTM(6),S,MN1,
& ZN1,TN1,TGN1)
IF(Z.GT.ALTL(3).OR.SW(15).EQ.0.) GO TO 17
C Mixed density at Alt
DM28=DENSU(Z,B28,TINF,TLB,XMM,ALPHA(3),TZ,PTM(6),S,MN1,
& ZN1,TN1,TGN1)
C Net density at Alt
D(3)=DNET(D(3),DM28,ZHM28,XMM,28.)
17 CONTINUE
GO TO (20,50,20,25,90,35,40,45,25,48,46), J
20 CONTINUE
C
C **** HE DENSITY ****
C
C Density variation factor at Zlb
G4 = SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,1))
C Diffusive density at Zlb
DB04 = PDM(1,1)*EXP(G4)*PD(1,1)
C Diffusive density at Alt
D(1)=DENSU(Z,DB04,TINF,TLB, 4.,ALPHA(1),T(2),PTM(6),S,MN1,ZN1,
& TN1,TGN1)
DD=D(1)
IF(Z.GT.ALTL(1).OR.SW(15).EQ.0.) GO TO 24
C Turbopause
ZH04=PDM(3,1)
C Mixed density at Zlb
B04=DENSU(ZH04,DB04,TINF,TLB,4.-XMM,ALPHA(1)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM04=DENSU(Z,B04,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM04=ZHM28
C Net density at Alt
D(1)=DNET(D(1),DM04,ZHM04,XMM,4.)
C Correction to specified mixing ratio at ground
RL=ALOG(B28*PDM(2,1)/B04)
ZC04=PDM(5,1)*PDL(1,2)
HC04=PDM(6,1)*PDL(2,2)
C Net density corrected at Alt
D(1)=D(1)*CCOR(Z,RL,HC04,ZC04)
24 CONTINUE
IF(MASS.NE.48) GO TO 90
25 CONTINUE
C
C **** O DENSITY ****
C
C Density variation factor at Zlb
G16= SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,2))
C Diffusive density at Zlb
DB16 = PDM(1,2)*EXP(G16)*PD(1,2)
C Diffusive density at Alt
D(2)=DENSU(Z,DB16,TINF,TLB, 16.,ALPHA(2),T(2),PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
DD=D(2)
IF(Z.GT.ALTL(2).OR.SW(15).EQ.0.) GO TO 34
C Corrected from PDM(3,1) to PDM(3,2) 12/2/85
C Turbopause
ZH16=PDM(3,2)
C Mixed density at Zlb
B16=DENSU(ZH16,DB16,TINF,TLB,16-XMM,ALPHA(2)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM16=DENSU(Z,B16,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM16=ZHM28
C Net density at Alt
D(2)=DNET(D(2),DM16,ZHM16,XMM,16.)
C 3/16/99 Change form to match O2 departure from diff equil near 150
C km and add dependence on F10.7
C RL=ALOG(B28*PDM(2,2)*ABS(PDL(17,2))/B16)
RL=PDM(2,2)*PDL(17,2)*(1.+SW(1)*PDL(24,1)*(F107A-150.))
HC16=PDM(6,2)*PDL(4,2)
ZC16=PDM(5,2)*PDL(3,2)
HC216=PDM(6,2)*PDL(5,2)
D(2)=D(2)*CCOR2(Z,RL,HC16,ZC16,HC216)
C Chemistry correction
HCC16=PDM(8,2)*PDL(14,2)
ZCC16=PDM(7,2)*PDL(13,2)
RC16=PDM(4,2)*PDL(15,2)
C Net density corrected at Alt
D(2)=D(2)*CCOR(Z,RC16,HCC16,ZCC16)
34 CONTINUE
IF(MASS.NE.48.AND.MASS.NE.49) GO TO 90
35 CONTINUE
C
C **** O2 DENSITY ****
C
C Density variation factor at Zlb
G32= SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,5))
C Diffusive density at Zlb
DB32 = PDM(1,4)*EXP(G32)*PD(1,5)
C Diffusive density at Alt
D(4)=DENSU(Z,DB32,TINF,TLB, 32.,ALPHA(4),T(2),PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
IF(MASS.EQ.49) THEN
DD=DD+2.*D(4)
ELSE
DD=D(4)
ENDIF
IF(SW(15).EQ.0.) GO TO 39
IF(Z.GT.ALTL(4)) GO TO 38
C Turbopause
ZH32=PDM(3,4)
C Mixed density at Zlb
B32=DENSU(ZH32,DB32,TINF,TLB,32.-XMM,ALPHA(4)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM32=DENSU(Z,B32,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM32=ZHM28
C Net density at Alt
D(4)=DNET(D(4),DM32,ZHM32,XMM,32.)
C Correction to specified mixing ratio at ground
RL=ALOG(B28*PDM(2,4)/B32)
HC32=PDM(6,4)*PDL(8,2)
ZC32=PDM(5,4)*PDL(7,2)
D(4)=D(4)*CCOR(Z,RL,HC32,ZC32)
38 CONTINUE
C Correction for general departure from diffusive equilibrium above Zlb
HCC32=PDM(8,4)*PDL(23,2)
HCC232=PDM(8,4)*PDL(23,1)
ZCC32=PDM(7,4)*PDL(22,2)
RC32=PDM(4,4)*PDL(24,2)*(1.+SW(1)*PDL(24,1)*(F107A-150.))
C Net density corrected at Alt
D(4)=D(4)*CCOR2(Z,RC32,HCC32,ZCC32,HCC232)
39 CONTINUE
IF(MASS.NE.48) GO TO 90
40 CONTINUE
C
C **** AR DENSITY ****
C
C Density variation factor at Zlb
G40= SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,6))
C Diffusive density at Zlb
DB40 = PDM(1,5)*EXP(G40)*PD(1,6)
C Diffusive density at Alt
D(5)=DENSU(Z,DB40,TINF,TLB, 40.,ALPHA(5),T(2),PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
DD=D(5)
IF(Z.GT.ALTL(5).OR.SW(15).EQ.0.) GO TO 44
C Turbopause
ZH40=PDM(3,5)
C Mixed density at Zlb
B40=DENSU(ZH40,DB40,TINF,TLB,40.-XMM,ALPHA(5)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM40=DENSU(Z,B40,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM40=ZHM28
C Net density at Alt
D(5)=DNET(D(5),DM40,ZHM40,XMM,40.)
C Correction to specified mixing ratio at ground
RL=ALOG(B28*PDM(2,5)/B40)
HC40=PDM(6,5)*PDL(10,2)
ZC40=PDM(5,5)*PDL(9,2)
C Net density corrected at Alt
D(5)=D(5)*CCOR(Z,RL,HC40,ZC40)
44 CONTINUE
IF(MASS.NE.48) GO TO 90
45 CONTINUE
C
C **** HYDROGEN DENSITY ****
C
C Density variation factor at Zlb
G1 = SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,7))
C Diffusive density at Zlb
DB01 = PDM(1,6)*EXP(G1)*PD(1,7)
C Diffusive density at Alt
D(7)=DENSU(Z,DB01,TINF,TLB,1.,ALPHA(7),T(2),PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
DD=D(7)
IF(Z.GT.ALTL(7).OR.SW(15).EQ.0.) GO TO 47
C Turbopause
ZH01=PDM(3,6)
C Mixed density at Zlb
B01=DENSU(ZH01,DB01,TINF,TLB,1.-XMM,ALPHA(7)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM01=DENSU(Z,B01,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM01=ZHM28
C Net density at Alt
D(7)=DNET(D(7),DM01,ZHM01,XMM,1.)
C Correction to specified mixing ratio at ground
RL=ALOG(B28*PDM(2,6)*ABS(PDL(18,2))/B01)
HC01=PDM(6,6)*PDL(12,2)
ZC01=PDM(5,6)*PDL(11,2)
D(7)=D(7)*CCOR(Z,RL,HC01,ZC01)
C Chemistry correction
HCC01=PDM(8,6)*PDL(20,2)
ZCC01=PDM(7,6)*PDL(19,2)
RC01=PDM(4,6)*PDL(21,2)
C Net density corrected at Alt
D(7)=D(7)*CCOR(Z,RC01,HCC01,ZCC01)
47 CONTINUE
IF(MASS.NE.48) GO TO 90
48 CONTINUE
C
C **** ATOMIC NITROGEN DENSITY ****
C
C Density variation factor at Zlb
G14 = SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,8))
C Diffusive density at Zlb
DB14 = PDM(1,7)*EXP(G14)*PD(1,8)
C Diffusive density at Alt
D(8)=DENSU(Z,DB14,TINF,TLB,14.,ALPHA(8),T(2),PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
DD=D(8)
IF(Z.GT.ALTL(8).OR.SW(15).EQ.0.) GO TO 49
C Turbopause
ZH14=PDM(3,7)
C Mixed density at Zlb
B14=DENSU(ZH14,DB14,TINF,TLB,14.-XMM,ALPHA(8)-1.,
$ T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
C Mixed density at Alt
DM14=DENSU(Z,B14,TINF,TLB,XMM,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
ZHM14=ZHM28
C Net density at Alt
D(8)=DNET(D(8),DM14,ZHM14,XMM,14.)
C Correction to specified mixing ratio at ground
RL=ALOG(B28*PDM(2,7)*ABS(PDL(3,1))/B14)
HC14=PDM(6,7)*PDL(2,1)
ZC14=PDM(5,7)*PDL(1,1)
D(8)=D(8)*CCOR(Z,RL,HC14,ZC14)
C Chemistry correction
HCC14=PDM(8,7)*PDL(5,1)
ZCC14=PDM(7,7)*PDL(4,1)
RC14=PDM(4,7)*PDL(6,1)
C Net density corrected at Alt
D(8)=D(8)*CCOR(Z,RC14,HCC14,ZCC14)
49 CONTINUE
IF(MASS.NE.48) GO TO 90
46 CONTINUE
C
C **** Anomalous OXYGEN DENSITY ****
C
G16H = SW(21)*GLOBE7(YRD,SEC,GLAT,GLONG,STL,F107A,F107,AP,PD(1,9))
DB16H = PDM(1,8)*EXP(G16H)*PD(1,9)
THO=PDM(10,8)*PDL(7,1)
DD=DENSU(Z,DB16H,THO,THO,16.,ALPHA(9),T2,PTM(6),S,MN1,
$ ZN1,TN1,TGN1)
ZSHT=PDM(6,8)
ZMHO=PDM(5,8)
ZSHO=SCALH(ZMHO,16.,THO)
D(9)=DD*EXP(-ZSHT/ZSHO*(EXP(-(Z-ZMHO)/ZSHT)-1.))
IF(MASS.NE.48) GO TO 90
C
C TOTAL MASS DENSITY
C
D(6) = 1.66E-24*(4.*D(1)+16.*D(2)+28.*D(3)+32.*D(4)+40.*D(5)+
& D(7)+14.*D(8))
DB48=1.66E-24*(4.*DB04+16.*DB16+28.*DB28+32.*DB32+40.*DB40+DB01+
& 14.*DB14)
GO TO 90
C TEMPERATURE AT ALTITUDE
50 CONTINUE
Z=ABS(ALT)
DDUM = DENSU(Z,1., TINF,TLB,0.,0.,T(2),PTM(6),S,MN1,ZN1,TN1,TGN1)
90 CONTINUE
C ADJUST DENSITIES FROM CGS TO KGM
IF(IMR.EQ.1) THEN
DO 95 I=1,9
D(I)=D(I)*1.E6
95 CONTINUE
D(6)=D(6)/1000.
ENDIF
ALAST=ALT
RETURN
100 FORMAT(1X,'MASS', I5, ' NOT VALID')
END
C-----------------------------------------------------------------------
SUBROUTINE METERS(METER)
C Convert outputs to Kg & Meters if METER true
LOGICAL METER
COMMON/METSEL/IMR
SAVE
IMR=0
IF(METER) IMR=1
END
C-----------------------------------------------------------------------
FUNCTION SCALH(ALT,XM,TEMP)
C Calculate scale height (km)
COMMON/PARMB/GSURF,RE
SAVE
DATA RGAS/831.4/
G=GSURF/(1.+ALT/RE)**2
SCALH=RGAS*TEMP/(G*XM)
RETURN
END
C-----------------------------------------------------------------------
FUNCTION GLOBE7(YRD,SEC,LAT,LONG,TLOC,F107A,F107,AP,P)
C CALCULATE G(L) FUNCTION
C Upper Thermosphere Parameters
REAL LAT, LONG
DIMENSION P(200),SV(25),AP(7)
COMMON/TTEST/TINF,GB,ROUT,T(15)
COMMON/CSW/SW(25),ISW,SWC(25)
COMMON/LPOLY/PLG(9,4),CTLOC,STLOC,C2TLOC,S2TLOC,C3TLOC,S3TLOC,
$ IYR,DAY,DF,DFA,APD,APDF,APT(4),XLONG
SAVE
DATA DGTR/1.74533E-2/,DR/1.72142E-2/, XL/1000./,TLL/1000./
DATA SW9/1./,DAYL/-1./,P14/-1000./,P18/-1000./,P32/-1000./
DATA HR/.2618/,SR/7.2722E-5/,SV/25*1./,NSW/14/,P39/-1000./
C 3hr Magnetic activity functions
C Eq. A24d
G0(A)=(A-4.+(P(26)-1.)*(A-4.+(EXP(-ABS(P(25))*(A-4.))-1.)/ABS(P(25
*))))
C Eq. A24c
SUMEX(EX)=1.+(1.-EX**19)/(1.-EX)*EX**(.5)
C Eq. A24a
SG0(EX)=(G0(AP(2))+(G0(AP(3))*EX+G0(AP(4))*EX*EX+G0(AP(5))*EX**3
$ +(G0(AP(6))*EX**4+G0(AP(7))*EX**12)*(1.-EX**8)/(1.-EX))
$ )/SUMEX(EX)
IF(ISW.NE.64999) CALL TSELEC(SV)
DO 10 J=1,14
T(J)=0
10 CONTINUE
IF(SW(9).GT.0) SW9=1.
IF(SW(9).LT.0) SW9=-1.
IYR = YRD/1000.
DAY = YRD - IYR*1000.
XLONG=LONG
C Eq. A22 (remainder of code)
IF(XL.EQ.LAT) GO TO 15
C CALCULATE LEGENDRE POLYNOMIALS
C = SIN(LAT*DGTR)