The project focuses on creating a generative AI model to generate realistic flow-based network traffic for improving network-based intrusion detection systems. By leveraging language modeling techniques, this project aims to overcome the limitations of traditional methods and generate high-dimensional datasets that are difficult to collect. The model was trained on 30,000 packets of network traffic.
├── .gitignore
├── Models/
│ ├── RNN_Model.ipynb
│ ├── Transformer_Model.py
│ └── Wavenet_Model.ipynb
├── README.md
├── Tests/
│ ├── Poly_Kernel_Testing.py
│ ├── driver_transformer_testing.py
│ └── polynomial_testing.ipynb
├── data_processing/
│ ├── data_preprocessing_main.ipynb
│ └── make_dataset_with_no_dots.ipynb
├── datasets/
│ ├── dataset _Main.csv
│ ├── mapped_words_main.txt
│ └── mapped_words_with-dots.txt
├── litreture/
│ ├── A Neural Probabilistic Language Model.pdf
│ ├── Batchnormalization.pdf
│ ├── He_Delving_Deep_into_ICCV_2015_paper.pdf
│ ├── RethinkingBatch.pdf
│ └── attention.pdf
├── outputs/
│ ├── output_text_RNN.txt
│ └── output_text_transformer.txt
└── reports/
└── main_report.pdf